root/drivers/net/ethernet/freescale/fec_ptp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fec_ptp_enable_pps
  2. fec_ptp_read
  3. fec_ptp_start_cyclecounter
  4. fec_ptp_adjfreq
  5. fec_ptp_adjtime
  6. fec_ptp_gettime
  7. fec_ptp_settime
  8. fec_ptp_enable
  9. fec_ptp_set
  10. fec_ptp_get
  11. fec_time_keep
  12. fec_pps_interrupt
  13. fec_ptp_init
  14. fec_ptp_stop

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
   4  *
   5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
   6  */
   7 
   8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9 
  10 #include <linux/module.h>
  11 #include <linux/kernel.h>
  12 #include <linux/string.h>
  13 #include <linux/ptrace.h>
  14 #include <linux/errno.h>
  15 #include <linux/ioport.h>
  16 #include <linux/slab.h>
  17 #include <linux/interrupt.h>
  18 #include <linux/pci.h>
  19 #include <linux/delay.h>
  20 #include <linux/netdevice.h>
  21 #include <linux/etherdevice.h>
  22 #include <linux/skbuff.h>
  23 #include <linux/spinlock.h>
  24 #include <linux/workqueue.h>
  25 #include <linux/bitops.h>
  26 #include <linux/io.h>
  27 #include <linux/irq.h>
  28 #include <linux/clk.h>
  29 #include <linux/platform_device.h>
  30 #include <linux/phy.h>
  31 #include <linux/fec.h>
  32 #include <linux/of.h>
  33 #include <linux/of_device.h>
  34 #include <linux/of_gpio.h>
  35 #include <linux/of_net.h>
  36 
  37 #include "fec.h"
  38 
  39 /* FEC 1588 register bits */
  40 #define FEC_T_CTRL_SLAVE                0x00002000
  41 #define FEC_T_CTRL_CAPTURE              0x00000800
  42 #define FEC_T_CTRL_RESTART              0x00000200
  43 #define FEC_T_CTRL_PERIOD_RST           0x00000030
  44 #define FEC_T_CTRL_PERIOD_EN            0x00000010
  45 #define FEC_T_CTRL_ENABLE               0x00000001
  46 
  47 #define FEC_T_INC_MASK                  0x0000007f
  48 #define FEC_T_INC_OFFSET                0
  49 #define FEC_T_INC_CORR_MASK             0x00007f00
  50 #define FEC_T_INC_CORR_OFFSET           8
  51 
  52 #define FEC_T_CTRL_PINPER               0x00000080
  53 #define FEC_T_TF0_MASK                  0x00000001
  54 #define FEC_T_TF0_OFFSET                0
  55 #define FEC_T_TF1_MASK                  0x00000002
  56 #define FEC_T_TF1_OFFSET                1
  57 #define FEC_T_TF2_MASK                  0x00000004
  58 #define FEC_T_TF2_OFFSET                2
  59 #define FEC_T_TF3_MASK                  0x00000008
  60 #define FEC_T_TF3_OFFSET                3
  61 #define FEC_T_TDRE_MASK                 0x00000001
  62 #define FEC_T_TDRE_OFFSET               0
  63 #define FEC_T_TMODE_MASK                0x0000003C
  64 #define FEC_T_TMODE_OFFSET              2
  65 #define FEC_T_TIE_MASK                  0x00000040
  66 #define FEC_T_TIE_OFFSET                6
  67 #define FEC_T_TF_MASK                   0x00000080
  68 #define FEC_T_TF_OFFSET                 7
  69 
  70 #define FEC_ATIME_CTRL          0x400
  71 #define FEC_ATIME               0x404
  72 #define FEC_ATIME_EVT_OFFSET    0x408
  73 #define FEC_ATIME_EVT_PERIOD    0x40c
  74 #define FEC_ATIME_CORR          0x410
  75 #define FEC_ATIME_INC           0x414
  76 #define FEC_TS_TIMESTAMP        0x418
  77 
  78 #define FEC_TGSR                0x604
  79 #define FEC_TCSR(n)             (0x608 + n * 0x08)
  80 #define FEC_TCCR(n)             (0x60C + n * 0x08)
  81 #define MAX_TIMER_CHANNEL       3
  82 #define FEC_TMODE_TOGGLE        0x05
  83 #define FEC_HIGH_PULSE          0x0F
  84 
  85 #define FEC_CC_MULT     (1 << 31)
  86 #define FEC_COUNTER_PERIOD      (1 << 31)
  87 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
  88 #define FEC_CHANNLE_0           0
  89 #define DEFAULT_PPS_CHANNEL     FEC_CHANNLE_0
  90 
  91 /**
  92  * fec_ptp_enable_pps
  93  * @fep: the fec_enet_private structure handle
  94  * @enable: enable the channel pps output
  95  *
  96  * This function enble the PPS ouput on the timer channel.
  97  */
  98 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
  99 {
 100         unsigned long flags;
 101         u32 val, tempval;
 102         struct timespec64 ts;
 103         u64 ns;
 104         val = 0;
 105 
 106         if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
 107                 dev_err(&fep->pdev->dev, "No ptp stack is running\n");
 108                 return -EINVAL;
 109         }
 110 
 111         if (fep->pps_enable == enable)
 112                 return 0;
 113 
 114         fep->pps_channel = DEFAULT_PPS_CHANNEL;
 115         fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
 116 
 117         spin_lock_irqsave(&fep->tmreg_lock, flags);
 118 
 119         if (enable) {
 120                 /* clear capture or output compare interrupt status if have.
 121                  */
 122                 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
 123 
 124                 /* It is recommended to double check the TMODE field in the
 125                  * TCSR register to be cleared before the first compare counter
 126                  * is written into TCCR register. Just add a double check.
 127                  */
 128                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 129                 do {
 130                         val &= ~(FEC_T_TMODE_MASK);
 131                         writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 132                         val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 133                 } while (val & FEC_T_TMODE_MASK);
 134 
 135                 /* Dummy read counter to update the counter */
 136                 timecounter_read(&fep->tc);
 137                 /* We want to find the first compare event in the next
 138                  * second point. So we need to know what the ptp time
 139                  * is now and how many nanoseconds is ahead to get next second.
 140                  * The remaining nanosecond ahead before the next second would be
 141                  * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
 142                  * to current timer would be next second.
 143                  */
 144                 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 145                 tempval |= FEC_T_CTRL_CAPTURE;
 146                 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 147 
 148                 tempval = readl(fep->hwp + FEC_ATIME);
 149                 /* Convert the ptp local counter to 1588 timestamp */
 150                 ns = timecounter_cyc2time(&fep->tc, tempval);
 151                 ts = ns_to_timespec64(ns);
 152 
 153                 /* The tempval is  less than 3 seconds, and  so val is less than
 154                  * 4 seconds. No overflow for 32bit calculation.
 155                  */
 156                 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
 157 
 158                 /* Need to consider the situation that the current time is
 159                  * very close to the second point, which means NSEC_PER_SEC
 160                  * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
 161                  * is still running when we calculate the first compare event, it is
 162                  * possible that the remaining nanoseonds run out before the compare
 163                  * counter is calculated and written into TCCR register. To avoid
 164                  * this possibility, we will set the compare event to be the next
 165                  * of next second. The current setting is 31-bit timer and wrap
 166                  * around over 2 seconds. So it is okay to set the next of next
 167                  * seond for the timer.
 168                  */
 169                 val += NSEC_PER_SEC;
 170 
 171                 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
 172                  * ptp counter, which maybe cause 32-bit wrap. Since the
 173                  * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
 174                  * We can ensure the wrap will not cause issue. If the offset
 175                  * is bigger than fep->cc.mask would be a error.
 176                  */
 177                 val &= fep->cc.mask;
 178                 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
 179 
 180                 /* Calculate the second the compare event timestamp */
 181                 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
 182 
 183                 /* * Enable compare event when overflow */
 184                 val = readl(fep->hwp + FEC_ATIME_CTRL);
 185                 val |= FEC_T_CTRL_PINPER;
 186                 writel(val, fep->hwp + FEC_ATIME_CTRL);
 187 
 188                 /* Compare channel setting. */
 189                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 190                 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
 191                 val &= ~(1 << FEC_T_TDRE_OFFSET);
 192                 val &= ~(FEC_T_TMODE_MASK);
 193                 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
 194                 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 195 
 196                 /* Write the second compare event timestamp and calculate
 197                  * the third timestamp. Refer the TCCR register detail in the spec.
 198                  */
 199                 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
 200                 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
 201         } else {
 202                 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
 203         }
 204 
 205         fep->pps_enable = enable;
 206         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 207 
 208         return 0;
 209 }
 210 
 211 /**
 212  * fec_ptp_read - read raw cycle counter (to be used by time counter)
 213  * @cc: the cyclecounter structure
 214  *
 215  * this function reads the cyclecounter registers and is called by the
 216  * cyclecounter structure used to construct a ns counter from the
 217  * arbitrary fixed point registers
 218  */
 219 static u64 fec_ptp_read(const struct cyclecounter *cc)
 220 {
 221         struct fec_enet_private *fep =
 222                 container_of(cc, struct fec_enet_private, cc);
 223         const struct platform_device_id *id_entry =
 224                 platform_get_device_id(fep->pdev);
 225         u32 tempval;
 226 
 227         tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 228         tempval |= FEC_T_CTRL_CAPTURE;
 229         writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 230 
 231         if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
 232                 udelay(1);
 233 
 234         return readl(fep->hwp + FEC_ATIME);
 235 }
 236 
 237 /**
 238  * fec_ptp_start_cyclecounter - create the cycle counter from hw
 239  * @ndev: network device
 240  *
 241  * this function initializes the timecounter and cyclecounter
 242  * structures for use in generated a ns counter from the arbitrary
 243  * fixed point cycles registers in the hardware.
 244  */
 245 void fec_ptp_start_cyclecounter(struct net_device *ndev)
 246 {
 247         struct fec_enet_private *fep = netdev_priv(ndev);
 248         unsigned long flags;
 249         int inc;
 250 
 251         inc = 1000000000 / fep->cycle_speed;
 252 
 253         /* grab the ptp lock */
 254         spin_lock_irqsave(&fep->tmreg_lock, flags);
 255 
 256         /* 1ns counter */
 257         writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
 258 
 259         /* use 31-bit timer counter */
 260         writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
 261 
 262         writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
 263                 fep->hwp + FEC_ATIME_CTRL);
 264 
 265         memset(&fep->cc, 0, sizeof(fep->cc));
 266         fep->cc.read = fec_ptp_read;
 267         fep->cc.mask = CLOCKSOURCE_MASK(31);
 268         fep->cc.shift = 31;
 269         fep->cc.mult = FEC_CC_MULT;
 270 
 271         /* reset the ns time counter */
 272         timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
 273 
 274         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 275 }
 276 
 277 /**
 278  * fec_ptp_adjfreq - adjust ptp cycle frequency
 279  * @ptp: the ptp clock structure
 280  * @ppb: parts per billion adjustment from base
 281  *
 282  * Adjust the frequency of the ptp cycle counter by the
 283  * indicated ppb from the base frequency.
 284  *
 285  * Because ENET hardware frequency adjust is complex,
 286  * using software method to do that.
 287  */
 288 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 289 {
 290         unsigned long flags;
 291         int neg_adj = 0;
 292         u32 i, tmp;
 293         u32 corr_inc, corr_period;
 294         u32 corr_ns;
 295         u64 lhs, rhs;
 296 
 297         struct fec_enet_private *fep =
 298             container_of(ptp, struct fec_enet_private, ptp_caps);
 299 
 300         if (ppb == 0)
 301                 return 0;
 302 
 303         if (ppb < 0) {
 304                 ppb = -ppb;
 305                 neg_adj = 1;
 306         }
 307 
 308         /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
 309          * Try to find the corr_inc  between 1 to fep->ptp_inc to
 310          * meet adjustment requirement.
 311          */
 312         lhs = NSEC_PER_SEC;
 313         rhs = (u64)ppb * (u64)fep->ptp_inc;
 314         for (i = 1; i <= fep->ptp_inc; i++) {
 315                 if (lhs >= rhs) {
 316                         corr_inc = i;
 317                         corr_period = div_u64(lhs, rhs);
 318                         break;
 319                 }
 320                 lhs += NSEC_PER_SEC;
 321         }
 322         /* Not found? Set it to high value - double speed
 323          * correct in every clock step.
 324          */
 325         if (i > fep->ptp_inc) {
 326                 corr_inc = fep->ptp_inc;
 327                 corr_period = 1;
 328         }
 329 
 330         if (neg_adj)
 331                 corr_ns = fep->ptp_inc - corr_inc;
 332         else
 333                 corr_ns = fep->ptp_inc + corr_inc;
 334 
 335         spin_lock_irqsave(&fep->tmreg_lock, flags);
 336 
 337         tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
 338         tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
 339         writel(tmp, fep->hwp + FEC_ATIME_INC);
 340         corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
 341         writel(corr_period, fep->hwp + FEC_ATIME_CORR);
 342         /* dummy read to update the timer. */
 343         timecounter_read(&fep->tc);
 344 
 345         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 346 
 347         return 0;
 348 }
 349 
 350 /**
 351  * fec_ptp_adjtime
 352  * @ptp: the ptp clock structure
 353  * @delta: offset to adjust the cycle counter by
 354  *
 355  * adjust the timer by resetting the timecounter structure.
 356  */
 357 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 358 {
 359         struct fec_enet_private *fep =
 360             container_of(ptp, struct fec_enet_private, ptp_caps);
 361         unsigned long flags;
 362 
 363         spin_lock_irqsave(&fep->tmreg_lock, flags);
 364         timecounter_adjtime(&fep->tc, delta);
 365         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 366 
 367         return 0;
 368 }
 369 
 370 /**
 371  * fec_ptp_gettime
 372  * @ptp: the ptp clock structure
 373  * @ts: timespec structure to hold the current time value
 374  *
 375  * read the timecounter and return the correct value on ns,
 376  * after converting it into a struct timespec.
 377  */
 378 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
 379 {
 380         struct fec_enet_private *adapter =
 381             container_of(ptp, struct fec_enet_private, ptp_caps);
 382         u64 ns;
 383         unsigned long flags;
 384 
 385         spin_lock_irqsave(&adapter->tmreg_lock, flags);
 386         ns = timecounter_read(&adapter->tc);
 387         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 388 
 389         *ts = ns_to_timespec64(ns);
 390 
 391         return 0;
 392 }
 393 
 394 /**
 395  * fec_ptp_settime
 396  * @ptp: the ptp clock structure
 397  * @ts: the timespec containing the new time for the cycle counter
 398  *
 399  * reset the timecounter to use a new base value instead of the kernel
 400  * wall timer value.
 401  */
 402 static int fec_ptp_settime(struct ptp_clock_info *ptp,
 403                            const struct timespec64 *ts)
 404 {
 405         struct fec_enet_private *fep =
 406             container_of(ptp, struct fec_enet_private, ptp_caps);
 407 
 408         u64 ns;
 409         unsigned long flags;
 410         u32 counter;
 411 
 412         mutex_lock(&fep->ptp_clk_mutex);
 413         /* Check the ptp clock */
 414         if (!fep->ptp_clk_on) {
 415                 mutex_unlock(&fep->ptp_clk_mutex);
 416                 return -EINVAL;
 417         }
 418 
 419         ns = timespec64_to_ns(ts);
 420         /* Get the timer value based on timestamp.
 421          * Update the counter with the masked value.
 422          */
 423         counter = ns & fep->cc.mask;
 424 
 425         spin_lock_irqsave(&fep->tmreg_lock, flags);
 426         writel(counter, fep->hwp + FEC_ATIME);
 427         timecounter_init(&fep->tc, &fep->cc, ns);
 428         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 429         mutex_unlock(&fep->ptp_clk_mutex);
 430         return 0;
 431 }
 432 
 433 /**
 434  * fec_ptp_enable
 435  * @ptp: the ptp clock structure
 436  * @rq: the requested feature to change
 437  * @on: whether to enable or disable the feature
 438  *
 439  */
 440 static int fec_ptp_enable(struct ptp_clock_info *ptp,
 441                           struct ptp_clock_request *rq, int on)
 442 {
 443         struct fec_enet_private *fep =
 444             container_of(ptp, struct fec_enet_private, ptp_caps);
 445         int ret = 0;
 446 
 447         if (rq->type == PTP_CLK_REQ_PPS) {
 448                 ret = fec_ptp_enable_pps(fep, on);
 449 
 450                 return ret;
 451         }
 452         return -EOPNOTSUPP;
 453 }
 454 
 455 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
 456 {
 457         struct fec_enet_private *fep = netdev_priv(ndev);
 458 
 459         struct hwtstamp_config config;
 460 
 461         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 462                 return -EFAULT;
 463 
 464         /* reserved for future extensions */
 465         if (config.flags)
 466                 return -EINVAL;
 467 
 468         switch (config.tx_type) {
 469         case HWTSTAMP_TX_OFF:
 470                 fep->hwts_tx_en = 0;
 471                 break;
 472         case HWTSTAMP_TX_ON:
 473                 fep->hwts_tx_en = 1;
 474                 break;
 475         default:
 476                 return -ERANGE;
 477         }
 478 
 479         switch (config.rx_filter) {
 480         case HWTSTAMP_FILTER_NONE:
 481                 if (fep->hwts_rx_en)
 482                         fep->hwts_rx_en = 0;
 483                 config.rx_filter = HWTSTAMP_FILTER_NONE;
 484                 break;
 485 
 486         default:
 487                 fep->hwts_rx_en = 1;
 488                 config.rx_filter = HWTSTAMP_FILTER_ALL;
 489                 break;
 490         }
 491 
 492         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 493             -EFAULT : 0;
 494 }
 495 
 496 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
 497 {
 498         struct fec_enet_private *fep = netdev_priv(ndev);
 499         struct hwtstamp_config config;
 500 
 501         config.flags = 0;
 502         config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 503         config.rx_filter = (fep->hwts_rx_en ?
 504                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 505 
 506         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 507                 -EFAULT : 0;
 508 }
 509 
 510 /**
 511  * fec_time_keep - call timecounter_read every second to avoid timer overrun
 512  *                 because ENET just support 32bit counter, will timeout in 4s
 513  */
 514 static void fec_time_keep(struct work_struct *work)
 515 {
 516         struct delayed_work *dwork = to_delayed_work(work);
 517         struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
 518         u64 ns;
 519         unsigned long flags;
 520 
 521         mutex_lock(&fep->ptp_clk_mutex);
 522         if (fep->ptp_clk_on) {
 523                 spin_lock_irqsave(&fep->tmreg_lock, flags);
 524                 ns = timecounter_read(&fep->tc);
 525                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 526         }
 527         mutex_unlock(&fep->ptp_clk_mutex);
 528 
 529         schedule_delayed_work(&fep->time_keep, HZ);
 530 }
 531 
 532 /* This function checks the pps event and reloads the timer compare counter. */
 533 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
 534 {
 535         struct net_device *ndev = dev_id;
 536         struct fec_enet_private *fep = netdev_priv(ndev);
 537         u32 val;
 538         u8 channel = fep->pps_channel;
 539         struct ptp_clock_event event;
 540 
 541         val = readl(fep->hwp + FEC_TCSR(channel));
 542         if (val & FEC_T_TF_MASK) {
 543                 /* Write the next next compare(not the next according the spec)
 544                  * value to the register
 545                  */
 546                 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
 547                 do {
 548                         writel(val, fep->hwp + FEC_TCSR(channel));
 549                 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
 550 
 551                 /* Update the counter; */
 552                 fep->next_counter = (fep->next_counter + fep->reload_period) &
 553                                 fep->cc.mask;
 554 
 555                 event.type = PTP_CLOCK_PPS;
 556                 ptp_clock_event(fep->ptp_clock, &event);
 557                 return IRQ_HANDLED;
 558         }
 559 
 560         return IRQ_NONE;
 561 }
 562 
 563 /**
 564  * fec_ptp_init
 565  * @ndev: The FEC network adapter
 566  *
 567  * This function performs the required steps for enabling ptp
 568  * support. If ptp support has already been loaded it simply calls the
 569  * cyclecounter init routine and exits.
 570  */
 571 
 572 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
 573 {
 574         struct net_device *ndev = platform_get_drvdata(pdev);
 575         struct fec_enet_private *fep = netdev_priv(ndev);
 576         int irq;
 577         int ret;
 578 
 579         fep->ptp_caps.owner = THIS_MODULE;
 580         snprintf(fep->ptp_caps.name, 16, "fec ptp");
 581 
 582         fep->ptp_caps.max_adj = 250000000;
 583         fep->ptp_caps.n_alarm = 0;
 584         fep->ptp_caps.n_ext_ts = 0;
 585         fep->ptp_caps.n_per_out = 0;
 586         fep->ptp_caps.n_pins = 0;
 587         fep->ptp_caps.pps = 1;
 588         fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
 589         fep->ptp_caps.adjtime = fec_ptp_adjtime;
 590         fep->ptp_caps.gettime64 = fec_ptp_gettime;
 591         fep->ptp_caps.settime64 = fec_ptp_settime;
 592         fep->ptp_caps.enable = fec_ptp_enable;
 593 
 594         fep->cycle_speed = clk_get_rate(fep->clk_ptp);
 595         fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
 596 
 597         spin_lock_init(&fep->tmreg_lock);
 598 
 599         fec_ptp_start_cyclecounter(ndev);
 600 
 601         INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
 602 
 603         irq = platform_get_irq_byname_optional(pdev, "pps");
 604         if (irq < 0)
 605                 irq = platform_get_irq_optional(pdev, irq_idx);
 606         /* Failure to get an irq is not fatal,
 607          * only the PTP_CLOCK_PPS clock events should stop
 608          */
 609         if (irq >= 0) {
 610                 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
 611                                        0, pdev->name, ndev);
 612                 if (ret < 0)
 613                         dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
 614                                  ret);
 615         }
 616 
 617         fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
 618         if (IS_ERR(fep->ptp_clock)) {
 619                 fep->ptp_clock = NULL;
 620                 dev_err(&pdev->dev, "ptp_clock_register failed\n");
 621         }
 622 
 623         schedule_delayed_work(&fep->time_keep, HZ);
 624 }
 625 
 626 void fec_ptp_stop(struct platform_device *pdev)
 627 {
 628         struct net_device *ndev = platform_get_drvdata(pdev);
 629         struct fec_enet_private *fep = netdev_priv(ndev);
 630 
 631         cancel_delayed_work_sync(&fep->time_keep);
 632         if (fep->ptp_clock)
 633                 ptp_clock_unregister(fep->ptp_clock);
 634 }

/* [<][>][^][v][top][bottom][index][help] */