root/drivers/net/ethernet/freescale/fec_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fec_enet_get_nextdesc
  2. fec_enet_get_prevdesc
  3. fec_enet_get_bd_index
  4. fec_enet_get_free_txdesc_num
  5. swap_buffer
  6. swap_buffer2
  7. fec_dump
  8. is_ipv4_pkt
  9. fec_enet_clear_csum
  10. fec_enet_txq_submit_frag_skb
  11. fec_enet_txq_submit_skb
  12. fec_enet_txq_put_data_tso
  13. fec_enet_txq_put_hdr_tso
  14. fec_enet_txq_submit_tso
  15. fec_enet_start_xmit
  16. fec_enet_bd_init
  17. fec_enet_active_rxring
  18. fec_enet_enable_ring
  19. fec_enet_reset_skb
  20. fec_restart
  21. fec_enet_stop_mode
  22. fec_stop
  23. fec_timeout
  24. fec_enet_timeout_work
  25. fec_enet_hwtstamp
  26. fec_enet_tx_queue
  27. fec_enet_tx
  28. fec_enet_new_rxbdp
  29. fec_enet_copybreak
  30. fec_enet_rx_queue
  31. fec_enet_rx
  32. fec_enet_collect_events
  33. fec_enet_interrupt
  34. fec_enet_rx_napi
  35. fec_get_mac
  36. fec_enet_adjust_link
  37. fec_enet_mdio_read
  38. fec_enet_mdio_write
  39. fec_enet_clk_enable
  40. fec_enet_mii_probe
  41. fec_enet_mii_init
  42. fec_enet_mii_remove
  43. fec_enet_get_drvinfo
  44. fec_enet_get_regs_len
  45. fec_enet_get_regs
  46. fec_enet_get_ts_info
  47. fec_enet_get_pauseparam
  48. fec_enet_set_pauseparam
  49. fec_enet_update_ethtool_stats
  50. fec_enet_get_ethtool_stats
  51. fec_enet_get_strings
  52. fec_enet_get_sset_count
  53. fec_enet_clear_ethtool_stats
  54. fec_enet_update_ethtool_stats
  55. fec_enet_clear_ethtool_stats
  56. fec_enet_us_to_itr_clock
  57. fec_enet_itr_coal_set
  58. fec_enet_get_coalesce
  59. fec_enet_set_coalesce
  60. fec_enet_itr_coal_init
  61. fec_enet_get_tunable
  62. fec_enet_set_tunable
  63. fec_enet_get_wol
  64. fec_enet_set_wol
  65. fec_enet_ioctl
  66. fec_enet_free_buffers
  67. fec_enet_free_queue
  68. fec_enet_alloc_queue
  69. fec_enet_alloc_rxq_buffers
  70. fec_enet_alloc_txq_buffers
  71. fec_enet_alloc_buffers
  72. fec_enet_open
  73. fec_enet_close
  74. set_multicast_list
  75. fec_set_mac_address
  76. fec_poll_controller
  77. fec_enet_set_netdev_features
  78. fec_set_features
  79. fec_enet_init
  80. fec_reset_phy
  81. fec_reset_phy
  82. fec_enet_get_queue_num
  83. fec_enet_get_irq_cnt
  84. fec_enet_init_stop_mode
  85. fec_probe
  86. fec_drv_remove
  87. fec_suspend
  88. fec_resume
  89. fec_runtime_suspend
  90. fec_runtime_resume

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5  *
   6  * Right now, I am very wasteful with the buffers.  I allocate memory
   7  * pages and then divide them into 2K frame buffers.  This way I know I
   8  * have buffers large enough to hold one frame within one buffer descriptor.
   9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10  * will be much more memory efficient and will easily handle lots of
  11  * small packets.
  12  *
  13  * Much better multiple PHY support by Magnus Damm.
  14  * Copyright (c) 2000 Ericsson Radio Systems AB.
  15  *
  16  * Support for FEC controller of ColdFire processors.
  17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18  *
  19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20  * Copyright (c) 2004-2006 Macq Electronique SA.
  21  *
  22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23  */
  24 
  25 #include <linux/module.h>
  26 #include <linux/kernel.h>
  27 #include <linux/string.h>
  28 #include <linux/pm_runtime.h>
  29 #include <linux/ptrace.h>
  30 #include <linux/errno.h>
  31 #include <linux/ioport.h>
  32 #include <linux/slab.h>
  33 #include <linux/interrupt.h>
  34 #include <linux/delay.h>
  35 #include <linux/netdevice.h>
  36 #include <linux/etherdevice.h>
  37 #include <linux/skbuff.h>
  38 #include <linux/in.h>
  39 #include <linux/ip.h>
  40 #include <net/ip.h>
  41 #include <net/tso.h>
  42 #include <linux/tcp.h>
  43 #include <linux/udp.h>
  44 #include <linux/icmp.h>
  45 #include <linux/spinlock.h>
  46 #include <linux/workqueue.h>
  47 #include <linux/bitops.h>
  48 #include <linux/io.h>
  49 #include <linux/irq.h>
  50 #include <linux/clk.h>
  51 #include <linux/crc32.h>
  52 #include <linux/platform_device.h>
  53 #include <linux/mdio.h>
  54 #include <linux/phy.h>
  55 #include <linux/fec.h>
  56 #include <linux/of.h>
  57 #include <linux/of_device.h>
  58 #include <linux/of_gpio.h>
  59 #include <linux/of_mdio.h>
  60 #include <linux/of_net.h>
  61 #include <linux/regulator/consumer.h>
  62 #include <linux/if_vlan.h>
  63 #include <linux/pinctrl/consumer.h>
  64 #include <linux/prefetch.h>
  65 #include <linux/mfd/syscon.h>
  66 #include <linux/regmap.h>
  67 #include <soc/imx/cpuidle.h>
  68 
  69 #include <asm/cacheflush.h>
  70 
  71 #include "fec.h"
  72 
  73 static void set_multicast_list(struct net_device *ndev);
  74 static void fec_enet_itr_coal_init(struct net_device *ndev);
  75 
  76 #define DRIVER_NAME     "fec"
  77 
  78 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  79 
  80 /* Pause frame feild and FIFO threshold */
  81 #define FEC_ENET_FCE    (1 << 5)
  82 #define FEC_ENET_RSEM_V 0x84
  83 #define FEC_ENET_RSFL_V 16
  84 #define FEC_ENET_RAEM_V 0x8
  85 #define FEC_ENET_RAFL_V 0x8
  86 #define FEC_ENET_OPD_V  0xFFF0
  87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  88 
  89 struct fec_devinfo {
  90         u32 quirks;
  91         u8 stop_gpr_reg;
  92         u8 stop_gpr_bit;
  93 };
  94 
  95 static const struct fec_devinfo fec_imx25_info = {
  96         .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  97                   FEC_QUIRK_HAS_FRREG,
  98 };
  99 
 100 static const struct fec_devinfo fec_imx27_info = {
 101         .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
 102 };
 103 
 104 static const struct fec_devinfo fec_imx28_info = {
 105         .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 106                   FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 107                   FEC_QUIRK_HAS_FRREG,
 108 };
 109 
 110 static const struct fec_devinfo fec_imx6q_info = {
 111         .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 112                   FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 113                   FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 114                   FEC_QUIRK_HAS_RACC,
 115         .stop_gpr_reg = 0x34,
 116         .stop_gpr_bit = 27,
 117 };
 118 
 119 static const struct fec_devinfo fec_mvf600_info = {
 120         .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 121 };
 122 
 123 static const struct fec_devinfo fec_imx6x_info = {
 124         .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 125                   FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 126                   FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 127                   FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 128                   FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 129 };
 130 
 131 static const struct fec_devinfo fec_imx6ul_info = {
 132         .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 133                   FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 134                   FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 135                   FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 136                   FEC_QUIRK_HAS_COALESCE,
 137 };
 138 
 139 static struct platform_device_id fec_devtype[] = {
 140         {
 141                 /* keep it for coldfire */
 142                 .name = DRIVER_NAME,
 143                 .driver_data = 0,
 144         }, {
 145                 .name = "imx25-fec",
 146                 .driver_data = (kernel_ulong_t)&fec_imx25_info,
 147         }, {
 148                 .name = "imx27-fec",
 149                 .driver_data = (kernel_ulong_t)&fec_imx27_info,
 150         }, {
 151                 .name = "imx28-fec",
 152                 .driver_data = (kernel_ulong_t)&fec_imx28_info,
 153         }, {
 154                 .name = "imx6q-fec",
 155                 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
 156         }, {
 157                 .name = "mvf600-fec",
 158                 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
 159         }, {
 160                 .name = "imx6sx-fec",
 161                 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
 162         }, {
 163                 .name = "imx6ul-fec",
 164                 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
 165         }, {
 166                 /* sentinel */
 167         }
 168 };
 169 MODULE_DEVICE_TABLE(platform, fec_devtype);
 170 
 171 enum imx_fec_type {
 172         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
 173         IMX27_FEC,      /* runs on i.mx27/35/51 */
 174         IMX28_FEC,
 175         IMX6Q_FEC,
 176         MVF600_FEC,
 177         IMX6SX_FEC,
 178         IMX6UL_FEC,
 179 };
 180 
 181 static const struct of_device_id fec_dt_ids[] = {
 182         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 183         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 184         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 185         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 186         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 187         { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 188         { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 189         { /* sentinel */ }
 190 };
 191 MODULE_DEVICE_TABLE(of, fec_dt_ids);
 192 
 193 static unsigned char macaddr[ETH_ALEN];
 194 module_param_array(macaddr, byte, NULL, 0);
 195 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 196 
 197 #if defined(CONFIG_M5272)
 198 /*
 199  * Some hardware gets it MAC address out of local flash memory.
 200  * if this is non-zero then assume it is the address to get MAC from.
 201  */
 202 #if defined(CONFIG_NETtel)
 203 #define FEC_FLASHMAC    0xf0006006
 204 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 205 #define FEC_FLASHMAC    0xf0006000
 206 #elif defined(CONFIG_CANCam)
 207 #define FEC_FLASHMAC    0xf0020000
 208 #elif defined (CONFIG_M5272C3)
 209 #define FEC_FLASHMAC    (0xffe04000 + 4)
 210 #elif defined(CONFIG_MOD5272)
 211 #define FEC_FLASHMAC    0xffc0406b
 212 #else
 213 #define FEC_FLASHMAC    0
 214 #endif
 215 #endif /* CONFIG_M5272 */
 216 
 217 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 218  *
 219  * 2048 byte skbufs are allocated. However, alignment requirements
 220  * varies between FEC variants. Worst case is 64, so round down by 64.
 221  */
 222 #define PKT_MAXBUF_SIZE         (round_down(2048 - 64, 64))
 223 #define PKT_MINBUF_SIZE         64
 224 
 225 /* FEC receive acceleration */
 226 #define FEC_RACC_IPDIS          (1 << 1)
 227 #define FEC_RACC_PRODIS         (1 << 2)
 228 #define FEC_RACC_SHIFT16        BIT(7)
 229 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 230 
 231 /* MIB Control Register */
 232 #define FEC_MIB_CTRLSTAT_DISABLE        BIT(31)
 233 
 234 /*
 235  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 236  * size bits. Other FEC hardware does not, so we need to take that into
 237  * account when setting it.
 238  */
 239 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 240     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 241     defined(CONFIG_ARM64)
 242 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 243 #else
 244 #define OPT_FRAME_SIZE  0
 245 #endif
 246 
 247 /* FEC MII MMFR bits definition */
 248 #define FEC_MMFR_ST             (1 << 30)
 249 #define FEC_MMFR_ST_C45         (0)
 250 #define FEC_MMFR_OP_READ        (2 << 28)
 251 #define FEC_MMFR_OP_READ_C45    (3 << 28)
 252 #define FEC_MMFR_OP_WRITE       (1 << 28)
 253 #define FEC_MMFR_OP_ADDR_WRITE  (0)
 254 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
 255 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
 256 #define FEC_MMFR_TA             (2 << 16)
 257 #define FEC_MMFR_DATA(v)        (v & 0xffff)
 258 /* FEC ECR bits definition */
 259 #define FEC_ECR_MAGICEN         (1 << 2)
 260 #define FEC_ECR_SLEEP           (1 << 3)
 261 
 262 #define FEC_MII_TIMEOUT         30000 /* us */
 263 
 264 /* Transmitter timeout */
 265 #define TX_TIMEOUT (2 * HZ)
 266 
 267 #define FEC_PAUSE_FLAG_AUTONEG  0x1
 268 #define FEC_PAUSE_FLAG_ENABLE   0x2
 269 #define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
 270 #define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
 271 #define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
 272 
 273 #define COPYBREAK_DEFAULT       256
 274 
 275 /* Max number of allowed TCP segments for software TSO */
 276 #define FEC_MAX_TSO_SEGS        100
 277 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 278 
 279 #define IS_TSO_HEADER(txq, addr) \
 280         ((addr >= txq->tso_hdrs_dma) && \
 281         (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 282 
 283 static int mii_cnt;
 284 
 285 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 286                                              struct bufdesc_prop *bd)
 287 {
 288         return (bdp >= bd->last) ? bd->base
 289                         : (struct bufdesc *)(((void *)bdp) + bd->dsize);
 290 }
 291 
 292 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 293                                              struct bufdesc_prop *bd)
 294 {
 295         return (bdp <= bd->base) ? bd->last
 296                         : (struct bufdesc *)(((void *)bdp) - bd->dsize);
 297 }
 298 
 299 static int fec_enet_get_bd_index(struct bufdesc *bdp,
 300                                  struct bufdesc_prop *bd)
 301 {
 302         return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 303 }
 304 
 305 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 306 {
 307         int entries;
 308 
 309         entries = (((const char *)txq->dirty_tx -
 310                         (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 311 
 312         return entries >= 0 ? entries : entries + txq->bd.ring_size;
 313 }
 314 
 315 static void swap_buffer(void *bufaddr, int len)
 316 {
 317         int i;
 318         unsigned int *buf = bufaddr;
 319 
 320         for (i = 0; i < len; i += 4, buf++)
 321                 swab32s(buf);
 322 }
 323 
 324 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 325 {
 326         int i;
 327         unsigned int *src = src_buf;
 328         unsigned int *dst = dst_buf;
 329 
 330         for (i = 0; i < len; i += 4, src++, dst++)
 331                 *dst = swab32p(src);
 332 }
 333 
 334 static void fec_dump(struct net_device *ndev)
 335 {
 336         struct fec_enet_private *fep = netdev_priv(ndev);
 337         struct bufdesc *bdp;
 338         struct fec_enet_priv_tx_q *txq;
 339         int index = 0;
 340 
 341         netdev_info(ndev, "TX ring dump\n");
 342         pr_info("Nr     SC     addr       len  SKB\n");
 343 
 344         txq = fep->tx_queue[0];
 345         bdp = txq->bd.base;
 346 
 347         do {
 348                 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 349                         index,
 350                         bdp == txq->bd.cur ? 'S' : ' ',
 351                         bdp == txq->dirty_tx ? 'H' : ' ',
 352                         fec16_to_cpu(bdp->cbd_sc),
 353                         fec32_to_cpu(bdp->cbd_bufaddr),
 354                         fec16_to_cpu(bdp->cbd_datlen),
 355                         txq->tx_skbuff[index]);
 356                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 357                 index++;
 358         } while (bdp != txq->bd.base);
 359 }
 360 
 361 static inline bool is_ipv4_pkt(struct sk_buff *skb)
 362 {
 363         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 364 }
 365 
 366 static int
 367 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 368 {
 369         /* Only run for packets requiring a checksum. */
 370         if (skb->ip_summed != CHECKSUM_PARTIAL)
 371                 return 0;
 372 
 373         if (unlikely(skb_cow_head(skb, 0)))
 374                 return -1;
 375 
 376         if (is_ipv4_pkt(skb))
 377                 ip_hdr(skb)->check = 0;
 378         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 379 
 380         return 0;
 381 }
 382 
 383 static struct bufdesc *
 384 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 385                              struct sk_buff *skb,
 386                              struct net_device *ndev)
 387 {
 388         struct fec_enet_private *fep = netdev_priv(ndev);
 389         struct bufdesc *bdp = txq->bd.cur;
 390         struct bufdesc_ex *ebdp;
 391         int nr_frags = skb_shinfo(skb)->nr_frags;
 392         int frag, frag_len;
 393         unsigned short status;
 394         unsigned int estatus = 0;
 395         skb_frag_t *this_frag;
 396         unsigned int index;
 397         void *bufaddr;
 398         dma_addr_t addr;
 399         int i;
 400 
 401         for (frag = 0; frag < nr_frags; frag++) {
 402                 this_frag = &skb_shinfo(skb)->frags[frag];
 403                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 404                 ebdp = (struct bufdesc_ex *)bdp;
 405 
 406                 status = fec16_to_cpu(bdp->cbd_sc);
 407                 status &= ~BD_ENET_TX_STATS;
 408                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 409                 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 410 
 411                 /* Handle the last BD specially */
 412                 if (frag == nr_frags - 1) {
 413                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 414                         if (fep->bufdesc_ex) {
 415                                 estatus |= BD_ENET_TX_INT;
 416                                 if (unlikely(skb_shinfo(skb)->tx_flags &
 417                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 418                                         estatus |= BD_ENET_TX_TS;
 419                         }
 420                 }
 421 
 422                 if (fep->bufdesc_ex) {
 423                         if (fep->quirks & FEC_QUIRK_HAS_AVB)
 424                                 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 425                         if (skb->ip_summed == CHECKSUM_PARTIAL)
 426                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 427                         ebdp->cbd_bdu = 0;
 428                         ebdp->cbd_esc = cpu_to_fec32(estatus);
 429                 }
 430 
 431                 bufaddr = skb_frag_address(this_frag);
 432 
 433                 index = fec_enet_get_bd_index(bdp, &txq->bd);
 434                 if (((unsigned long) bufaddr) & fep->tx_align ||
 435                         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 436                         memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 437                         bufaddr = txq->tx_bounce[index];
 438 
 439                         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 440                                 swap_buffer(bufaddr, frag_len);
 441                 }
 442 
 443                 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 444                                       DMA_TO_DEVICE);
 445                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
 446                         if (net_ratelimit())
 447                                 netdev_err(ndev, "Tx DMA memory map failed\n");
 448                         goto dma_mapping_error;
 449                 }
 450 
 451                 bdp->cbd_bufaddr = cpu_to_fec32(addr);
 452                 bdp->cbd_datlen = cpu_to_fec16(frag_len);
 453                 /* Make sure the updates to rest of the descriptor are
 454                  * performed before transferring ownership.
 455                  */
 456                 wmb();
 457                 bdp->cbd_sc = cpu_to_fec16(status);
 458         }
 459 
 460         return bdp;
 461 dma_mapping_error:
 462         bdp = txq->bd.cur;
 463         for (i = 0; i < frag; i++) {
 464                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 465                 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 466                                  fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 467         }
 468         return ERR_PTR(-ENOMEM);
 469 }
 470 
 471 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 472                                    struct sk_buff *skb, struct net_device *ndev)
 473 {
 474         struct fec_enet_private *fep = netdev_priv(ndev);
 475         int nr_frags = skb_shinfo(skb)->nr_frags;
 476         struct bufdesc *bdp, *last_bdp;
 477         void *bufaddr;
 478         dma_addr_t addr;
 479         unsigned short status;
 480         unsigned short buflen;
 481         unsigned int estatus = 0;
 482         unsigned int index;
 483         int entries_free;
 484 
 485         entries_free = fec_enet_get_free_txdesc_num(txq);
 486         if (entries_free < MAX_SKB_FRAGS + 1) {
 487                 dev_kfree_skb_any(skb);
 488                 if (net_ratelimit())
 489                         netdev_err(ndev, "NOT enough BD for SG!\n");
 490                 return NETDEV_TX_OK;
 491         }
 492 
 493         /* Protocol checksum off-load for TCP and UDP. */
 494         if (fec_enet_clear_csum(skb, ndev)) {
 495                 dev_kfree_skb_any(skb);
 496                 return NETDEV_TX_OK;
 497         }
 498 
 499         /* Fill in a Tx ring entry */
 500         bdp = txq->bd.cur;
 501         last_bdp = bdp;
 502         status = fec16_to_cpu(bdp->cbd_sc);
 503         status &= ~BD_ENET_TX_STATS;
 504 
 505         /* Set buffer length and buffer pointer */
 506         bufaddr = skb->data;
 507         buflen = skb_headlen(skb);
 508 
 509         index = fec_enet_get_bd_index(bdp, &txq->bd);
 510         if (((unsigned long) bufaddr) & fep->tx_align ||
 511                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 512                 memcpy(txq->tx_bounce[index], skb->data, buflen);
 513                 bufaddr = txq->tx_bounce[index];
 514 
 515                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 516                         swap_buffer(bufaddr, buflen);
 517         }
 518 
 519         /* Push the data cache so the CPM does not get stale memory data. */
 520         addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 521         if (dma_mapping_error(&fep->pdev->dev, addr)) {
 522                 dev_kfree_skb_any(skb);
 523                 if (net_ratelimit())
 524                         netdev_err(ndev, "Tx DMA memory map failed\n");
 525                 return NETDEV_TX_OK;
 526         }
 527 
 528         if (nr_frags) {
 529                 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 530                 if (IS_ERR(last_bdp)) {
 531                         dma_unmap_single(&fep->pdev->dev, addr,
 532                                          buflen, DMA_TO_DEVICE);
 533                         dev_kfree_skb_any(skb);
 534                         return NETDEV_TX_OK;
 535                 }
 536         } else {
 537                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 538                 if (fep->bufdesc_ex) {
 539                         estatus = BD_ENET_TX_INT;
 540                         if (unlikely(skb_shinfo(skb)->tx_flags &
 541                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 542                                 estatus |= BD_ENET_TX_TS;
 543                 }
 544         }
 545         bdp->cbd_bufaddr = cpu_to_fec32(addr);
 546         bdp->cbd_datlen = cpu_to_fec16(buflen);
 547 
 548         if (fep->bufdesc_ex) {
 549 
 550                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 551 
 552                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 553                         fep->hwts_tx_en))
 554                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 555 
 556                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
 557                         estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 558 
 559                 if (skb->ip_summed == CHECKSUM_PARTIAL)
 560                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 561 
 562                 ebdp->cbd_bdu = 0;
 563                 ebdp->cbd_esc = cpu_to_fec32(estatus);
 564         }
 565 
 566         index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 567         /* Save skb pointer */
 568         txq->tx_skbuff[index] = skb;
 569 
 570         /* Make sure the updates to rest of the descriptor are performed before
 571          * transferring ownership.
 572          */
 573         wmb();
 574 
 575         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 576          * it's the last BD of the frame, and to put the CRC on the end.
 577          */
 578         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 579         bdp->cbd_sc = cpu_to_fec16(status);
 580 
 581         /* If this was the last BD in the ring, start at the beginning again. */
 582         bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 583 
 584         skb_tx_timestamp(skb);
 585 
 586         /* Make sure the update to bdp and tx_skbuff are performed before
 587          * txq->bd.cur.
 588          */
 589         wmb();
 590         txq->bd.cur = bdp;
 591 
 592         /* Trigger transmission start */
 593         writel(0, txq->bd.reg_desc_active);
 594 
 595         return 0;
 596 }
 597 
 598 static int
 599 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 600                           struct net_device *ndev,
 601                           struct bufdesc *bdp, int index, char *data,
 602                           int size, bool last_tcp, bool is_last)
 603 {
 604         struct fec_enet_private *fep = netdev_priv(ndev);
 605         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 606         unsigned short status;
 607         unsigned int estatus = 0;
 608         dma_addr_t addr;
 609 
 610         status = fec16_to_cpu(bdp->cbd_sc);
 611         status &= ~BD_ENET_TX_STATS;
 612 
 613         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 614 
 615         if (((unsigned long) data) & fep->tx_align ||
 616                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 617                 memcpy(txq->tx_bounce[index], data, size);
 618                 data = txq->tx_bounce[index];
 619 
 620                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 621                         swap_buffer(data, size);
 622         }
 623 
 624         addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 625         if (dma_mapping_error(&fep->pdev->dev, addr)) {
 626                 dev_kfree_skb_any(skb);
 627                 if (net_ratelimit())
 628                         netdev_err(ndev, "Tx DMA memory map failed\n");
 629                 return NETDEV_TX_BUSY;
 630         }
 631 
 632         bdp->cbd_datlen = cpu_to_fec16(size);
 633         bdp->cbd_bufaddr = cpu_to_fec32(addr);
 634 
 635         if (fep->bufdesc_ex) {
 636                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
 637                         estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 638                 if (skb->ip_summed == CHECKSUM_PARTIAL)
 639                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 640                 ebdp->cbd_bdu = 0;
 641                 ebdp->cbd_esc = cpu_to_fec32(estatus);
 642         }
 643 
 644         /* Handle the last BD specially */
 645         if (last_tcp)
 646                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 647         if (is_last) {
 648                 status |= BD_ENET_TX_INTR;
 649                 if (fep->bufdesc_ex)
 650                         ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 651         }
 652 
 653         bdp->cbd_sc = cpu_to_fec16(status);
 654 
 655         return 0;
 656 }
 657 
 658 static int
 659 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 660                          struct sk_buff *skb, struct net_device *ndev,
 661                          struct bufdesc *bdp, int index)
 662 {
 663         struct fec_enet_private *fep = netdev_priv(ndev);
 664         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 665         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 666         void *bufaddr;
 667         unsigned long dmabuf;
 668         unsigned short status;
 669         unsigned int estatus = 0;
 670 
 671         status = fec16_to_cpu(bdp->cbd_sc);
 672         status &= ~BD_ENET_TX_STATS;
 673         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 674 
 675         bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 676         dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 677         if (((unsigned long)bufaddr) & fep->tx_align ||
 678                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 679                 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 680                 bufaddr = txq->tx_bounce[index];
 681 
 682                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 683                         swap_buffer(bufaddr, hdr_len);
 684 
 685                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 686                                         hdr_len, DMA_TO_DEVICE);
 687                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 688                         dev_kfree_skb_any(skb);
 689                         if (net_ratelimit())
 690                                 netdev_err(ndev, "Tx DMA memory map failed\n");
 691                         return NETDEV_TX_BUSY;
 692                 }
 693         }
 694 
 695         bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 696         bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 697 
 698         if (fep->bufdesc_ex) {
 699                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
 700                         estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 701                 if (skb->ip_summed == CHECKSUM_PARTIAL)
 702                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 703                 ebdp->cbd_bdu = 0;
 704                 ebdp->cbd_esc = cpu_to_fec32(estatus);
 705         }
 706 
 707         bdp->cbd_sc = cpu_to_fec16(status);
 708 
 709         return 0;
 710 }
 711 
 712 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 713                                    struct sk_buff *skb,
 714                                    struct net_device *ndev)
 715 {
 716         struct fec_enet_private *fep = netdev_priv(ndev);
 717         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 718         int total_len, data_left;
 719         struct bufdesc *bdp = txq->bd.cur;
 720         struct tso_t tso;
 721         unsigned int index = 0;
 722         int ret;
 723 
 724         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 725                 dev_kfree_skb_any(skb);
 726                 if (net_ratelimit())
 727                         netdev_err(ndev, "NOT enough BD for TSO!\n");
 728                 return NETDEV_TX_OK;
 729         }
 730 
 731         /* Protocol checksum off-load for TCP and UDP. */
 732         if (fec_enet_clear_csum(skb, ndev)) {
 733                 dev_kfree_skb_any(skb);
 734                 return NETDEV_TX_OK;
 735         }
 736 
 737         /* Initialize the TSO handler, and prepare the first payload */
 738         tso_start(skb, &tso);
 739 
 740         total_len = skb->len - hdr_len;
 741         while (total_len > 0) {
 742                 char *hdr;
 743 
 744                 index = fec_enet_get_bd_index(bdp, &txq->bd);
 745                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 746                 total_len -= data_left;
 747 
 748                 /* prepare packet headers: MAC + IP + TCP */
 749                 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 750                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 751                 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 752                 if (ret)
 753                         goto err_release;
 754 
 755                 while (data_left > 0) {
 756                         int size;
 757 
 758                         size = min_t(int, tso.size, data_left);
 759                         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 760                         index = fec_enet_get_bd_index(bdp, &txq->bd);
 761                         ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 762                                                         bdp, index,
 763                                                         tso.data, size,
 764                                                         size == data_left,
 765                                                         total_len == 0);
 766                         if (ret)
 767                                 goto err_release;
 768 
 769                         data_left -= size;
 770                         tso_build_data(skb, &tso, size);
 771                 }
 772 
 773                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 774         }
 775 
 776         /* Save skb pointer */
 777         txq->tx_skbuff[index] = skb;
 778 
 779         skb_tx_timestamp(skb);
 780         txq->bd.cur = bdp;
 781 
 782         /* Trigger transmission start */
 783         if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 784             !readl(txq->bd.reg_desc_active) ||
 785             !readl(txq->bd.reg_desc_active) ||
 786             !readl(txq->bd.reg_desc_active) ||
 787             !readl(txq->bd.reg_desc_active))
 788                 writel(0, txq->bd.reg_desc_active);
 789 
 790         return 0;
 791 
 792 err_release:
 793         /* TODO: Release all used data descriptors for TSO */
 794         return ret;
 795 }
 796 
 797 static netdev_tx_t
 798 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 799 {
 800         struct fec_enet_private *fep = netdev_priv(ndev);
 801         int entries_free;
 802         unsigned short queue;
 803         struct fec_enet_priv_tx_q *txq;
 804         struct netdev_queue *nq;
 805         int ret;
 806 
 807         queue = skb_get_queue_mapping(skb);
 808         txq = fep->tx_queue[queue];
 809         nq = netdev_get_tx_queue(ndev, queue);
 810 
 811         if (skb_is_gso(skb))
 812                 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 813         else
 814                 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 815         if (ret)
 816                 return ret;
 817 
 818         entries_free = fec_enet_get_free_txdesc_num(txq);
 819         if (entries_free <= txq->tx_stop_threshold)
 820                 netif_tx_stop_queue(nq);
 821 
 822         return NETDEV_TX_OK;
 823 }
 824 
 825 /* Init RX & TX buffer descriptors
 826  */
 827 static void fec_enet_bd_init(struct net_device *dev)
 828 {
 829         struct fec_enet_private *fep = netdev_priv(dev);
 830         struct fec_enet_priv_tx_q *txq;
 831         struct fec_enet_priv_rx_q *rxq;
 832         struct bufdesc *bdp;
 833         unsigned int i;
 834         unsigned int q;
 835 
 836         for (q = 0; q < fep->num_rx_queues; q++) {
 837                 /* Initialize the receive buffer descriptors. */
 838                 rxq = fep->rx_queue[q];
 839                 bdp = rxq->bd.base;
 840 
 841                 for (i = 0; i < rxq->bd.ring_size; i++) {
 842 
 843                         /* Initialize the BD for every fragment in the page. */
 844                         if (bdp->cbd_bufaddr)
 845                                 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 846                         else
 847                                 bdp->cbd_sc = cpu_to_fec16(0);
 848                         bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 849                 }
 850 
 851                 /* Set the last buffer to wrap */
 852                 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 853                 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 854 
 855                 rxq->bd.cur = rxq->bd.base;
 856         }
 857 
 858         for (q = 0; q < fep->num_tx_queues; q++) {
 859                 /* ...and the same for transmit */
 860                 txq = fep->tx_queue[q];
 861                 bdp = txq->bd.base;
 862                 txq->bd.cur = bdp;
 863 
 864                 for (i = 0; i < txq->bd.ring_size; i++) {
 865                         /* Initialize the BD for every fragment in the page. */
 866                         bdp->cbd_sc = cpu_to_fec16(0);
 867                         if (bdp->cbd_bufaddr &&
 868                             !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 869                                 dma_unmap_single(&fep->pdev->dev,
 870                                                  fec32_to_cpu(bdp->cbd_bufaddr),
 871                                                  fec16_to_cpu(bdp->cbd_datlen),
 872                                                  DMA_TO_DEVICE);
 873                         if (txq->tx_skbuff[i]) {
 874                                 dev_kfree_skb_any(txq->tx_skbuff[i]);
 875                                 txq->tx_skbuff[i] = NULL;
 876                         }
 877                         bdp->cbd_bufaddr = cpu_to_fec32(0);
 878                         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 879                 }
 880 
 881                 /* Set the last buffer to wrap */
 882                 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 883                 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 884                 txq->dirty_tx = bdp;
 885         }
 886 }
 887 
 888 static void fec_enet_active_rxring(struct net_device *ndev)
 889 {
 890         struct fec_enet_private *fep = netdev_priv(ndev);
 891         int i;
 892 
 893         for (i = 0; i < fep->num_rx_queues; i++)
 894                 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 895 }
 896 
 897 static void fec_enet_enable_ring(struct net_device *ndev)
 898 {
 899         struct fec_enet_private *fep = netdev_priv(ndev);
 900         struct fec_enet_priv_tx_q *txq;
 901         struct fec_enet_priv_rx_q *rxq;
 902         int i;
 903 
 904         for (i = 0; i < fep->num_rx_queues; i++) {
 905                 rxq = fep->rx_queue[i];
 906                 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 907                 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 908 
 909                 /* enable DMA1/2 */
 910                 if (i)
 911                         writel(RCMR_MATCHEN | RCMR_CMP(i),
 912                                fep->hwp + FEC_RCMR(i));
 913         }
 914 
 915         for (i = 0; i < fep->num_tx_queues; i++) {
 916                 txq = fep->tx_queue[i];
 917                 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 918 
 919                 /* enable DMA1/2 */
 920                 if (i)
 921                         writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 922                                fep->hwp + FEC_DMA_CFG(i));
 923         }
 924 }
 925 
 926 static void fec_enet_reset_skb(struct net_device *ndev)
 927 {
 928         struct fec_enet_private *fep = netdev_priv(ndev);
 929         struct fec_enet_priv_tx_q *txq;
 930         int i, j;
 931 
 932         for (i = 0; i < fep->num_tx_queues; i++) {
 933                 txq = fep->tx_queue[i];
 934 
 935                 for (j = 0; j < txq->bd.ring_size; j++) {
 936                         if (txq->tx_skbuff[j]) {
 937                                 dev_kfree_skb_any(txq->tx_skbuff[j]);
 938                                 txq->tx_skbuff[j] = NULL;
 939                         }
 940                 }
 941         }
 942 }
 943 
 944 /*
 945  * This function is called to start or restart the FEC during a link
 946  * change, transmit timeout, or to reconfigure the FEC.  The network
 947  * packet processing for this device must be stopped before this call.
 948  */
 949 static void
 950 fec_restart(struct net_device *ndev)
 951 {
 952         struct fec_enet_private *fep = netdev_priv(ndev);
 953         u32 val;
 954         u32 temp_mac[2];
 955         u32 rcntl = OPT_FRAME_SIZE | 0x04;
 956         u32 ecntl = 0x2; /* ETHEREN */
 957 
 958         /* Whack a reset.  We should wait for this.
 959          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 960          * instead of reset MAC itself.
 961          */
 962         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 963                 writel(0, fep->hwp + FEC_ECNTRL);
 964         } else {
 965                 writel(1, fep->hwp + FEC_ECNTRL);
 966                 udelay(10);
 967         }
 968 
 969         /*
 970          * enet-mac reset will reset mac address registers too,
 971          * so need to reconfigure it.
 972          */
 973         memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 974         writel((__force u32)cpu_to_be32(temp_mac[0]),
 975                fep->hwp + FEC_ADDR_LOW);
 976         writel((__force u32)cpu_to_be32(temp_mac[1]),
 977                fep->hwp + FEC_ADDR_HIGH);
 978 
 979         /* Clear any outstanding interrupt. */
 980         writel(0xffffffff, fep->hwp + FEC_IEVENT);
 981 
 982         fec_enet_bd_init(ndev);
 983 
 984         fec_enet_enable_ring(ndev);
 985 
 986         /* Reset tx SKB buffers. */
 987         fec_enet_reset_skb(ndev);
 988 
 989         /* Enable MII mode */
 990         if (fep->full_duplex == DUPLEX_FULL) {
 991                 /* FD enable */
 992                 writel(0x04, fep->hwp + FEC_X_CNTRL);
 993         } else {
 994                 /* No Rcv on Xmit */
 995                 rcntl |= 0x02;
 996                 writel(0x0, fep->hwp + FEC_X_CNTRL);
 997         }
 998 
 999         /* Set MII speed */
1000         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1001 
1002 #if !defined(CONFIG_M5272)
1003         if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1004                 val = readl(fep->hwp + FEC_RACC);
1005                 /* align IP header */
1006                 val |= FEC_RACC_SHIFT16;
1007                 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1008                         /* set RX checksum */
1009                         val |= FEC_RACC_OPTIONS;
1010                 else
1011                         val &= ~FEC_RACC_OPTIONS;
1012                 writel(val, fep->hwp + FEC_RACC);
1013                 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1014         }
1015 #endif
1016 
1017         /*
1018          * The phy interface and speed need to get configured
1019          * differently on enet-mac.
1020          */
1021         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1022                 /* Enable flow control and length check */
1023                 rcntl |= 0x40000000 | 0x00000020;
1024 
1025                 /* RGMII, RMII or MII */
1026                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1027                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1028                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1029                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1030                         rcntl |= (1 << 6);
1031                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032                         rcntl |= (1 << 8);
1033                 else
1034                         rcntl &= ~(1 << 8);
1035 
1036                 /* 1G, 100M or 10M */
1037                 if (ndev->phydev) {
1038                         if (ndev->phydev->speed == SPEED_1000)
1039                                 ecntl |= (1 << 5);
1040                         else if (ndev->phydev->speed == SPEED_100)
1041                                 rcntl &= ~(1 << 9);
1042                         else
1043                                 rcntl |= (1 << 9);
1044                 }
1045         } else {
1046 #ifdef FEC_MIIGSK_ENR
1047                 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1048                         u32 cfgr;
1049                         /* disable the gasket and wait */
1050                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
1051                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1052                                 udelay(1);
1053 
1054                         /*
1055                          * configure the gasket:
1056                          *   RMII, 50 MHz, no loopback, no echo
1057                          *   MII, 25 MHz, no loopback, no echo
1058                          */
1059                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1060                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1061                         if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1062                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1063                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1064 
1065                         /* re-enable the gasket */
1066                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
1067                 }
1068 #endif
1069         }
1070 
1071 #if !defined(CONFIG_M5272)
1072         /* enable pause frame*/
1073         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1074             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1075              ndev->phydev && ndev->phydev->pause)) {
1076                 rcntl |= FEC_ENET_FCE;
1077 
1078                 /* set FIFO threshold parameter to reduce overrun */
1079                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1080                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1081                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1082                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1083 
1084                 /* OPD */
1085                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1086         } else {
1087                 rcntl &= ~FEC_ENET_FCE;
1088         }
1089 #endif /* !defined(CONFIG_M5272) */
1090 
1091         writel(rcntl, fep->hwp + FEC_R_CNTRL);
1092 
1093         /* Setup multicast filter. */
1094         set_multicast_list(ndev);
1095 #ifndef CONFIG_M5272
1096         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1097         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1098 #endif
1099 
1100         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1101                 /* enable ENET endian swap */
1102                 ecntl |= (1 << 8);
1103                 /* enable ENET store and forward mode */
1104                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1105         }
1106 
1107         if (fep->bufdesc_ex)
1108                 ecntl |= (1 << 4);
1109 
1110 #ifndef CONFIG_M5272
1111         /* Enable the MIB statistic event counters */
1112         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1113 #endif
1114 
1115         /* And last, enable the transmit and receive processing */
1116         writel(ecntl, fep->hwp + FEC_ECNTRL);
1117         fec_enet_active_rxring(ndev);
1118 
1119         if (fep->bufdesc_ex)
1120                 fec_ptp_start_cyclecounter(ndev);
1121 
1122         /* Enable interrupts we wish to service */
1123         if (fep->link)
1124                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1125         else
1126                 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1127 
1128         /* Init the interrupt coalescing */
1129         fec_enet_itr_coal_init(ndev);
1130 
1131 }
1132 
1133 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1134 {
1135         struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1136         struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1137 
1138         if (stop_gpr->gpr) {
1139                 if (enabled)
1140                         regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141                                            BIT(stop_gpr->bit),
1142                                            BIT(stop_gpr->bit));
1143                 else
1144                         regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1145                                            BIT(stop_gpr->bit), 0);
1146         } else if (pdata && pdata->sleep_mode_enable) {
1147                 pdata->sleep_mode_enable(enabled);
1148         }
1149 }
1150 
1151 static void
1152 fec_stop(struct net_device *ndev)
1153 {
1154         struct fec_enet_private *fep = netdev_priv(ndev);
1155         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1156         u32 val;
1157 
1158         /* We cannot expect a graceful transmit stop without link !!! */
1159         if (fep->link) {
1160                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1161                 udelay(10);
1162                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1163                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1164         }
1165 
1166         /* Whack a reset.  We should wait for this.
1167          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1168          * instead of reset MAC itself.
1169          */
1170         if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1171                 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1172                         writel(0, fep->hwp + FEC_ECNTRL);
1173                 } else {
1174                         writel(1, fep->hwp + FEC_ECNTRL);
1175                         udelay(10);
1176                 }
1177                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1178         } else {
1179                 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1180                 val = readl(fep->hwp + FEC_ECNTRL);
1181                 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1182                 writel(val, fep->hwp + FEC_ECNTRL);
1183                 fec_enet_stop_mode(fep, true);
1184         }
1185         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186 
1187         /* We have to keep ENET enabled to have MII interrupt stay working */
1188         if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1189                 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1190                 writel(2, fep->hwp + FEC_ECNTRL);
1191                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1192         }
1193 }
1194 
1195 
1196 static void
1197 fec_timeout(struct net_device *ndev)
1198 {
1199         struct fec_enet_private *fep = netdev_priv(ndev);
1200 
1201         fec_dump(ndev);
1202 
1203         ndev->stats.tx_errors++;
1204 
1205         schedule_work(&fep->tx_timeout_work);
1206 }
1207 
1208 static void fec_enet_timeout_work(struct work_struct *work)
1209 {
1210         struct fec_enet_private *fep =
1211                 container_of(work, struct fec_enet_private, tx_timeout_work);
1212         struct net_device *ndev = fep->netdev;
1213 
1214         rtnl_lock();
1215         if (netif_device_present(ndev) || netif_running(ndev)) {
1216                 napi_disable(&fep->napi);
1217                 netif_tx_lock_bh(ndev);
1218                 fec_restart(ndev);
1219                 netif_tx_wake_all_queues(ndev);
1220                 netif_tx_unlock_bh(ndev);
1221                 napi_enable(&fep->napi);
1222         }
1223         rtnl_unlock();
1224 }
1225 
1226 static void
1227 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1228         struct skb_shared_hwtstamps *hwtstamps)
1229 {
1230         unsigned long flags;
1231         u64 ns;
1232 
1233         spin_lock_irqsave(&fep->tmreg_lock, flags);
1234         ns = timecounter_cyc2time(&fep->tc, ts);
1235         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1236 
1237         memset(hwtstamps, 0, sizeof(*hwtstamps));
1238         hwtstamps->hwtstamp = ns_to_ktime(ns);
1239 }
1240 
1241 static void
1242 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1243 {
1244         struct  fec_enet_private *fep;
1245         struct bufdesc *bdp;
1246         unsigned short status;
1247         struct  sk_buff *skb;
1248         struct fec_enet_priv_tx_q *txq;
1249         struct netdev_queue *nq;
1250         int     index = 0;
1251         int     entries_free;
1252 
1253         fep = netdev_priv(ndev);
1254 
1255         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1256 
1257         txq = fep->tx_queue[queue_id];
1258         /* get next bdp of dirty_tx */
1259         nq = netdev_get_tx_queue(ndev, queue_id);
1260         bdp = txq->dirty_tx;
1261 
1262         /* get next bdp of dirty_tx */
1263         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264 
1265         while (bdp != READ_ONCE(txq->bd.cur)) {
1266                 /* Order the load of bd.cur and cbd_sc */
1267                 rmb();
1268                 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1269                 if (status & BD_ENET_TX_READY)
1270                         break;
1271 
1272                 index = fec_enet_get_bd_index(bdp, &txq->bd);
1273 
1274                 skb = txq->tx_skbuff[index];
1275                 txq->tx_skbuff[index] = NULL;
1276                 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1277                         dma_unmap_single(&fep->pdev->dev,
1278                                          fec32_to_cpu(bdp->cbd_bufaddr),
1279                                          fec16_to_cpu(bdp->cbd_datlen),
1280                                          DMA_TO_DEVICE);
1281                 bdp->cbd_bufaddr = cpu_to_fec32(0);
1282                 if (!skb)
1283                         goto skb_done;
1284 
1285                 /* Check for errors. */
1286                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1287                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1288                                    BD_ENET_TX_CSL)) {
1289                         ndev->stats.tx_errors++;
1290                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1291                                 ndev->stats.tx_heartbeat_errors++;
1292                         if (status & BD_ENET_TX_LC)  /* Late collision */
1293                                 ndev->stats.tx_window_errors++;
1294                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1295                                 ndev->stats.tx_aborted_errors++;
1296                         if (status & BD_ENET_TX_UN)  /* Underrun */
1297                                 ndev->stats.tx_fifo_errors++;
1298                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1299                                 ndev->stats.tx_carrier_errors++;
1300                 } else {
1301                         ndev->stats.tx_packets++;
1302                         ndev->stats.tx_bytes += skb->len;
1303                 }
1304 
1305                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1306                         fep->bufdesc_ex) {
1307                         struct skb_shared_hwtstamps shhwtstamps;
1308                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1309 
1310                         fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1311                         skb_tstamp_tx(skb, &shhwtstamps);
1312                 }
1313 
1314                 /* Deferred means some collisions occurred during transmit,
1315                  * but we eventually sent the packet OK.
1316                  */
1317                 if (status & BD_ENET_TX_DEF)
1318                         ndev->stats.collisions++;
1319 
1320                 /* Free the sk buffer associated with this last transmit */
1321                 dev_kfree_skb_any(skb);
1322 skb_done:
1323                 /* Make sure the update to bdp and tx_skbuff are performed
1324                  * before dirty_tx
1325                  */
1326                 wmb();
1327                 txq->dirty_tx = bdp;
1328 
1329                 /* Update pointer to next buffer descriptor to be transmitted */
1330                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1331 
1332                 /* Since we have freed up a buffer, the ring is no longer full
1333                  */
1334                 if (netif_tx_queue_stopped(nq)) {
1335                         entries_free = fec_enet_get_free_txdesc_num(txq);
1336                         if (entries_free >= txq->tx_wake_threshold)
1337                                 netif_tx_wake_queue(nq);
1338                 }
1339         }
1340 
1341         /* ERR006358: Keep the transmitter going */
1342         if (bdp != txq->bd.cur &&
1343             readl(txq->bd.reg_desc_active) == 0)
1344                 writel(0, txq->bd.reg_desc_active);
1345 }
1346 
1347 static void
1348 fec_enet_tx(struct net_device *ndev)
1349 {
1350         struct fec_enet_private *fep = netdev_priv(ndev);
1351         u16 queue_id;
1352         /* First process class A queue, then Class B and Best Effort queue */
1353         for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1354                 clear_bit(queue_id, &fep->work_tx);
1355                 fec_enet_tx_queue(ndev, queue_id);
1356         }
1357         return;
1358 }
1359 
1360 static int
1361 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1362 {
1363         struct  fec_enet_private *fep = netdev_priv(ndev);
1364         int off;
1365 
1366         off = ((unsigned long)skb->data) & fep->rx_align;
1367         if (off)
1368                 skb_reserve(skb, fep->rx_align + 1 - off);
1369 
1370         bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1371         if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1372                 if (net_ratelimit())
1373                         netdev_err(ndev, "Rx DMA memory map failed\n");
1374                 return -ENOMEM;
1375         }
1376 
1377         return 0;
1378 }
1379 
1380 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1381                                struct bufdesc *bdp, u32 length, bool swap)
1382 {
1383         struct  fec_enet_private *fep = netdev_priv(ndev);
1384         struct sk_buff *new_skb;
1385 
1386         if (length > fep->rx_copybreak)
1387                 return false;
1388 
1389         new_skb = netdev_alloc_skb(ndev, length);
1390         if (!new_skb)
1391                 return false;
1392 
1393         dma_sync_single_for_cpu(&fep->pdev->dev,
1394                                 fec32_to_cpu(bdp->cbd_bufaddr),
1395                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
1396                                 DMA_FROM_DEVICE);
1397         if (!swap)
1398                 memcpy(new_skb->data, (*skb)->data, length);
1399         else
1400                 swap_buffer2(new_skb->data, (*skb)->data, length);
1401         *skb = new_skb;
1402 
1403         return true;
1404 }
1405 
1406 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1407  * When we update through the ring, if the next incoming buffer has
1408  * not been given to the system, we just set the empty indicator,
1409  * effectively tossing the packet.
1410  */
1411 static int
1412 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1413 {
1414         struct fec_enet_private *fep = netdev_priv(ndev);
1415         struct fec_enet_priv_rx_q *rxq;
1416         struct bufdesc *bdp;
1417         unsigned short status;
1418         struct  sk_buff *skb_new = NULL;
1419         struct  sk_buff *skb;
1420         ushort  pkt_len;
1421         __u8 *data;
1422         int     pkt_received = 0;
1423         struct  bufdesc_ex *ebdp = NULL;
1424         bool    vlan_packet_rcvd = false;
1425         u16     vlan_tag;
1426         int     index = 0;
1427         bool    is_copybreak;
1428         bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1429 
1430 #ifdef CONFIG_M532x
1431         flush_cache_all();
1432 #endif
1433         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1434         rxq = fep->rx_queue[queue_id];
1435 
1436         /* First, grab all of the stats for the incoming packet.
1437          * These get messed up if we get called due to a busy condition.
1438          */
1439         bdp = rxq->bd.cur;
1440 
1441         while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1442 
1443                 if (pkt_received >= budget)
1444                         break;
1445                 pkt_received++;
1446 
1447                 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1448 
1449                 /* Check for errors. */
1450                 status ^= BD_ENET_RX_LAST;
1451                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1452                            BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1453                            BD_ENET_RX_CL)) {
1454                         ndev->stats.rx_errors++;
1455                         if (status & BD_ENET_RX_OV) {
1456                                 /* FIFO overrun */
1457                                 ndev->stats.rx_fifo_errors++;
1458                                 goto rx_processing_done;
1459                         }
1460                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1461                                                 | BD_ENET_RX_LAST)) {
1462                                 /* Frame too long or too short. */
1463                                 ndev->stats.rx_length_errors++;
1464                                 if (status & BD_ENET_RX_LAST)
1465                                         netdev_err(ndev, "rcv is not +last\n");
1466                         }
1467                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1468                                 ndev->stats.rx_crc_errors++;
1469                         /* Report late collisions as a frame error. */
1470                         if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1471                                 ndev->stats.rx_frame_errors++;
1472                         goto rx_processing_done;
1473                 }
1474 
1475                 /* Process the incoming frame. */
1476                 ndev->stats.rx_packets++;
1477                 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1478                 ndev->stats.rx_bytes += pkt_len;
1479 
1480                 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1481                 skb = rxq->rx_skbuff[index];
1482 
1483                 /* The packet length includes FCS, but we don't want to
1484                  * include that when passing upstream as it messes up
1485                  * bridging applications.
1486                  */
1487                 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1488                                                   need_swap);
1489                 if (!is_copybreak) {
1490                         skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1491                         if (unlikely(!skb_new)) {
1492                                 ndev->stats.rx_dropped++;
1493                                 goto rx_processing_done;
1494                         }
1495                         dma_unmap_single(&fep->pdev->dev,
1496                                          fec32_to_cpu(bdp->cbd_bufaddr),
1497                                          FEC_ENET_RX_FRSIZE - fep->rx_align,
1498                                          DMA_FROM_DEVICE);
1499                 }
1500 
1501                 prefetch(skb->data - NET_IP_ALIGN);
1502                 skb_put(skb, pkt_len - 4);
1503                 data = skb->data;
1504 
1505                 if (!is_copybreak && need_swap)
1506                         swap_buffer(data, pkt_len);
1507 
1508 #if !defined(CONFIG_M5272)
1509                 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1510                         data = skb_pull_inline(skb, 2);
1511 #endif
1512 
1513                 /* Extract the enhanced buffer descriptor */
1514                 ebdp = NULL;
1515                 if (fep->bufdesc_ex)
1516                         ebdp = (struct bufdesc_ex *)bdp;
1517 
1518                 /* If this is a VLAN packet remove the VLAN Tag */
1519                 vlan_packet_rcvd = false;
1520                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1521                     fep->bufdesc_ex &&
1522                     (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1523                         /* Push and remove the vlan tag */
1524                         struct vlan_hdr *vlan_header =
1525                                         (struct vlan_hdr *) (data + ETH_HLEN);
1526                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1527 
1528                         vlan_packet_rcvd = true;
1529 
1530                         memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1531                         skb_pull(skb, VLAN_HLEN);
1532                 }
1533 
1534                 skb->protocol = eth_type_trans(skb, ndev);
1535 
1536                 /* Get receive timestamp from the skb */
1537                 if (fep->hwts_rx_en && fep->bufdesc_ex)
1538                         fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1539                                           skb_hwtstamps(skb));
1540 
1541                 if (fep->bufdesc_ex &&
1542                     (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1543                         if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1544                                 /* don't check it */
1545                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1546                         } else {
1547                                 skb_checksum_none_assert(skb);
1548                         }
1549                 }
1550 
1551                 /* Handle received VLAN packets */
1552                 if (vlan_packet_rcvd)
1553                         __vlan_hwaccel_put_tag(skb,
1554                                                htons(ETH_P_8021Q),
1555                                                vlan_tag);
1556 
1557                 napi_gro_receive(&fep->napi, skb);
1558 
1559                 if (is_copybreak) {
1560                         dma_sync_single_for_device(&fep->pdev->dev,
1561                                                    fec32_to_cpu(bdp->cbd_bufaddr),
1562                                                    FEC_ENET_RX_FRSIZE - fep->rx_align,
1563                                                    DMA_FROM_DEVICE);
1564                 } else {
1565                         rxq->rx_skbuff[index] = skb_new;
1566                         fec_enet_new_rxbdp(ndev, bdp, skb_new);
1567                 }
1568 
1569 rx_processing_done:
1570                 /* Clear the status flags for this buffer */
1571                 status &= ~BD_ENET_RX_STATS;
1572 
1573                 /* Mark the buffer empty */
1574                 status |= BD_ENET_RX_EMPTY;
1575 
1576                 if (fep->bufdesc_ex) {
1577                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578 
1579                         ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1580                         ebdp->cbd_prot = 0;
1581                         ebdp->cbd_bdu = 0;
1582                 }
1583                 /* Make sure the updates to rest of the descriptor are
1584                  * performed before transferring ownership.
1585                  */
1586                 wmb();
1587                 bdp->cbd_sc = cpu_to_fec16(status);
1588 
1589                 /* Update BD pointer to next entry */
1590                 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1591 
1592                 /* Doing this here will keep the FEC running while we process
1593                  * incoming frames.  On a heavily loaded network, we should be
1594                  * able to keep up at the expense of system resources.
1595                  */
1596                 writel(0, rxq->bd.reg_desc_active);
1597         }
1598         rxq->bd.cur = bdp;
1599         return pkt_received;
1600 }
1601 
1602 static int
1603 fec_enet_rx(struct net_device *ndev, int budget)
1604 {
1605         int     pkt_received = 0;
1606         u16     queue_id;
1607         struct fec_enet_private *fep = netdev_priv(ndev);
1608 
1609         for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1610                 int ret;
1611 
1612                 ret = fec_enet_rx_queue(ndev,
1613                                         budget - pkt_received, queue_id);
1614 
1615                 if (ret < budget - pkt_received)
1616                         clear_bit(queue_id, &fep->work_rx);
1617 
1618                 pkt_received += ret;
1619         }
1620         return pkt_received;
1621 }
1622 
1623 static bool
1624 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1625 {
1626         if (int_events == 0)
1627                 return false;
1628 
1629         if (int_events & FEC_ENET_RXF_0)
1630                 fep->work_rx |= (1 << 2);
1631         if (int_events & FEC_ENET_RXF_1)
1632                 fep->work_rx |= (1 << 0);
1633         if (int_events & FEC_ENET_RXF_2)
1634                 fep->work_rx |= (1 << 1);
1635 
1636         if (int_events & FEC_ENET_TXF_0)
1637                 fep->work_tx |= (1 << 2);
1638         if (int_events & FEC_ENET_TXF_1)
1639                 fep->work_tx |= (1 << 0);
1640         if (int_events & FEC_ENET_TXF_2)
1641                 fep->work_tx |= (1 << 1);
1642 
1643         return true;
1644 }
1645 
1646 static irqreturn_t
1647 fec_enet_interrupt(int irq, void *dev_id)
1648 {
1649         struct net_device *ndev = dev_id;
1650         struct fec_enet_private *fep = netdev_priv(ndev);
1651         uint int_events;
1652         irqreturn_t ret = IRQ_NONE;
1653 
1654         int_events = readl(fep->hwp + FEC_IEVENT);
1655         writel(int_events, fep->hwp + FEC_IEVENT);
1656         fec_enet_collect_events(fep, int_events);
1657 
1658         if ((fep->work_tx || fep->work_rx) && fep->link) {
1659                 ret = IRQ_HANDLED;
1660 
1661                 if (napi_schedule_prep(&fep->napi)) {
1662                         /* Disable the NAPI interrupts */
1663                         writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1664                         __napi_schedule(&fep->napi);
1665                 }
1666         }
1667 
1668         if (int_events & FEC_ENET_MII) {
1669                 ret = IRQ_HANDLED;
1670                 complete(&fep->mdio_done);
1671         }
1672         return ret;
1673 }
1674 
1675 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1676 {
1677         struct net_device *ndev = napi->dev;
1678         struct fec_enet_private *fep = netdev_priv(ndev);
1679         int pkts;
1680 
1681         pkts = fec_enet_rx(ndev, budget);
1682 
1683         fec_enet_tx(ndev);
1684 
1685         if (pkts < budget) {
1686                 napi_complete_done(napi, pkts);
1687                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1688         }
1689         return pkts;
1690 }
1691 
1692 /* ------------------------------------------------------------------------- */
1693 static void fec_get_mac(struct net_device *ndev)
1694 {
1695         struct fec_enet_private *fep = netdev_priv(ndev);
1696         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1697         unsigned char *iap, tmpaddr[ETH_ALEN];
1698 
1699         /*
1700          * try to get mac address in following order:
1701          *
1702          * 1) module parameter via kernel command line in form
1703          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1704          */
1705         iap = macaddr;
1706 
1707         /*
1708          * 2) from device tree data
1709          */
1710         if (!is_valid_ether_addr(iap)) {
1711                 struct device_node *np = fep->pdev->dev.of_node;
1712                 if (np) {
1713                         const char *mac = of_get_mac_address(np);
1714                         if (!IS_ERR(mac))
1715                                 iap = (unsigned char *) mac;
1716                 }
1717         }
1718 
1719         /*
1720          * 3) from flash or fuse (via platform data)
1721          */
1722         if (!is_valid_ether_addr(iap)) {
1723 #ifdef CONFIG_M5272
1724                 if (FEC_FLASHMAC)
1725                         iap = (unsigned char *)FEC_FLASHMAC;
1726 #else
1727                 if (pdata)
1728                         iap = (unsigned char *)&pdata->mac;
1729 #endif
1730         }
1731 
1732         /*
1733          * 4) FEC mac registers set by bootloader
1734          */
1735         if (!is_valid_ether_addr(iap)) {
1736                 *((__be32 *) &tmpaddr[0]) =
1737                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1738                 *((__be16 *) &tmpaddr[4]) =
1739                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1740                 iap = &tmpaddr[0];
1741         }
1742 
1743         /*
1744          * 5) random mac address
1745          */
1746         if (!is_valid_ether_addr(iap)) {
1747                 /* Report it and use a random ethernet address instead */
1748                 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1749                 eth_hw_addr_random(ndev);
1750                 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1751                          ndev->dev_addr);
1752                 return;
1753         }
1754 
1755         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1756 
1757         /* Adjust MAC if using macaddr */
1758         if (iap == macaddr)
1759                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1760 }
1761 
1762 /* ------------------------------------------------------------------------- */
1763 
1764 /*
1765  * Phy section
1766  */
1767 static void fec_enet_adjust_link(struct net_device *ndev)
1768 {
1769         struct fec_enet_private *fep = netdev_priv(ndev);
1770         struct phy_device *phy_dev = ndev->phydev;
1771         int status_change = 0;
1772 
1773         /*
1774          * If the netdev is down, or is going down, we're not interested
1775          * in link state events, so just mark our idea of the link as down
1776          * and ignore the event.
1777          */
1778         if (!netif_running(ndev) || !netif_device_present(ndev)) {
1779                 fep->link = 0;
1780         } else if (phy_dev->link) {
1781                 if (!fep->link) {
1782                         fep->link = phy_dev->link;
1783                         status_change = 1;
1784                 }
1785 
1786                 if (fep->full_duplex != phy_dev->duplex) {
1787                         fep->full_duplex = phy_dev->duplex;
1788                         status_change = 1;
1789                 }
1790 
1791                 if (phy_dev->speed != fep->speed) {
1792                         fep->speed = phy_dev->speed;
1793                         status_change = 1;
1794                 }
1795 
1796                 /* if any of the above changed restart the FEC */
1797                 if (status_change) {
1798                         napi_disable(&fep->napi);
1799                         netif_tx_lock_bh(ndev);
1800                         fec_restart(ndev);
1801                         netif_tx_wake_all_queues(ndev);
1802                         netif_tx_unlock_bh(ndev);
1803                         napi_enable(&fep->napi);
1804                 }
1805         } else {
1806                 if (fep->link) {
1807                         napi_disable(&fep->napi);
1808                         netif_tx_lock_bh(ndev);
1809                         fec_stop(ndev);
1810                         netif_tx_unlock_bh(ndev);
1811                         napi_enable(&fep->napi);
1812                         fep->link = phy_dev->link;
1813                         status_change = 1;
1814                 }
1815         }
1816 
1817         if (status_change)
1818                 phy_print_status(phy_dev);
1819 }
1820 
1821 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1822 {
1823         struct fec_enet_private *fep = bus->priv;
1824         struct device *dev = &fep->pdev->dev;
1825         unsigned long time_left;
1826         int ret = 0, frame_start, frame_addr, frame_op;
1827         bool is_c45 = !!(regnum & MII_ADDR_C45);
1828 
1829         ret = pm_runtime_get_sync(dev);
1830         if (ret < 0)
1831                 return ret;
1832 
1833         reinit_completion(&fep->mdio_done);
1834 
1835         if (is_c45) {
1836                 frame_start = FEC_MMFR_ST_C45;
1837 
1838                 /* write address */
1839                 frame_addr = (regnum >> 16);
1840                 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1841                        FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1842                        FEC_MMFR_TA | (regnum & 0xFFFF),
1843                        fep->hwp + FEC_MII_DATA);
1844 
1845                 /* wait for end of transfer */
1846                 time_left = wait_for_completion_timeout(&fep->mdio_done,
1847                                 usecs_to_jiffies(FEC_MII_TIMEOUT));
1848                 if (time_left == 0) {
1849                         netdev_err(fep->netdev, "MDIO address write timeout\n");
1850                         ret = -ETIMEDOUT;
1851                         goto out;
1852                 }
1853 
1854                 frame_op = FEC_MMFR_OP_READ_C45;
1855 
1856         } else {
1857                 /* C22 read */
1858                 frame_op = FEC_MMFR_OP_READ;
1859                 frame_start = FEC_MMFR_ST;
1860                 frame_addr = regnum;
1861         }
1862 
1863         /* start a read op */
1864         writel(frame_start | frame_op |
1865                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1866                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1867 
1868         /* wait for end of transfer */
1869         time_left = wait_for_completion_timeout(&fep->mdio_done,
1870                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1871         if (time_left == 0) {
1872                 netdev_err(fep->netdev, "MDIO read timeout\n");
1873                 ret = -ETIMEDOUT;
1874                 goto out;
1875         }
1876 
1877         ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1878 
1879 out:
1880         pm_runtime_mark_last_busy(dev);
1881         pm_runtime_put_autosuspend(dev);
1882 
1883         return ret;
1884 }
1885 
1886 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1887                            u16 value)
1888 {
1889         struct fec_enet_private *fep = bus->priv;
1890         struct device *dev = &fep->pdev->dev;
1891         unsigned long time_left;
1892         int ret, frame_start, frame_addr;
1893         bool is_c45 = !!(regnum & MII_ADDR_C45);
1894 
1895         ret = pm_runtime_get_sync(dev);
1896         if (ret < 0)
1897                 return ret;
1898         else
1899                 ret = 0;
1900 
1901         reinit_completion(&fep->mdio_done);
1902 
1903         if (is_c45) {
1904                 frame_start = FEC_MMFR_ST_C45;
1905 
1906                 /* write address */
1907                 frame_addr = (regnum >> 16);
1908                 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1909                        FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1910                        FEC_MMFR_TA | (regnum & 0xFFFF),
1911                        fep->hwp + FEC_MII_DATA);
1912 
1913                 /* wait for end of transfer */
1914                 time_left = wait_for_completion_timeout(&fep->mdio_done,
1915                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1916                 if (time_left == 0) {
1917                         netdev_err(fep->netdev, "MDIO address write timeout\n");
1918                         ret = -ETIMEDOUT;
1919                         goto out;
1920                 }
1921         } else {
1922                 /* C22 write */
1923                 frame_start = FEC_MMFR_ST;
1924                 frame_addr = regnum;
1925         }
1926 
1927         /* start a write op */
1928         writel(frame_start | FEC_MMFR_OP_WRITE |
1929                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1930                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1931                 fep->hwp + FEC_MII_DATA);
1932 
1933         /* wait for end of transfer */
1934         time_left = wait_for_completion_timeout(&fep->mdio_done,
1935                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1936         if (time_left == 0) {
1937                 netdev_err(fep->netdev, "MDIO write timeout\n");
1938                 ret  = -ETIMEDOUT;
1939         }
1940 
1941 out:
1942         pm_runtime_mark_last_busy(dev);
1943         pm_runtime_put_autosuspend(dev);
1944 
1945         return ret;
1946 }
1947 
1948 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1949 {
1950         struct fec_enet_private *fep = netdev_priv(ndev);
1951         int ret;
1952 
1953         if (enable) {
1954                 ret = clk_prepare_enable(fep->clk_enet_out);
1955                 if (ret)
1956                         return ret;
1957 
1958                 if (fep->clk_ptp) {
1959                         mutex_lock(&fep->ptp_clk_mutex);
1960                         ret = clk_prepare_enable(fep->clk_ptp);
1961                         if (ret) {
1962                                 mutex_unlock(&fep->ptp_clk_mutex);
1963                                 goto failed_clk_ptp;
1964                         } else {
1965                                 fep->ptp_clk_on = true;
1966                         }
1967                         mutex_unlock(&fep->ptp_clk_mutex);
1968                 }
1969 
1970                 ret = clk_prepare_enable(fep->clk_ref);
1971                 if (ret)
1972                         goto failed_clk_ref;
1973 
1974                 phy_reset_after_clk_enable(ndev->phydev);
1975         } else {
1976                 clk_disable_unprepare(fep->clk_enet_out);
1977                 if (fep->clk_ptp) {
1978                         mutex_lock(&fep->ptp_clk_mutex);
1979                         clk_disable_unprepare(fep->clk_ptp);
1980                         fep->ptp_clk_on = false;
1981                         mutex_unlock(&fep->ptp_clk_mutex);
1982                 }
1983                 clk_disable_unprepare(fep->clk_ref);
1984         }
1985 
1986         return 0;
1987 
1988 failed_clk_ref:
1989         if (fep->clk_ref)
1990                 clk_disable_unprepare(fep->clk_ref);
1991 failed_clk_ptp:
1992         if (fep->clk_enet_out)
1993                 clk_disable_unprepare(fep->clk_enet_out);
1994 
1995         return ret;
1996 }
1997 
1998 static int fec_enet_mii_probe(struct net_device *ndev)
1999 {
2000         struct fec_enet_private *fep = netdev_priv(ndev);
2001         struct phy_device *phy_dev = NULL;
2002         char mdio_bus_id[MII_BUS_ID_SIZE];
2003         char phy_name[MII_BUS_ID_SIZE + 3];
2004         int phy_id;
2005         int dev_id = fep->dev_id;
2006 
2007         if (fep->phy_node) {
2008                 phy_dev = of_phy_connect(ndev, fep->phy_node,
2009                                          &fec_enet_adjust_link, 0,
2010                                          fep->phy_interface);
2011                 if (!phy_dev) {
2012                         netdev_err(ndev, "Unable to connect to phy\n");
2013                         return -ENODEV;
2014                 }
2015         } else {
2016                 /* check for attached phy */
2017                 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2018                         if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2019                                 continue;
2020                         if (dev_id--)
2021                                 continue;
2022                         strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2023                         break;
2024                 }
2025 
2026                 if (phy_id >= PHY_MAX_ADDR) {
2027                         netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2028                         strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2029                         phy_id = 0;
2030                 }
2031 
2032                 snprintf(phy_name, sizeof(phy_name),
2033                          PHY_ID_FMT, mdio_bus_id, phy_id);
2034                 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2035                                       fep->phy_interface);
2036         }
2037 
2038         if (IS_ERR(phy_dev)) {
2039                 netdev_err(ndev, "could not attach to PHY\n");
2040                 return PTR_ERR(phy_dev);
2041         }
2042 
2043         /* mask with MAC supported features */
2044         if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2045                 phy_set_max_speed(phy_dev, 1000);
2046                 phy_remove_link_mode(phy_dev,
2047                                      ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2048 #if !defined(CONFIG_M5272)
2049                 phy_support_sym_pause(phy_dev);
2050 #endif
2051         }
2052         else
2053                 phy_set_max_speed(phy_dev, 100);
2054 
2055         fep->link = 0;
2056         fep->full_duplex = 0;
2057 
2058         phy_attached_info(phy_dev);
2059 
2060         return 0;
2061 }
2062 
2063 static int fec_enet_mii_init(struct platform_device *pdev)
2064 {
2065         static struct mii_bus *fec0_mii_bus;
2066         struct net_device *ndev = platform_get_drvdata(pdev);
2067         struct fec_enet_private *fep = netdev_priv(ndev);
2068         struct device_node *node;
2069         int err = -ENXIO;
2070         u32 mii_speed, holdtime;
2071 
2072         /*
2073          * The i.MX28 dual fec interfaces are not equal.
2074          * Here are the differences:
2075          *
2076          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2077          *  - fec0 acts as the 1588 time master while fec1 is slave
2078          *  - external phys can only be configured by fec0
2079          *
2080          * That is to say fec1 can not work independently. It only works
2081          * when fec0 is working. The reason behind this design is that the
2082          * second interface is added primarily for Switch mode.
2083          *
2084          * Because of the last point above, both phys are attached on fec0
2085          * mdio interface in board design, and need to be configured by
2086          * fec0 mii_bus.
2087          */
2088         if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2089                 /* fec1 uses fec0 mii_bus */
2090                 if (mii_cnt && fec0_mii_bus) {
2091                         fep->mii_bus = fec0_mii_bus;
2092                         mii_cnt++;
2093                         return 0;
2094                 }
2095                 return -ENOENT;
2096         }
2097 
2098         /*
2099          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2100          *
2101          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2102          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2103          * Reference Manual has an error on this, and gets fixed on i.MX6Q
2104          * document.
2105          */
2106         mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2107         if (fep->quirks & FEC_QUIRK_ENET_MAC)
2108                 mii_speed--;
2109         if (mii_speed > 63) {
2110                 dev_err(&pdev->dev,
2111                         "fec clock (%lu) too fast to get right mii speed\n",
2112                         clk_get_rate(fep->clk_ipg));
2113                 err = -EINVAL;
2114                 goto err_out;
2115         }
2116 
2117         /*
2118          * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2119          * MII_SPEED) register that defines the MDIO output hold time. Earlier
2120          * versions are RAZ there, so just ignore the difference and write the
2121          * register always.
2122          * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2123          * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2124          * output.
2125          * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2126          * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2127          * holdtime cannot result in a value greater than 3.
2128          */
2129         holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2130 
2131         fep->phy_speed = mii_speed << 1 | holdtime << 8;
2132 
2133         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2134 
2135         fep->mii_bus = mdiobus_alloc();
2136         if (fep->mii_bus == NULL) {
2137                 err = -ENOMEM;
2138                 goto err_out;
2139         }
2140 
2141         fep->mii_bus->name = "fec_enet_mii_bus";
2142         fep->mii_bus->read = fec_enet_mdio_read;
2143         fep->mii_bus->write = fec_enet_mdio_write;
2144         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2145                 pdev->name, fep->dev_id + 1);
2146         fep->mii_bus->priv = fep;
2147         fep->mii_bus->parent = &pdev->dev;
2148 
2149         node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2150         err = of_mdiobus_register(fep->mii_bus, node);
2151         of_node_put(node);
2152         if (err)
2153                 goto err_out_free_mdiobus;
2154 
2155         mii_cnt++;
2156 
2157         /* save fec0 mii_bus */
2158         if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2159                 fec0_mii_bus = fep->mii_bus;
2160 
2161         return 0;
2162 
2163 err_out_free_mdiobus:
2164         mdiobus_free(fep->mii_bus);
2165 err_out:
2166         return err;
2167 }
2168 
2169 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2170 {
2171         if (--mii_cnt == 0) {
2172                 mdiobus_unregister(fep->mii_bus);
2173                 mdiobus_free(fep->mii_bus);
2174         }
2175 }
2176 
2177 static void fec_enet_get_drvinfo(struct net_device *ndev,
2178                                  struct ethtool_drvinfo *info)
2179 {
2180         struct fec_enet_private *fep = netdev_priv(ndev);
2181 
2182         strlcpy(info->driver, fep->pdev->dev.driver->name,
2183                 sizeof(info->driver));
2184         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2185         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2186 }
2187 
2188 static int fec_enet_get_regs_len(struct net_device *ndev)
2189 {
2190         struct fec_enet_private *fep = netdev_priv(ndev);
2191         struct resource *r;
2192         int s = 0;
2193 
2194         r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2195         if (r)
2196                 s = resource_size(r);
2197 
2198         return s;
2199 }
2200 
2201 /* List of registers that can be safety be read to dump them with ethtool */
2202 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2203         defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2204         defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2205 static __u32 fec_enet_register_version = 2;
2206 static u32 fec_enet_register_offset[] = {
2207         FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2208         FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2209         FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2210         FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2211         FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2212         FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2213         FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2214         FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2215         FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2216         FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2217         FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2218         FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2219         RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2220         RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2221         RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2222         RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2223         RMON_T_P_GTE2048, RMON_T_OCTETS,
2224         IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2225         IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2226         IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2227         RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2228         RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2229         RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2230         RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2231         RMON_R_P_GTE2048, RMON_R_OCTETS,
2232         IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2233         IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2234 };
2235 #else
2236 static __u32 fec_enet_register_version = 1;
2237 static u32 fec_enet_register_offset[] = {
2238         FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2239         FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2240         FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2241         FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2242         FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2243         FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2244         FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2245         FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2246         FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2247 };
2248 #endif
2249 
2250 static void fec_enet_get_regs(struct net_device *ndev,
2251                               struct ethtool_regs *regs, void *regbuf)
2252 {
2253         struct fec_enet_private *fep = netdev_priv(ndev);
2254         u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2255         struct device *dev = &fep->pdev->dev;
2256         u32 *buf = (u32 *)regbuf;
2257         u32 i, off;
2258         int ret;
2259 
2260         ret = pm_runtime_get_sync(dev);
2261         if (ret < 0)
2262                 return;
2263 
2264         regs->version = fec_enet_register_version;
2265 
2266         memset(buf, 0, regs->len);
2267 
2268         for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2269                 off = fec_enet_register_offset[i];
2270 
2271                 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2272                     !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2273                         continue;
2274 
2275                 off >>= 2;
2276                 buf[off] = readl(&theregs[off]);
2277         }
2278 
2279         pm_runtime_mark_last_busy(dev);
2280         pm_runtime_put_autosuspend(dev);
2281 }
2282 
2283 static int fec_enet_get_ts_info(struct net_device *ndev,
2284                                 struct ethtool_ts_info *info)
2285 {
2286         struct fec_enet_private *fep = netdev_priv(ndev);
2287 
2288         if (fep->bufdesc_ex) {
2289 
2290                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2291                                         SOF_TIMESTAMPING_RX_SOFTWARE |
2292                                         SOF_TIMESTAMPING_SOFTWARE |
2293                                         SOF_TIMESTAMPING_TX_HARDWARE |
2294                                         SOF_TIMESTAMPING_RX_HARDWARE |
2295                                         SOF_TIMESTAMPING_RAW_HARDWARE;
2296                 if (fep->ptp_clock)
2297                         info->phc_index = ptp_clock_index(fep->ptp_clock);
2298                 else
2299                         info->phc_index = -1;
2300 
2301                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2302                                  (1 << HWTSTAMP_TX_ON);
2303 
2304                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2305                                    (1 << HWTSTAMP_FILTER_ALL);
2306                 return 0;
2307         } else {
2308                 return ethtool_op_get_ts_info(ndev, info);
2309         }
2310 }
2311 
2312 #if !defined(CONFIG_M5272)
2313 
2314 static void fec_enet_get_pauseparam(struct net_device *ndev,
2315                                     struct ethtool_pauseparam *pause)
2316 {
2317         struct fec_enet_private *fep = netdev_priv(ndev);
2318 
2319         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2320         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2321         pause->rx_pause = pause->tx_pause;
2322 }
2323 
2324 static int fec_enet_set_pauseparam(struct net_device *ndev,
2325                                    struct ethtool_pauseparam *pause)
2326 {
2327         struct fec_enet_private *fep = netdev_priv(ndev);
2328 
2329         if (!ndev->phydev)
2330                 return -ENODEV;
2331 
2332         if (pause->tx_pause != pause->rx_pause) {
2333                 netdev_info(ndev,
2334                         "hardware only support enable/disable both tx and rx");
2335                 return -EINVAL;
2336         }
2337 
2338         fep->pause_flag = 0;
2339 
2340         /* tx pause must be same as rx pause */
2341         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2342         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2343 
2344         phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2345                           pause->autoneg);
2346 
2347         if (pause->autoneg) {
2348                 if (netif_running(ndev))
2349                         fec_stop(ndev);
2350                 phy_start_aneg(ndev->phydev);
2351         }
2352         if (netif_running(ndev)) {
2353                 napi_disable(&fep->napi);
2354                 netif_tx_lock_bh(ndev);
2355                 fec_restart(ndev);
2356                 netif_tx_wake_all_queues(ndev);
2357                 netif_tx_unlock_bh(ndev);
2358                 napi_enable(&fep->napi);
2359         }
2360 
2361         return 0;
2362 }
2363 
2364 static const struct fec_stat {
2365         char name[ETH_GSTRING_LEN];
2366         u16 offset;
2367 } fec_stats[] = {
2368         /* RMON TX */
2369         { "tx_dropped", RMON_T_DROP },
2370         { "tx_packets", RMON_T_PACKETS },
2371         { "tx_broadcast", RMON_T_BC_PKT },
2372         { "tx_multicast", RMON_T_MC_PKT },
2373         { "tx_crc_errors", RMON_T_CRC_ALIGN },
2374         { "tx_undersize", RMON_T_UNDERSIZE },
2375         { "tx_oversize", RMON_T_OVERSIZE },
2376         { "tx_fragment", RMON_T_FRAG },
2377         { "tx_jabber", RMON_T_JAB },
2378         { "tx_collision", RMON_T_COL },
2379         { "tx_64byte", RMON_T_P64 },
2380         { "tx_65to127byte", RMON_T_P65TO127 },
2381         { "tx_128to255byte", RMON_T_P128TO255 },
2382         { "tx_256to511byte", RMON_T_P256TO511 },
2383         { "tx_512to1023byte", RMON_T_P512TO1023 },
2384         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2385         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2386         { "tx_octets", RMON_T_OCTETS },
2387 
2388         /* IEEE TX */
2389         { "IEEE_tx_drop", IEEE_T_DROP },
2390         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2391         { "IEEE_tx_1col", IEEE_T_1COL },
2392         { "IEEE_tx_mcol", IEEE_T_MCOL },
2393         { "IEEE_tx_def", IEEE_T_DEF },
2394         { "IEEE_tx_lcol", IEEE_T_LCOL },
2395         { "IEEE_tx_excol", IEEE_T_EXCOL },
2396         { "IEEE_tx_macerr", IEEE_T_MACERR },
2397         { "IEEE_tx_cserr", IEEE_T_CSERR },
2398         { "IEEE_tx_sqe", IEEE_T_SQE },
2399         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2400         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2401 
2402         /* RMON RX */
2403         { "rx_packets", RMON_R_PACKETS },
2404         { "rx_broadcast", RMON_R_BC_PKT },
2405         { "rx_multicast", RMON_R_MC_PKT },
2406         { "rx_crc_errors", RMON_R_CRC_ALIGN },
2407         { "rx_undersize", RMON_R_UNDERSIZE },
2408         { "rx_oversize", RMON_R_OVERSIZE },
2409         { "rx_fragment", RMON_R_FRAG },
2410         { "rx_jabber", RMON_R_JAB },
2411         { "rx_64byte", RMON_R_P64 },
2412         { "rx_65to127byte", RMON_R_P65TO127 },
2413         { "rx_128to255byte", RMON_R_P128TO255 },
2414         { "rx_256to511byte", RMON_R_P256TO511 },
2415         { "rx_512to1023byte", RMON_R_P512TO1023 },
2416         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2417         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2418         { "rx_octets", RMON_R_OCTETS },
2419 
2420         /* IEEE RX */
2421         { "IEEE_rx_drop", IEEE_R_DROP },
2422         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2423         { "IEEE_rx_crc", IEEE_R_CRC },
2424         { "IEEE_rx_align", IEEE_R_ALIGN },
2425         { "IEEE_rx_macerr", IEEE_R_MACERR },
2426         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2427         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2428 };
2429 
2430 #define FEC_STATS_SIZE          (ARRAY_SIZE(fec_stats) * sizeof(u64))
2431 
2432 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2433 {
2434         struct fec_enet_private *fep = netdev_priv(dev);
2435         int i;
2436 
2437         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2438                 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2439 }
2440 
2441 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2442                                        struct ethtool_stats *stats, u64 *data)
2443 {
2444         struct fec_enet_private *fep = netdev_priv(dev);
2445 
2446         if (netif_running(dev))
2447                 fec_enet_update_ethtool_stats(dev);
2448 
2449         memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2450 }
2451 
2452 static void fec_enet_get_strings(struct net_device *netdev,
2453         u32 stringset, u8 *data)
2454 {
2455         int i;
2456         switch (stringset) {
2457         case ETH_SS_STATS:
2458                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2459                         memcpy(data + i * ETH_GSTRING_LEN,
2460                                 fec_stats[i].name, ETH_GSTRING_LEN);
2461                 break;
2462         }
2463 }
2464 
2465 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2466 {
2467         switch (sset) {
2468         case ETH_SS_STATS:
2469                 return ARRAY_SIZE(fec_stats);
2470         default:
2471                 return -EOPNOTSUPP;
2472         }
2473 }
2474 
2475 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2476 {
2477         struct fec_enet_private *fep = netdev_priv(dev);
2478         int i;
2479 
2480         /* Disable MIB statistics counters */
2481         writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2482 
2483         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2484                 writel(0, fep->hwp + fec_stats[i].offset);
2485 
2486         /* Don't disable MIB statistics counters */
2487         writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2488 }
2489 
2490 #else   /* !defined(CONFIG_M5272) */
2491 #define FEC_STATS_SIZE  0
2492 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2493 {
2494 }
2495 
2496 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2497 {
2498 }
2499 #endif /* !defined(CONFIG_M5272) */
2500 
2501 /* ITR clock source is enet system clock (clk_ahb).
2502  * TCTT unit is cycle_ns * 64 cycle
2503  * So, the ICTT value = X us / (cycle_ns * 64)
2504  */
2505 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2506 {
2507         struct fec_enet_private *fep = netdev_priv(ndev);
2508 
2509         return us * (fep->itr_clk_rate / 64000) / 1000;
2510 }
2511 
2512 /* Set threshold for interrupt coalescing */
2513 static void fec_enet_itr_coal_set(struct net_device *ndev)
2514 {
2515         struct fec_enet_private *fep = netdev_priv(ndev);
2516         int rx_itr, tx_itr;
2517 
2518         /* Must be greater than zero to avoid unpredictable behavior */
2519         if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2520             !fep->tx_time_itr || !fep->tx_pkts_itr)
2521                 return;
2522 
2523         /* Select enet system clock as Interrupt Coalescing
2524          * timer Clock Source
2525          */
2526         rx_itr = FEC_ITR_CLK_SEL;
2527         tx_itr = FEC_ITR_CLK_SEL;
2528 
2529         /* set ICFT and ICTT */
2530         rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2531         rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2532         tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2533         tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2534 
2535         rx_itr |= FEC_ITR_EN;
2536         tx_itr |= FEC_ITR_EN;
2537 
2538         writel(tx_itr, fep->hwp + FEC_TXIC0);
2539         writel(rx_itr, fep->hwp + FEC_RXIC0);
2540         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2541                 writel(tx_itr, fep->hwp + FEC_TXIC1);
2542                 writel(rx_itr, fep->hwp + FEC_RXIC1);
2543                 writel(tx_itr, fep->hwp + FEC_TXIC2);
2544                 writel(rx_itr, fep->hwp + FEC_RXIC2);
2545         }
2546 }
2547 
2548 static int
2549 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2550 {
2551         struct fec_enet_private *fep = netdev_priv(ndev);
2552 
2553         if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2554                 return -EOPNOTSUPP;
2555 
2556         ec->rx_coalesce_usecs = fep->rx_time_itr;
2557         ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2558 
2559         ec->tx_coalesce_usecs = fep->tx_time_itr;
2560         ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2561 
2562         return 0;
2563 }
2564 
2565 static int
2566 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2567 {
2568         struct fec_enet_private *fep = netdev_priv(ndev);
2569         struct device *dev = &fep->pdev->dev;
2570         unsigned int cycle;
2571 
2572         if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2573                 return -EOPNOTSUPP;
2574 
2575         if (ec->rx_max_coalesced_frames > 255) {
2576                 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2577                 return -EINVAL;
2578         }
2579 
2580         if (ec->tx_max_coalesced_frames > 255) {
2581                 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2582                 return -EINVAL;
2583         }
2584 
2585         cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2586         if (cycle > 0xFFFF) {
2587                 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2588                 return -EINVAL;
2589         }
2590 
2591         cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2592         if (cycle > 0xFFFF) {
2593                 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2594                 return -EINVAL;
2595         }
2596 
2597         fep->rx_time_itr = ec->rx_coalesce_usecs;
2598         fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2599 
2600         fep->tx_time_itr = ec->tx_coalesce_usecs;
2601         fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2602 
2603         fec_enet_itr_coal_set(ndev);
2604 
2605         return 0;
2606 }
2607 
2608 static void fec_enet_itr_coal_init(struct net_device *ndev)
2609 {
2610         struct ethtool_coalesce ec;
2611 
2612         ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2613         ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2614 
2615         ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2616         ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2617 
2618         fec_enet_set_coalesce(ndev, &ec);
2619 }
2620 
2621 static int fec_enet_get_tunable(struct net_device *netdev,
2622                                 const struct ethtool_tunable *tuna,
2623                                 void *data)
2624 {
2625         struct fec_enet_private *fep = netdev_priv(netdev);
2626         int ret = 0;
2627 
2628         switch (tuna->id) {
2629         case ETHTOOL_RX_COPYBREAK:
2630                 *(u32 *)data = fep->rx_copybreak;
2631                 break;
2632         default:
2633                 ret = -EINVAL;
2634                 break;
2635         }
2636 
2637         return ret;
2638 }
2639 
2640 static int fec_enet_set_tunable(struct net_device *netdev,
2641                                 const struct ethtool_tunable *tuna,
2642                                 const void *data)
2643 {
2644         struct fec_enet_private *fep = netdev_priv(netdev);
2645         int ret = 0;
2646 
2647         switch (tuna->id) {
2648         case ETHTOOL_RX_COPYBREAK:
2649                 fep->rx_copybreak = *(u32 *)data;
2650                 break;
2651         default:
2652                 ret = -EINVAL;
2653                 break;
2654         }
2655 
2656         return ret;
2657 }
2658 
2659 static void
2660 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2661 {
2662         struct fec_enet_private *fep = netdev_priv(ndev);
2663 
2664         if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2665                 wol->supported = WAKE_MAGIC;
2666                 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2667         } else {
2668                 wol->supported = wol->wolopts = 0;
2669         }
2670 }
2671 
2672 static int
2673 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2674 {
2675         struct fec_enet_private *fep = netdev_priv(ndev);
2676 
2677         if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2678                 return -EINVAL;
2679 
2680         if (wol->wolopts & ~WAKE_MAGIC)
2681                 return -EINVAL;
2682 
2683         device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2684         if (device_may_wakeup(&ndev->dev)) {
2685                 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2686                 if (fep->irq[0] > 0)
2687                         enable_irq_wake(fep->irq[0]);
2688         } else {
2689                 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2690                 if (fep->irq[0] > 0)
2691                         disable_irq_wake(fep->irq[0]);
2692         }
2693 
2694         return 0;
2695 }
2696 
2697 static const struct ethtool_ops fec_enet_ethtool_ops = {
2698         .get_drvinfo            = fec_enet_get_drvinfo,
2699         .get_regs_len           = fec_enet_get_regs_len,
2700         .get_regs               = fec_enet_get_regs,
2701         .nway_reset             = phy_ethtool_nway_reset,
2702         .get_link               = ethtool_op_get_link,
2703         .get_coalesce           = fec_enet_get_coalesce,
2704         .set_coalesce           = fec_enet_set_coalesce,
2705 #ifndef CONFIG_M5272
2706         .get_pauseparam         = fec_enet_get_pauseparam,
2707         .set_pauseparam         = fec_enet_set_pauseparam,
2708         .get_strings            = fec_enet_get_strings,
2709         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2710         .get_sset_count         = fec_enet_get_sset_count,
2711 #endif
2712         .get_ts_info            = fec_enet_get_ts_info,
2713         .get_tunable            = fec_enet_get_tunable,
2714         .set_tunable            = fec_enet_set_tunable,
2715         .get_wol                = fec_enet_get_wol,
2716         .set_wol                = fec_enet_set_wol,
2717         .get_link_ksettings     = phy_ethtool_get_link_ksettings,
2718         .set_link_ksettings     = phy_ethtool_set_link_ksettings,
2719 };
2720 
2721 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2722 {
2723         struct fec_enet_private *fep = netdev_priv(ndev);
2724         struct phy_device *phydev = ndev->phydev;
2725 
2726         if (!netif_running(ndev))
2727                 return -EINVAL;
2728 
2729         if (!phydev)
2730                 return -ENODEV;
2731 
2732         if (fep->bufdesc_ex) {
2733                 if (cmd == SIOCSHWTSTAMP)
2734                         return fec_ptp_set(ndev, rq);
2735                 if (cmd == SIOCGHWTSTAMP)
2736                         return fec_ptp_get(ndev, rq);
2737         }
2738 
2739         return phy_mii_ioctl(phydev, rq, cmd);
2740 }
2741 
2742 static void fec_enet_free_buffers(struct net_device *ndev)
2743 {
2744         struct fec_enet_private *fep = netdev_priv(ndev);
2745         unsigned int i;
2746         struct sk_buff *skb;
2747         struct bufdesc  *bdp;
2748         struct fec_enet_priv_tx_q *txq;
2749         struct fec_enet_priv_rx_q *rxq;
2750         unsigned int q;
2751 
2752         for (q = 0; q < fep->num_rx_queues; q++) {
2753                 rxq = fep->rx_queue[q];
2754                 bdp = rxq->bd.base;
2755                 for (i = 0; i < rxq->bd.ring_size; i++) {
2756                         skb = rxq->rx_skbuff[i];
2757                         rxq->rx_skbuff[i] = NULL;
2758                         if (skb) {
2759                                 dma_unmap_single(&fep->pdev->dev,
2760                                                  fec32_to_cpu(bdp->cbd_bufaddr),
2761                                                  FEC_ENET_RX_FRSIZE - fep->rx_align,
2762                                                  DMA_FROM_DEVICE);
2763                                 dev_kfree_skb(skb);
2764                         }
2765                         bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2766                 }
2767         }
2768 
2769         for (q = 0; q < fep->num_tx_queues; q++) {
2770                 txq = fep->tx_queue[q];
2771                 bdp = txq->bd.base;
2772                 for (i = 0; i < txq->bd.ring_size; i++) {
2773                         kfree(txq->tx_bounce[i]);
2774                         txq->tx_bounce[i] = NULL;
2775                         skb = txq->tx_skbuff[i];
2776                         txq->tx_skbuff[i] = NULL;
2777                         dev_kfree_skb(skb);
2778                 }
2779         }
2780 }
2781 
2782 static void fec_enet_free_queue(struct net_device *ndev)
2783 {
2784         struct fec_enet_private *fep = netdev_priv(ndev);
2785         int i;
2786         struct fec_enet_priv_tx_q *txq;
2787 
2788         for (i = 0; i < fep->num_tx_queues; i++)
2789                 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2790                         txq = fep->tx_queue[i];
2791                         dma_free_coherent(&fep->pdev->dev,
2792                                           txq->bd.ring_size * TSO_HEADER_SIZE,
2793                                           txq->tso_hdrs,
2794                                           txq->tso_hdrs_dma);
2795                 }
2796 
2797         for (i = 0; i < fep->num_rx_queues; i++)
2798                 kfree(fep->rx_queue[i]);
2799         for (i = 0; i < fep->num_tx_queues; i++)
2800                 kfree(fep->tx_queue[i]);
2801 }
2802 
2803 static int fec_enet_alloc_queue(struct net_device *ndev)
2804 {
2805         struct fec_enet_private *fep = netdev_priv(ndev);
2806         int i;
2807         int ret = 0;
2808         struct fec_enet_priv_tx_q *txq;
2809 
2810         for (i = 0; i < fep->num_tx_queues; i++) {
2811                 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2812                 if (!txq) {
2813                         ret = -ENOMEM;
2814                         goto alloc_failed;
2815                 }
2816 
2817                 fep->tx_queue[i] = txq;
2818                 txq->bd.ring_size = TX_RING_SIZE;
2819                 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2820 
2821                 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2822                 txq->tx_wake_threshold =
2823                         (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2824 
2825                 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2826                                         txq->bd.ring_size * TSO_HEADER_SIZE,
2827                                         &txq->tso_hdrs_dma,
2828                                         GFP_KERNEL);
2829                 if (!txq->tso_hdrs) {
2830                         ret = -ENOMEM;
2831                         goto alloc_failed;
2832                 }
2833         }
2834 
2835         for (i = 0; i < fep->num_rx_queues; i++) {
2836                 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2837                                            GFP_KERNEL);
2838                 if (!fep->rx_queue[i]) {
2839                         ret = -ENOMEM;
2840                         goto alloc_failed;
2841                 }
2842 
2843                 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2844                 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2845         }
2846         return ret;
2847 
2848 alloc_failed:
2849         fec_enet_free_queue(ndev);
2850         return ret;
2851 }
2852 
2853 static int
2854 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2855 {
2856         struct fec_enet_private *fep = netdev_priv(ndev);
2857         unsigned int i;
2858         struct sk_buff *skb;
2859         struct bufdesc  *bdp;
2860         struct fec_enet_priv_rx_q *rxq;
2861 
2862         rxq = fep->rx_queue[queue];
2863         bdp = rxq->bd.base;
2864         for (i = 0; i < rxq->bd.ring_size; i++) {
2865                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2866                 if (!skb)
2867                         goto err_alloc;
2868 
2869                 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2870                         dev_kfree_skb(skb);
2871                         goto err_alloc;
2872                 }
2873 
2874                 rxq->rx_skbuff[i] = skb;
2875                 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2876 
2877                 if (fep->bufdesc_ex) {
2878                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2879                         ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2880                 }
2881 
2882                 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2883         }
2884 
2885         /* Set the last buffer to wrap. */
2886         bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2887         bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2888         return 0;
2889 
2890  err_alloc:
2891         fec_enet_free_buffers(ndev);
2892         return -ENOMEM;
2893 }
2894 
2895 static int
2896 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2897 {
2898         struct fec_enet_private *fep = netdev_priv(ndev);
2899         unsigned int i;
2900         struct bufdesc  *bdp;
2901         struct fec_enet_priv_tx_q *txq;
2902 
2903         txq = fep->tx_queue[queue];
2904         bdp = txq->bd.base;
2905         for (i = 0; i < txq->bd.ring_size; i++) {
2906                 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2907                 if (!txq->tx_bounce[i])
2908                         goto err_alloc;
2909 
2910                 bdp->cbd_sc = cpu_to_fec16(0);
2911                 bdp->cbd_bufaddr = cpu_to_fec32(0);
2912 
2913                 if (fep->bufdesc_ex) {
2914                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2915                         ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2916                 }
2917 
2918                 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2919         }
2920 
2921         /* Set the last buffer to wrap. */
2922         bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2923         bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2924 
2925         return 0;
2926 
2927  err_alloc:
2928         fec_enet_free_buffers(ndev);
2929         return -ENOMEM;
2930 }
2931 
2932 static int fec_enet_alloc_buffers(struct net_device *ndev)
2933 {
2934         struct fec_enet_private *fep = netdev_priv(ndev);
2935         unsigned int i;
2936 
2937         for (i = 0; i < fep->num_rx_queues; i++)
2938                 if (fec_enet_alloc_rxq_buffers(ndev, i))
2939                         return -ENOMEM;
2940 
2941         for (i = 0; i < fep->num_tx_queues; i++)
2942                 if (fec_enet_alloc_txq_buffers(ndev, i))
2943                         return -ENOMEM;
2944         return 0;
2945 }
2946 
2947 static int
2948 fec_enet_open(struct net_device *ndev)
2949 {
2950         struct fec_enet_private *fep = netdev_priv(ndev);
2951         int ret;
2952         bool reset_again;
2953 
2954         ret = pm_runtime_get_sync(&fep->pdev->dev);
2955         if (ret < 0)
2956                 return ret;
2957 
2958         pinctrl_pm_select_default_state(&fep->pdev->dev);
2959         ret = fec_enet_clk_enable(ndev, true);
2960         if (ret)
2961                 goto clk_enable;
2962 
2963         /* During the first fec_enet_open call the PHY isn't probed at this
2964          * point. Therefore the phy_reset_after_clk_enable() call within
2965          * fec_enet_clk_enable() fails. As we need this reset in order to be
2966          * sure the PHY is working correctly we check if we need to reset again
2967          * later when the PHY is probed
2968          */
2969         if (ndev->phydev && ndev->phydev->drv)
2970                 reset_again = false;
2971         else
2972                 reset_again = true;
2973 
2974         /* I should reset the ring buffers here, but I don't yet know
2975          * a simple way to do that.
2976          */
2977 
2978         ret = fec_enet_alloc_buffers(ndev);
2979         if (ret)
2980                 goto err_enet_alloc;
2981 
2982         /* Init MAC prior to mii bus probe */
2983         fec_restart(ndev);
2984 
2985         /* Probe and connect to PHY when open the interface */
2986         ret = fec_enet_mii_probe(ndev);
2987         if (ret)
2988                 goto err_enet_mii_probe;
2989 
2990         /* Call phy_reset_after_clk_enable() again if it failed during
2991          * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2992          */
2993         if (reset_again)
2994                 phy_reset_after_clk_enable(ndev->phydev);
2995 
2996         if (fep->quirks & FEC_QUIRK_ERR006687)
2997                 imx6q_cpuidle_fec_irqs_used();
2998 
2999         napi_enable(&fep->napi);
3000         phy_start(ndev->phydev);
3001         netif_tx_start_all_queues(ndev);
3002 
3003         device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3004                                  FEC_WOL_FLAG_ENABLE);
3005 
3006         return 0;
3007 
3008 err_enet_mii_probe:
3009         fec_enet_free_buffers(ndev);
3010 err_enet_alloc:
3011         fec_enet_clk_enable(ndev, false);
3012 clk_enable:
3013         pm_runtime_mark_last_busy(&fep->pdev->dev);
3014         pm_runtime_put_autosuspend(&fep->pdev->dev);
3015         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3016         return ret;
3017 }
3018 
3019 static int
3020 fec_enet_close(struct net_device *ndev)
3021 {
3022         struct fec_enet_private *fep = netdev_priv(ndev);
3023 
3024         phy_stop(ndev->phydev);
3025 
3026         if (netif_device_present(ndev)) {
3027                 napi_disable(&fep->napi);
3028                 netif_tx_disable(ndev);
3029                 fec_stop(ndev);
3030         }
3031 
3032         phy_disconnect(ndev->phydev);
3033 
3034         if (fep->quirks & FEC_QUIRK_ERR006687)
3035                 imx6q_cpuidle_fec_irqs_unused();
3036 
3037         fec_enet_update_ethtool_stats(ndev);
3038 
3039         fec_enet_clk_enable(ndev, false);
3040         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3041         pm_runtime_mark_last_busy(&fep->pdev->dev);
3042         pm_runtime_put_autosuspend(&fep->pdev->dev);
3043 
3044         fec_enet_free_buffers(ndev);
3045 
3046         return 0;
3047 }
3048 
3049 /* Set or clear the multicast filter for this adaptor.
3050  * Skeleton taken from sunlance driver.
3051  * The CPM Ethernet implementation allows Multicast as well as individual
3052  * MAC address filtering.  Some of the drivers check to make sure it is
3053  * a group multicast address, and discard those that are not.  I guess I
3054  * will do the same for now, but just remove the test if you want
3055  * individual filtering as well (do the upper net layers want or support
3056  * this kind of feature?).
3057  */
3058 
3059 #define FEC_HASH_BITS   6               /* #bits in hash */
3060 
3061 static void set_multicast_list(struct net_device *ndev)
3062 {
3063         struct fec_enet_private *fep = netdev_priv(ndev);
3064         struct netdev_hw_addr *ha;
3065         unsigned int crc, tmp;
3066         unsigned char hash;
3067         unsigned int hash_high = 0, hash_low = 0;
3068 
3069         if (ndev->flags & IFF_PROMISC) {
3070                 tmp = readl(fep->hwp + FEC_R_CNTRL);
3071                 tmp |= 0x8;
3072                 writel(tmp, fep->hwp + FEC_R_CNTRL);
3073                 return;
3074         }
3075 
3076         tmp = readl(fep->hwp + FEC_R_CNTRL);
3077         tmp &= ~0x8;
3078         writel(tmp, fep->hwp + FEC_R_CNTRL);
3079 
3080         if (ndev->flags & IFF_ALLMULTI) {
3081                 /* Catch all multicast addresses, so set the
3082                  * filter to all 1's
3083                  */
3084                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3085                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3086 
3087                 return;
3088         }
3089 
3090         /* Add the addresses in hash register */
3091         netdev_for_each_mc_addr(ha, ndev) {
3092                 /* calculate crc32 value of mac address */
3093                 crc = ether_crc_le(ndev->addr_len, ha->addr);
3094 
3095                 /* only upper 6 bits (FEC_HASH_BITS) are used
3096                  * which point to specific bit in the hash registers
3097                  */
3098                 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3099 
3100                 if (hash > 31)
3101                         hash_high |= 1 << (hash - 32);
3102                 else
3103                         hash_low |= 1 << hash;
3104         }
3105 
3106         writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3107         writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3108 }
3109 
3110 /* Set a MAC change in hardware. */
3111 static int
3112 fec_set_mac_address(struct net_device *ndev, void *p)
3113 {
3114         struct fec_enet_private *fep = netdev_priv(ndev);
3115         struct sockaddr *addr = p;
3116 
3117         if (addr) {
3118                 if (!is_valid_ether_addr(addr->sa_data))
3119                         return -EADDRNOTAVAIL;
3120                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3121         }
3122 
3123         /* Add netif status check here to avoid system hang in below case:
3124          * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3125          * After ethx down, fec all clocks are gated off and then register
3126          * access causes system hang.
3127          */
3128         if (!netif_running(ndev))
3129                 return 0;
3130 
3131         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3132                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3133                 fep->hwp + FEC_ADDR_LOW);
3134         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3135                 fep->hwp + FEC_ADDR_HIGH);
3136         return 0;
3137 }
3138 
3139 #ifdef CONFIG_NET_POLL_CONTROLLER
3140 /**
3141  * fec_poll_controller - FEC Poll controller function
3142  * @dev: The FEC network adapter
3143  *
3144  * Polled functionality used by netconsole and others in non interrupt mode
3145  *
3146  */
3147 static void fec_poll_controller(struct net_device *dev)
3148 {
3149         int i;
3150         struct fec_enet_private *fep = netdev_priv(dev);
3151 
3152         for (i = 0; i < FEC_IRQ_NUM; i++) {
3153                 if (fep->irq[i] > 0) {
3154                         disable_irq(fep->irq[i]);
3155                         fec_enet_interrupt(fep->irq[i], dev);
3156                         enable_irq(fep->irq[i]);
3157                 }
3158         }
3159 }
3160 #endif
3161 
3162 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3163         netdev_features_t features)
3164 {
3165         struct fec_enet_private *fep = netdev_priv(netdev);
3166         netdev_features_t changed = features ^ netdev->features;
3167 
3168         netdev->features = features;
3169 
3170         /* Receive checksum has been changed */
3171         if (changed & NETIF_F_RXCSUM) {
3172                 if (features & NETIF_F_RXCSUM)
3173                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3174                 else
3175                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3176         }
3177 }
3178 
3179 static int fec_set_features(struct net_device *netdev,
3180         netdev_features_t features)
3181 {
3182         struct fec_enet_private *fep = netdev_priv(netdev);
3183         netdev_features_t changed = features ^ netdev->features;
3184 
3185         if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3186                 napi_disable(&fep->napi);
3187                 netif_tx_lock_bh(netdev);
3188                 fec_stop(netdev);
3189                 fec_enet_set_netdev_features(netdev, features);
3190                 fec_restart(netdev);
3191                 netif_tx_wake_all_queues(netdev);
3192                 netif_tx_unlock_bh(netdev);
3193                 napi_enable(&fep->napi);
3194         } else {
3195                 fec_enet_set_netdev_features(netdev, features);
3196         }
3197 
3198         return 0;
3199 }
3200 
3201 static const struct net_device_ops fec_netdev_ops = {
3202         .ndo_open               = fec_enet_open,
3203         .ndo_stop               = fec_enet_close,
3204         .ndo_start_xmit         = fec_enet_start_xmit,
3205         .ndo_set_rx_mode        = set_multicast_list,
3206         .ndo_validate_addr      = eth_validate_addr,
3207         .ndo_tx_timeout         = fec_timeout,
3208         .ndo_set_mac_address    = fec_set_mac_address,
3209         .ndo_do_ioctl           = fec_enet_ioctl,
3210 #ifdef CONFIG_NET_POLL_CONTROLLER
3211         .ndo_poll_controller    = fec_poll_controller,
3212 #endif
3213         .ndo_set_features       = fec_set_features,
3214 };
3215 
3216 static const unsigned short offset_des_active_rxq[] = {
3217         FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3218 };
3219 
3220 static const unsigned short offset_des_active_txq[] = {
3221         FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3222 };
3223 
3224  /*
3225   * XXX:  We need to clean up on failure exits here.
3226   *
3227   */
3228 static int fec_enet_init(struct net_device *ndev)
3229 {
3230         struct fec_enet_private *fep = netdev_priv(ndev);
3231         struct bufdesc *cbd_base;
3232         dma_addr_t bd_dma;
3233         int bd_size;
3234         unsigned int i;
3235         unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3236                         sizeof(struct bufdesc);
3237         unsigned dsize_log2 = __fls(dsize);
3238         int ret;
3239 
3240         WARN_ON(dsize != (1 << dsize_log2));
3241 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3242         fep->rx_align = 0xf;
3243         fep->tx_align = 0xf;
3244 #else
3245         fep->rx_align = 0x3;
3246         fep->tx_align = 0x3;
3247 #endif
3248 
3249         /* Check mask of the streaming and coherent API */
3250         ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3251         if (ret < 0) {
3252                 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3253                 return ret;
3254         }
3255 
3256         fec_enet_alloc_queue(ndev);
3257 
3258         bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3259 
3260         /* Allocate memory for buffer descriptors. */
3261         cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3262                                        GFP_KERNEL);
3263         if (!cbd_base) {
3264                 return -ENOMEM;
3265         }
3266 
3267         /* Get the Ethernet address */
3268         fec_get_mac(ndev);
3269         /* make sure MAC we just acquired is programmed into the hw */
3270         fec_set_mac_address(ndev, NULL);
3271 
3272         /* Set receive and transmit descriptor base. */
3273         for (i = 0; i < fep->num_rx_queues; i++) {
3274                 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3275                 unsigned size = dsize * rxq->bd.ring_size;
3276 
3277                 rxq->bd.qid = i;
3278                 rxq->bd.base = cbd_base;
3279                 rxq->bd.cur = cbd_base;
3280                 rxq->bd.dma = bd_dma;
3281                 rxq->bd.dsize = dsize;
3282                 rxq->bd.dsize_log2 = dsize_log2;
3283                 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3284                 bd_dma += size;
3285                 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3286                 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3287         }
3288 
3289         for (i = 0; i < fep->num_tx_queues; i++) {
3290                 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3291                 unsigned size = dsize * txq->bd.ring_size;
3292 
3293                 txq->bd.qid = i;
3294                 txq->bd.base = cbd_base;
3295                 txq->bd.cur = cbd_base;
3296                 txq->bd.dma = bd_dma;
3297                 txq->bd.dsize = dsize;
3298                 txq->bd.dsize_log2 = dsize_log2;
3299                 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3300                 bd_dma += size;
3301                 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3302                 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3303         }
3304 
3305 
3306         /* The FEC Ethernet specific entries in the device structure */
3307         ndev->watchdog_timeo = TX_TIMEOUT;
3308         ndev->netdev_ops = &fec_netdev_ops;
3309         ndev->ethtool_ops = &fec_enet_ethtool_ops;
3310 
3311         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3312         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3313 
3314         if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3315                 /* enable hw VLAN support */
3316                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3317 
3318         if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3319                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3320 
3321                 /* enable hw accelerator */
3322                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3323                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3324                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3325         }
3326 
3327         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3328                 fep->tx_align = 0;
3329                 fep->rx_align = 0x3f;
3330         }
3331 
3332         ndev->hw_features = ndev->features;
3333 
3334         fec_restart(ndev);
3335 
3336         if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3337                 fec_enet_clear_ethtool_stats(ndev);
3338         else
3339                 fec_enet_update_ethtool_stats(ndev);
3340 
3341         return 0;
3342 }
3343 
3344 #ifdef CONFIG_OF
3345 static int fec_reset_phy(struct platform_device *pdev)
3346 {
3347         int err, phy_reset;
3348         bool active_high = false;
3349         int msec = 1, phy_post_delay = 0;
3350         struct device_node *np = pdev->dev.of_node;
3351 
3352         if (!np)
3353                 return 0;
3354 
3355         err = of_property_read_u32(np, "phy-reset-duration", &msec);
3356         /* A sane reset duration should not be longer than 1s */
3357         if (!err && msec > 1000)
3358                 msec = 1;
3359 
3360         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3361         if (phy_reset == -EPROBE_DEFER)
3362                 return phy_reset;
3363         else if (!gpio_is_valid(phy_reset))
3364                 return 0;
3365 
3366         err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3367         /* valid reset duration should be less than 1s */
3368         if (!err && phy_post_delay > 1000)
3369                 return -EINVAL;
3370 
3371         active_high = of_property_read_bool(np, "phy-reset-active-high");
3372 
3373         err = devm_gpio_request_one(&pdev->dev, phy_reset,
3374                         active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3375                         "phy-reset");
3376         if (err) {
3377                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3378                 return err;
3379         }
3380 
3381         if (msec > 20)
3382                 msleep(msec);
3383         else
3384                 usleep_range(msec * 1000, msec * 1000 + 1000);
3385 
3386         gpio_set_value_cansleep(phy_reset, !active_high);
3387 
3388         if (!phy_post_delay)
3389                 return 0;
3390 
3391         if (phy_post_delay > 20)
3392                 msleep(phy_post_delay);
3393         else
3394                 usleep_range(phy_post_delay * 1000,
3395                              phy_post_delay * 1000 + 1000);
3396 
3397         return 0;
3398 }
3399 #else /* CONFIG_OF */
3400 static int fec_reset_phy(struct platform_device *pdev)
3401 {
3402         /*
3403          * In case of platform probe, the reset has been done
3404          * by machine code.
3405          */
3406         return 0;
3407 }
3408 #endif /* CONFIG_OF */
3409 
3410 static void
3411 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3412 {
3413         struct device_node *np = pdev->dev.of_node;
3414 
3415         *num_tx = *num_rx = 1;
3416 
3417         if (!np || !of_device_is_available(np))
3418                 return;
3419 
3420         /* parse the num of tx and rx queues */
3421         of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3422 
3423         of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3424 
3425         if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3426                 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3427                          *num_tx);
3428                 *num_tx = 1;
3429                 return;
3430         }
3431 
3432         if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3433                 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3434                          *num_rx);
3435                 *num_rx = 1;
3436                 return;
3437         }
3438 
3439 }
3440 
3441 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3442 {
3443         int irq_cnt = platform_irq_count(pdev);
3444 
3445         if (irq_cnt > FEC_IRQ_NUM)
3446                 irq_cnt = FEC_IRQ_NUM;  /* last for pps */
3447         else if (irq_cnt == 2)
3448                 irq_cnt = 1;    /* last for pps */
3449         else if (irq_cnt <= 0)
3450                 irq_cnt = 1;    /* At least 1 irq is needed */
3451         return irq_cnt;
3452 }
3453 
3454 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3455                                    struct fec_devinfo *dev_info,
3456                                    struct device_node *np)
3457 {
3458         struct device_node *gpr_np;
3459         int ret = 0;
3460 
3461         if (!dev_info)
3462                 return 0;
3463 
3464         gpr_np = of_parse_phandle(np, "gpr", 0);
3465         if (!gpr_np)
3466                 return 0;
3467 
3468         fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3469         if (IS_ERR(fep->stop_gpr.gpr)) {
3470                 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3471                 ret = PTR_ERR(fep->stop_gpr.gpr);
3472                 fep->stop_gpr.gpr = NULL;
3473                 goto out;
3474         }
3475 
3476         fep->stop_gpr.reg = dev_info->stop_gpr_reg;
3477         fep->stop_gpr.bit = dev_info->stop_gpr_bit;
3478 
3479 out:
3480         of_node_put(gpr_np);
3481 
3482         return ret;
3483 }
3484 
3485 static int
3486 fec_probe(struct platform_device *pdev)
3487 {
3488         struct fec_enet_private *fep;
3489         struct fec_platform_data *pdata;
3490         struct net_device *ndev;
3491         int i, irq, ret = 0;
3492         const struct of_device_id *of_id;
3493         static int dev_id;
3494         struct device_node *np = pdev->dev.of_node, *phy_node;
3495         int num_tx_qs;
3496         int num_rx_qs;
3497         char irq_name[8];
3498         int irq_cnt;
3499         struct fec_devinfo *dev_info;
3500 
3501         fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3502 
3503         /* Init network device */
3504         ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3505                                   FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3506         if (!ndev)
3507                 return -ENOMEM;
3508 
3509         SET_NETDEV_DEV(ndev, &pdev->dev);
3510 
3511         /* setup board info structure */
3512         fep = netdev_priv(ndev);
3513 
3514         of_id = of_match_device(fec_dt_ids, &pdev->dev);
3515         if (of_id)
3516                 pdev->id_entry = of_id->data;
3517         dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3518         if (dev_info)
3519                 fep->quirks = dev_info->quirks;
3520 
3521         fep->netdev = ndev;
3522         fep->num_rx_queues = num_rx_qs;
3523         fep->num_tx_queues = num_tx_qs;
3524 
3525 #if !defined(CONFIG_M5272)
3526         /* default enable pause frame auto negotiation */
3527         if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3528                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3529 #endif
3530 
3531         /* Select default pin state */
3532         pinctrl_pm_select_default_state(&pdev->dev);
3533 
3534         fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3535         if (IS_ERR(fep->hwp)) {
3536                 ret = PTR_ERR(fep->hwp);
3537                 goto failed_ioremap;
3538         }
3539 
3540         fep->pdev = pdev;
3541         fep->dev_id = dev_id++;
3542 
3543         platform_set_drvdata(pdev, ndev);
3544 
3545         if ((of_machine_is_compatible("fsl,imx6q") ||
3546              of_machine_is_compatible("fsl,imx6dl")) &&
3547             !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3548                 fep->quirks |= FEC_QUIRK_ERR006687;
3549 
3550         if (of_get_property(np, "fsl,magic-packet", NULL))
3551                 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3552 
3553         ret = fec_enet_init_stop_mode(fep, dev_info, np);
3554         if (ret)
3555                 goto failed_stop_mode;
3556 
3557         phy_node = of_parse_phandle(np, "phy-handle", 0);
3558         if (!phy_node && of_phy_is_fixed_link(np)) {
3559                 ret = of_phy_register_fixed_link(np);
3560                 if (ret < 0) {
3561                         dev_err(&pdev->dev,
3562                                 "broken fixed-link specification\n");
3563                         goto failed_phy;
3564                 }
3565                 phy_node = of_node_get(np);
3566         }
3567         fep->phy_node = phy_node;
3568 
3569         ret = of_get_phy_mode(pdev->dev.of_node);
3570         if (ret < 0) {
3571                 pdata = dev_get_platdata(&pdev->dev);
3572                 if (pdata)
3573                         fep->phy_interface = pdata->phy;
3574                 else
3575                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
3576         } else {
3577                 fep->phy_interface = ret;
3578         }
3579 
3580         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3581         if (IS_ERR(fep->clk_ipg)) {
3582                 ret = PTR_ERR(fep->clk_ipg);
3583                 goto failed_clk;
3584         }
3585 
3586         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3587         if (IS_ERR(fep->clk_ahb)) {
3588                 ret = PTR_ERR(fep->clk_ahb);
3589                 goto failed_clk;
3590         }
3591 
3592         fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3593 
3594         /* enet_out is optional, depends on board */
3595         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3596         if (IS_ERR(fep->clk_enet_out))
3597                 fep->clk_enet_out = NULL;
3598 
3599         fep->ptp_clk_on = false;
3600         mutex_init(&fep->ptp_clk_mutex);
3601 
3602         /* clk_ref is optional, depends on board */
3603         fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3604         if (IS_ERR(fep->clk_ref))
3605                 fep->clk_ref = NULL;
3606 
3607         fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3608         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3609         if (IS_ERR(fep->clk_ptp)) {
3610                 fep->clk_ptp = NULL;
3611                 fep->bufdesc_ex = false;
3612         }
3613 
3614         ret = fec_enet_clk_enable(ndev, true);
3615         if (ret)
3616                 goto failed_clk;
3617 
3618         ret = clk_prepare_enable(fep->clk_ipg);
3619         if (ret)
3620                 goto failed_clk_ipg;
3621         ret = clk_prepare_enable(fep->clk_ahb);
3622         if (ret)
3623                 goto failed_clk_ahb;
3624 
3625         fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3626         if (!IS_ERR(fep->reg_phy)) {
3627                 ret = regulator_enable(fep->reg_phy);
3628                 if (ret) {
3629                         dev_err(&pdev->dev,
3630                                 "Failed to enable phy regulator: %d\n", ret);
3631                         goto failed_regulator;
3632                 }
3633         } else {
3634                 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3635                         ret = -EPROBE_DEFER;
3636                         goto failed_regulator;
3637                 }
3638                 fep->reg_phy = NULL;
3639         }
3640 
3641         pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3642         pm_runtime_use_autosuspend(&pdev->dev);
3643         pm_runtime_get_noresume(&pdev->dev);
3644         pm_runtime_set_active(&pdev->dev);
3645         pm_runtime_enable(&pdev->dev);
3646 
3647         ret = fec_reset_phy(pdev);
3648         if (ret)
3649                 goto failed_reset;
3650 
3651         irq_cnt = fec_enet_get_irq_cnt(pdev);
3652         if (fep->bufdesc_ex)
3653                 fec_ptp_init(pdev, irq_cnt);
3654 
3655         ret = fec_enet_init(ndev);
3656         if (ret)
3657                 goto failed_init;
3658 
3659         for (i = 0; i < irq_cnt; i++) {
3660                 snprintf(irq_name, sizeof(irq_name), "int%d", i);
3661                 irq = platform_get_irq_byname_optional(pdev, irq_name);
3662                 if (irq < 0)
3663                         irq = platform_get_irq(pdev, i);
3664                 if (irq < 0) {
3665                         ret = irq;
3666                         goto failed_irq;
3667                 }
3668                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3669                                        0, pdev->name, ndev);
3670                 if (ret)
3671                         goto failed_irq;
3672 
3673                 fep->irq[i] = irq;
3674         }
3675 
3676         init_completion(&fep->mdio_done);
3677         ret = fec_enet_mii_init(pdev);
3678         if (ret)
3679                 goto failed_mii_init;
3680 
3681         /* Carrier starts down, phylib will bring it up */
3682         netif_carrier_off(ndev);
3683         fec_enet_clk_enable(ndev, false);
3684         pinctrl_pm_select_sleep_state(&pdev->dev);
3685 
3686         ret = register_netdev(ndev);
3687         if (ret)
3688                 goto failed_register;
3689 
3690         device_init_wakeup(&ndev->dev, fep->wol_flag &
3691                            FEC_WOL_HAS_MAGIC_PACKET);
3692 
3693         if (fep->bufdesc_ex && fep->ptp_clock)
3694                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3695 
3696         fep->rx_copybreak = COPYBREAK_DEFAULT;
3697         INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3698 
3699         pm_runtime_mark_last_busy(&pdev->dev);
3700         pm_runtime_put_autosuspend(&pdev->dev);
3701 
3702         return 0;
3703 
3704 failed_register:
3705         fec_enet_mii_remove(fep);
3706 failed_mii_init:
3707 failed_irq:
3708 failed_init:
3709         fec_ptp_stop(pdev);
3710         if (fep->reg_phy)
3711                 regulator_disable(fep->reg_phy);
3712 failed_reset:
3713         pm_runtime_put_noidle(&pdev->dev);
3714         pm_runtime_disable(&pdev->dev);
3715 failed_regulator:
3716         clk_disable_unprepare(fep->clk_ahb);
3717 failed_clk_ahb:
3718         clk_disable_unprepare(fep->clk_ipg);
3719 failed_clk_ipg:
3720         fec_enet_clk_enable(ndev, false);
3721 failed_clk:
3722         if (of_phy_is_fixed_link(np))
3723                 of_phy_deregister_fixed_link(np);
3724         of_node_put(phy_node);
3725 failed_stop_mode:
3726 failed_phy:
3727         dev_id--;
3728 failed_ioremap:
3729         free_netdev(ndev);
3730 
3731         return ret;
3732 }
3733 
3734 static int
3735 fec_drv_remove(struct platform_device *pdev)
3736 {
3737         struct net_device *ndev = platform_get_drvdata(pdev);
3738         struct fec_enet_private *fep = netdev_priv(ndev);
3739         struct device_node *np = pdev->dev.of_node;
3740         int ret;
3741 
3742         ret = pm_runtime_get_sync(&pdev->dev);
3743         if (ret < 0)
3744                 return ret;
3745 
3746         cancel_work_sync(&fep->tx_timeout_work);
3747         fec_ptp_stop(pdev);
3748         unregister_netdev(ndev);
3749         fec_enet_mii_remove(fep);
3750         if (fep->reg_phy)
3751                 regulator_disable(fep->reg_phy);
3752 
3753         if (of_phy_is_fixed_link(np))
3754                 of_phy_deregister_fixed_link(np);
3755         of_node_put(fep->phy_node);
3756         free_netdev(ndev);
3757 
3758         clk_disable_unprepare(fep->clk_ahb);
3759         clk_disable_unprepare(fep->clk_ipg);
3760         pm_runtime_put_noidle(&pdev->dev);
3761         pm_runtime_disable(&pdev->dev);
3762 
3763         return 0;
3764 }
3765 
3766 static int __maybe_unused fec_suspend(struct device *dev)
3767 {
3768         struct net_device *ndev = dev_get_drvdata(dev);
3769         struct fec_enet_private *fep = netdev_priv(ndev);
3770 
3771         rtnl_lock();
3772         if (netif_running(ndev)) {
3773                 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3774                         fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3775                 phy_stop(ndev->phydev);
3776                 napi_disable(&fep->napi);
3777                 netif_tx_lock_bh(ndev);
3778                 netif_device_detach(ndev);
3779                 netif_tx_unlock_bh(ndev);
3780                 fec_stop(ndev);
3781                 fec_enet_clk_enable(ndev, false);
3782                 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3783                         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3784         }
3785         rtnl_unlock();
3786 
3787         if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3788                 regulator_disable(fep->reg_phy);
3789 
3790         /* SOC supply clock to phy, when clock is disabled, phy link down
3791          * SOC control phy regulator, when regulator is disabled, phy link down
3792          */
3793         if (fep->clk_enet_out || fep->reg_phy)
3794                 fep->link = 0;
3795 
3796         return 0;
3797 }
3798 
3799 static int __maybe_unused fec_resume(struct device *dev)
3800 {
3801         struct net_device *ndev = dev_get_drvdata(dev);
3802         struct fec_enet_private *fep = netdev_priv(ndev);
3803         int ret;
3804         int val;
3805 
3806         if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3807                 ret = regulator_enable(fep->reg_phy);
3808                 if (ret)
3809                         return ret;
3810         }
3811 
3812         rtnl_lock();
3813         if (netif_running(ndev)) {
3814                 ret = fec_enet_clk_enable(ndev, true);
3815                 if (ret) {
3816                         rtnl_unlock();
3817                         goto failed_clk;
3818                 }
3819                 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3820                         fec_enet_stop_mode(fep, false);
3821 
3822                         val = readl(fep->hwp + FEC_ECNTRL);
3823                         val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3824                         writel(val, fep->hwp + FEC_ECNTRL);
3825                         fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3826                 } else {
3827                         pinctrl_pm_select_default_state(&fep->pdev->dev);
3828                 }
3829                 fec_restart(ndev);
3830                 netif_tx_lock_bh(ndev);
3831                 netif_device_attach(ndev);
3832                 netif_tx_unlock_bh(ndev);
3833                 napi_enable(&fep->napi);
3834                 phy_start(ndev->phydev);
3835         }
3836         rtnl_unlock();
3837 
3838         return 0;
3839 
3840 failed_clk:
3841         if (fep->reg_phy)
3842                 regulator_disable(fep->reg_phy);
3843         return ret;
3844 }
3845 
3846 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3847 {
3848         struct net_device *ndev = dev_get_drvdata(dev);
3849         struct fec_enet_private *fep = netdev_priv(ndev);
3850 
3851         clk_disable_unprepare(fep->clk_ahb);
3852         clk_disable_unprepare(fep->clk_ipg);
3853 
3854         return 0;
3855 }
3856 
3857 static int __maybe_unused fec_runtime_resume(struct device *dev)
3858 {
3859         struct net_device *ndev = dev_get_drvdata(dev);
3860         struct fec_enet_private *fep = netdev_priv(ndev);
3861         int ret;
3862 
3863         ret = clk_prepare_enable(fep->clk_ahb);
3864         if (ret)
3865                 return ret;
3866         ret = clk_prepare_enable(fep->clk_ipg);
3867         if (ret)
3868                 goto failed_clk_ipg;
3869 
3870         return 0;
3871 
3872 failed_clk_ipg:
3873         clk_disable_unprepare(fep->clk_ahb);
3874         return ret;
3875 }
3876 
3877 static const struct dev_pm_ops fec_pm_ops = {
3878         SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3879         SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3880 };
3881 
3882 static struct platform_driver fec_driver = {
3883         .driver = {
3884                 .name   = DRIVER_NAME,
3885                 .pm     = &fec_pm_ops,
3886                 .of_match_table = fec_dt_ids,
3887         },
3888         .id_table = fec_devtype,
3889         .probe  = fec_probe,
3890         .remove = fec_drv_remove,
3891 };
3892 
3893 module_platform_driver(fec_driver);
3894 
3895 MODULE_ALIAS("platform:"DRIVER_NAME);
3896 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */