root/drivers/net/ethernet/freescale/enetc/enetc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. enetc_xmit
  2. enetc_tx_csum
  3. enetc_unmap_tx_buff
  4. enetc_free_tx_skb
  5. enetc_map_tx_buffs
  6. enetc_msix
  7. enetc_poll
  8. enetc_bd_ready_count
  9. enetc_get_tx_tstamp
  10. enetc_tstamp_tx
  11. enetc_clean_tx_ring
  12. enetc_new_page
  13. enetc_refill_rx_ring
  14. enetc_get_rx_tstamp
  15. enetc_get_offloads
  16. enetc_process_skb
  17. enetc_page_reusable
  18. enetc_reuse_page
  19. enetc_get_rx_buff
  20. enetc_put_rx_buff
  21. enetc_map_rx_buff_to_skb
  22. enetc_add_rx_buff_to_skb
  23. enetc_clean_rx_ring
  24. enetc_get_si_caps
  25. enetc_dma_alloc_bdr
  26. enetc_alloc_txbdr
  27. enetc_free_txbdr
  28. enetc_alloc_tx_resources
  29. enetc_free_tx_resources
  30. enetc_alloc_rxbdr
  31. enetc_free_rxbdr
  32. enetc_alloc_rx_resources
  33. enetc_free_rx_resources
  34. enetc_free_tx_ring
  35. enetc_free_rx_ring
  36. enetc_free_rxtx_rings
  37. enetc_alloc_cbdr
  38. enetc_free_cbdr
  39. enetc_setup_cbdr
  40. enetc_clear_cbdr
  41. enetc_setup_default_rss_table
  42. enetc_configure_si
  43. enetc_init_si_rings_params
  44. enetc_alloc_si_resources
  45. enetc_free_si_resources
  46. enetc_setup_txbdr
  47. enetc_setup_rxbdr
  48. enetc_setup_bdrs
  49. enetc_clear_rxbdr
  50. enetc_clear_txbdr
  51. enetc_clear_bdrs
  52. enetc_setup_irqs
  53. enetc_free_irqs
  54. enetc_enable_interrupts
  55. enetc_disable_interrupts
  56. adjust_link
  57. enetc_phy_connect
  58. enetc_open
  59. enetc_close
  60. enetc_setup_tc
  61. enetc_get_stats
  62. enetc_set_rss
  63. enetc_set_features
  64. enetc_hwtstamp_set
  65. enetc_hwtstamp_get
  66. enetc_ioctl
  67. enetc_alloc_msix
  68. enetc_free_msix
  69. enetc_kfree_si
  70. enetc_detect_errata
  71. enetc_pci_probe
  72. enetc_pci_remove

   1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2 /* Copyright 2017-2019 NXP */
   3 
   4 #include "enetc.h"
   5 #include <linux/tcp.h>
   6 #include <linux/udp.h>
   7 #include <linux/of_mdio.h>
   8 #include <linux/vmalloc.h>
   9 
  10 /* ENETC overhead: optional extension BD + 1 BD gap */
  11 #define ENETC_TXBDS_NEEDED(val) ((val) + 2)
  12 /* max # of chained Tx BDs is 15, including head and extension BD */
  13 #define ENETC_MAX_SKB_FRAGS     13
  14 #define ENETC_TXBDS_MAX_NEEDED  ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
  15 
  16 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
  17                               int active_offloads);
  18 
  19 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
  20 {
  21         struct enetc_ndev_priv *priv = netdev_priv(ndev);
  22         struct enetc_bdr *tx_ring;
  23         int count;
  24 
  25         tx_ring = priv->tx_ring[skb->queue_mapping];
  26 
  27         if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
  28                 if (unlikely(skb_linearize(skb)))
  29                         goto drop_packet_err;
  30 
  31         count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
  32         if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
  33                 netif_stop_subqueue(ndev, tx_ring->index);
  34                 return NETDEV_TX_BUSY;
  35         }
  36 
  37         count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
  38         if (unlikely(!count))
  39                 goto drop_packet_err;
  40 
  41         if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
  42                 netif_stop_subqueue(ndev, tx_ring->index);
  43 
  44         return NETDEV_TX_OK;
  45 
  46 drop_packet_err:
  47         dev_kfree_skb_any(skb);
  48         return NETDEV_TX_OK;
  49 }
  50 
  51 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
  52 {
  53         int l3_start, l3_hsize;
  54         u16 l3_flags, l4_flags;
  55 
  56         if (skb->ip_summed != CHECKSUM_PARTIAL)
  57                 return false;
  58 
  59         switch (skb->csum_offset) {
  60         case offsetof(struct tcphdr, check):
  61                 l4_flags = ENETC_TXBD_L4_TCP;
  62                 break;
  63         case offsetof(struct udphdr, check):
  64                 l4_flags = ENETC_TXBD_L4_UDP;
  65                 break;
  66         default:
  67                 skb_checksum_help(skb);
  68                 return false;
  69         }
  70 
  71         l3_start = skb_network_offset(skb);
  72         l3_hsize = skb_network_header_len(skb);
  73 
  74         l3_flags = 0;
  75         if (skb->protocol == htons(ETH_P_IPV6))
  76                 l3_flags = ENETC_TXBD_L3_IPV6;
  77 
  78         /* write BD fields */
  79         txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
  80         txbd->l4_csoff = l4_flags;
  81 
  82         return true;
  83 }
  84 
  85 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
  86                                 struct enetc_tx_swbd *tx_swbd)
  87 {
  88         if (tx_swbd->is_dma_page)
  89                 dma_unmap_page(tx_ring->dev, tx_swbd->dma,
  90                                tx_swbd->len, DMA_TO_DEVICE);
  91         else
  92                 dma_unmap_single(tx_ring->dev, tx_swbd->dma,
  93                                  tx_swbd->len, DMA_TO_DEVICE);
  94         tx_swbd->dma = 0;
  95 }
  96 
  97 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
  98                               struct enetc_tx_swbd *tx_swbd)
  99 {
 100         if (tx_swbd->dma)
 101                 enetc_unmap_tx_buff(tx_ring, tx_swbd);
 102 
 103         if (tx_swbd->skb) {
 104                 dev_kfree_skb_any(tx_swbd->skb);
 105                 tx_swbd->skb = NULL;
 106         }
 107 }
 108 
 109 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
 110                               int active_offloads)
 111 {
 112         struct enetc_tx_swbd *tx_swbd;
 113         skb_frag_t *frag;
 114         int len = skb_headlen(skb);
 115         union enetc_tx_bd temp_bd;
 116         union enetc_tx_bd *txbd;
 117         bool do_vlan, do_tstamp;
 118         int i, count = 0;
 119         unsigned int f;
 120         dma_addr_t dma;
 121         u8 flags = 0;
 122 
 123         i = tx_ring->next_to_use;
 124         txbd = ENETC_TXBD(*tx_ring, i);
 125         prefetchw(txbd);
 126 
 127         dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
 128         if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
 129                 goto dma_err;
 130 
 131         temp_bd.addr = cpu_to_le64(dma);
 132         temp_bd.buf_len = cpu_to_le16(len);
 133         temp_bd.lstatus = 0;
 134 
 135         tx_swbd = &tx_ring->tx_swbd[i];
 136         tx_swbd->dma = dma;
 137         tx_swbd->len = len;
 138         tx_swbd->is_dma_page = 0;
 139         count++;
 140 
 141         do_vlan = skb_vlan_tag_present(skb);
 142         do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
 143                     (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
 144         tx_swbd->do_tstamp = do_tstamp;
 145         tx_swbd->check_wb = tx_swbd->do_tstamp;
 146 
 147         if (do_vlan || do_tstamp)
 148                 flags |= ENETC_TXBD_FLAGS_EX;
 149 
 150         if (enetc_tx_csum(skb, &temp_bd))
 151                 flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
 152 
 153         /* first BD needs frm_len and offload flags set */
 154         temp_bd.frm_len = cpu_to_le16(skb->len);
 155         temp_bd.flags = flags;
 156 
 157         if (flags & ENETC_TXBD_FLAGS_EX) {
 158                 u8 e_flags = 0;
 159                 *txbd = temp_bd;
 160                 enetc_clear_tx_bd(&temp_bd);
 161 
 162                 /* add extension BD for VLAN and/or timestamping */
 163                 flags = 0;
 164                 tx_swbd++;
 165                 txbd++;
 166                 i++;
 167                 if (unlikely(i == tx_ring->bd_count)) {
 168                         i = 0;
 169                         tx_swbd = tx_ring->tx_swbd;
 170                         txbd = ENETC_TXBD(*tx_ring, 0);
 171                 }
 172                 prefetchw(txbd);
 173 
 174                 if (do_vlan) {
 175                         temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
 176                         temp_bd.ext.tpid = 0; /* < C-TAG */
 177                         e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
 178                 }
 179 
 180                 if (do_tstamp) {
 181                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 182                         e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
 183                 }
 184 
 185                 temp_bd.ext.e_flags = e_flags;
 186                 count++;
 187         }
 188 
 189         frag = &skb_shinfo(skb)->frags[0];
 190         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
 191                 len = skb_frag_size(frag);
 192                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
 193                                        DMA_TO_DEVICE);
 194                 if (dma_mapping_error(tx_ring->dev, dma))
 195                         goto dma_err;
 196 
 197                 *txbd = temp_bd;
 198                 enetc_clear_tx_bd(&temp_bd);
 199 
 200                 flags = 0;
 201                 tx_swbd++;
 202                 txbd++;
 203                 i++;
 204                 if (unlikely(i == tx_ring->bd_count)) {
 205                         i = 0;
 206                         tx_swbd = tx_ring->tx_swbd;
 207                         txbd = ENETC_TXBD(*tx_ring, 0);
 208                 }
 209                 prefetchw(txbd);
 210 
 211                 temp_bd.addr = cpu_to_le64(dma);
 212                 temp_bd.buf_len = cpu_to_le16(len);
 213 
 214                 tx_swbd->dma = dma;
 215                 tx_swbd->len = len;
 216                 tx_swbd->is_dma_page = 1;
 217                 count++;
 218         }
 219 
 220         /* last BD needs 'F' bit set */
 221         flags |= ENETC_TXBD_FLAGS_F;
 222         temp_bd.flags = flags;
 223         *txbd = temp_bd;
 224 
 225         tx_ring->tx_swbd[i].skb = skb;
 226 
 227         enetc_bdr_idx_inc(tx_ring, &i);
 228         tx_ring->next_to_use = i;
 229 
 230         /* let H/W know BD ring has been updated */
 231         enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */
 232 
 233         return count;
 234 
 235 dma_err:
 236         dev_err(tx_ring->dev, "DMA map error");
 237 
 238         do {
 239                 tx_swbd = &tx_ring->tx_swbd[i];
 240                 enetc_free_tx_skb(tx_ring, tx_swbd);
 241                 if (i == 0)
 242                         i = tx_ring->bd_count;
 243                 i--;
 244         } while (count--);
 245 
 246         return 0;
 247 }
 248 
 249 static irqreturn_t enetc_msix(int irq, void *data)
 250 {
 251         struct enetc_int_vector *v = data;
 252         int i;
 253 
 254         /* disable interrupts */
 255         enetc_wr_reg(v->rbier, 0);
 256 
 257         for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
 258                 enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0);
 259 
 260         napi_schedule_irqoff(&v->napi);
 261 
 262         return IRQ_HANDLED;
 263 }
 264 
 265 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
 266 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
 267                                struct napi_struct *napi, int work_limit);
 268 
 269 static int enetc_poll(struct napi_struct *napi, int budget)
 270 {
 271         struct enetc_int_vector
 272                 *v = container_of(napi, struct enetc_int_vector, napi);
 273         bool complete = true;
 274         int work_done;
 275         int i;
 276 
 277         for (i = 0; i < v->count_tx_rings; i++)
 278                 if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
 279                         complete = false;
 280 
 281         work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
 282         if (work_done == budget)
 283                 complete = false;
 284 
 285         if (!complete)
 286                 return budget;
 287 
 288         napi_complete_done(napi, work_done);
 289 
 290         /* enable interrupts */
 291         enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE);
 292 
 293         for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
 294                 enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i),
 295                              ENETC_TBIER_TXTIE);
 296 
 297         return work_done;
 298 }
 299 
 300 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
 301 {
 302         int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
 303 
 304         return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
 305 }
 306 
 307 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
 308                                 u64 *tstamp)
 309 {
 310         u32 lo, hi, tstamp_lo;
 311 
 312         lo = enetc_rd(hw, ENETC_SICTR0);
 313         hi = enetc_rd(hw, ENETC_SICTR1);
 314         tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
 315         if (lo <= tstamp_lo)
 316                 hi -= 1;
 317         *tstamp = (u64)hi << 32 | tstamp_lo;
 318 }
 319 
 320 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
 321 {
 322         struct skb_shared_hwtstamps shhwtstamps;
 323 
 324         if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
 325                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 326                 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 327                 skb_tstamp_tx(skb, &shhwtstamps);
 328         }
 329 }
 330 
 331 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
 332 {
 333         struct net_device *ndev = tx_ring->ndev;
 334         int tx_frm_cnt = 0, tx_byte_cnt = 0;
 335         struct enetc_tx_swbd *tx_swbd;
 336         int i, bds_to_clean;
 337         bool do_tstamp;
 338         u64 tstamp = 0;
 339 
 340         i = tx_ring->next_to_clean;
 341         tx_swbd = &tx_ring->tx_swbd[i];
 342         bds_to_clean = enetc_bd_ready_count(tx_ring, i);
 343 
 344         do_tstamp = false;
 345 
 346         while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
 347                 bool is_eof = !!tx_swbd->skb;
 348 
 349                 if (unlikely(tx_swbd->check_wb)) {
 350                         struct enetc_ndev_priv *priv = netdev_priv(ndev);
 351                         union enetc_tx_bd *txbd;
 352 
 353                         txbd = ENETC_TXBD(*tx_ring, i);
 354 
 355                         if (txbd->flags & ENETC_TXBD_FLAGS_W &&
 356                             tx_swbd->do_tstamp) {
 357                                 enetc_get_tx_tstamp(&priv->si->hw, txbd,
 358                                                     &tstamp);
 359                                 do_tstamp = true;
 360                         }
 361                 }
 362 
 363                 if (likely(tx_swbd->dma))
 364                         enetc_unmap_tx_buff(tx_ring, tx_swbd);
 365 
 366                 if (is_eof) {
 367                         if (unlikely(do_tstamp)) {
 368                                 enetc_tstamp_tx(tx_swbd->skb, tstamp);
 369                                 do_tstamp = false;
 370                         }
 371                         napi_consume_skb(tx_swbd->skb, napi_budget);
 372                         tx_swbd->skb = NULL;
 373                 }
 374 
 375                 tx_byte_cnt += tx_swbd->len;
 376 
 377                 bds_to_clean--;
 378                 tx_swbd++;
 379                 i++;
 380                 if (unlikely(i == tx_ring->bd_count)) {
 381                         i = 0;
 382                         tx_swbd = tx_ring->tx_swbd;
 383                 }
 384 
 385                 /* BD iteration loop end */
 386                 if (is_eof) {
 387                         tx_frm_cnt++;
 388                         /* re-arm interrupt source */
 389                         enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) |
 390                                      BIT(16 + tx_ring->index));
 391                 }
 392 
 393                 if (unlikely(!bds_to_clean))
 394                         bds_to_clean = enetc_bd_ready_count(tx_ring, i);
 395         }
 396 
 397         tx_ring->next_to_clean = i;
 398         tx_ring->stats.packets += tx_frm_cnt;
 399         tx_ring->stats.bytes += tx_byte_cnt;
 400 
 401         if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
 402                      __netif_subqueue_stopped(ndev, tx_ring->index) &&
 403                      (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
 404                 netif_wake_subqueue(ndev, tx_ring->index);
 405         }
 406 
 407         return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
 408 }
 409 
 410 static bool enetc_new_page(struct enetc_bdr *rx_ring,
 411                            struct enetc_rx_swbd *rx_swbd)
 412 {
 413         struct page *page;
 414         dma_addr_t addr;
 415 
 416         page = dev_alloc_page();
 417         if (unlikely(!page))
 418                 return false;
 419 
 420         addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 421         if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
 422                 __free_page(page);
 423 
 424                 return false;
 425         }
 426 
 427         rx_swbd->dma = addr;
 428         rx_swbd->page = page;
 429         rx_swbd->page_offset = ENETC_RXB_PAD;
 430 
 431         return true;
 432 }
 433 
 434 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
 435 {
 436         struct enetc_rx_swbd *rx_swbd;
 437         union enetc_rx_bd *rxbd;
 438         int i, j;
 439 
 440         i = rx_ring->next_to_use;
 441         rx_swbd = &rx_ring->rx_swbd[i];
 442         rxbd = ENETC_RXBD(*rx_ring, i);
 443 
 444         for (j = 0; j < buff_cnt; j++) {
 445                 /* try reuse page */
 446                 if (unlikely(!rx_swbd->page)) {
 447                         if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
 448                                 rx_ring->stats.rx_alloc_errs++;
 449                                 break;
 450                         }
 451                 }
 452 
 453                 /* update RxBD */
 454                 rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
 455                                            rx_swbd->page_offset);
 456                 /* clear 'R" as well */
 457                 rxbd->r.lstatus = 0;
 458 
 459                 rx_swbd++;
 460                 rxbd++;
 461                 i++;
 462                 if (unlikely(i == rx_ring->bd_count)) {
 463                         i = 0;
 464                         rx_swbd = rx_ring->rx_swbd;
 465                         rxbd = ENETC_RXBD(*rx_ring, 0);
 466                 }
 467         }
 468 
 469         if (likely(j)) {
 470                 rx_ring->next_to_alloc = i; /* keep track from page reuse */
 471                 rx_ring->next_to_use = i;
 472                 /* update ENETC's consumer index */
 473                 enetc_wr_reg(rx_ring->rcir, i);
 474         }
 475 
 476         return j;
 477 }
 478 
 479 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
 480 static void enetc_get_rx_tstamp(struct net_device *ndev,
 481                                 union enetc_rx_bd *rxbd,
 482                                 struct sk_buff *skb)
 483 {
 484         struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 485         struct enetc_ndev_priv *priv = netdev_priv(ndev);
 486         struct enetc_hw *hw = &priv->si->hw;
 487         u32 lo, hi, tstamp_lo;
 488         u64 tstamp;
 489 
 490         if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
 491                 lo = enetc_rd(hw, ENETC_SICTR0);
 492                 hi = enetc_rd(hw, ENETC_SICTR1);
 493                 tstamp_lo = le32_to_cpu(rxbd->r.tstamp);
 494                 if (lo <= tstamp_lo)
 495                         hi -= 1;
 496 
 497                 tstamp = (u64)hi << 32 | tstamp_lo;
 498                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 499                 shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
 500         }
 501 }
 502 #endif
 503 
 504 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
 505                                union enetc_rx_bd *rxbd, struct sk_buff *skb)
 506 {
 507 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
 508         struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
 509 #endif
 510         /* TODO: hashing */
 511         if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
 512                 u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
 513 
 514                 skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
 515                 skb->ip_summed = CHECKSUM_COMPLETE;
 516         }
 517 
 518         /* copy VLAN to skb, if one is extracted, for now we assume it's a
 519          * standard TPID, but HW also supports custom values
 520          */
 521         if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
 522                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 523                                        le16_to_cpu(rxbd->r.vlan_opt));
 524 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
 525         if (priv->active_offloads & ENETC_F_RX_TSTAMP)
 526                 enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
 527 #endif
 528 }
 529 
 530 static void enetc_process_skb(struct enetc_bdr *rx_ring,
 531                               struct sk_buff *skb)
 532 {
 533         skb_record_rx_queue(skb, rx_ring->index);
 534         skb->protocol = eth_type_trans(skb, rx_ring->ndev);
 535 }
 536 
 537 static bool enetc_page_reusable(struct page *page)
 538 {
 539         return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
 540 }
 541 
 542 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
 543                              struct enetc_rx_swbd *old)
 544 {
 545         struct enetc_rx_swbd *new;
 546 
 547         new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
 548 
 549         /* next buf that may reuse a page */
 550         enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
 551 
 552         /* copy page reference */
 553         *new = *old;
 554 }
 555 
 556 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
 557                                                int i, u16 size)
 558 {
 559         struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
 560 
 561         dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
 562                                       rx_swbd->page_offset,
 563                                       size, DMA_FROM_DEVICE);
 564         return rx_swbd;
 565 }
 566 
 567 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
 568                               struct enetc_rx_swbd *rx_swbd)
 569 {
 570         if (likely(enetc_page_reusable(rx_swbd->page))) {
 571                 rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
 572                 page_ref_inc(rx_swbd->page);
 573 
 574                 enetc_reuse_page(rx_ring, rx_swbd);
 575 
 576                 /* sync for use by the device */
 577                 dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
 578                                                  rx_swbd->page_offset,
 579                                                  ENETC_RXB_DMA_SIZE,
 580                                                  DMA_FROM_DEVICE);
 581         } else {
 582                 dma_unmap_page(rx_ring->dev, rx_swbd->dma,
 583                                PAGE_SIZE, DMA_FROM_DEVICE);
 584         }
 585 
 586         rx_swbd->page = NULL;
 587 }
 588 
 589 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
 590                                                 int i, u16 size)
 591 {
 592         struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
 593         struct sk_buff *skb;
 594         void *ba;
 595 
 596         ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
 597         skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
 598         if (unlikely(!skb)) {
 599                 rx_ring->stats.rx_alloc_errs++;
 600                 return NULL;
 601         }
 602 
 603         skb_reserve(skb, ENETC_RXB_PAD);
 604         __skb_put(skb, size);
 605 
 606         enetc_put_rx_buff(rx_ring, rx_swbd);
 607 
 608         return skb;
 609 }
 610 
 611 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
 612                                      u16 size, struct sk_buff *skb)
 613 {
 614         struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
 615 
 616         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
 617                         rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
 618 
 619         enetc_put_rx_buff(rx_ring, rx_swbd);
 620 }
 621 
 622 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
 623 
 624 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
 625                                struct napi_struct *napi, int work_limit)
 626 {
 627         int rx_frm_cnt = 0, rx_byte_cnt = 0;
 628         int cleaned_cnt, i;
 629 
 630         cleaned_cnt = enetc_bd_unused(rx_ring);
 631         /* next descriptor to process */
 632         i = rx_ring->next_to_clean;
 633 
 634         while (likely(rx_frm_cnt < work_limit)) {
 635                 union enetc_rx_bd *rxbd;
 636                 struct sk_buff *skb;
 637                 u32 bd_status;
 638                 u16 size;
 639 
 640                 if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
 641                         int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
 642 
 643                         cleaned_cnt -= count;
 644                 }
 645 
 646                 rxbd = ENETC_RXBD(*rx_ring, i);
 647                 bd_status = le32_to_cpu(rxbd->r.lstatus);
 648                 if (!bd_status)
 649                         break;
 650 
 651                 enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index));
 652                 dma_rmb(); /* for reading other rxbd fields */
 653                 size = le16_to_cpu(rxbd->r.buf_len);
 654                 skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
 655                 if (!skb)
 656                         break;
 657 
 658                 enetc_get_offloads(rx_ring, rxbd, skb);
 659 
 660                 cleaned_cnt++;
 661                 rxbd++;
 662                 i++;
 663                 if (unlikely(i == rx_ring->bd_count)) {
 664                         i = 0;
 665                         rxbd = ENETC_RXBD(*rx_ring, 0);
 666                 }
 667 
 668                 if (unlikely(bd_status &
 669                              ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
 670                         dev_kfree_skb(skb);
 671                         while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
 672                                 dma_rmb();
 673                                 bd_status = le32_to_cpu(rxbd->r.lstatus);
 674                                 rxbd++;
 675                                 i++;
 676                                 if (unlikely(i == rx_ring->bd_count)) {
 677                                         i = 0;
 678                                         rxbd = ENETC_RXBD(*rx_ring, 0);
 679                                 }
 680                         }
 681 
 682                         rx_ring->ndev->stats.rx_dropped++;
 683                         rx_ring->ndev->stats.rx_errors++;
 684 
 685                         break;
 686                 }
 687 
 688                 /* not last BD in frame? */
 689                 while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
 690                         bd_status = le32_to_cpu(rxbd->r.lstatus);
 691                         size = ENETC_RXB_DMA_SIZE;
 692 
 693                         if (bd_status & ENETC_RXBD_LSTATUS_F) {
 694                                 dma_rmb();
 695                                 size = le16_to_cpu(rxbd->r.buf_len);
 696                         }
 697 
 698                         enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
 699 
 700                         cleaned_cnt++;
 701                         rxbd++;
 702                         i++;
 703                         if (unlikely(i == rx_ring->bd_count)) {
 704                                 i = 0;
 705                                 rxbd = ENETC_RXBD(*rx_ring, 0);
 706                         }
 707                 }
 708 
 709                 rx_byte_cnt += skb->len;
 710 
 711                 enetc_process_skb(rx_ring, skb);
 712 
 713                 napi_gro_receive(napi, skb);
 714 
 715                 rx_frm_cnt++;
 716         }
 717 
 718         rx_ring->next_to_clean = i;
 719 
 720         rx_ring->stats.packets += rx_frm_cnt;
 721         rx_ring->stats.bytes += rx_byte_cnt;
 722 
 723         return rx_frm_cnt;
 724 }
 725 
 726 /* Probing and Init */
 727 #define ENETC_MAX_RFS_SIZE 64
 728 void enetc_get_si_caps(struct enetc_si *si)
 729 {
 730         struct enetc_hw *hw = &si->hw;
 731         u32 val;
 732 
 733         /* find out how many of various resources we have to work with */
 734         val = enetc_rd(hw, ENETC_SICAPR0);
 735         si->num_rx_rings = (val >> 16) & 0xff;
 736         si->num_tx_rings = val & 0xff;
 737 
 738         val = enetc_rd(hw, ENETC_SIRFSCAPR);
 739         si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
 740         si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
 741 
 742         si->num_rss = 0;
 743         val = enetc_rd(hw, ENETC_SIPCAPR0);
 744         if (val & ENETC_SIPCAPR0_RSS) {
 745                 val = enetc_rd(hw, ENETC_SIRSSCAPR);
 746                 si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(val);
 747         }
 748 }
 749 
 750 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
 751 {
 752         r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
 753                                         &r->bd_dma_base, GFP_KERNEL);
 754         if (!r->bd_base)
 755                 return -ENOMEM;
 756 
 757         /* h/w requires 128B alignment */
 758         if (!IS_ALIGNED(r->bd_dma_base, 128)) {
 759                 dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
 760                                   r->bd_dma_base);
 761                 return -EINVAL;
 762         }
 763 
 764         return 0;
 765 }
 766 
 767 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
 768 {
 769         int err;
 770 
 771         txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
 772         if (!txr->tx_swbd)
 773                 return -ENOMEM;
 774 
 775         err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
 776         if (err) {
 777                 vfree(txr->tx_swbd);
 778                 return err;
 779         }
 780 
 781         txr->next_to_clean = 0;
 782         txr->next_to_use = 0;
 783 
 784         return 0;
 785 }
 786 
 787 static void enetc_free_txbdr(struct enetc_bdr *txr)
 788 {
 789         int size, i;
 790 
 791         for (i = 0; i < txr->bd_count; i++)
 792                 enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
 793 
 794         size = txr->bd_count * sizeof(union enetc_tx_bd);
 795 
 796         dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
 797         txr->bd_base = NULL;
 798 
 799         vfree(txr->tx_swbd);
 800         txr->tx_swbd = NULL;
 801 }
 802 
 803 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
 804 {
 805         int i, err;
 806 
 807         for (i = 0; i < priv->num_tx_rings; i++) {
 808                 err = enetc_alloc_txbdr(priv->tx_ring[i]);
 809 
 810                 if (err)
 811                         goto fail;
 812         }
 813 
 814         return 0;
 815 
 816 fail:
 817         while (i-- > 0)
 818                 enetc_free_txbdr(priv->tx_ring[i]);
 819 
 820         return err;
 821 }
 822 
 823 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
 824 {
 825         int i;
 826 
 827         for (i = 0; i < priv->num_tx_rings; i++)
 828                 enetc_free_txbdr(priv->tx_ring[i]);
 829 }
 830 
 831 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr)
 832 {
 833         int err;
 834 
 835         rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
 836         if (!rxr->rx_swbd)
 837                 return -ENOMEM;
 838 
 839         err = enetc_dma_alloc_bdr(rxr, sizeof(union enetc_rx_bd));
 840         if (err) {
 841                 vfree(rxr->rx_swbd);
 842                 return err;
 843         }
 844 
 845         rxr->next_to_clean = 0;
 846         rxr->next_to_use = 0;
 847         rxr->next_to_alloc = 0;
 848 
 849         return 0;
 850 }
 851 
 852 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
 853 {
 854         int size;
 855 
 856         size = rxr->bd_count * sizeof(union enetc_rx_bd);
 857 
 858         dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
 859         rxr->bd_base = NULL;
 860 
 861         vfree(rxr->rx_swbd);
 862         rxr->rx_swbd = NULL;
 863 }
 864 
 865 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
 866 {
 867         int i, err;
 868 
 869         for (i = 0; i < priv->num_rx_rings; i++) {
 870                 err = enetc_alloc_rxbdr(priv->rx_ring[i]);
 871 
 872                 if (err)
 873                         goto fail;
 874         }
 875 
 876         return 0;
 877 
 878 fail:
 879         while (i-- > 0)
 880                 enetc_free_rxbdr(priv->rx_ring[i]);
 881 
 882         return err;
 883 }
 884 
 885 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
 886 {
 887         int i;
 888 
 889         for (i = 0; i < priv->num_rx_rings; i++)
 890                 enetc_free_rxbdr(priv->rx_ring[i]);
 891 }
 892 
 893 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
 894 {
 895         int i;
 896 
 897         if (!tx_ring->tx_swbd)
 898                 return;
 899 
 900         for (i = 0; i < tx_ring->bd_count; i++) {
 901                 struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
 902 
 903                 enetc_free_tx_skb(tx_ring, tx_swbd);
 904         }
 905 
 906         tx_ring->next_to_clean = 0;
 907         tx_ring->next_to_use = 0;
 908 }
 909 
 910 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
 911 {
 912         int i;
 913 
 914         if (!rx_ring->rx_swbd)
 915                 return;
 916 
 917         for (i = 0; i < rx_ring->bd_count; i++) {
 918                 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
 919 
 920                 if (!rx_swbd->page)
 921                         continue;
 922 
 923                 dma_unmap_page(rx_ring->dev, rx_swbd->dma,
 924                                PAGE_SIZE, DMA_FROM_DEVICE);
 925                 __free_page(rx_swbd->page);
 926                 rx_swbd->page = NULL;
 927         }
 928 
 929         rx_ring->next_to_clean = 0;
 930         rx_ring->next_to_use = 0;
 931         rx_ring->next_to_alloc = 0;
 932 }
 933 
 934 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
 935 {
 936         int i;
 937 
 938         for (i = 0; i < priv->num_rx_rings; i++)
 939                 enetc_free_rx_ring(priv->rx_ring[i]);
 940 
 941         for (i = 0; i < priv->num_tx_rings; i++)
 942                 enetc_free_tx_ring(priv->tx_ring[i]);
 943 }
 944 
 945 static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
 946 {
 947         int size = cbdr->bd_count * sizeof(struct enetc_cbd);
 948 
 949         cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
 950                                            GFP_KERNEL);
 951         if (!cbdr->bd_base)
 952                 return -ENOMEM;
 953 
 954         /* h/w requires 128B alignment */
 955         if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
 956                 dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
 957                 return -EINVAL;
 958         }
 959 
 960         cbdr->next_to_clean = 0;
 961         cbdr->next_to_use = 0;
 962 
 963         return 0;
 964 }
 965 
 966 static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
 967 {
 968         int size = cbdr->bd_count * sizeof(struct enetc_cbd);
 969 
 970         dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
 971         cbdr->bd_base = NULL;
 972 }
 973 
 974 static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
 975 {
 976         /* set CBDR cache attributes */
 977         enetc_wr(hw, ENETC_SICAR2,
 978                  ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
 979 
 980         enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
 981         enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
 982         enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
 983 
 984         enetc_wr(hw, ENETC_SICBDRPIR, 0);
 985         enetc_wr(hw, ENETC_SICBDRCIR, 0);
 986 
 987         /* enable ring */
 988         enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
 989 
 990         cbdr->pir = hw->reg + ENETC_SICBDRPIR;
 991         cbdr->cir = hw->reg + ENETC_SICBDRCIR;
 992 }
 993 
 994 static void enetc_clear_cbdr(struct enetc_hw *hw)
 995 {
 996         enetc_wr(hw, ENETC_SICBDRMR, 0);
 997 }
 998 
 999 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1000 {
1001         int *rss_table;
1002         int i;
1003 
1004         rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1005         if (!rss_table)
1006                 return -ENOMEM;
1007 
1008         /* Set up RSS table defaults */
1009         for (i = 0; i < si->num_rss; i++)
1010                 rss_table[i] = i % num_groups;
1011 
1012         enetc_set_rss_table(si, rss_table, si->num_rss);
1013 
1014         kfree(rss_table);
1015 
1016         return 0;
1017 }
1018 
1019 static int enetc_configure_si(struct enetc_ndev_priv *priv)
1020 {
1021         struct enetc_si *si = priv->si;
1022         struct enetc_hw *hw = &si->hw;
1023         int err;
1024 
1025         enetc_setup_cbdr(hw, &si->cbd_ring);
1026         /* set SI cache attributes */
1027         enetc_wr(hw, ENETC_SICAR0,
1028                  ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1029         enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1030         /* enable SI */
1031         enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1032 
1033         if (si->num_rss) {
1034                 err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1035                 if (err)
1036                         return err;
1037         }
1038 
1039         return 0;
1040 }
1041 
1042 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1043 {
1044         struct enetc_si *si = priv->si;
1045         int cpus = num_online_cpus();
1046 
1047         priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1048         priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1049 
1050         /* Enable all available TX rings in order to configure as many
1051          * priorities as possible, when needed.
1052          * TODO: Make # of TX rings run-time configurable
1053          */
1054         priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1055         priv->num_tx_rings = si->num_tx_rings;
1056         priv->bdr_int_num = cpus;
1057 
1058         /* SI specific */
1059         si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1060 }
1061 
1062 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1063 {
1064         struct enetc_si *si = priv->si;
1065         int err;
1066 
1067         err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1068         if (err)
1069                 return err;
1070 
1071         priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1072                                   GFP_KERNEL);
1073         if (!priv->cls_rules) {
1074                 err = -ENOMEM;
1075                 goto err_alloc_cls;
1076         }
1077 
1078         err = enetc_configure_si(priv);
1079         if (err)
1080                 goto err_config_si;
1081 
1082         return 0;
1083 
1084 err_config_si:
1085         kfree(priv->cls_rules);
1086 err_alloc_cls:
1087         enetc_clear_cbdr(&si->hw);
1088         enetc_free_cbdr(priv->dev, &si->cbd_ring);
1089 
1090         return err;
1091 }
1092 
1093 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1094 {
1095         struct enetc_si *si = priv->si;
1096 
1097         enetc_clear_cbdr(&si->hw);
1098         enetc_free_cbdr(priv->dev, &si->cbd_ring);
1099 
1100         kfree(priv->cls_rules);
1101 }
1102 
1103 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1104 {
1105         int idx = tx_ring->index;
1106         u32 tbmr;
1107 
1108         enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1109                        lower_32_bits(tx_ring->bd_dma_base));
1110 
1111         enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1112                        upper_32_bits(tx_ring->bd_dma_base));
1113 
1114         WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1115         enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1116                        ENETC_RTBLENR_LEN(tx_ring->bd_count));
1117 
1118         /* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1119         tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1120         tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1121 
1122         /* enable Tx ints by setting pkt thr to 1 */
1123         enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1);
1124 
1125         tbmr = ENETC_TBMR_EN;
1126         if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1127                 tbmr |= ENETC_TBMR_VIH;
1128 
1129         /* enable ring */
1130         enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1131 
1132         tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1133         tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1134         tx_ring->idr = hw->reg + ENETC_SITXIDR;
1135 }
1136 
1137 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1138 {
1139         int idx = rx_ring->index;
1140         u32 rbmr;
1141 
1142         enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1143                        lower_32_bits(rx_ring->bd_dma_base));
1144 
1145         enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1146                        upper_32_bits(rx_ring->bd_dma_base));
1147 
1148         WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1149         enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1150                        ENETC_RTBLENR_LEN(rx_ring->bd_count));
1151 
1152         enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1153 
1154         enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1155 
1156         /* enable Rx ints by setting pkt thr to 1 */
1157         enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1);
1158 
1159         rbmr = ENETC_RBMR_EN;
1160 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1161         rbmr |= ENETC_RBMR_BDS;
1162 #endif
1163         if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1164                 rbmr |= ENETC_RBMR_VTE;
1165 
1166         rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1167         rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1168 
1169         enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1170 
1171         /* enable ring */
1172         enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1173 }
1174 
1175 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1176 {
1177         int i;
1178 
1179         for (i = 0; i < priv->num_tx_rings; i++)
1180                 enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1181 
1182         for (i = 0; i < priv->num_rx_rings; i++)
1183                 enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1184 }
1185 
1186 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1187 {
1188         int idx = rx_ring->index;
1189 
1190         /* disable EN bit on ring */
1191         enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1192 }
1193 
1194 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1195 {
1196         int delay = 8, timeout = 100;
1197         int idx = tx_ring->index;
1198 
1199         /* disable EN bit on ring */
1200         enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1201 
1202         /* wait for busy to clear */
1203         while (delay < timeout &&
1204                enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1205                 msleep(delay);
1206                 delay *= 2;
1207         }
1208 
1209         if (delay >= timeout)
1210                 netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1211                             idx);
1212 }
1213 
1214 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1215 {
1216         int i;
1217 
1218         for (i = 0; i < priv->num_tx_rings; i++)
1219                 enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1220 
1221         for (i = 0; i < priv->num_rx_rings; i++)
1222                 enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1223 
1224         udelay(1);
1225 }
1226 
1227 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1228 {
1229         struct pci_dev *pdev = priv->si->pdev;
1230         cpumask_t cpu_mask;
1231         int i, j, err;
1232 
1233         for (i = 0; i < priv->bdr_int_num; i++) {
1234                 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1235                 struct enetc_int_vector *v = priv->int_vector[i];
1236                 int entry = ENETC_BDR_INT_BASE_IDX + i;
1237                 struct enetc_hw *hw = &priv->si->hw;
1238 
1239                 snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1240                          priv->ndev->name, i);
1241                 err = request_irq(irq, enetc_msix, 0, v->name, v);
1242                 if (err) {
1243                         dev_err(priv->dev, "request_irq() failed!\n");
1244                         goto irq_err;
1245                 }
1246 
1247                 v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1248                 v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1249 
1250                 enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1251 
1252                 for (j = 0; j < v->count_tx_rings; j++) {
1253                         int idx = v->tx_ring[j].index;
1254 
1255                         enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1256                 }
1257                 cpumask_clear(&cpu_mask);
1258                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1259                 irq_set_affinity_hint(irq, &cpu_mask);
1260         }
1261 
1262         return 0;
1263 
1264 irq_err:
1265         while (i--) {
1266                 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1267 
1268                 irq_set_affinity_hint(irq, NULL);
1269                 free_irq(irq, priv->int_vector[i]);
1270         }
1271 
1272         return err;
1273 }
1274 
1275 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1276 {
1277         struct pci_dev *pdev = priv->si->pdev;
1278         int i;
1279 
1280         for (i = 0; i < priv->bdr_int_num; i++) {
1281                 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1282 
1283                 irq_set_affinity_hint(irq, NULL);
1284                 free_irq(irq, priv->int_vector[i]);
1285         }
1286 }
1287 
1288 static void enetc_enable_interrupts(struct enetc_ndev_priv *priv)
1289 {
1290         int i;
1291 
1292         /* enable Tx & Rx event indication */
1293         for (i = 0; i < priv->num_rx_rings; i++) {
1294                 enetc_rxbdr_wr(&priv->si->hw, i,
1295                                ENETC_RBIER, ENETC_RBIER_RXTIE);
1296         }
1297 
1298         for (i = 0; i < priv->num_tx_rings; i++) {
1299                 enetc_txbdr_wr(&priv->si->hw, i,
1300                                ENETC_TBIER, ENETC_TBIER_TXTIE);
1301         }
1302 }
1303 
1304 static void enetc_disable_interrupts(struct enetc_ndev_priv *priv)
1305 {
1306         int i;
1307 
1308         for (i = 0; i < priv->num_tx_rings; i++)
1309                 enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1310 
1311         for (i = 0; i < priv->num_rx_rings; i++)
1312                 enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1313 }
1314 
1315 static void adjust_link(struct net_device *ndev)
1316 {
1317         struct phy_device *phydev = ndev->phydev;
1318 
1319         phy_print_status(phydev);
1320 }
1321 
1322 static int enetc_phy_connect(struct net_device *ndev)
1323 {
1324         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1325         struct phy_device *phydev;
1326 
1327         if (!priv->phy_node)
1328                 return 0; /* phy-less mode */
1329 
1330         phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link,
1331                                 0, priv->if_mode);
1332         if (!phydev) {
1333                 dev_err(&ndev->dev, "could not attach to PHY\n");
1334                 return -ENODEV;
1335         }
1336 
1337         phy_attached_info(phydev);
1338 
1339         return 0;
1340 }
1341 
1342 int enetc_open(struct net_device *ndev)
1343 {
1344         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1345         int i, err;
1346 
1347         err = enetc_setup_irqs(priv);
1348         if (err)
1349                 return err;
1350 
1351         err = enetc_phy_connect(ndev);
1352         if (err)
1353                 goto err_phy_connect;
1354 
1355         err = enetc_alloc_tx_resources(priv);
1356         if (err)
1357                 goto err_alloc_tx;
1358 
1359         err = enetc_alloc_rx_resources(priv);
1360         if (err)
1361                 goto err_alloc_rx;
1362 
1363         enetc_setup_bdrs(priv);
1364 
1365         err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1366         if (err)
1367                 goto err_set_queues;
1368 
1369         err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1370         if (err)
1371                 goto err_set_queues;
1372 
1373         for (i = 0; i < priv->bdr_int_num; i++)
1374                 napi_enable(&priv->int_vector[i]->napi);
1375 
1376         enetc_enable_interrupts(priv);
1377 
1378         if (ndev->phydev)
1379                 phy_start(ndev->phydev);
1380         else
1381                 netif_carrier_on(ndev);
1382 
1383         netif_tx_start_all_queues(ndev);
1384 
1385         return 0;
1386 
1387 err_set_queues:
1388         enetc_free_rx_resources(priv);
1389 err_alloc_rx:
1390         enetc_free_tx_resources(priv);
1391 err_alloc_tx:
1392         if (ndev->phydev)
1393                 phy_disconnect(ndev->phydev);
1394 err_phy_connect:
1395         enetc_free_irqs(priv);
1396 
1397         return err;
1398 }
1399 
1400 int enetc_close(struct net_device *ndev)
1401 {
1402         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1403         int i;
1404 
1405         netif_tx_stop_all_queues(ndev);
1406 
1407         if (ndev->phydev) {
1408                 phy_stop(ndev->phydev);
1409                 phy_disconnect(ndev->phydev);
1410         } else {
1411                 netif_carrier_off(ndev);
1412         }
1413 
1414         for (i = 0; i < priv->bdr_int_num; i++) {
1415                 napi_synchronize(&priv->int_vector[i]->napi);
1416                 napi_disable(&priv->int_vector[i]->napi);
1417         }
1418 
1419         enetc_disable_interrupts(priv);
1420         enetc_clear_bdrs(priv);
1421 
1422         enetc_free_rxtx_rings(priv);
1423         enetc_free_rx_resources(priv);
1424         enetc_free_tx_resources(priv);
1425         enetc_free_irqs(priv);
1426 
1427         return 0;
1428 }
1429 
1430 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1431                    void *type_data)
1432 {
1433         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1434         struct tc_mqprio_qopt *mqprio = type_data;
1435         struct enetc_bdr *tx_ring;
1436         u8 num_tc;
1437         int i;
1438 
1439         if (type != TC_SETUP_QDISC_MQPRIO)
1440                 return -EOPNOTSUPP;
1441 
1442         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1443         num_tc = mqprio->num_tc;
1444 
1445         if (!num_tc) {
1446                 netdev_reset_tc(ndev);
1447                 netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1448 
1449                 /* Reset all ring priorities to 0 */
1450                 for (i = 0; i < priv->num_tx_rings; i++) {
1451                         tx_ring = priv->tx_ring[i];
1452                         enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1453                 }
1454 
1455                 return 0;
1456         }
1457 
1458         /* Check if we have enough BD rings available to accommodate all TCs */
1459         if (num_tc > priv->num_tx_rings) {
1460                 netdev_err(ndev, "Max %d traffic classes supported\n",
1461                            priv->num_tx_rings);
1462                 return -EINVAL;
1463         }
1464 
1465         /* For the moment, we use only one BD ring per TC.
1466          *
1467          * Configure num_tc BD rings with increasing priorities.
1468          */
1469         for (i = 0; i < num_tc; i++) {
1470                 tx_ring = priv->tx_ring[i];
1471                 enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1472         }
1473 
1474         /* Reset the number of netdev queues based on the TC count */
1475         netif_set_real_num_tx_queues(ndev, num_tc);
1476 
1477         netdev_set_num_tc(ndev, num_tc);
1478 
1479         /* Each TC is associated with one netdev queue */
1480         for (i = 0; i < num_tc; i++)
1481                 netdev_set_tc_queue(ndev, i, 1, i);
1482 
1483         return 0;
1484 }
1485 
1486 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1487 {
1488         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1489         struct net_device_stats *stats = &ndev->stats;
1490         unsigned long packets = 0, bytes = 0;
1491         int i;
1492 
1493         for (i = 0; i < priv->num_rx_rings; i++) {
1494                 packets += priv->rx_ring[i]->stats.packets;
1495                 bytes   += priv->rx_ring[i]->stats.bytes;
1496         }
1497 
1498         stats->rx_packets = packets;
1499         stats->rx_bytes = bytes;
1500         bytes = 0;
1501         packets = 0;
1502 
1503         for (i = 0; i < priv->num_tx_rings; i++) {
1504                 packets += priv->tx_ring[i]->stats.packets;
1505                 bytes   += priv->tx_ring[i]->stats.bytes;
1506         }
1507 
1508         stats->tx_packets = packets;
1509         stats->tx_bytes = bytes;
1510 
1511         return stats;
1512 }
1513 
1514 static int enetc_set_rss(struct net_device *ndev, int en)
1515 {
1516         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1517         struct enetc_hw *hw = &priv->si->hw;
1518         u32 reg;
1519 
1520         enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1521 
1522         reg = enetc_rd(hw, ENETC_SIMR);
1523         reg &= ~ENETC_SIMR_RSSE;
1524         reg |= (en) ? ENETC_SIMR_RSSE : 0;
1525         enetc_wr(hw, ENETC_SIMR, reg);
1526 
1527         return 0;
1528 }
1529 
1530 int enetc_set_features(struct net_device *ndev,
1531                        netdev_features_t features)
1532 {
1533         netdev_features_t changed = ndev->features ^ features;
1534 
1535         if (changed & NETIF_F_RXHASH)
1536                 enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1537 
1538         return 0;
1539 }
1540 
1541 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1542 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1543 {
1544         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1545         struct hwtstamp_config config;
1546 
1547         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1548                 return -EFAULT;
1549 
1550         switch (config.tx_type) {
1551         case HWTSTAMP_TX_OFF:
1552                 priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1553                 break;
1554         case HWTSTAMP_TX_ON:
1555                 priv->active_offloads |= ENETC_F_TX_TSTAMP;
1556                 break;
1557         default:
1558                 return -ERANGE;
1559         }
1560 
1561         switch (config.rx_filter) {
1562         case HWTSTAMP_FILTER_NONE:
1563                 priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1564                 break;
1565         default:
1566                 priv->active_offloads |= ENETC_F_RX_TSTAMP;
1567                 config.rx_filter = HWTSTAMP_FILTER_ALL;
1568         }
1569 
1570         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1571                -EFAULT : 0;
1572 }
1573 
1574 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1575 {
1576         struct enetc_ndev_priv *priv = netdev_priv(ndev);
1577         struct hwtstamp_config config;
1578 
1579         config.flags = 0;
1580 
1581         if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1582                 config.tx_type = HWTSTAMP_TX_ON;
1583         else
1584                 config.tx_type = HWTSTAMP_TX_OFF;
1585 
1586         config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1587                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1588 
1589         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1590                -EFAULT : 0;
1591 }
1592 #endif
1593 
1594 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1595 {
1596 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1597         if (cmd == SIOCSHWTSTAMP)
1598                 return enetc_hwtstamp_set(ndev, rq);
1599         if (cmd == SIOCGHWTSTAMP)
1600                 return enetc_hwtstamp_get(ndev, rq);
1601 #endif
1602         return -EINVAL;
1603 }
1604 
1605 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1606 {
1607         struct pci_dev *pdev = priv->si->pdev;
1608         int size, v_tx_rings;
1609         int i, n, err, nvec;
1610 
1611         nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1612         /* allocate MSIX for both messaging and Rx/Tx interrupts */
1613         n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1614 
1615         if (n < 0)
1616                 return n;
1617 
1618         if (n != nvec)
1619                 return -EPERM;
1620 
1621         /* # of tx rings per int vector */
1622         v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1623         size = sizeof(struct enetc_int_vector) +
1624                sizeof(struct enetc_bdr) * v_tx_rings;
1625 
1626         for (i = 0; i < priv->bdr_int_num; i++) {
1627                 struct enetc_int_vector *v;
1628                 struct enetc_bdr *bdr;
1629                 int j;
1630 
1631                 v = kzalloc(size, GFP_KERNEL);
1632                 if (!v) {
1633                         err = -ENOMEM;
1634                         goto fail;
1635                 }
1636 
1637                 priv->int_vector[i] = v;
1638 
1639                 netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1640                                NAPI_POLL_WEIGHT);
1641                 v->count_tx_rings = v_tx_rings;
1642 
1643                 for (j = 0; j < v_tx_rings; j++) {
1644                         int idx;
1645 
1646                         /* default tx ring mapping policy */
1647                         if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1648                                 idx = 2 * j + i; /* 2 CPUs */
1649                         else
1650                                 idx = j + i * v_tx_rings; /* default */
1651 
1652                         __set_bit(idx, &v->tx_rings_map);
1653                         bdr = &v->tx_ring[j];
1654                         bdr->index = idx;
1655                         bdr->ndev = priv->ndev;
1656                         bdr->dev = priv->dev;
1657                         bdr->bd_count = priv->tx_bd_count;
1658                         priv->tx_ring[idx] = bdr;
1659                 }
1660 
1661                 bdr = &v->rx_ring;
1662                 bdr->index = i;
1663                 bdr->ndev = priv->ndev;
1664                 bdr->dev = priv->dev;
1665                 bdr->bd_count = priv->rx_bd_count;
1666                 priv->rx_ring[i] = bdr;
1667         }
1668 
1669         return 0;
1670 
1671 fail:
1672         while (i--) {
1673                 netif_napi_del(&priv->int_vector[i]->napi);
1674                 kfree(priv->int_vector[i]);
1675         }
1676 
1677         pci_free_irq_vectors(pdev);
1678 
1679         return err;
1680 }
1681 
1682 void enetc_free_msix(struct enetc_ndev_priv *priv)
1683 {
1684         int i;
1685 
1686         for (i = 0; i < priv->bdr_int_num; i++) {
1687                 struct enetc_int_vector *v = priv->int_vector[i];
1688 
1689                 netif_napi_del(&v->napi);
1690         }
1691 
1692         for (i = 0; i < priv->num_rx_rings; i++)
1693                 priv->rx_ring[i] = NULL;
1694 
1695         for (i = 0; i < priv->num_tx_rings; i++)
1696                 priv->tx_ring[i] = NULL;
1697 
1698         for (i = 0; i < priv->bdr_int_num; i++) {
1699                 kfree(priv->int_vector[i]);
1700                 priv->int_vector[i] = NULL;
1701         }
1702 
1703         /* disable all MSIX for this device */
1704         pci_free_irq_vectors(priv->si->pdev);
1705 }
1706 
1707 static void enetc_kfree_si(struct enetc_si *si)
1708 {
1709         char *p = (char *)si - si->pad;
1710 
1711         kfree(p);
1712 }
1713 
1714 static void enetc_detect_errata(struct enetc_si *si)
1715 {
1716         if (si->pdev->revision == ENETC_REV1)
1717                 si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1718                              ENETC_ERR_UCMCSWP;
1719 }
1720 
1721 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1722 {
1723         struct enetc_si *si, *p;
1724         struct enetc_hw *hw;
1725         size_t alloc_size;
1726         int err, len;
1727 
1728         pcie_flr(pdev);
1729         err = pci_enable_device_mem(pdev);
1730         if (err) {
1731                 dev_err(&pdev->dev, "device enable failed\n");
1732                 return err;
1733         }
1734 
1735         /* set up for high or low dma */
1736         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1737         if (err) {
1738                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1739                 if (err) {
1740                         dev_err(&pdev->dev,
1741                                 "DMA configuration failed: 0x%x\n", err);
1742                         goto err_dma;
1743                 }
1744         }
1745 
1746         err = pci_request_mem_regions(pdev, name);
1747         if (err) {
1748                 dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1749                 goto err_pci_mem_reg;
1750         }
1751 
1752         pci_set_master(pdev);
1753 
1754         alloc_size = sizeof(struct enetc_si);
1755         if (sizeof_priv) {
1756                 /* align priv to 32B */
1757                 alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1758                 alloc_size += sizeof_priv;
1759         }
1760         /* force 32B alignment for enetc_si */
1761         alloc_size += ENETC_SI_ALIGN - 1;
1762 
1763         p = kzalloc(alloc_size, GFP_KERNEL);
1764         if (!p) {
1765                 err = -ENOMEM;
1766                 goto err_alloc_si;
1767         }
1768 
1769         si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1770         si->pad = (char *)si - (char *)p;
1771 
1772         pci_set_drvdata(pdev, si);
1773         si->pdev = pdev;
1774         hw = &si->hw;
1775 
1776         len = pci_resource_len(pdev, ENETC_BAR_REGS);
1777         hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1778         if (!hw->reg) {
1779                 err = -ENXIO;
1780                 dev_err(&pdev->dev, "ioremap() failed\n");
1781                 goto err_ioremap;
1782         }
1783         if (len > ENETC_PORT_BASE)
1784                 hw->port = hw->reg + ENETC_PORT_BASE;
1785         if (len > ENETC_GLOBAL_BASE)
1786                 hw->global = hw->reg + ENETC_GLOBAL_BASE;
1787 
1788         enetc_detect_errata(si);
1789 
1790         return 0;
1791 
1792 err_ioremap:
1793         enetc_kfree_si(si);
1794 err_alloc_si:
1795         pci_release_mem_regions(pdev);
1796 err_pci_mem_reg:
1797 err_dma:
1798         pci_disable_device(pdev);
1799 
1800         return err;
1801 }
1802 
1803 void enetc_pci_remove(struct pci_dev *pdev)
1804 {
1805         struct enetc_si *si = pci_get_drvdata(pdev);
1806         struct enetc_hw *hw = &si->hw;
1807 
1808         iounmap(hw->reg);
1809         enetc_kfree_si(si);
1810         pci_release_mem_regions(pdev);
1811         pci_disable_device(pdev);
1812 }

/* [<][>][^][v][top][bottom][index][help] */