This source file includes following definitions.
- scc_cr_cmd
- do_pd_setup
- setup_data
- allocate_bd
- free_bd
- cleanup_data
- set_promiscuous_mode
- set_multicast_start
- set_multicast_one
- set_multicast_finish
- set_multicast_list
- restart
- stop
- napi_clear_event_fs
- napi_enable_fs
- napi_disable_fs
- rx_bd_done
- tx_kickstart
- get_int_events
- clear_int_events
- ev_error
- get_regs
- get_regs_len
- tx_restart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_platform.h>
36
37 #include <asm/irq.h>
38 #include <linux/uaccess.h>
39
40 #include "fs_enet.h"
41
42
43 #if defined(CONFIG_CPM1)
44
45 #define __fs_out32(addr, x) __raw_writel(x, addr)
46 #define __fs_out16(addr, x) __raw_writew(x, addr)
47 #define __fs_out8(addr, x) __raw_writeb(x, addr)
48 #define __fs_in32(addr) __raw_readl(addr)
49 #define __fs_in16(addr) __raw_readw(addr)
50 #define __fs_in8(addr) __raw_readb(addr)
51 #else
52
53 #define __fs_out32(addr, x) out_be32(addr, x)
54 #define __fs_out16(addr, x) out_be16(addr, x)
55 #define __fs_in32(addr) in_be32(addr)
56 #define __fs_in16(addr) in_be16(addr)
57 #define __fs_out8(addr, x) out_8(addr, x)
58 #define __fs_in8(addr) in_8(addr)
59 #endif
60
61
62 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
63 #define R32(_p, _m) __fs_in32(&(_p)->_m)
64 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
65 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
66
67 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
68 #define R16(_p, _m) __fs_in16(&(_p)->_m)
69 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
70 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
71
72 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
73 #define R8(_p, _m) __fs_in8(&(_p)->_m)
74 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
75 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
76
77 #define SCC_MAX_MULTICAST_ADDRS 64
78
79
80
81
82 #define SCC_RESET_DELAY 50
83
84 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
85 {
86 const struct fs_platform_info *fpi = fep->fpi;
87
88 return cpm_command(fpi->cp_command, op);
89 }
90
91 static int do_pd_setup(struct fs_enet_private *fep)
92 {
93 struct platform_device *ofdev = to_platform_device(fep->dev);
94
95 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
96 if (!fep->interrupt)
97 return -EINVAL;
98
99 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0);
100 if (!fep->scc.sccp)
101 return -EINVAL;
102
103 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1);
104 if (!fep->scc.ep) {
105 iounmap(fep->scc.sccp);
106 return -EINVAL;
107 }
108
109 return 0;
110 }
111
112 #define SCC_NAPI_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB)
113 #define SCC_EVENT (SCCE_ENET_RXF | SCCE_ENET_TXB)
114 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
115
116 static int setup_data(struct net_device *dev)
117 {
118 struct fs_enet_private *fep = netdev_priv(dev);
119
120 do_pd_setup(fep);
121
122 fep->scc.hthi = 0;
123 fep->scc.htlo = 0;
124
125 fep->ev_napi = SCC_NAPI_EVENT_MSK;
126 fep->ev = SCC_EVENT | SCCE_ENET_TXE;
127 fep->ev_err = SCC_ERR_EVENT_MSK;
128
129 return 0;
130 }
131
132 static int allocate_bd(struct net_device *dev)
133 {
134 struct fs_enet_private *fep = netdev_priv(dev);
135 const struct fs_platform_info *fpi = fep->fpi;
136
137 fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
138 sizeof(cbd_t), 8);
139 if (IS_ERR_VALUE(fep->ring_mem_addr))
140 return -ENOMEM;
141
142 fep->ring_base = (void __iomem __force*)
143 cpm_dpram_addr(fep->ring_mem_addr);
144
145 return 0;
146 }
147
148 static void free_bd(struct net_device *dev)
149 {
150 struct fs_enet_private *fep = netdev_priv(dev);
151
152 if (fep->ring_base)
153 cpm_dpfree(fep->ring_mem_addr);
154 }
155
156 static void cleanup_data(struct net_device *dev)
157 {
158
159 }
160
161 static void set_promiscuous_mode(struct net_device *dev)
162 {
163 struct fs_enet_private *fep = netdev_priv(dev);
164 scc_t __iomem *sccp = fep->scc.sccp;
165
166 S16(sccp, scc_psmr, SCC_PSMR_PRO);
167 }
168
169 static void set_multicast_start(struct net_device *dev)
170 {
171 struct fs_enet_private *fep = netdev_priv(dev);
172 scc_enet_t __iomem *ep = fep->scc.ep;
173
174 W16(ep, sen_gaddr1, 0);
175 W16(ep, sen_gaddr2, 0);
176 W16(ep, sen_gaddr3, 0);
177 W16(ep, sen_gaddr4, 0);
178 }
179
180 static void set_multicast_one(struct net_device *dev, const u8 * mac)
181 {
182 struct fs_enet_private *fep = netdev_priv(dev);
183 scc_enet_t __iomem *ep = fep->scc.ep;
184 u16 taddrh, taddrm, taddrl;
185
186 taddrh = ((u16) mac[5] << 8) | mac[4];
187 taddrm = ((u16) mac[3] << 8) | mac[2];
188 taddrl = ((u16) mac[1] << 8) | mac[0];
189
190 W16(ep, sen_taddrh, taddrh);
191 W16(ep, sen_taddrm, taddrm);
192 W16(ep, sen_taddrl, taddrl);
193 scc_cr_cmd(fep, CPM_CR_SET_GADDR);
194 }
195
196 static void set_multicast_finish(struct net_device *dev)
197 {
198 struct fs_enet_private *fep = netdev_priv(dev);
199 scc_t __iomem *sccp = fep->scc.sccp;
200 scc_enet_t __iomem *ep = fep->scc.ep;
201
202
203 C16(sccp, scc_psmr, SCC_PSMR_PRO);
204
205
206 if ((dev->flags & IFF_ALLMULTI) != 0 ||
207 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
208
209 W16(ep, sen_gaddr1, 0xffff);
210 W16(ep, sen_gaddr2, 0xffff);
211 W16(ep, sen_gaddr3, 0xffff);
212 W16(ep, sen_gaddr4, 0xffff);
213 }
214 }
215
216 static void set_multicast_list(struct net_device *dev)
217 {
218 struct netdev_hw_addr *ha;
219
220 if ((dev->flags & IFF_PROMISC) == 0) {
221 set_multicast_start(dev);
222 netdev_for_each_mc_addr(ha, dev)
223 set_multicast_one(dev, ha->addr);
224 set_multicast_finish(dev);
225 } else
226 set_promiscuous_mode(dev);
227 }
228
229
230
231
232
233
234 static void restart(struct net_device *dev)
235 {
236 struct fs_enet_private *fep = netdev_priv(dev);
237 scc_t __iomem *sccp = fep->scc.sccp;
238 scc_enet_t __iomem *ep = fep->scc.ep;
239 const struct fs_platform_info *fpi = fep->fpi;
240 u16 paddrh, paddrm, paddrl;
241 const unsigned char *mac;
242 int i;
243
244 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
245
246
247 for (i = 0; i < sizeof(*ep); i++)
248 __fs_out8((u8 __iomem *)ep + i, 0);
249
250
251 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
252 W16(ep, sen_genscc.scc_tbase,
253 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
254
255
256
257 #ifndef CONFIG_NOT_COHERENT_CACHE
258 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
259 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
260 #else
261 W8(ep, sen_genscc.scc_rfcr, SCC_EB);
262 W8(ep, sen_genscc.scc_tfcr, SCC_EB);
263 #endif
264
265
266
267
268
269 W16(ep, sen_genscc.scc_mrblr, 0x5f0);
270
271
272
273 W32(ep, sen_cpres, 0xffffffff);
274 W32(ep, sen_cmask, 0xdebb20e3);
275
276 W32(ep, sen_crcec, 0);
277 W32(ep, sen_alec, 0);
278 W32(ep, sen_disfc, 0);
279
280 W16(ep, sen_pads, 0x8888);
281 W16(ep, sen_retlim, 15);
282
283 W16(ep, sen_maxflr, 0x5ee);
284
285 W16(ep, sen_minflr, PKT_MINBUF_SIZE);
286
287 W16(ep, sen_maxd1, 0x000005f0);
288 W16(ep, sen_maxd2, 0x000005f0);
289
290
291
292 W16(ep, sen_gaddr1, 0);
293 W16(ep, sen_gaddr2, 0);
294 W16(ep, sen_gaddr3, 0);
295 W16(ep, sen_gaddr4, 0);
296 W16(ep, sen_iaddr1, 0);
297 W16(ep, sen_iaddr2, 0);
298 W16(ep, sen_iaddr3, 0);
299 W16(ep, sen_iaddr4, 0);
300
301
302
303 mac = dev->dev_addr;
304 paddrh = ((u16) mac[5] << 8) | mac[4];
305 paddrm = ((u16) mac[3] << 8) | mac[2];
306 paddrl = ((u16) mac[1] << 8) | mac[0];
307
308 W16(ep, sen_paddrh, paddrh);
309 W16(ep, sen_paddrm, paddrm);
310 W16(ep, sen_paddrl, paddrl);
311
312 W16(ep, sen_pper, 0);
313 W16(ep, sen_taddrl, 0);
314 W16(ep, sen_taddrm, 0);
315 W16(ep, sen_taddrh, 0);
316
317 fs_init_bds(dev);
318
319 scc_cr_cmd(fep, CPM_CR_INIT_TRX);
320
321 W16(sccp, scc_scce, 0xffff);
322
323
324
325 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
326
327
328
329
330 W32(sccp, scc_gsmrh, 0);
331 W32(sccp, scc_gsmrl,
332 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
333 SCC_GSMRL_MODE_ENET);
334
335
336
337 W16(sccp, scc_dsr, 0xd555);
338
339
340
341
342 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
343
344
345 if (dev->phydev->duplex)
346 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
347
348
349 set_multicast_list(dev);
350
351 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
352 }
353
354 static void stop(struct net_device *dev)
355 {
356 struct fs_enet_private *fep = netdev_priv(dev);
357 scc_t __iomem *sccp = fep->scc.sccp;
358 int i;
359
360 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
361 udelay(1);
362
363 if (i == SCC_RESET_DELAY)
364 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
365
366 W16(sccp, scc_sccm, 0);
367 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
368
369 fs_cleanup_bds(dev);
370 }
371
372 static void napi_clear_event_fs(struct net_device *dev)
373 {
374 struct fs_enet_private *fep = netdev_priv(dev);
375 scc_t __iomem *sccp = fep->scc.sccp;
376
377 W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK);
378 }
379
380 static void napi_enable_fs(struct net_device *dev)
381 {
382 struct fs_enet_private *fep = netdev_priv(dev);
383 scc_t __iomem *sccp = fep->scc.sccp;
384
385 S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
386 }
387
388 static void napi_disable_fs(struct net_device *dev)
389 {
390 struct fs_enet_private *fep = netdev_priv(dev);
391 scc_t __iomem *sccp = fep->scc.sccp;
392
393 C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
394 }
395
396 static void rx_bd_done(struct net_device *dev)
397 {
398
399 }
400
401 static void tx_kickstart(struct net_device *dev)
402 {
403
404 }
405
406 static u32 get_int_events(struct net_device *dev)
407 {
408 struct fs_enet_private *fep = netdev_priv(dev);
409 scc_t __iomem *sccp = fep->scc.sccp;
410
411 return (u32) R16(sccp, scc_scce);
412 }
413
414 static void clear_int_events(struct net_device *dev, u32 int_events)
415 {
416 struct fs_enet_private *fep = netdev_priv(dev);
417 scc_t __iomem *sccp = fep->scc.sccp;
418
419 W16(sccp, scc_scce, int_events & 0xffff);
420 }
421
422 static void ev_error(struct net_device *dev, u32 int_events)
423 {
424 struct fs_enet_private *fep = netdev_priv(dev);
425
426 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
427 }
428
429 static int get_regs(struct net_device *dev, void *p, int *sizep)
430 {
431 struct fs_enet_private *fep = netdev_priv(dev);
432
433 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
434 return -EINVAL;
435
436 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
437 p = (char *)p + sizeof(scc_t);
438
439 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
440
441 return 0;
442 }
443
444 static int get_regs_len(struct net_device *dev)
445 {
446 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
447 }
448
449 static void tx_restart(struct net_device *dev)
450 {
451 struct fs_enet_private *fep = netdev_priv(dev);
452
453 scc_cr_cmd(fep, CPM_CR_RESTART_TX);
454 }
455
456
457
458
459
460 const struct fs_ops fs_scc_ops = {
461 .setup_data = setup_data,
462 .cleanup_data = cleanup_data,
463 .set_multicast_list = set_multicast_list,
464 .restart = restart,
465 .stop = stop,
466 .napi_clear_event = napi_clear_event_fs,
467 .napi_enable = napi_enable_fs,
468 .napi_disable = napi_disable_fs,
469 .rx_bd_done = rx_bd_done,
470 .tx_kickstart = tx_kickstart,
471 .get_int_events = get_int_events,
472 .clear_int_events = clear_int_events,
473 .ev_error = ev_error,
474 .get_regs = get_regs,
475 .get_regs_len = get_regs_len,
476 .tx_restart = tx_restart,
477 .allocate_bd = allocate_bd,
478 .free_bd = free_bd,
479 };