root/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fs_set_multicast_list
  2. skb_align
  3. fs_enet_napi
  4. fs_enet_interrupt
  5. fs_init_bds
  6. fs_cleanup_bds
  7. tx_skb_align_workaround
  8. fs_enet_start_xmit
  9. fs_timeout_work
  10. fs_timeout
  11. generic_adjust_link
  12. fs_adjust_link
  13. fs_init_phy
  14. fs_enet_open
  15. fs_enet_close
  16. fs_get_drvinfo
  17. fs_get_regs_len
  18. fs_get_regs
  19. fs_get_msglevel
  20. fs_set_msglevel
  21. fs_get_tunable
  22. fs_set_tunable
  23. fs_ioctl
  24. fs_enet_probe
  25. fs_enet_remove
  26. fs_enet_netpoll

   1 /*
   2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3  *
   4  * Copyright (c) 2003 Intracom S.A.
   5  *  by Pantelis Antoniou <panto@intracom.gr>
   6  *
   7  * 2005 (c) MontaVista Software, Inc.
   8  * Vitaly Bordug <vbordug@ru.mvista.com>
   9  *
  10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12  *
  13  * This file is licensed under the terms of the GNU General Public License
  14  * version 2. This program is licensed "as is" without any warranty of any
  15  * kind, whether express or implied.
  16  */
  17 
  18 #include <linux/module.h>
  19 #include <linux/kernel.h>
  20 #include <linux/types.h>
  21 #include <linux/string.h>
  22 #include <linux/ptrace.h>
  23 #include <linux/errno.h>
  24 #include <linux/ioport.h>
  25 #include <linux/slab.h>
  26 #include <linux/interrupt.h>
  27 #include <linux/delay.h>
  28 #include <linux/netdevice.h>
  29 #include <linux/etherdevice.h>
  30 #include <linux/skbuff.h>
  31 #include <linux/spinlock.h>
  32 #include <linux/mii.h>
  33 #include <linux/ethtool.h>
  34 #include <linux/bitops.h>
  35 #include <linux/fs.h>
  36 #include <linux/platform_device.h>
  37 #include <linux/phy.h>
  38 #include <linux/of.h>
  39 #include <linux/of_mdio.h>
  40 #include <linux/of_platform.h>
  41 #include <linux/of_gpio.h>
  42 #include <linux/of_net.h>
  43 
  44 #include <linux/vmalloc.h>
  45 #include <asm/pgtable.h>
  46 #include <asm/irq.h>
  47 #include <linux/uaccess.h>
  48 
  49 #include "fs_enet.h"
  50 
  51 /*************************************************/
  52 
  53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55 MODULE_LICENSE("GPL");
  56 MODULE_VERSION(DRV_MODULE_VERSION);
  57 
  58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59 module_param(fs_enet_debug, int, 0);
  60 MODULE_PARM_DESC(fs_enet_debug,
  61                  "Freescale bitmapped debugging message enable value");
  62 
  63 #define RX_RING_SIZE    32
  64 #define TX_RING_SIZE    64
  65 
  66 #ifdef CONFIG_NET_POLL_CONTROLLER
  67 static void fs_enet_netpoll(struct net_device *dev);
  68 #endif
  69 
  70 static void fs_set_multicast_list(struct net_device *dev)
  71 {
  72         struct fs_enet_private *fep = netdev_priv(dev);
  73 
  74         (*fep->ops->set_multicast_list)(dev);
  75 }
  76 
  77 static void skb_align(struct sk_buff *skb, int align)
  78 {
  79         int off = ((unsigned long)skb->data) & (align - 1);
  80 
  81         if (off)
  82                 skb_reserve(skb, align - off);
  83 }
  84 
  85 /* NAPI function */
  86 static int fs_enet_napi(struct napi_struct *napi, int budget)
  87 {
  88         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  89         struct net_device *dev = fep->ndev;
  90         const struct fs_platform_info *fpi = fep->fpi;
  91         cbd_t __iomem *bdp;
  92         struct sk_buff *skb, *skbn;
  93         int received = 0;
  94         u16 pkt_len, sc;
  95         int curidx;
  96         int dirtyidx, do_wake, do_restart;
  97         int tx_left = TX_RING_SIZE;
  98 
  99         spin_lock(&fep->tx_lock);
 100         bdp = fep->dirty_tx;
 101 
 102         /* clear status bits for napi*/
 103         (*fep->ops->napi_clear_event)(dev);
 104 
 105         do_wake = do_restart = 0;
 106         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 107                 dirtyidx = bdp - fep->tx_bd_base;
 108 
 109                 if (fep->tx_free == fep->tx_ring)
 110                         break;
 111 
 112                 skb = fep->tx_skbuff[dirtyidx];
 113 
 114                 /*
 115                  * Check for errors.
 116                  */
 117                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 118                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 119 
 120                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
 121                                 dev->stats.tx_heartbeat_errors++;
 122                         if (sc & BD_ENET_TX_LC) /* Late collision */
 123                                 dev->stats.tx_window_errors++;
 124                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
 125                                 dev->stats.tx_aborted_errors++;
 126                         if (sc & BD_ENET_TX_UN) /* Underrun */
 127                                 dev->stats.tx_fifo_errors++;
 128                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
 129                                 dev->stats.tx_carrier_errors++;
 130 
 131                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 132                                 dev->stats.tx_errors++;
 133                                 do_restart = 1;
 134                         }
 135                 } else
 136                         dev->stats.tx_packets++;
 137 
 138                 if (sc & BD_ENET_TX_READY) {
 139                         dev_warn(fep->dev,
 140                                  "HEY! Enet xmit interrupt and TX_READY.\n");
 141                 }
 142 
 143                 /*
 144                  * Deferred means some collisions occurred during transmit,
 145                  * but we eventually sent the packet OK.
 146                  */
 147                 if (sc & BD_ENET_TX_DEF)
 148                         dev->stats.collisions++;
 149 
 150                 /* unmap */
 151                 if (fep->mapped_as_page[dirtyidx])
 152                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 153                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 154                 else
 155                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 156                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 157 
 158                 /*
 159                  * Free the sk buffer associated with this last transmit.
 160                  */
 161                 if (skb) {
 162                         dev_kfree_skb(skb);
 163                         fep->tx_skbuff[dirtyidx] = NULL;
 164                 }
 165 
 166                 /*
 167                  * Update pointer to next buffer descriptor to be transmitted.
 168                  */
 169                 if ((sc & BD_ENET_TX_WRAP) == 0)
 170                         bdp++;
 171                 else
 172                         bdp = fep->tx_bd_base;
 173 
 174                 /*
 175                  * Since we have freed up a buffer, the ring is no longer
 176                  * full.
 177                  */
 178                 if (++fep->tx_free == MAX_SKB_FRAGS)
 179                         do_wake = 1;
 180                 tx_left--;
 181         }
 182 
 183         fep->dirty_tx = bdp;
 184 
 185         if (do_restart)
 186                 (*fep->ops->tx_restart)(dev);
 187 
 188         spin_unlock(&fep->tx_lock);
 189 
 190         if (do_wake)
 191                 netif_wake_queue(dev);
 192 
 193         /*
 194          * First, grab all of the stats for the incoming packet.
 195          * These get messed up if we get called due to a busy condition.
 196          */
 197         bdp = fep->cur_rx;
 198 
 199         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 200                received < budget) {
 201                 curidx = bdp - fep->rx_bd_base;
 202 
 203                 /*
 204                  * Since we have allocated space to hold a complete frame,
 205                  * the last indicator should be set.
 206                  */
 207                 if ((sc & BD_ENET_RX_LAST) == 0)
 208                         dev_warn(fep->dev, "rcv is not +last\n");
 209 
 210                 /*
 211                  * Check for errors.
 212                  */
 213                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 214                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 215                         dev->stats.rx_errors++;
 216                         /* Frame too long or too short. */
 217                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 218                                 dev->stats.rx_length_errors++;
 219                         /* Frame alignment */
 220                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 221                                 dev->stats.rx_frame_errors++;
 222                         /* CRC Error */
 223                         if (sc & BD_ENET_RX_CR)
 224                                 dev->stats.rx_crc_errors++;
 225                         /* FIFO overrun */
 226                         if (sc & BD_ENET_RX_OV)
 227                                 dev->stats.rx_crc_errors++;
 228 
 229                         skbn = fep->rx_skbuff[curidx];
 230                 } else {
 231                         skb = fep->rx_skbuff[curidx];
 232 
 233                         /*
 234                          * Process the incoming frame.
 235                          */
 236                         dev->stats.rx_packets++;
 237                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
 238                         dev->stats.rx_bytes += pkt_len + 4;
 239 
 240                         if (pkt_len <= fpi->rx_copybreak) {
 241                                 /* +2 to make IP header L1 cache aligned */
 242                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
 243                                 if (skbn != NULL) {
 244                                         skb_reserve(skbn, 2);   /* align IP header */
 245                                         skb_copy_from_linear_data(skb,
 246                                                       skbn->data, pkt_len);
 247                                         swap(skb, skbn);
 248                                         dma_sync_single_for_cpu(fep->dev,
 249                                                 CBDR_BUFADDR(bdp),
 250                                                 L1_CACHE_ALIGN(pkt_len),
 251                                                 DMA_FROM_DEVICE);
 252                                 }
 253                         } else {
 254                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 255 
 256                                 if (skbn) {
 257                                         dma_addr_t dma;
 258 
 259                                         skb_align(skbn, ENET_RX_ALIGN);
 260 
 261                                         dma_unmap_single(fep->dev,
 262                                                 CBDR_BUFADDR(bdp),
 263                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 264                                                 DMA_FROM_DEVICE);
 265 
 266                                         dma = dma_map_single(fep->dev,
 267                                                 skbn->data,
 268                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 269                                                 DMA_FROM_DEVICE);
 270                                         CBDW_BUFADDR(bdp, dma);
 271                                 }
 272                         }
 273 
 274                         if (skbn != NULL) {
 275                                 skb_put(skb, pkt_len);  /* Make room */
 276                                 skb->protocol = eth_type_trans(skb, dev);
 277                                 received++;
 278                                 netif_receive_skb(skb);
 279                         } else {
 280                                 dev->stats.rx_dropped++;
 281                                 skbn = skb;
 282                         }
 283                 }
 284 
 285                 fep->rx_skbuff[curidx] = skbn;
 286                 CBDW_DATLEN(bdp, 0);
 287                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 288 
 289                 /*
 290                  * Update BD pointer to next entry.
 291                  */
 292                 if ((sc & BD_ENET_RX_WRAP) == 0)
 293                         bdp++;
 294                 else
 295                         bdp = fep->rx_bd_base;
 296 
 297                 (*fep->ops->rx_bd_done)(dev);
 298         }
 299 
 300         fep->cur_rx = bdp;
 301 
 302         if (received < budget && tx_left) {
 303                 /* done */
 304                 napi_complete_done(napi, received);
 305                 (*fep->ops->napi_enable)(dev);
 306 
 307                 return received;
 308         }
 309 
 310         return budget;
 311 }
 312 
 313 /*
 314  * The interrupt handler.
 315  * This is called from the MPC core interrupt.
 316  */
 317 static irqreturn_t
 318 fs_enet_interrupt(int irq, void *dev_id)
 319 {
 320         struct net_device *dev = dev_id;
 321         struct fs_enet_private *fep;
 322         const struct fs_platform_info *fpi;
 323         u32 int_events;
 324         u32 int_clr_events;
 325         int nr, napi_ok;
 326         int handled;
 327 
 328         fep = netdev_priv(dev);
 329         fpi = fep->fpi;
 330 
 331         nr = 0;
 332         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 333                 nr++;
 334 
 335                 int_clr_events = int_events;
 336                 int_clr_events &= ~fep->ev_napi;
 337 
 338                 (*fep->ops->clear_int_events)(dev, int_clr_events);
 339 
 340                 if (int_events & fep->ev_err)
 341                         (*fep->ops->ev_error)(dev, int_events);
 342 
 343                 if (int_events & fep->ev) {
 344                         napi_ok = napi_schedule_prep(&fep->napi);
 345 
 346                         (*fep->ops->napi_disable)(dev);
 347                         (*fep->ops->clear_int_events)(dev, fep->ev_napi);
 348 
 349                         /* NOTE: it is possible for FCCs in NAPI mode    */
 350                         /* to submit a spurious interrupt while in poll  */
 351                         if (napi_ok)
 352                                 __napi_schedule(&fep->napi);
 353                 }
 354 
 355         }
 356 
 357         handled = nr > 0;
 358         return IRQ_RETVAL(handled);
 359 }
 360 
 361 void fs_init_bds(struct net_device *dev)
 362 {
 363         struct fs_enet_private *fep = netdev_priv(dev);
 364         cbd_t __iomem *bdp;
 365         struct sk_buff *skb;
 366         int i;
 367 
 368         fs_cleanup_bds(dev);
 369 
 370         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 371         fep->tx_free = fep->tx_ring;
 372         fep->cur_rx = fep->rx_bd_base;
 373 
 374         /*
 375          * Initialize the receive buffer descriptors.
 376          */
 377         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 378                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 379                 if (skb == NULL)
 380                         break;
 381 
 382                 skb_align(skb, ENET_RX_ALIGN);
 383                 fep->rx_skbuff[i] = skb;
 384                 CBDW_BUFADDR(bdp,
 385                         dma_map_single(fep->dev, skb->data,
 386                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 387                                 DMA_FROM_DEVICE));
 388                 CBDW_DATLEN(bdp, 0);    /* zero */
 389                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 390                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 391         }
 392         /*
 393          * if we failed, fillup remainder
 394          */
 395         for (; i < fep->rx_ring; i++, bdp++) {
 396                 fep->rx_skbuff[i] = NULL;
 397                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 398         }
 399 
 400         /*
 401          * ...and the same for transmit.
 402          */
 403         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 404                 fep->tx_skbuff[i] = NULL;
 405                 CBDW_BUFADDR(bdp, 0);
 406                 CBDW_DATLEN(bdp, 0);
 407                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 408         }
 409 }
 410 
 411 void fs_cleanup_bds(struct net_device *dev)
 412 {
 413         struct fs_enet_private *fep = netdev_priv(dev);
 414         struct sk_buff *skb;
 415         cbd_t __iomem *bdp;
 416         int i;
 417 
 418         /*
 419          * Reset SKB transmit buffers.
 420          */
 421         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 422                 if ((skb = fep->tx_skbuff[i]) == NULL)
 423                         continue;
 424 
 425                 /* unmap */
 426                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 427                                 skb->len, DMA_TO_DEVICE);
 428 
 429                 fep->tx_skbuff[i] = NULL;
 430                 dev_kfree_skb(skb);
 431         }
 432 
 433         /*
 434          * Reset SKB receive buffers
 435          */
 436         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 437                 if ((skb = fep->rx_skbuff[i]) == NULL)
 438                         continue;
 439 
 440                 /* unmap */
 441                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 442                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 443                         DMA_FROM_DEVICE);
 444 
 445                 fep->rx_skbuff[i] = NULL;
 446 
 447                 dev_kfree_skb(skb);
 448         }
 449 }
 450 
 451 /**********************************************************************************/
 452 
 453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
 454 /*
 455  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 456  */
 457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 458                                                struct sk_buff *skb)
 459 {
 460         struct sk_buff *new_skb;
 461 
 462         if (skb_linearize(skb))
 463                 return NULL;
 464 
 465         /* Alloc new skb */
 466         new_skb = netdev_alloc_skb(dev, skb->len + 4);
 467         if (!new_skb)
 468                 return NULL;
 469 
 470         /* Make sure new skb is properly aligned */
 471         skb_align(new_skb, 4);
 472 
 473         /* Copy data to new skb ... */
 474         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 475         skb_put(new_skb, skb->len);
 476 
 477         /* ... and free an old one */
 478         dev_kfree_skb_any(skb);
 479 
 480         return new_skb;
 481 }
 482 #endif
 483 
 484 static netdev_tx_t
 485 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 486 {
 487         struct fs_enet_private *fep = netdev_priv(dev);
 488         cbd_t __iomem *bdp;
 489         int curidx;
 490         u16 sc;
 491         int nr_frags;
 492         skb_frag_t *frag;
 493         int len;
 494 #ifdef CONFIG_FS_ENET_MPC5121_FEC
 495         int is_aligned = 1;
 496         int i;
 497 
 498         if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 499                 is_aligned = 0;
 500         } else {
 501                 nr_frags = skb_shinfo(skb)->nr_frags;
 502                 frag = skb_shinfo(skb)->frags;
 503                 for (i = 0; i < nr_frags; i++, frag++) {
 504                         if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 505                                 is_aligned = 0;
 506                                 break;
 507                         }
 508                 }
 509         }
 510 
 511         if (!is_aligned) {
 512                 skb = tx_skb_align_workaround(dev, skb);
 513                 if (!skb) {
 514                         /*
 515                          * We have lost packet due to memory allocation error
 516                          * in tx_skb_align_workaround(). Hopefully original
 517                          * skb is still valid, so try transmit it later.
 518                          */
 519                         return NETDEV_TX_BUSY;
 520                 }
 521         }
 522 #endif
 523 
 524         spin_lock(&fep->tx_lock);
 525 
 526         /*
 527          * Fill in a Tx ring entry
 528          */
 529         bdp = fep->cur_tx;
 530 
 531         nr_frags = skb_shinfo(skb)->nr_frags;
 532         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 533                 netif_stop_queue(dev);
 534                 spin_unlock(&fep->tx_lock);
 535 
 536                 /*
 537                  * Ooops.  All transmit buffers are full.  Bail out.
 538                  * This should not happen, since the tx queue should be stopped.
 539                  */
 540                 dev_warn(fep->dev, "tx queue full!.\n");
 541                 return NETDEV_TX_BUSY;
 542         }
 543 
 544         curidx = bdp - fep->tx_bd_base;
 545 
 546         len = skb->len;
 547         dev->stats.tx_bytes += len;
 548         if (nr_frags)
 549                 len -= skb->data_len;
 550         fep->tx_free -= nr_frags + 1;
 551         /*
 552          * Push the data cache so the CPM does not get stale memory data.
 553          */
 554         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 555                                 skb->data, len, DMA_TO_DEVICE));
 556         CBDW_DATLEN(bdp, len);
 557 
 558         fep->mapped_as_page[curidx] = 0;
 559         frag = skb_shinfo(skb)->frags;
 560         while (nr_frags) {
 561                 CBDC_SC(bdp,
 562                         BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 563                         BD_ENET_TX_TC);
 564                 CBDS_SC(bdp, BD_ENET_TX_READY);
 565 
 566                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 567                         bdp++, curidx++;
 568                 else
 569                         bdp = fep->tx_bd_base, curidx = 0;
 570 
 571                 len = skb_frag_size(frag);
 572                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 573                                                    DMA_TO_DEVICE));
 574                 CBDW_DATLEN(bdp, len);
 575 
 576                 fep->tx_skbuff[curidx] = NULL;
 577                 fep->mapped_as_page[curidx] = 1;
 578 
 579                 frag++;
 580                 nr_frags--;
 581         }
 582 
 583         /* Trigger transmission start */
 584         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 585              BD_ENET_TX_LAST | BD_ENET_TX_TC;
 586 
 587         /* note that while FEC does not have this bit
 588          * it marks it as available for software use
 589          * yay for hw reuse :) */
 590         if (skb->len <= 60)
 591                 sc |= BD_ENET_TX_PAD;
 592         CBDC_SC(bdp, BD_ENET_TX_STATS);
 593         CBDS_SC(bdp, sc);
 594 
 595         /* Save skb pointer. */
 596         fep->tx_skbuff[curidx] = skb;
 597 
 598         /* If this was the last BD in the ring, start at the beginning again. */
 599         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 600                 bdp++;
 601         else
 602                 bdp = fep->tx_bd_base;
 603         fep->cur_tx = bdp;
 604 
 605         if (fep->tx_free < MAX_SKB_FRAGS)
 606                 netif_stop_queue(dev);
 607 
 608         skb_tx_timestamp(skb);
 609 
 610         (*fep->ops->tx_kickstart)(dev);
 611 
 612         spin_unlock(&fep->tx_lock);
 613 
 614         return NETDEV_TX_OK;
 615 }
 616 
 617 static void fs_timeout_work(struct work_struct *work)
 618 {
 619         struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 620                                                    timeout_work);
 621         struct net_device *dev = fep->ndev;
 622         unsigned long flags;
 623         int wake = 0;
 624 
 625         dev->stats.tx_errors++;
 626 
 627         spin_lock_irqsave(&fep->lock, flags);
 628 
 629         if (dev->flags & IFF_UP) {
 630                 phy_stop(dev->phydev);
 631                 (*fep->ops->stop)(dev);
 632                 (*fep->ops->restart)(dev);
 633         }
 634 
 635         phy_start(dev->phydev);
 636         wake = fep->tx_free >= MAX_SKB_FRAGS &&
 637                !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 638         spin_unlock_irqrestore(&fep->lock, flags);
 639 
 640         if (wake)
 641                 netif_wake_queue(dev);
 642 }
 643 
 644 static void fs_timeout(struct net_device *dev)
 645 {
 646         struct fs_enet_private *fep = netdev_priv(dev);
 647 
 648         schedule_work(&fep->timeout_work);
 649 }
 650 
 651 /*-----------------------------------------------------------------------------
 652  *  generic link-change handler - should be sufficient for most cases
 653  *-----------------------------------------------------------------------------*/
 654 static void generic_adjust_link(struct  net_device *dev)
 655 {
 656         struct fs_enet_private *fep = netdev_priv(dev);
 657         struct phy_device *phydev = dev->phydev;
 658         int new_state = 0;
 659 
 660         if (phydev->link) {
 661                 /* adjust to duplex mode */
 662                 if (phydev->duplex != fep->oldduplex) {
 663                         new_state = 1;
 664                         fep->oldduplex = phydev->duplex;
 665                 }
 666 
 667                 if (phydev->speed != fep->oldspeed) {
 668                         new_state = 1;
 669                         fep->oldspeed = phydev->speed;
 670                 }
 671 
 672                 if (!fep->oldlink) {
 673                         new_state = 1;
 674                         fep->oldlink = 1;
 675                 }
 676 
 677                 if (new_state)
 678                         fep->ops->restart(dev);
 679         } else if (fep->oldlink) {
 680                 new_state = 1;
 681                 fep->oldlink = 0;
 682                 fep->oldspeed = 0;
 683                 fep->oldduplex = -1;
 684         }
 685 
 686         if (new_state && netif_msg_link(fep))
 687                 phy_print_status(phydev);
 688 }
 689 
 690 
 691 static void fs_adjust_link(struct net_device *dev)
 692 {
 693         struct fs_enet_private *fep = netdev_priv(dev);
 694         unsigned long flags;
 695 
 696         spin_lock_irqsave(&fep->lock, flags);
 697 
 698         if(fep->ops->adjust_link)
 699                 fep->ops->adjust_link(dev);
 700         else
 701                 generic_adjust_link(dev);
 702 
 703         spin_unlock_irqrestore(&fep->lock, flags);
 704 }
 705 
 706 static int fs_init_phy(struct net_device *dev)
 707 {
 708         struct fs_enet_private *fep = netdev_priv(dev);
 709         struct phy_device *phydev;
 710         phy_interface_t iface;
 711 
 712         fep->oldlink = 0;
 713         fep->oldspeed = 0;
 714         fep->oldduplex = -1;
 715 
 716         iface = fep->fpi->use_rmii ?
 717                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 718 
 719         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 720                                 iface);
 721         if (!phydev) {
 722                 dev_err(&dev->dev, "Could not attach to PHY\n");
 723                 return -ENODEV;
 724         }
 725 
 726         return 0;
 727 }
 728 
 729 static int fs_enet_open(struct net_device *dev)
 730 {
 731         struct fs_enet_private *fep = netdev_priv(dev);
 732         int r;
 733         int err;
 734 
 735         /* to initialize the fep->cur_rx,... */
 736         /* not doing this, will cause a crash in fs_enet_napi */
 737         fs_init_bds(fep->ndev);
 738 
 739         napi_enable(&fep->napi);
 740 
 741         /* Install our interrupt handler. */
 742         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 743                         "fs_enet-mac", dev);
 744         if (r != 0) {
 745                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 746                 napi_disable(&fep->napi);
 747                 return -EINVAL;
 748         }
 749 
 750         err = fs_init_phy(dev);
 751         if (err) {
 752                 free_irq(fep->interrupt, dev);
 753                 napi_disable(&fep->napi);
 754                 return err;
 755         }
 756         phy_start(dev->phydev);
 757 
 758         netif_start_queue(dev);
 759 
 760         return 0;
 761 }
 762 
 763 static int fs_enet_close(struct net_device *dev)
 764 {
 765         struct fs_enet_private *fep = netdev_priv(dev);
 766         unsigned long flags;
 767 
 768         netif_stop_queue(dev);
 769         netif_carrier_off(dev);
 770         napi_disable(&fep->napi);
 771         cancel_work_sync(&fep->timeout_work);
 772         phy_stop(dev->phydev);
 773 
 774         spin_lock_irqsave(&fep->lock, flags);
 775         spin_lock(&fep->tx_lock);
 776         (*fep->ops->stop)(dev);
 777         spin_unlock(&fep->tx_lock);
 778         spin_unlock_irqrestore(&fep->lock, flags);
 779 
 780         /* release any irqs */
 781         phy_disconnect(dev->phydev);
 782         free_irq(fep->interrupt, dev);
 783 
 784         return 0;
 785 }
 786 
 787 /*************************************************************************/
 788 
 789 static void fs_get_drvinfo(struct net_device *dev,
 790                             struct ethtool_drvinfo *info)
 791 {
 792         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 793         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 794 }
 795 
 796 static int fs_get_regs_len(struct net_device *dev)
 797 {
 798         struct fs_enet_private *fep = netdev_priv(dev);
 799 
 800         return (*fep->ops->get_regs_len)(dev);
 801 }
 802 
 803 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 804                          void *p)
 805 {
 806         struct fs_enet_private *fep = netdev_priv(dev);
 807         unsigned long flags;
 808         int r, len;
 809 
 810         len = regs->len;
 811 
 812         spin_lock_irqsave(&fep->lock, flags);
 813         r = (*fep->ops->get_regs)(dev, p, &len);
 814         spin_unlock_irqrestore(&fep->lock, flags);
 815 
 816         if (r == 0)
 817                 regs->version = 0;
 818 }
 819 
 820 static u32 fs_get_msglevel(struct net_device *dev)
 821 {
 822         struct fs_enet_private *fep = netdev_priv(dev);
 823         return fep->msg_enable;
 824 }
 825 
 826 static void fs_set_msglevel(struct net_device *dev, u32 value)
 827 {
 828         struct fs_enet_private *fep = netdev_priv(dev);
 829         fep->msg_enable = value;
 830 }
 831 
 832 static int fs_get_tunable(struct net_device *dev,
 833                           const struct ethtool_tunable *tuna, void *data)
 834 {
 835         struct fs_enet_private *fep = netdev_priv(dev);
 836         struct fs_platform_info *fpi = fep->fpi;
 837         int ret = 0;
 838 
 839         switch (tuna->id) {
 840         case ETHTOOL_RX_COPYBREAK:
 841                 *(u32 *)data = fpi->rx_copybreak;
 842                 break;
 843         default:
 844                 ret = -EINVAL;
 845                 break;
 846         }
 847 
 848         return ret;
 849 }
 850 
 851 static int fs_set_tunable(struct net_device *dev,
 852                           const struct ethtool_tunable *tuna, const void *data)
 853 {
 854         struct fs_enet_private *fep = netdev_priv(dev);
 855         struct fs_platform_info *fpi = fep->fpi;
 856         int ret = 0;
 857 
 858         switch (tuna->id) {
 859         case ETHTOOL_RX_COPYBREAK:
 860                 fpi->rx_copybreak = *(u32 *)data;
 861                 break;
 862         default:
 863                 ret = -EINVAL;
 864                 break;
 865         }
 866 
 867         return ret;
 868 }
 869 
 870 static const struct ethtool_ops fs_ethtool_ops = {
 871         .get_drvinfo = fs_get_drvinfo,
 872         .get_regs_len = fs_get_regs_len,
 873         .nway_reset = phy_ethtool_nway_reset,
 874         .get_link = ethtool_op_get_link,
 875         .get_msglevel = fs_get_msglevel,
 876         .set_msglevel = fs_set_msglevel,
 877         .get_regs = fs_get_regs,
 878         .get_ts_info = ethtool_op_get_ts_info,
 879         .get_link_ksettings = phy_ethtool_get_link_ksettings,
 880         .set_link_ksettings = phy_ethtool_set_link_ksettings,
 881         .get_tunable = fs_get_tunable,
 882         .set_tunable = fs_set_tunable,
 883 };
 884 
 885 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 886 {
 887         if (!netif_running(dev))
 888                 return -EINVAL;
 889 
 890         return phy_mii_ioctl(dev->phydev, rq, cmd);
 891 }
 892 
 893 extern int fs_mii_connect(struct net_device *dev);
 894 extern void fs_mii_disconnect(struct net_device *dev);
 895 
 896 /**************************************************************************************/
 897 
 898 #ifdef CONFIG_FS_ENET_HAS_FEC
 899 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
 900 #else
 901 #define IS_FEC(match) 0
 902 #endif
 903 
 904 static const struct net_device_ops fs_enet_netdev_ops = {
 905         .ndo_open               = fs_enet_open,
 906         .ndo_stop               = fs_enet_close,
 907         .ndo_start_xmit         = fs_enet_start_xmit,
 908         .ndo_tx_timeout         = fs_timeout,
 909         .ndo_set_rx_mode        = fs_set_multicast_list,
 910         .ndo_do_ioctl           = fs_ioctl,
 911         .ndo_validate_addr      = eth_validate_addr,
 912         .ndo_set_mac_address    = eth_mac_addr,
 913 #ifdef CONFIG_NET_POLL_CONTROLLER
 914         .ndo_poll_controller    = fs_enet_netpoll,
 915 #endif
 916 };
 917 
 918 static const struct of_device_id fs_enet_match[];
 919 static int fs_enet_probe(struct platform_device *ofdev)
 920 {
 921         const struct of_device_id *match;
 922         struct net_device *ndev;
 923         struct fs_enet_private *fep;
 924         struct fs_platform_info *fpi;
 925         const u32 *data;
 926         struct clk *clk;
 927         int err;
 928         const u8 *mac_addr;
 929         const char *phy_connection_type;
 930         int privsize, len, ret = -ENODEV;
 931 
 932         match = of_match_device(fs_enet_match, &ofdev->dev);
 933         if (!match)
 934                 return -EINVAL;
 935 
 936         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 937         if (!fpi)
 938                 return -ENOMEM;
 939 
 940         if (!IS_FEC(match)) {
 941                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 942                 if (!data || len != 4)
 943                         goto out_free_fpi;
 944 
 945                 fpi->cp_command = *data;
 946         }
 947 
 948         fpi->rx_ring = RX_RING_SIZE;
 949         fpi->tx_ring = TX_RING_SIZE;
 950         fpi->rx_copybreak = 240;
 951         fpi->napi_weight = 17;
 952         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 953         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 954                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
 955                 if (err)
 956                         goto out_free_fpi;
 957 
 958                 /* In the case of a fixed PHY, the DT node associated
 959                  * to the PHY is the Ethernet MAC DT node.
 960                  */
 961                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
 962         }
 963 
 964         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 965                 phy_connection_type = of_get_property(ofdev->dev.of_node,
 966                                                 "phy-connection-type", NULL);
 967                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 968                         fpi->use_rmii = 1;
 969         }
 970 
 971         /* make clock lookup non-fatal (the driver is shared among platforms),
 972          * but require enable to succeed when a clock was specified/found,
 973          * keep a reference to the clock upon successful acquisition
 974          */
 975         clk = devm_clk_get(&ofdev->dev, "per");
 976         if (!IS_ERR(clk)) {
 977                 ret = clk_prepare_enable(clk);
 978                 if (ret)
 979                         goto out_deregister_fixed_link;
 980 
 981                 fpi->clk_per = clk;
 982         }
 983 
 984         privsize = sizeof(*fep) +
 985                    sizeof(struct sk_buff **) *
 986                      (fpi->rx_ring + fpi->tx_ring) +
 987                    sizeof(char) * fpi->tx_ring;
 988 
 989         ndev = alloc_etherdev(privsize);
 990         if (!ndev) {
 991                 ret = -ENOMEM;
 992                 goto out_put;
 993         }
 994 
 995         SET_NETDEV_DEV(ndev, &ofdev->dev);
 996         platform_set_drvdata(ofdev, ndev);
 997 
 998         fep = netdev_priv(ndev);
 999         fep->dev = &ofdev->dev;
1000         fep->ndev = ndev;
1001         fep->fpi = fpi;
1002         fep->ops = match->data;
1003 
1004         ret = fep->ops->setup_data(ndev);
1005         if (ret)
1006                 goto out_free_dev;
1007 
1008         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1009         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1010         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1011                                        fpi->tx_ring);
1012 
1013         spin_lock_init(&fep->lock);
1014         spin_lock_init(&fep->tx_lock);
1015 
1016         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1017         if (!IS_ERR(mac_addr))
1018                 ether_addr_copy(ndev->dev_addr, mac_addr);
1019 
1020         ret = fep->ops->allocate_bd(ndev);
1021         if (ret)
1022                 goto out_cleanup_data;
1023 
1024         fep->rx_bd_base = fep->ring_base;
1025         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1026 
1027         fep->tx_ring = fpi->tx_ring;
1028         fep->rx_ring = fpi->rx_ring;
1029 
1030         ndev->netdev_ops = &fs_enet_netdev_ops;
1031         ndev->watchdog_timeo = 2 * HZ;
1032         INIT_WORK(&fep->timeout_work, fs_timeout_work);
1033         netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1034 
1035         ndev->ethtool_ops = &fs_ethtool_ops;
1036 
1037         netif_carrier_off(ndev);
1038 
1039         ndev->features |= NETIF_F_SG;
1040 
1041         ret = register_netdev(ndev);
1042         if (ret)
1043                 goto out_free_bd;
1044 
1045         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1046 
1047         return 0;
1048 
1049 out_free_bd:
1050         fep->ops->free_bd(ndev);
1051 out_cleanup_data:
1052         fep->ops->cleanup_data(ndev);
1053 out_free_dev:
1054         free_netdev(ndev);
1055 out_put:
1056         if (fpi->clk_per)
1057                 clk_disable_unprepare(fpi->clk_per);
1058 out_deregister_fixed_link:
1059         of_node_put(fpi->phy_node);
1060         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1061                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1062 out_free_fpi:
1063         kfree(fpi);
1064         return ret;
1065 }
1066 
1067 static int fs_enet_remove(struct platform_device *ofdev)
1068 {
1069         struct net_device *ndev = platform_get_drvdata(ofdev);
1070         struct fs_enet_private *fep = netdev_priv(ndev);
1071 
1072         unregister_netdev(ndev);
1073 
1074         fep->ops->free_bd(ndev);
1075         fep->ops->cleanup_data(ndev);
1076         dev_set_drvdata(fep->dev, NULL);
1077         of_node_put(fep->fpi->phy_node);
1078         if (fep->fpi->clk_per)
1079                 clk_disable_unprepare(fep->fpi->clk_per);
1080         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1081                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1082         free_netdev(ndev);
1083         return 0;
1084 }
1085 
1086 static const struct of_device_id fs_enet_match[] = {
1087 #ifdef CONFIG_FS_ENET_HAS_SCC
1088         {
1089                 .compatible = "fsl,cpm1-scc-enet",
1090                 .data = (void *)&fs_scc_ops,
1091         },
1092         {
1093                 .compatible = "fsl,cpm2-scc-enet",
1094                 .data = (void *)&fs_scc_ops,
1095         },
1096 #endif
1097 #ifdef CONFIG_FS_ENET_HAS_FCC
1098         {
1099                 .compatible = "fsl,cpm2-fcc-enet",
1100                 .data = (void *)&fs_fcc_ops,
1101         },
1102 #endif
1103 #ifdef CONFIG_FS_ENET_HAS_FEC
1104 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1105         {
1106                 .compatible = "fsl,mpc5121-fec",
1107                 .data = (void *)&fs_fec_ops,
1108         },
1109         {
1110                 .compatible = "fsl,mpc5125-fec",
1111                 .data = (void *)&fs_fec_ops,
1112         },
1113 #else
1114         {
1115                 .compatible = "fsl,pq1-fec-enet",
1116                 .data = (void *)&fs_fec_ops,
1117         },
1118 #endif
1119 #endif
1120         {}
1121 };
1122 MODULE_DEVICE_TABLE(of, fs_enet_match);
1123 
1124 static struct platform_driver fs_enet_driver = {
1125         .driver = {
1126                 .name = "fs_enet",
1127                 .of_match_table = fs_enet_match,
1128         },
1129         .probe = fs_enet_probe,
1130         .remove = fs_enet_remove,
1131 };
1132 
1133 #ifdef CONFIG_NET_POLL_CONTROLLER
1134 static void fs_enet_netpoll(struct net_device *dev)
1135 {
1136        disable_irq(dev->irq);
1137        fs_enet_interrupt(dev->irq, dev);
1138        enable_irq(dev->irq);
1139 }
1140 #endif
1141 
1142 module_platform_driver(fs_enet_driver);

/* [<][>][^][v][top][bottom][index][help] */