This source file includes following definitions.
- natsemi_show_dspcfg_workaround
- natsemi_set_dspcfg_workaround
- ns_ioaddr
- natsemi_irq_enable
- natsemi_irq_disable
- move_int_phy
- natsemi_init_media
- natsemi_probe1
- eeprom_read
- mii_getbit
- mii_send_bits
- miiport_read
- miiport_write
- mdio_read
- mdio_write
- init_phy_fixup
- switch_port_external
- switch_port_internal
- find_mii
- natsemi_reset
- reset_rx
- natsemi_reload_eeprom
- natsemi_stop_rxtx
- netdev_open
- do_cable_magic
- undo_cable_magic
- check_link
- init_registers
- netdev_timer
- dump_ring
- ns_tx_timeout
- alloc_ring
- refill_rx
- set_bufsize
- init_ring
- drain_tx
- drain_rx
- drain_ring
- free_ring
- reinit_rx
- reinit_ring
- start_tx
- netdev_tx_done
- intr_handler
- natsemi_poll
- netdev_rx
- netdev_error
- __get_stats
- get_stats
- natsemi_poll_controller
- __set_rx_mode
- natsemi_change_mtu
- set_rx_mode
- get_drvinfo
- get_regs_len
- get_eeprom_len
- get_link_ksettings
- set_link_ksettings
- get_wol
- set_wol
- get_regs
- get_msglevel
- set_msglevel
- nway_reset
- get_link
- get_eeprom
- netdev_set_wol
- netdev_get_wol
- netdev_set_sopass
- netdev_get_sopass
- netdev_get_ecmd
- netdev_set_ecmd
- netdev_get_regs
- netdev_get_eeprom
- netdev_ioctl
- enable_wol_mode
- netdev_close
- natsemi_remove1
- natsemi_suspend
- natsemi_resume
- natsemi_init_mod
- natsemi_exit_mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <linux/uaccess.h>
55
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
59
60 #define RX_OFFSET 2
61
62
63
64
65
66
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73
74 static int mtu;
75
76
77
78 static const int multicast_filter_limit = 100;
79
80
81
82 static int rx_copybreak;
83
84 static int dspcfg_workaround = 1;
85
86
87
88
89
90
91 #define MAX_UNITS 8
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94
95
96
97
98
99
100
101
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10
104 #define RX_RING_SIZE 32
105
106
107
108 #define TX_TIMEOUT (2*HZ)
109
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 5*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER 1
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
119
120
121
122
123
124 #define NATSEMI_HEADERS 22
125 #define NATSEMI_PADDING 16
126 #define NATSEMI_LONGPKT 1518
127 #define NATSEMI_RX_LIMIT 2046
128
129
130 static const char version[] =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 " originally by Donald Becker <becker@scyld.com>\n"
134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228 #define PHYID_AM79C874 0x0022561b
229
230 enum {
231 MII_MCTRL = 0x15,
232 MII_FX_SEL = 0x0001,
233 MII_EN_SCRM = 0x0004,
234 };
235
236 enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
238 };
239
240
241 static struct {
242 const char *name;
243 unsigned long flags;
244 unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
248 };
249
250 static const struct pci_device_id natsemi_pci_tbl[] = {
251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 { }
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257
258
259
260
261
262 enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C,
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
296
297
298
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
304 };
305
306 #define PMDCSR_VAL 0x189c
307 #define TSTDAT_VAL 0x0
308 #define DSPCFG_VAL 0x5040
309 #define SDCFG_VAL 0x008c
310 #define DSPCFG_LOCK 0x20
311 #define DSPCFG_COEF 0x1000
312 #define TSTDAT_FIXED 0xe8
313
314
315 enum pci_register_offsets {
316 PCIPM = 0x44,
317 };
318
319 enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
327 };
328
329 enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
340 };
341
342 enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
350 };
351
352 enum PCIBusCfg_bits {
353 EepromReload = 0x4,
354 };
355
356
357 enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
379 };
380
381
382
383
384
385
386
387
388
389
390 #define DEFAULT_INTR 0x00f1cd65
391
392 enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
409 };
410
411
412
413
414
415
416
417
418
419
420
421
422 #define TX_FLTH_VAL ((512/32) << 8)
423 #define TX_DRTH_VAL_START (64/32)
424 #define TX_DRTH_VAL_INC 2
425 #define TX_DRTH_VAL_LIMIT (1472/32)
426
427 enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
442 };
443 #define RX_DRTH_VAL (128/8)
444
445 enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
448 };
449
450 enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
474 };
475
476 enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
484 };
485
486 enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
491 };
492
493 enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
495 };
496
497 enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
499 };
500
501 #define PHY_ADDR_NONE 32
502 #define PHY_ADDR_INTERNAL 1
503
504
505 #define SRR_DP83815_C 0x0302
506 #define SRR_DP83815_D 0x0403
507 #define SRR_DP83816_A4 0x0504
508 #define SRR_DP83816_A5 0x0505
509
510
511
512
513 struct netdev_desc {
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
518 };
519
520
521 enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
525
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537
538 struct netdev_private {
539
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
549 struct net_device *dev;
550 void __iomem *ioaddr;
551 struct napi_struct napi;
552
553 struct timer_list timer;
554
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560
561 unsigned int rx_buf_sz;
562 int oom;
563
564 u32 intr_status;
565
566 int hands_off;
567
568 int ignore_phy;
569
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576
577 u32 tx_config, rx_config;
578
579 u32 SavedClkRun;
580
581 u32 srr;
582
583 u16 dspcfg;
584 int dspcfg_workaround;
585
586 u16 speed;
587 u8 duplex;
588 u8 autoneg;
589
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
594
595 int eeprom_size;
596 };
597
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(struct timer_list *t);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev,
644 struct ethtool_link_ksettings *ecmd);
645 static int netdev_set_ecmd(struct net_device *dev,
646 const struct ethtool_link_ksettings *ecmd);
647 static void enable_wol_mode(struct net_device *dev, int enable_intr);
648 static int netdev_close(struct net_device *dev);
649 static int netdev_get_regs(struct net_device *dev, u8 *buf);
650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651 static const struct ethtool_ops ethtool_ops;
652
653 #define NATSEMI_ATTR(_name) \
654 static ssize_t natsemi_show_##_name(struct device *dev, \
655 struct device_attribute *attr, char *buf); \
656 static ssize_t natsemi_set_##_name(struct device *dev, \
657 struct device_attribute *attr, \
658 const char *buf, size_t count); \
659 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660
661 #define NATSEMI_CREATE_FILE(_dev, _name) \
662 device_create_file(&_dev->dev, &dev_attr_##_name)
663 #define NATSEMI_REMOVE_FILE(_dev, _name) \
664 device_remove_file(&_dev->dev, &dev_attr_##_name)
665
666 NATSEMI_ATTR(dspcfg_workaround);
667
668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669 struct device_attribute *attr,
670 char *buf)
671 {
672 struct netdev_private *np = netdev_priv(to_net_dev(dev));
673
674 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 }
676
677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678 struct device_attribute *attr,
679 const char *buf, size_t count)
680 {
681 struct netdev_private *np = netdev_priv(to_net_dev(dev));
682 int new_setting;
683 unsigned long flags;
684
685
686 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687 new_setting = 1;
688 else if (!strncmp("off", buf, count - 1) ||
689 !strncmp("0", buf, count - 1))
690 new_setting = 0;
691 else
692 return count;
693
694 spin_lock_irqsave(&np->lock, flags);
695
696 np->dspcfg_workaround = new_setting;
697
698 spin_unlock_irqrestore(&np->lock, flags);
699
700 return count;
701 }
702
703 static inline void __iomem *ns_ioaddr(struct net_device *dev)
704 {
705 struct netdev_private *np = netdev_priv(dev);
706
707 return np->ioaddr;
708 }
709
710 static inline void natsemi_irq_enable(struct net_device *dev)
711 {
712 writel(1, ns_ioaddr(dev) + IntrEnable);
713 readl(ns_ioaddr(dev) + IntrEnable);
714 }
715
716 static inline void natsemi_irq_disable(struct net_device *dev)
717 {
718 writel(0, ns_ioaddr(dev) + IntrEnable);
719 readl(ns_ioaddr(dev) + IntrEnable);
720 }
721
722 static void move_int_phy(struct net_device *dev, int addr)
723 {
724 struct netdev_private *np = netdev_priv(dev);
725 void __iomem *ioaddr = ns_ioaddr(dev);
726 int target = 31;
727
728
729
730
731
732
733
734
735
736
737
738 if (target == addr)
739 target--;
740 if (target == np->phy_addr_external)
741 target--;
742 writew(target, ioaddr + PhyCtrl);
743 readw(ioaddr + PhyCtrl);
744 udelay(1);
745 }
746
747 static void natsemi_init_media(struct net_device *dev)
748 {
749 struct netdev_private *np = netdev_priv(dev);
750 u32 tmp;
751
752 if (np->ignore_phy)
753 netif_carrier_on(dev);
754 else
755 netif_carrier_off(dev);
756
757
758 tmp = mdio_read(dev, MII_BMCR);
759 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
760 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
761 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762 np->advertising= mdio_read(dev, MII_ADVERTISE);
763
764 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765 netif_msg_probe(np)) {
766 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767 "10%s %s duplex.\n",
768 pci_name(np->pci_dev),
769 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770 "enabled, advertise" : "disabled, force",
771 (np->advertising &
772 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773 "0" : "",
774 (np->advertising &
775 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776 "full" : "half");
777 }
778 if (netif_msg_probe(np))
779 printk(KERN_INFO
780 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782 np->advertising);
783
784 }
785
786 static const struct net_device_ops natsemi_netdev_ops = {
787 .ndo_open = netdev_open,
788 .ndo_stop = netdev_close,
789 .ndo_start_xmit = start_tx,
790 .ndo_get_stats = get_stats,
791 .ndo_set_rx_mode = set_rx_mode,
792 .ndo_change_mtu = natsemi_change_mtu,
793 .ndo_do_ioctl = netdev_ioctl,
794 .ndo_tx_timeout = ns_tx_timeout,
795 .ndo_set_mac_address = eth_mac_addr,
796 .ndo_validate_addr = eth_validate_addr,
797 #ifdef CONFIG_NET_POLL_CONTROLLER
798 .ndo_poll_controller = natsemi_poll_controller,
799 #endif
800 };
801
802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803 {
804 struct net_device *dev;
805 struct netdev_private *np;
806 int i, option, irq, chip_idx = ent->driver_data;
807 static int find_cnt = -1;
808 resource_size_t iostart;
809 unsigned long iosize;
810 void __iomem *ioaddr;
811 const int pcibar = 1;
812 int prev_eedata;
813 u32 tmp;
814
815
816 #ifndef MODULE
817 static int printed_version;
818 if (!printed_version++)
819 printk(version);
820 #endif
821
822 i = pci_enable_device(pdev);
823 if (i) return i;
824
825
826
827
828
829 pci_read_config_dword(pdev, PCIPM, &tmp);
830 if (tmp & PCI_PM_CTRL_STATE_MASK) {
831
832 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
833 pci_write_config_dword(pdev, PCIPM, newtmp);
834 }
835
836 find_cnt++;
837 iostart = pci_resource_start(pdev, pcibar);
838 iosize = pci_resource_len(pdev, pcibar);
839 irq = pdev->irq;
840
841 pci_set_master(pdev);
842
843 dev = alloc_etherdev(sizeof (struct netdev_private));
844 if (!dev)
845 return -ENOMEM;
846 SET_NETDEV_DEV(dev, &pdev->dev);
847
848 i = pci_request_regions(pdev, DRV_NAME);
849 if (i)
850 goto err_pci_request_regions;
851
852 ioaddr = ioremap(iostart, iosize);
853 if (!ioaddr) {
854 i = -ENOMEM;
855 goto err_ioremap;
856 }
857
858
859 prev_eedata = eeprom_read(ioaddr, 6);
860 for (i = 0; i < 3; i++) {
861 int eedata = eeprom_read(ioaddr, i + 7);
862 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
863 dev->dev_addr[i*2+1] = eedata >> 7;
864 prev_eedata = eedata;
865 }
866
867 np = netdev_priv(dev);
868 np->ioaddr = ioaddr;
869
870 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
871 np->dev = dev;
872
873 np->pci_dev = pdev;
874 pci_set_drvdata(pdev, dev);
875 np->iosize = iosize;
876 spin_lock_init(&np->lock);
877 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
878 np->hands_off = 0;
879 np->intr_status = 0;
880 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
881 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
882 np->ignore_phy = 1;
883 else
884 np->ignore_phy = 0;
885 np->dspcfg_workaround = dspcfg_workaround;
886
887
888
889
890
891
892
893
894
895
896 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
897 dev->if_port = PORT_MII;
898 else
899 dev->if_port = PORT_TP;
900
901 natsemi_reload_eeprom(dev);
902 natsemi_reset(dev);
903
904 if (dev->if_port != PORT_TP) {
905 np->phy_addr_external = find_mii(dev);
906
907
908 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
909 dev->if_port = PORT_TP;
910 np->phy_addr_external = PHY_ADDR_INTERNAL;
911 }
912 } else {
913 np->phy_addr_external = PHY_ADDR_INTERNAL;
914 }
915
916 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
917
918 if (option) {
919 if (option & 0x200)
920 np->full_duplex = 1;
921 if (option & 15)
922 printk(KERN_INFO
923 "natsemi %s: ignoring user supplied media type %d",
924 pci_name(np->pci_dev), option & 15);
925 }
926 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
927 np->full_duplex = 1;
928
929 dev->netdev_ops = &natsemi_netdev_ops;
930 dev->watchdog_timeo = TX_TIMEOUT;
931
932 dev->ethtool_ops = ðtool_ops;
933
934
935 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
936 dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
937
938 if (mtu)
939 dev->mtu = mtu;
940
941 natsemi_init_media(dev);
942
943
944 np->srr = readl(ioaddr + SiliconRev);
945 if (netif_msg_hw(np))
946 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
947 pci_name(np->pci_dev), np->srr);
948
949 i = register_netdev(dev);
950 if (i)
951 goto err_register_netdev;
952 i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
953 if (i)
954 goto err_create_file;
955
956 if (netif_msg_drv(np)) {
957 printk(KERN_INFO "natsemi %s: %s at %#08llx "
958 "(%s), %pM, IRQ %d",
959 dev->name, natsemi_pci_info[chip_idx].name,
960 (unsigned long long)iostart, pci_name(np->pci_dev),
961 dev->dev_addr, irq);
962 if (dev->if_port == PORT_TP)
963 printk(", port TP.\n");
964 else if (np->ignore_phy)
965 printk(", port MII, ignoring PHY\n");
966 else
967 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
968 }
969 return 0;
970
971 err_create_file:
972 unregister_netdev(dev);
973
974 err_register_netdev:
975 iounmap(ioaddr);
976
977 err_ioremap:
978 pci_release_regions(pdev);
979
980 err_pci_request_regions:
981 free_netdev(dev);
982 return i;
983 }
984
985
986
987
988
989
990
991
992
993
994
995
996 #define eeprom_delay(ee_addr) readl(ee_addr)
997
998 #define EE_Write0 (EE_ChipSelect)
999 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001
1002 enum EEPROM_Cmds {
1003 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004 };
1005
1006 static int eeprom_read(void __iomem *addr, int location)
1007 {
1008 int i;
1009 int retval = 0;
1010 void __iomem *ee_addr = addr + EECtrl;
1011 int read_cmd = location | EE_ReadCmd;
1012
1013 writel(EE_Write0, ee_addr);
1014
1015
1016 for (i = 10; i >= 0; i--) {
1017 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018 writel(dataval, ee_addr);
1019 eeprom_delay(ee_addr);
1020 writel(dataval | EE_ShiftClk, ee_addr);
1021 eeprom_delay(ee_addr);
1022 }
1023 writel(EE_ChipSelect, ee_addr);
1024 eeprom_delay(ee_addr);
1025
1026 for (i = 0; i < 16; i++) {
1027 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028 eeprom_delay(ee_addr);
1029 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030 writel(EE_ChipSelect, ee_addr);
1031 eeprom_delay(ee_addr);
1032 }
1033
1034
1035 writel(EE_Write0, ee_addr);
1036 writel(0, ee_addr);
1037 return retval;
1038 }
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1050
1051 static int mii_getbit (struct net_device *dev)
1052 {
1053 int data;
1054 void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056 writel(MII_ShiftClk, ioaddr + EECtrl);
1057 data = readl(ioaddr + EECtrl);
1058 writel(0, ioaddr + EECtrl);
1059 mii_delay(ioaddr);
1060 return (data & MII_Data)? 1 : 0;
1061 }
1062
1063 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064 {
1065 u32 i;
1066 void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068 for (i = (1 << (len-1)); i; i >>= 1)
1069 {
1070 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071 writel(mdio_val, ioaddr + EECtrl);
1072 mii_delay(ioaddr);
1073 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074 mii_delay(ioaddr);
1075 }
1076 writel(0, ioaddr + EECtrl);
1077 mii_delay(ioaddr);
1078 }
1079
1080 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081 {
1082 u32 cmd;
1083 int i;
1084 u32 retval = 0;
1085
1086
1087 mii_send_bits (dev, 0xffffffff, 32);
1088
1089
1090 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091 mii_send_bits (dev, cmd, 14);
1092
1093 if (mii_getbit (dev))
1094 return 0;
1095
1096 for (i = 0; i < 16; i++) {
1097 retval <<= 1;
1098 retval |= mii_getbit (dev);
1099 }
1100
1101 mii_getbit (dev);
1102 return retval;
1103 }
1104
1105 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106 {
1107 u32 cmd;
1108
1109
1110 mii_send_bits (dev, 0xffffffff, 32);
1111
1112
1113 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114 mii_send_bits (dev, cmd, 32);
1115
1116 mii_getbit (dev);
1117 }
1118
1119 static int mdio_read(struct net_device *dev, int reg)
1120 {
1121 struct netdev_private *np = netdev_priv(dev);
1122 void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124
1125
1126
1127
1128 if (dev->if_port == PORT_TP)
1129 return readw(ioaddr+BasicControl+(reg<<2));
1130 else
1131 return miiport_read(dev, np->phy_addr_external, reg);
1132 }
1133
1134 static void mdio_write(struct net_device *dev, int reg, u16 data)
1135 {
1136 struct netdev_private *np = netdev_priv(dev);
1137 void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139
1140 if (dev->if_port == PORT_TP)
1141 writew(data, ioaddr+BasicControl+(reg<<2));
1142 else
1143 miiport_write(dev, np->phy_addr_external, reg, data);
1144 }
1145
1146 static void init_phy_fixup(struct net_device *dev)
1147 {
1148 struct netdev_private *np = netdev_priv(dev);
1149 void __iomem *ioaddr = ns_ioaddr(dev);
1150 int i;
1151 u32 cfg;
1152 u16 tmp;
1153
1154
1155 tmp = mdio_read(dev, MII_BMCR);
1156 if (np->autoneg == AUTONEG_ENABLE) {
1157
1158 if ((tmp & BMCR_ANENABLE) == 0 ||
1159 np->advertising != mdio_read(dev, MII_ADVERTISE))
1160 {
1161
1162 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163 mdio_write(dev, MII_ADVERTISE, np->advertising);
1164 }
1165 } else {
1166
1167 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168 if (np->speed == SPEED_100)
1169 tmp |= BMCR_SPEED100;
1170 if (np->duplex == DUPLEX_FULL)
1171 tmp |= BMCR_FULLDPLX;
1172
1173
1174
1175
1176
1177
1178
1179 }
1180 mdio_write(dev, MII_BMCR, tmp);
1181 readl(ioaddr + ChipConfig);
1182 udelay(1);
1183
1184
1185 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186 + mdio_read(dev, MII_PHYSID2);
1187
1188
1189 switch (np->mii) {
1190 case PHYID_AM79C874:
1191
1192 tmp = mdio_read(dev, MII_MCTRL);
1193 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194 if (dev->if_port == PORT_FIBRE)
1195 tmp |= MII_FX_SEL;
1196 else
1197 tmp |= MII_EN_SCRM;
1198 mdio_write(dev, MII_MCTRL, tmp);
1199 break;
1200 default:
1201 break;
1202 }
1203 cfg = readl(ioaddr + ChipConfig);
1204 if (cfg & CfgExtPhy)
1205 return;
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220 int dspcfg;
1221 writew(1, ioaddr + PGSEL);
1222 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226 writew(np->dspcfg, ioaddr + DSPCFG);
1227 writew(SDCFG_VAL, ioaddr + SDCFG);
1228 writew(0, ioaddr + PGSEL);
1229 readl(ioaddr + ChipConfig);
1230 udelay(10);
1231
1232 writew(1, ioaddr + PGSEL);
1233 dspcfg = readw(ioaddr + DSPCFG);
1234 writew(0, ioaddr + PGSEL);
1235 if (np->dspcfg == dspcfg)
1236 break;
1237 }
1238
1239 if (netif_msg_link(np)) {
1240 if (i==NATSEMI_HW_TIMEOUT) {
1241 printk(KERN_INFO
1242 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1243 dev->name, i*10);
1244 } else {
1245 printk(KERN_INFO
1246 "%s: DSPCFG accepted after %d usec.\n",
1247 dev->name, i*10);
1248 }
1249 }
1250
1251
1252
1253
1254
1255 readw(ioaddr + MIntrStatus);
1256 writew(MICRIntEn, ioaddr + MIntrCtrl);
1257 }
1258
1259 static int switch_port_external(struct net_device *dev)
1260 {
1261 struct netdev_private *np = netdev_priv(dev);
1262 void __iomem *ioaddr = ns_ioaddr(dev);
1263 u32 cfg;
1264
1265 cfg = readl(ioaddr + ChipConfig);
1266 if (cfg & CfgExtPhy)
1267 return 0;
1268
1269 if (netif_msg_link(np)) {
1270 printk(KERN_INFO "%s: switching to external transceiver.\n",
1271 dev->name);
1272 }
1273
1274
1275 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276 readl(ioaddr + ChipConfig);
1277 udelay(1);
1278
1279
1280
1281
1282
1283
1284
1285
1286 move_int_phy(dev, np->phy_addr_external);
1287 init_phy_fixup(dev);
1288
1289 return 1;
1290 }
1291
1292 static int switch_port_internal(struct net_device *dev)
1293 {
1294 struct netdev_private *np = netdev_priv(dev);
1295 void __iomem *ioaddr = ns_ioaddr(dev);
1296 int i;
1297 u32 cfg;
1298 u16 bmcr;
1299
1300 cfg = readl(ioaddr + ChipConfig);
1301 if (!(cfg &CfgExtPhy))
1302 return 0;
1303
1304 if (netif_msg_link(np)) {
1305 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306 dev->name);
1307 }
1308
1309 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310 writel(cfg, ioaddr + ChipConfig);
1311 readl(ioaddr + ChipConfig);
1312 udelay(1);
1313
1314
1315 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317 readl(ioaddr + ChipConfig);
1318 udelay(10);
1319 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321 if (!(bmcr & BMCR_RESET))
1322 break;
1323 udelay(10);
1324 }
1325 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326 printk(KERN_INFO
1327 "%s: phy reset did not complete in %d usec.\n",
1328 dev->name, i*10);
1329 }
1330
1331 init_phy_fixup(dev);
1332
1333 return 1;
1334 }
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344 static int find_mii(struct net_device *dev)
1345 {
1346 struct netdev_private *np = netdev_priv(dev);
1347 int tmp;
1348 int i;
1349 int did_switch;
1350
1351
1352 did_switch = switch_port_external(dev);
1353
1354
1355
1356
1357
1358
1359
1360 for (i = 1; i <= 31; i++) {
1361 move_int_phy(dev, i);
1362 tmp = miiport_read(dev, i, MII_BMSR);
1363 if (tmp != 0xffff && tmp != 0x0000) {
1364
1365 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366 + mdio_read(dev, MII_PHYSID2);
1367 if (netif_msg_probe(np)) {
1368 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369 pci_name(np->pci_dev), np->mii, i);
1370 }
1371 break;
1372 }
1373 }
1374
1375 if (did_switch)
1376 switch_port_internal(dev);
1377 return i;
1378 }
1379
1380
1381 #define CFG_RESET_SAVE 0xfde000
1382
1383 #define WCSR_RESET_SAVE 0x61f
1384
1385 #define RFCR_RESET_SAVE 0xf8500000
1386
1387 static void natsemi_reset(struct net_device *dev)
1388 {
1389 int i;
1390 u32 cfg;
1391 u32 wcsr;
1392 u32 rfcr;
1393 u16 pmatch[3];
1394 u16 sopass[3];
1395 struct netdev_private *np = netdev_priv(dev);
1396 void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408
1409 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410
1411 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412
1413 for (i = 0; i < 3; i++) {
1414 writel(i*2, ioaddr + RxFilterAddr);
1415 pmatch[i] = readw(ioaddr + RxFilterData);
1416 }
1417
1418 for (i = 0; i < 3; i++) {
1419 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420 sopass[i] = readw(ioaddr + RxFilterData);
1421 }
1422
1423
1424 writel(ChipReset, ioaddr + ChipCmd);
1425 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427 break;
1428 udelay(5);
1429 }
1430 if (i==NATSEMI_HW_TIMEOUT) {
1431 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432 dev->name, i*5);
1433 } else if (netif_msg_hw(np)) {
1434 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435 dev->name, i*5);
1436 }
1437
1438
1439 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440
1441 if (dev->if_port == PORT_TP)
1442 cfg &= ~(CfgExtPhy | CfgPhyDis);
1443 else
1444 cfg |= (CfgExtPhy | CfgPhyDis);
1445 writel(cfg, ioaddr + ChipConfig);
1446
1447 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448 writel(wcsr, ioaddr + WOLCmd);
1449
1450 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451
1452 for (i = 0; i < 3; i++) {
1453 writel(i*2, ioaddr + RxFilterAddr);
1454 writew(pmatch[i], ioaddr + RxFilterData);
1455 }
1456 for (i = 0; i < 3; i++) {
1457 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458 writew(sopass[i], ioaddr + RxFilterData);
1459 }
1460
1461 writel(rfcr, ioaddr + RxFilterAddr);
1462 }
1463
1464 static void reset_rx(struct net_device *dev)
1465 {
1466 int i;
1467 struct netdev_private *np = netdev_priv(dev);
1468 void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470 np->intr_status &= ~RxResetDone;
1471
1472 writel(RxReset, ioaddr + ChipCmd);
1473
1474 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475 np->intr_status |= readl(ioaddr + IntrStatus);
1476 if (np->intr_status & RxResetDone)
1477 break;
1478 udelay(15);
1479 }
1480 if (i==NATSEMI_HW_TIMEOUT) {
1481 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482 dev->name, i*15);
1483 } else if (netif_msg_hw(np)) {
1484 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485 dev->name, i*15);
1486 }
1487 }
1488
1489 static void natsemi_reload_eeprom(struct net_device *dev)
1490 {
1491 struct netdev_private *np = netdev_priv(dev);
1492 void __iomem *ioaddr = ns_ioaddr(dev);
1493 int i;
1494
1495 writel(EepromReload, ioaddr + PCIBusCfg);
1496 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497 udelay(50);
1498 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499 break;
1500 }
1501 if (i==NATSEMI_HW_TIMEOUT) {
1502 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503 pci_name(np->pci_dev), i*50);
1504 } else if (netif_msg_hw(np)) {
1505 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506 pci_name(np->pci_dev), i*50);
1507 }
1508 }
1509
1510 static void natsemi_stop_rxtx(struct net_device *dev)
1511 {
1512 void __iomem * ioaddr = ns_ioaddr(dev);
1513 struct netdev_private *np = netdev_priv(dev);
1514 int i;
1515
1516 writel(RxOff | TxOff, ioaddr + ChipCmd);
1517 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519 break;
1520 udelay(5);
1521 }
1522 if (i==NATSEMI_HW_TIMEOUT) {
1523 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524 dev->name, i*5);
1525 } else if (netif_msg_hw(np)) {
1526 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527 dev->name, i*5);
1528 }
1529 }
1530
1531 static int netdev_open(struct net_device *dev)
1532 {
1533 struct netdev_private *np = netdev_priv(dev);
1534 void __iomem * ioaddr = ns_ioaddr(dev);
1535 const int irq = np->pci_dev->irq;
1536 int i;
1537
1538
1539 natsemi_reset(dev);
1540
1541 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1542 if (i) return i;
1543
1544 if (netif_msg_ifup(np))
1545 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1546 dev->name, irq);
1547 i = alloc_ring(dev);
1548 if (i < 0) {
1549 free_irq(irq, dev);
1550 return i;
1551 }
1552 napi_enable(&np->napi);
1553
1554 init_ring(dev);
1555 spin_lock_irq(&np->lock);
1556 init_registers(dev);
1557
1558 for (i = 0; i < 3; i++) {
1559 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1560
1561 writel(i*2, ioaddr + RxFilterAddr);
1562 writew(mac, ioaddr + RxFilterData);
1563 }
1564 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1565 spin_unlock_irq(&np->lock);
1566
1567 netif_start_queue(dev);
1568
1569 if (netif_msg_ifup(np))
1570 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1571 dev->name, (int)readl(ioaddr + ChipCmd));
1572
1573
1574 timer_setup(&np->timer, netdev_timer, 0);
1575 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1576 add_timer(&np->timer);
1577
1578 return 0;
1579 }
1580
1581 static void do_cable_magic(struct net_device *dev)
1582 {
1583 struct netdev_private *np = netdev_priv(dev);
1584 void __iomem *ioaddr = ns_ioaddr(dev);
1585
1586 if (dev->if_port != PORT_TP)
1587 return;
1588
1589 if (np->srr >= SRR_DP83816_A5)
1590 return;
1591
1592
1593
1594
1595
1596
1597
1598 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1599 u16 data;
1600
1601 writew(1, ioaddr + PGSEL);
1602
1603
1604
1605
1606 data = readw(ioaddr + TSTDAT) & 0xff;
1607
1608
1609
1610
1611 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1612 np = netdev_priv(dev);
1613
1614
1615 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1616
1617 data = readw(ioaddr + DSPCFG);
1618 np->dspcfg = data | DSPCFG_LOCK;
1619 writew(np->dspcfg, ioaddr + DSPCFG);
1620 }
1621 writew(0, ioaddr + PGSEL);
1622 }
1623 }
1624
1625 static void undo_cable_magic(struct net_device *dev)
1626 {
1627 u16 data;
1628 struct netdev_private *np = netdev_priv(dev);
1629 void __iomem * ioaddr = ns_ioaddr(dev);
1630
1631 if (dev->if_port != PORT_TP)
1632 return;
1633
1634 if (np->srr >= SRR_DP83816_A5)
1635 return;
1636
1637 writew(1, ioaddr + PGSEL);
1638
1639 data = readw(ioaddr + DSPCFG);
1640 np->dspcfg = data & ~DSPCFG_LOCK;
1641 writew(np->dspcfg, ioaddr + DSPCFG);
1642 writew(0, ioaddr + PGSEL);
1643 }
1644
1645 static void check_link(struct net_device *dev)
1646 {
1647 struct netdev_private *np = netdev_priv(dev);
1648 void __iomem * ioaddr = ns_ioaddr(dev);
1649 int duplex = np->duplex;
1650 u16 bmsr;
1651
1652
1653 if (np->ignore_phy)
1654 goto propagate_state;
1655
1656
1657
1658
1659
1660 mdio_read(dev, MII_BMSR);
1661 bmsr = mdio_read(dev, MII_BMSR);
1662
1663 if (!(bmsr & BMSR_LSTATUS)) {
1664 if (netif_carrier_ok(dev)) {
1665 if (netif_msg_link(np))
1666 printk(KERN_NOTICE "%s: link down.\n",
1667 dev->name);
1668 netif_carrier_off(dev);
1669 undo_cable_magic(dev);
1670 }
1671 return;
1672 }
1673 if (!netif_carrier_ok(dev)) {
1674 if (netif_msg_link(np))
1675 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1676 netif_carrier_on(dev);
1677 do_cable_magic(dev);
1678 }
1679
1680 duplex = np->full_duplex;
1681 if (!duplex) {
1682 if (bmsr & BMSR_ANEGCOMPLETE) {
1683 int tmp = mii_nway_result(
1684 np->advertising & mdio_read(dev, MII_LPA));
1685 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1686 duplex = 1;
1687 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1688 duplex = 1;
1689 }
1690
1691 propagate_state:
1692
1693 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1694 if (netif_msg_link(np))
1695 printk(KERN_INFO
1696 "%s: Setting %s-duplex based on negotiated "
1697 "link capability.\n", dev->name,
1698 duplex ? "full" : "half");
1699 if (duplex) {
1700 np->rx_config |= RxAcceptTx;
1701 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1702 } else {
1703 np->rx_config &= ~RxAcceptTx;
1704 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1705 }
1706 writel(np->tx_config, ioaddr + TxConfig);
1707 writel(np->rx_config, ioaddr + RxConfig);
1708 }
1709 }
1710
1711 static void init_registers(struct net_device *dev)
1712 {
1713 struct netdev_private *np = netdev_priv(dev);
1714 void __iomem * ioaddr = ns_ioaddr(dev);
1715
1716 init_phy_fixup(dev);
1717
1718
1719 readl(ioaddr + IntrStatus);
1720
1721 writel(np->ring_dma, ioaddr + RxRingPtr);
1722 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1723 ioaddr + TxRingPtr);
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1740 TX_FLTH_VAL | TX_DRTH_VAL_START;
1741 writel(np->tx_config, ioaddr + TxConfig);
1742
1743
1744
1745
1746 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1747
1748 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1749 np->rx_config |= RxAcceptLong;
1750
1751 writel(np->rx_config, ioaddr + RxConfig);
1752
1753
1754
1755
1756
1757
1758
1759 np->SavedClkRun = readl(ioaddr + ClkRun);
1760 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1761 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1762 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1763 dev->name, readl(ioaddr + WOLCmd));
1764 }
1765
1766 check_link(dev);
1767 __set_rx_mode(dev);
1768
1769
1770 writel(DEFAULT_INTR, ioaddr + IntrMask);
1771 natsemi_irq_enable(dev);
1772
1773 writel(RxOn | TxOn, ioaddr + ChipCmd);
1774 writel(StatsClear, ioaddr + StatsCtrl);
1775 }
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790 static void netdev_timer(struct timer_list *t)
1791 {
1792 struct netdev_private *np = from_timer(np, t, timer);
1793 struct net_device *dev = np->dev;
1794 void __iomem * ioaddr = ns_ioaddr(dev);
1795 int next_tick = NATSEMI_TIMER_FREQ;
1796 const int irq = np->pci_dev->irq;
1797
1798 if (netif_msg_timer(np)) {
1799
1800
1801
1802 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803 dev->name);
1804 }
1805
1806 if (dev->if_port == PORT_TP) {
1807 u16 dspcfg;
1808
1809 spin_lock_irq(&np->lock);
1810
1811 writew(1, ioaddr+PGSEL);
1812 dspcfg = readw(ioaddr+DSPCFG);
1813 writew(0, ioaddr+PGSEL);
1814 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815 if (!netif_queue_stopped(dev)) {
1816 spin_unlock_irq(&np->lock);
1817 if (netif_msg_drv(np))
1818 printk(KERN_NOTICE "%s: possible phy reset: "
1819 "re-initializing\n", dev->name);
1820 disable_irq(irq);
1821 spin_lock_irq(&np->lock);
1822 natsemi_stop_rxtx(dev);
1823 dump_ring(dev);
1824 reinit_ring(dev);
1825 init_registers(dev);
1826 spin_unlock_irq(&np->lock);
1827 enable_irq(irq);
1828 } else {
1829
1830 next_tick = HZ;
1831 spin_unlock_irq(&np->lock);
1832 }
1833 } else {
1834
1835 check_link(dev);
1836 spin_unlock_irq(&np->lock);
1837 }
1838 } else {
1839 spin_lock_irq(&np->lock);
1840 check_link(dev);
1841 spin_unlock_irq(&np->lock);
1842 }
1843 if (np->oom) {
1844 disable_irq(irq);
1845 np->oom = 0;
1846 refill_rx(dev);
1847 enable_irq(irq);
1848 if (!np->oom) {
1849 writel(RxOn, ioaddr + ChipCmd);
1850 } else {
1851 next_tick = 1;
1852 }
1853 }
1854
1855 if (next_tick > 1)
1856 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857 else
1858 mod_timer(&np->timer, jiffies + next_tick);
1859 }
1860
1861 static void dump_ring(struct net_device *dev)
1862 {
1863 struct netdev_private *np = netdev_priv(dev);
1864
1865 if (netif_msg_pktdata(np)) {
1866 int i;
1867 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1868 for (i = 0; i < TX_RING_SIZE; i++) {
1869 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870 i, np->tx_ring[i].next_desc,
1871 np->tx_ring[i].cmd_status,
1872 np->tx_ring[i].addr);
1873 }
1874 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1875 for (i = 0; i < RX_RING_SIZE; i++) {
1876 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877 i, np->rx_ring[i].next_desc,
1878 np->rx_ring[i].cmd_status,
1879 np->rx_ring[i].addr);
1880 }
1881 }
1882 }
1883
1884 static void ns_tx_timeout(struct net_device *dev)
1885 {
1886 struct netdev_private *np = netdev_priv(dev);
1887 void __iomem * ioaddr = ns_ioaddr(dev);
1888 const int irq = np->pci_dev->irq;
1889
1890 disable_irq(irq);
1891 spin_lock_irq(&np->lock);
1892 if (!np->hands_off) {
1893 if (netif_msg_tx_err(np))
1894 printk(KERN_WARNING
1895 "%s: Transmit timed out, status %#08x,"
1896 " resetting...\n",
1897 dev->name, readl(ioaddr + IntrStatus));
1898 dump_ring(dev);
1899
1900 natsemi_reset(dev);
1901 reinit_ring(dev);
1902 init_registers(dev);
1903 } else {
1904 printk(KERN_WARNING
1905 "%s: tx_timeout while in hands_off state?\n",
1906 dev->name);
1907 }
1908 spin_unlock_irq(&np->lock);
1909 enable_irq(irq);
1910
1911 netif_trans_update(dev);
1912 dev->stats.tx_errors++;
1913 netif_wake_queue(dev);
1914 }
1915
1916 static int alloc_ring(struct net_device *dev)
1917 {
1918 struct netdev_private *np = netdev_priv(dev);
1919 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1920 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1921 &np->ring_dma);
1922 if (!np->rx_ring)
1923 return -ENOMEM;
1924 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925 return 0;
1926 }
1927
1928 static void refill_rx(struct net_device *dev)
1929 {
1930 struct netdev_private *np = netdev_priv(dev);
1931
1932
1933 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934 struct sk_buff *skb;
1935 int entry = np->dirty_rx % RX_RING_SIZE;
1936 if (np->rx_skbuff[entry] == NULL) {
1937 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938 skb = netdev_alloc_skb(dev, buflen);
1939 np->rx_skbuff[entry] = skb;
1940 if (skb == NULL)
1941 break;
1942 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943 skb->data, buflen, PCI_DMA_FROMDEVICE);
1944 if (pci_dma_mapping_error(np->pci_dev,
1945 np->rx_dma[entry])) {
1946 dev_kfree_skb_any(skb);
1947 np->rx_skbuff[entry] = NULL;
1948 break;
1949 }
1950 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1951 }
1952 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1953 }
1954 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1955 if (netif_msg_rx_err(np))
1956 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1957 np->oom = 1;
1958 }
1959 }
1960
1961 static void set_bufsize(struct net_device *dev)
1962 {
1963 struct netdev_private *np = netdev_priv(dev);
1964 if (dev->mtu <= ETH_DATA_LEN)
1965 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1966 else
1967 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1968 }
1969
1970
1971 static void init_ring(struct net_device *dev)
1972 {
1973 struct netdev_private *np = netdev_priv(dev);
1974 int i;
1975
1976
1977 np->dirty_tx = np->cur_tx = 0;
1978 for (i = 0; i < TX_RING_SIZE; i++) {
1979 np->tx_skbuff[i] = NULL;
1980 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1981 +sizeof(struct netdev_desc)
1982 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1983 np->tx_ring[i].cmd_status = 0;
1984 }
1985
1986
1987 np->dirty_rx = 0;
1988 np->cur_rx = RX_RING_SIZE;
1989 np->oom = 0;
1990 set_bufsize(dev);
1991
1992 np->rx_head_desc = &np->rx_ring[0];
1993
1994
1995
1996
1997
1998 for (i = 0; i < RX_RING_SIZE; i++) {
1999 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
2000 +sizeof(struct netdev_desc)
2001 *((i+1)%RX_RING_SIZE));
2002 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2003 np->rx_skbuff[i] = NULL;
2004 }
2005 refill_rx(dev);
2006 dump_ring(dev);
2007 }
2008
2009 static void drain_tx(struct net_device *dev)
2010 {
2011 struct netdev_private *np = netdev_priv(dev);
2012 int i;
2013
2014 for (i = 0; i < TX_RING_SIZE; i++) {
2015 if (np->tx_skbuff[i]) {
2016 pci_unmap_single(np->pci_dev,
2017 np->tx_dma[i], np->tx_skbuff[i]->len,
2018 PCI_DMA_TODEVICE);
2019 dev_kfree_skb(np->tx_skbuff[i]);
2020 dev->stats.tx_dropped++;
2021 }
2022 np->tx_skbuff[i] = NULL;
2023 }
2024 }
2025
2026 static void drain_rx(struct net_device *dev)
2027 {
2028 struct netdev_private *np = netdev_priv(dev);
2029 unsigned int buflen = np->rx_buf_sz;
2030 int i;
2031
2032
2033 for (i = 0; i < RX_RING_SIZE; i++) {
2034 np->rx_ring[i].cmd_status = 0;
2035 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0);
2036 if (np->rx_skbuff[i]) {
2037 pci_unmap_single(np->pci_dev, np->rx_dma[i],
2038 buflen + NATSEMI_PADDING,
2039 PCI_DMA_FROMDEVICE);
2040 dev_kfree_skb(np->rx_skbuff[i]);
2041 }
2042 np->rx_skbuff[i] = NULL;
2043 }
2044 }
2045
2046 static void drain_ring(struct net_device *dev)
2047 {
2048 drain_rx(dev);
2049 drain_tx(dev);
2050 }
2051
2052 static void free_ring(struct net_device *dev)
2053 {
2054 struct netdev_private *np = netdev_priv(dev);
2055 pci_free_consistent(np->pci_dev,
2056 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2057 np->rx_ring, np->ring_dma);
2058 }
2059
2060 static void reinit_rx(struct net_device *dev)
2061 {
2062 struct netdev_private *np = netdev_priv(dev);
2063 int i;
2064
2065
2066 np->dirty_rx = 0;
2067 np->cur_rx = RX_RING_SIZE;
2068 np->rx_head_desc = &np->rx_ring[0];
2069
2070 for (i = 0; i < RX_RING_SIZE; i++)
2071 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2072
2073 refill_rx(dev);
2074 }
2075
2076 static void reinit_ring(struct net_device *dev)
2077 {
2078 struct netdev_private *np = netdev_priv(dev);
2079 int i;
2080
2081
2082 drain_tx(dev);
2083 np->dirty_tx = np->cur_tx = 0;
2084 for (i=0;i<TX_RING_SIZE;i++)
2085 np->tx_ring[i].cmd_status = 0;
2086
2087 reinit_rx(dev);
2088 }
2089
2090 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2091 {
2092 struct netdev_private *np = netdev_priv(dev);
2093 void __iomem * ioaddr = ns_ioaddr(dev);
2094 unsigned entry;
2095 unsigned long flags;
2096
2097
2098
2099
2100
2101 entry = np->cur_tx % TX_RING_SIZE;
2102
2103 np->tx_skbuff[entry] = skb;
2104 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2105 skb->data,skb->len, PCI_DMA_TODEVICE);
2106 if (pci_dma_mapping_error(np->pci_dev, np->tx_dma[entry])) {
2107 np->tx_skbuff[entry] = NULL;
2108 dev_kfree_skb_irq(skb);
2109 dev->stats.tx_dropped++;
2110 return NETDEV_TX_OK;
2111 }
2112
2113 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2114
2115 spin_lock_irqsave(&np->lock, flags);
2116
2117 if (!np->hands_off) {
2118 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2119
2120
2121 wmb();
2122 np->cur_tx++;
2123 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2124 netdev_tx_done(dev);
2125 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2126 netif_stop_queue(dev);
2127 }
2128
2129 writel(TxOn, ioaddr + ChipCmd);
2130 } else {
2131 dev_kfree_skb_irq(skb);
2132 dev->stats.tx_dropped++;
2133 }
2134 spin_unlock_irqrestore(&np->lock, flags);
2135
2136 if (netif_msg_tx_queued(np)) {
2137 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2138 dev->name, np->cur_tx, entry);
2139 }
2140 return NETDEV_TX_OK;
2141 }
2142
2143 static void netdev_tx_done(struct net_device *dev)
2144 {
2145 struct netdev_private *np = netdev_priv(dev);
2146
2147 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2148 int entry = np->dirty_tx % TX_RING_SIZE;
2149 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2150 break;
2151 if (netif_msg_tx_done(np))
2152 printk(KERN_DEBUG
2153 "%s: tx frame #%d finished, status %#08x.\n",
2154 dev->name, np->dirty_tx,
2155 le32_to_cpu(np->tx_ring[entry].cmd_status));
2156 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2157 dev->stats.tx_packets++;
2158 dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2159 } else {
2160 int tx_status =
2161 le32_to_cpu(np->tx_ring[entry].cmd_status);
2162 if (tx_status & (DescTxAbort|DescTxExcColl))
2163 dev->stats.tx_aborted_errors++;
2164 if (tx_status & DescTxFIFO)
2165 dev->stats.tx_fifo_errors++;
2166 if (tx_status & DescTxCarrier)
2167 dev->stats.tx_carrier_errors++;
2168 if (tx_status & DescTxOOWCol)
2169 dev->stats.tx_window_errors++;
2170 dev->stats.tx_errors++;
2171 }
2172 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2173 np->tx_skbuff[entry]->len,
2174 PCI_DMA_TODEVICE);
2175
2176 dev_consume_skb_irq(np->tx_skbuff[entry]);
2177 np->tx_skbuff[entry] = NULL;
2178 }
2179 if (netif_queue_stopped(dev) &&
2180 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2181
2182 netif_wake_queue(dev);
2183 }
2184 }
2185
2186
2187
2188 static irqreturn_t intr_handler(int irq, void *dev_instance)
2189 {
2190 struct net_device *dev = dev_instance;
2191 struct netdev_private *np = netdev_priv(dev);
2192 void __iomem * ioaddr = ns_ioaddr(dev);
2193
2194
2195
2196
2197 if (np->hands_off || !readl(ioaddr + IntrEnable))
2198 return IRQ_NONE;
2199
2200 np->intr_status = readl(ioaddr + IntrStatus);
2201
2202 if (!np->intr_status)
2203 return IRQ_NONE;
2204
2205 if (netif_msg_intr(np))
2206 printk(KERN_DEBUG
2207 "%s: Interrupt, status %#08x, mask %#08x.\n",
2208 dev->name, np->intr_status,
2209 readl(ioaddr + IntrMask));
2210
2211 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2212
2213 if (napi_schedule_prep(&np->napi)) {
2214
2215 natsemi_irq_disable(dev);
2216 __napi_schedule(&np->napi);
2217 } else
2218 printk(KERN_WARNING
2219 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2220 dev->name, np->intr_status,
2221 readl(ioaddr + IntrMask));
2222
2223 return IRQ_HANDLED;
2224 }
2225
2226
2227
2228
2229 static int natsemi_poll(struct napi_struct *napi, int budget)
2230 {
2231 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2232 struct net_device *dev = np->dev;
2233 void __iomem * ioaddr = ns_ioaddr(dev);
2234 int work_done = 0;
2235
2236 do {
2237 if (netif_msg_intr(np))
2238 printk(KERN_DEBUG
2239 "%s: Poll, status %#08x, mask %#08x.\n",
2240 dev->name, np->intr_status,
2241 readl(ioaddr + IntrMask));
2242
2243
2244
2245 if (np->intr_status &
2246 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2247 IntrRxErr | IntrRxOverrun)) {
2248 netdev_rx(dev, &work_done, budget);
2249 }
2250
2251 if (np->intr_status &
2252 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2253 spin_lock(&np->lock);
2254 netdev_tx_done(dev);
2255 spin_unlock(&np->lock);
2256 }
2257
2258
2259 if (np->intr_status & IntrAbnormalSummary)
2260 netdev_error(dev, np->intr_status);
2261
2262 if (work_done >= budget)
2263 return work_done;
2264
2265 np->intr_status = readl(ioaddr + IntrStatus);
2266 } while (np->intr_status);
2267
2268 napi_complete_done(napi, work_done);
2269
2270
2271
2272 spin_lock(&np->lock);
2273 if (!np->hands_off)
2274 natsemi_irq_enable(dev);
2275 spin_unlock(&np->lock);
2276
2277 return work_done;
2278 }
2279
2280
2281
2282 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2283 {
2284 struct netdev_private *np = netdev_priv(dev);
2285 int entry = np->cur_rx % RX_RING_SIZE;
2286 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2287 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2288 unsigned int buflen = np->rx_buf_sz;
2289 void __iomem * ioaddr = ns_ioaddr(dev);
2290
2291
2292 while (desc_status < 0) {
2293 int pkt_len;
2294 if (netif_msg_rx_status(np))
2295 printk(KERN_DEBUG
2296 " netdev_rx() entry %d status was %#08x.\n",
2297 entry, desc_status);
2298 if (--boguscnt < 0)
2299 break;
2300
2301 if (*work_done >= work_to_do)
2302 break;
2303
2304 (*work_done)++;
2305
2306 pkt_len = (desc_status & DescSizeMask) - 4;
2307 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2308 if (desc_status & DescMore) {
2309 unsigned long flags;
2310
2311 if (netif_msg_rx_err(np))
2312 printk(KERN_WARNING
2313 "%s: Oversized(?) Ethernet "
2314 "frame spanned multiple "
2315 "buffers, entry %#08x "
2316 "status %#08x.\n", dev->name,
2317 np->cur_rx, desc_status);
2318 dev->stats.rx_length_errors++;
2319
2320
2321
2322
2323
2324
2325 spin_lock_irqsave(&np->lock, flags);
2326 reset_rx(dev);
2327 reinit_rx(dev);
2328 writel(np->ring_dma, ioaddr + RxRingPtr);
2329 check_link(dev);
2330 spin_unlock_irqrestore(&np->lock, flags);
2331
2332
2333
2334 break;
2335
2336 } else {
2337
2338 dev->stats.rx_errors++;
2339 if (desc_status & (DescRxAbort|DescRxOver))
2340 dev->stats.rx_over_errors++;
2341 if (desc_status & (DescRxLong|DescRxRunt))
2342 dev->stats.rx_length_errors++;
2343 if (desc_status & (DescRxInvalid|DescRxAlign))
2344 dev->stats.rx_frame_errors++;
2345 if (desc_status & DescRxCRC)
2346 dev->stats.rx_crc_errors++;
2347 }
2348 } else if (pkt_len > np->rx_buf_sz) {
2349
2350
2351
2352
2353 } else {
2354 struct sk_buff *skb;
2355
2356
2357
2358 if (pkt_len < rx_copybreak &&
2359 (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2360
2361 skb_reserve(skb, RX_OFFSET);
2362 pci_dma_sync_single_for_cpu(np->pci_dev,
2363 np->rx_dma[entry],
2364 buflen,
2365 PCI_DMA_FROMDEVICE);
2366 skb_copy_to_linear_data(skb,
2367 np->rx_skbuff[entry]->data, pkt_len);
2368 skb_put(skb, pkt_len);
2369 pci_dma_sync_single_for_device(np->pci_dev,
2370 np->rx_dma[entry],
2371 buflen,
2372 PCI_DMA_FROMDEVICE);
2373 } else {
2374 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2375 buflen + NATSEMI_PADDING,
2376 PCI_DMA_FROMDEVICE);
2377 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2378 np->rx_skbuff[entry] = NULL;
2379 }
2380 skb->protocol = eth_type_trans(skb, dev);
2381 netif_receive_skb(skb);
2382 dev->stats.rx_packets++;
2383 dev->stats.rx_bytes += pkt_len;
2384 }
2385 entry = (++np->cur_rx) % RX_RING_SIZE;
2386 np->rx_head_desc = &np->rx_ring[entry];
2387 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2388 }
2389 refill_rx(dev);
2390
2391
2392 if (np->oom)
2393 mod_timer(&np->timer, jiffies + 1);
2394 else
2395 writel(RxOn, ioaddr + ChipCmd);
2396 }
2397
2398 static void netdev_error(struct net_device *dev, int intr_status)
2399 {
2400 struct netdev_private *np = netdev_priv(dev);
2401 void __iomem * ioaddr = ns_ioaddr(dev);
2402
2403 spin_lock(&np->lock);
2404 if (intr_status & LinkChange) {
2405 u16 lpa = mdio_read(dev, MII_LPA);
2406 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2407 netif_msg_link(np)) {
2408 printk(KERN_INFO
2409 "%s: Autonegotiation advertising"
2410 " %#04x partner %#04x.\n", dev->name,
2411 np->advertising, lpa);
2412 }
2413
2414
2415 readw(ioaddr + MIntrStatus);
2416 check_link(dev);
2417 }
2418 if (intr_status & StatsMax) {
2419 __get_stats(dev);
2420 }
2421 if (intr_status & IntrTxUnderrun) {
2422 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2423 np->tx_config += TX_DRTH_VAL_INC;
2424 if (netif_msg_tx_err(np))
2425 printk(KERN_NOTICE
2426 "%s: increased tx threshold, txcfg %#08x.\n",
2427 dev->name, np->tx_config);
2428 } else {
2429 if (netif_msg_tx_err(np))
2430 printk(KERN_NOTICE
2431 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2432 dev->name, np->tx_config);
2433 }
2434 writel(np->tx_config, ioaddr + TxConfig);
2435 }
2436 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2437 int wol_status = readl(ioaddr + WOLCmd);
2438 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2439 dev->name, wol_status);
2440 }
2441 if (intr_status & RxStatusFIFOOver) {
2442 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2443 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2444 dev->name);
2445 }
2446 dev->stats.rx_fifo_errors++;
2447 dev->stats.rx_errors++;
2448 }
2449
2450 if (intr_status & IntrPCIErr) {
2451 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2452 intr_status & IntrPCIErr);
2453 dev->stats.tx_fifo_errors++;
2454 dev->stats.tx_errors++;
2455 dev->stats.rx_fifo_errors++;
2456 dev->stats.rx_errors++;
2457 }
2458 spin_unlock(&np->lock);
2459 }
2460
2461 static void __get_stats(struct net_device *dev)
2462 {
2463 void __iomem * ioaddr = ns_ioaddr(dev);
2464
2465
2466 dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2467 dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2468 }
2469
2470 static struct net_device_stats *get_stats(struct net_device *dev)
2471 {
2472 struct netdev_private *np = netdev_priv(dev);
2473
2474
2475 spin_lock_irq(&np->lock);
2476 if (netif_running(dev) && !np->hands_off)
2477 __get_stats(dev);
2478 spin_unlock_irq(&np->lock);
2479
2480 return &dev->stats;
2481 }
2482
2483 #ifdef CONFIG_NET_POLL_CONTROLLER
2484 static void natsemi_poll_controller(struct net_device *dev)
2485 {
2486 struct netdev_private *np = netdev_priv(dev);
2487 const int irq = np->pci_dev->irq;
2488
2489 disable_irq(irq);
2490 intr_handler(irq, dev);
2491 enable_irq(irq);
2492 }
2493 #endif
2494
2495 #define HASH_TABLE 0x200
2496 static void __set_rx_mode(struct net_device *dev)
2497 {
2498 void __iomem * ioaddr = ns_ioaddr(dev);
2499 struct netdev_private *np = netdev_priv(dev);
2500 u8 mc_filter[64];
2501 u32 rx_mode;
2502
2503 if (dev->flags & IFF_PROMISC) {
2504 rx_mode = RxFilterEnable | AcceptBroadcast
2505 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2506 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2507 (dev->flags & IFF_ALLMULTI)) {
2508 rx_mode = RxFilterEnable | AcceptBroadcast
2509 | AcceptAllMulticast | AcceptMyPhys;
2510 } else {
2511 struct netdev_hw_addr *ha;
2512 int i;
2513
2514 memset(mc_filter, 0, sizeof(mc_filter));
2515 netdev_for_each_mc_addr(ha, dev) {
2516 int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2517 mc_filter[b/8] |= (1 << (b & 0x07));
2518 }
2519 rx_mode = RxFilterEnable | AcceptBroadcast
2520 | AcceptMulticast | AcceptMyPhys;
2521 for (i = 0; i < 64; i += 2) {
2522 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2523 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2524 ioaddr + RxFilterData);
2525 }
2526 }
2527 writel(rx_mode, ioaddr + RxFilterAddr);
2528 np->cur_rx_mode = rx_mode;
2529 }
2530
2531 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2532 {
2533 dev->mtu = new_mtu;
2534
2535
2536 if (netif_running(dev)) {
2537 struct netdev_private *np = netdev_priv(dev);
2538 void __iomem * ioaddr = ns_ioaddr(dev);
2539 const int irq = np->pci_dev->irq;
2540
2541 disable_irq(irq);
2542 spin_lock(&np->lock);
2543
2544 natsemi_stop_rxtx(dev);
2545
2546 drain_rx(dev);
2547
2548 set_bufsize(dev);
2549 reinit_rx(dev);
2550 writel(np->ring_dma, ioaddr + RxRingPtr);
2551
2552 writel(RxOn | TxOn, ioaddr + ChipCmd);
2553 spin_unlock(&np->lock);
2554 enable_irq(irq);
2555 }
2556 return 0;
2557 }
2558
2559 static void set_rx_mode(struct net_device *dev)
2560 {
2561 struct netdev_private *np = netdev_priv(dev);
2562 spin_lock_irq(&np->lock);
2563 if (!np->hands_off)
2564 __set_rx_mode(dev);
2565 spin_unlock_irq(&np->lock);
2566 }
2567
2568 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2569 {
2570 struct netdev_private *np = netdev_priv(dev);
2571 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2572 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2573 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2574 }
2575
2576 static int get_regs_len(struct net_device *dev)
2577 {
2578 return NATSEMI_REGS_SIZE;
2579 }
2580
2581 static int get_eeprom_len(struct net_device *dev)
2582 {
2583 struct netdev_private *np = netdev_priv(dev);
2584 return np->eeprom_size;
2585 }
2586
2587 static int get_link_ksettings(struct net_device *dev,
2588 struct ethtool_link_ksettings *ecmd)
2589 {
2590 struct netdev_private *np = netdev_priv(dev);
2591 spin_lock_irq(&np->lock);
2592 netdev_get_ecmd(dev, ecmd);
2593 spin_unlock_irq(&np->lock);
2594 return 0;
2595 }
2596
2597 static int set_link_ksettings(struct net_device *dev,
2598 const struct ethtool_link_ksettings *ecmd)
2599 {
2600 struct netdev_private *np = netdev_priv(dev);
2601 int res;
2602 spin_lock_irq(&np->lock);
2603 res = netdev_set_ecmd(dev, ecmd);
2604 spin_unlock_irq(&np->lock);
2605 return res;
2606 }
2607
2608 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2609 {
2610 struct netdev_private *np = netdev_priv(dev);
2611 spin_lock_irq(&np->lock);
2612 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2613 netdev_get_sopass(dev, wol->sopass);
2614 spin_unlock_irq(&np->lock);
2615 }
2616
2617 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2618 {
2619 struct netdev_private *np = netdev_priv(dev);
2620 int res;
2621 spin_lock_irq(&np->lock);
2622 netdev_set_wol(dev, wol->wolopts);
2623 res = netdev_set_sopass(dev, wol->sopass);
2624 spin_unlock_irq(&np->lock);
2625 return res;
2626 }
2627
2628 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2629 {
2630 struct netdev_private *np = netdev_priv(dev);
2631 regs->version = NATSEMI_REGS_VER;
2632 spin_lock_irq(&np->lock);
2633 netdev_get_regs(dev, buf);
2634 spin_unlock_irq(&np->lock);
2635 }
2636
2637 static u32 get_msglevel(struct net_device *dev)
2638 {
2639 struct netdev_private *np = netdev_priv(dev);
2640 return np->msg_enable;
2641 }
2642
2643 static void set_msglevel(struct net_device *dev, u32 val)
2644 {
2645 struct netdev_private *np = netdev_priv(dev);
2646 np->msg_enable = val;
2647 }
2648
2649 static int nway_reset(struct net_device *dev)
2650 {
2651 int tmp;
2652 int r = -EINVAL;
2653
2654 tmp = mdio_read(dev, MII_BMCR);
2655 if (tmp & BMCR_ANENABLE) {
2656 tmp |= (BMCR_ANRESTART);
2657 mdio_write(dev, MII_BMCR, tmp);
2658 r = 0;
2659 }
2660 return r;
2661 }
2662
2663 static u32 get_link(struct net_device *dev)
2664 {
2665
2666 mdio_read(dev, MII_BMSR);
2667 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2668 }
2669
2670 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2671 {
2672 struct netdev_private *np = netdev_priv(dev);
2673 u8 *eebuf;
2674 int res;
2675
2676 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2677 if (!eebuf)
2678 return -ENOMEM;
2679
2680 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2681 spin_lock_irq(&np->lock);
2682 res = netdev_get_eeprom(dev, eebuf);
2683 spin_unlock_irq(&np->lock);
2684 if (!res)
2685 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2686 kfree(eebuf);
2687 return res;
2688 }
2689
2690 static const struct ethtool_ops ethtool_ops = {
2691 .get_drvinfo = get_drvinfo,
2692 .get_regs_len = get_regs_len,
2693 .get_eeprom_len = get_eeprom_len,
2694 .get_wol = get_wol,
2695 .set_wol = set_wol,
2696 .get_regs = get_regs,
2697 .get_msglevel = get_msglevel,
2698 .set_msglevel = set_msglevel,
2699 .nway_reset = nway_reset,
2700 .get_link = get_link,
2701 .get_eeprom = get_eeprom,
2702 .get_link_ksettings = get_link_ksettings,
2703 .set_link_ksettings = set_link_ksettings,
2704 };
2705
2706 static int netdev_set_wol(struct net_device *dev, u32 newval)
2707 {
2708 struct netdev_private *np = netdev_priv(dev);
2709 void __iomem * ioaddr = ns_ioaddr(dev);
2710 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2711
2712
2713 if (newval & WAKE_PHY)
2714 data |= WakePhy;
2715 if (newval & WAKE_UCAST)
2716 data |= WakeUnicast;
2717 if (newval & WAKE_MCAST)
2718 data |= WakeMulticast;
2719 if (newval & WAKE_BCAST)
2720 data |= WakeBroadcast;
2721 if (newval & WAKE_ARP)
2722 data |= WakeArp;
2723 if (newval & WAKE_MAGIC)
2724 data |= WakeMagic;
2725 if (np->srr >= SRR_DP83815_D) {
2726 if (newval & WAKE_MAGICSECURE) {
2727 data |= WakeMagicSecure;
2728 }
2729 }
2730
2731 writel(data, ioaddr + WOLCmd);
2732
2733 return 0;
2734 }
2735
2736 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2737 {
2738 struct netdev_private *np = netdev_priv(dev);
2739 void __iomem * ioaddr = ns_ioaddr(dev);
2740 u32 regval = readl(ioaddr + WOLCmd);
2741
2742 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2743 | WAKE_ARP | WAKE_MAGIC);
2744
2745 if (np->srr >= SRR_DP83815_D) {
2746
2747 *supported |= WAKE_MAGICSECURE;
2748 }
2749 *cur = 0;
2750
2751
2752 if (regval & WakePhy)
2753 *cur |= WAKE_PHY;
2754 if (regval & WakeUnicast)
2755 *cur |= WAKE_UCAST;
2756 if (regval & WakeMulticast)
2757 *cur |= WAKE_MCAST;
2758 if (regval & WakeBroadcast)
2759 *cur |= WAKE_BCAST;
2760 if (regval & WakeArp)
2761 *cur |= WAKE_ARP;
2762 if (regval & WakeMagic)
2763 *cur |= WAKE_MAGIC;
2764 if (regval & WakeMagicSecure) {
2765
2766 *cur |= WAKE_MAGICSECURE;
2767 }
2768
2769 return 0;
2770 }
2771
2772 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2773 {
2774 struct netdev_private *np = netdev_priv(dev);
2775 void __iomem * ioaddr = ns_ioaddr(dev);
2776 u16 *sval = (u16 *)newval;
2777 u32 addr;
2778
2779 if (np->srr < SRR_DP83815_D) {
2780 return 0;
2781 }
2782
2783
2784 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2785 addr &= ~RxFilterEnable;
2786 writel(addr, ioaddr + RxFilterAddr);
2787
2788
2789 writel(addr | 0xa, ioaddr + RxFilterAddr);
2790 writew(sval[0], ioaddr + RxFilterData);
2791
2792 writel(addr | 0xc, ioaddr + RxFilterAddr);
2793 writew(sval[1], ioaddr + RxFilterData);
2794
2795 writel(addr | 0xe, ioaddr + RxFilterAddr);
2796 writew(sval[2], ioaddr + RxFilterData);
2797
2798
2799 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2800
2801 return 0;
2802 }
2803
2804 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2805 {
2806 struct netdev_private *np = netdev_priv(dev);
2807 void __iomem * ioaddr = ns_ioaddr(dev);
2808 u16 *sval = (u16 *)data;
2809 u32 addr;
2810
2811 if (np->srr < SRR_DP83815_D) {
2812 sval[0] = sval[1] = sval[2] = 0;
2813 return 0;
2814 }
2815
2816
2817 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2818
2819 writel(addr | 0xa, ioaddr + RxFilterAddr);
2820 sval[0] = readw(ioaddr + RxFilterData);
2821
2822 writel(addr | 0xc, ioaddr + RxFilterAddr);
2823 sval[1] = readw(ioaddr + RxFilterData);
2824
2825 writel(addr | 0xe, ioaddr + RxFilterAddr);
2826 sval[2] = readw(ioaddr + RxFilterData);
2827
2828 writel(addr, ioaddr + RxFilterAddr);
2829
2830 return 0;
2831 }
2832
2833 static int netdev_get_ecmd(struct net_device *dev,
2834 struct ethtool_link_ksettings *ecmd)
2835 {
2836 struct netdev_private *np = netdev_priv(dev);
2837 u32 supported, advertising;
2838 u32 tmp;
2839
2840 ecmd->base.port = dev->if_port;
2841 ecmd->base.speed = np->speed;
2842 ecmd->base.duplex = np->duplex;
2843 ecmd->base.autoneg = np->autoneg;
2844 advertising = 0;
2845
2846 if (np->advertising & ADVERTISE_10HALF)
2847 advertising |= ADVERTISED_10baseT_Half;
2848 if (np->advertising & ADVERTISE_10FULL)
2849 advertising |= ADVERTISED_10baseT_Full;
2850 if (np->advertising & ADVERTISE_100HALF)
2851 advertising |= ADVERTISED_100baseT_Half;
2852 if (np->advertising & ADVERTISE_100FULL)
2853 advertising |= ADVERTISED_100baseT_Full;
2854 supported = (SUPPORTED_Autoneg |
2855 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2856 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2857 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2858 ecmd->base.phy_address = np->phy_addr_external;
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878 switch (ecmd->base.port) {
2879 default:
2880 case PORT_TP:
2881 advertising |= ADVERTISED_TP;
2882 break;
2883 case PORT_MII:
2884 advertising |= ADVERTISED_MII;
2885 break;
2886 case PORT_FIBRE:
2887 advertising |= ADVERTISED_FIBRE;
2888 break;
2889 }
2890
2891
2892 if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2893 advertising |= ADVERTISED_Autoneg;
2894 tmp = mii_nway_result(
2895 np->advertising & mdio_read(dev, MII_LPA));
2896 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2897 ecmd->base.speed = SPEED_100;
2898 else
2899 ecmd->base.speed = SPEED_10;
2900 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2901 ecmd->base.duplex = DUPLEX_FULL;
2902 else
2903 ecmd->base.duplex = DUPLEX_HALF;
2904 }
2905
2906
2907
2908 ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2909 supported);
2910 ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2911 advertising);
2912
2913 return 0;
2914 }
2915
2916 static int netdev_set_ecmd(struct net_device *dev,
2917 const struct ethtool_link_ksettings *ecmd)
2918 {
2919 struct netdev_private *np = netdev_priv(dev);
2920 u32 advertising;
2921
2922 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2923 ecmd->link_modes.advertising);
2924
2925 if (ecmd->base.port != PORT_TP &&
2926 ecmd->base.port != PORT_MII &&
2927 ecmd->base.port != PORT_FIBRE)
2928 return -EINVAL;
2929 if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2930 if ((advertising & (ADVERTISED_10baseT_Half |
2931 ADVERTISED_10baseT_Full |
2932 ADVERTISED_100baseT_Half |
2933 ADVERTISED_100baseT_Full)) == 0) {
2934 return -EINVAL;
2935 }
2936 } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2937 u32 speed = ecmd->base.speed;
2938 if (speed != SPEED_10 && speed != SPEED_100)
2939 return -EINVAL;
2940 if (ecmd->base.duplex != DUPLEX_HALF &&
2941 ecmd->base.duplex != DUPLEX_FULL)
2942 return -EINVAL;
2943 } else {
2944 return -EINVAL;
2945 }
2946
2947
2948
2949
2950
2951
2952 if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2953 ecmd->base.port == PORT_TP))
2954 return -EINVAL;
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972 dev->if_port = ecmd->base.port;
2973 np->autoneg = ecmd->base.autoneg;
2974 np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2975 if (np->autoneg == AUTONEG_ENABLE) {
2976
2977 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2978 if (advertising & ADVERTISED_10baseT_Half)
2979 np->advertising |= ADVERTISE_10HALF;
2980 if (advertising & ADVERTISED_10baseT_Full)
2981 np->advertising |= ADVERTISE_10FULL;
2982 if (advertising & ADVERTISED_100baseT_Half)
2983 np->advertising |= ADVERTISE_100HALF;
2984 if (advertising & ADVERTISED_100baseT_Full)
2985 np->advertising |= ADVERTISE_100FULL;
2986 } else {
2987 np->speed = ecmd->base.speed;
2988 np->duplex = ecmd->base.duplex;
2989
2990 if (np->duplex == DUPLEX_HALF)
2991 np->full_duplex = 0;
2992 }
2993
2994
2995 if (ecmd->base.port == PORT_TP)
2996 switch_port_internal(dev);
2997 else
2998 switch_port_external(dev);
2999
3000
3001 init_phy_fixup(dev);
3002 check_link(dev);
3003 return 0;
3004 }
3005
3006 static int netdev_get_regs(struct net_device *dev, u8 *buf)
3007 {
3008 int i;
3009 int j;
3010 u32 rfcr;
3011 u32 *rbuf = (u32 *)buf;
3012 void __iomem * ioaddr = ns_ioaddr(dev);
3013
3014
3015 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3016 rbuf[i] = readl(ioaddr + i*4);
3017 }
3018
3019
3020 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3021 rbuf[i] = mdio_read(dev, i & 0x1f);
3022
3023
3024 writew(1, ioaddr + PGSEL);
3025 rbuf[i++] = readw(ioaddr + PMDCSR);
3026 rbuf[i++] = readw(ioaddr + TSTDAT);
3027 rbuf[i++] = readw(ioaddr + DSPCFG);
3028 rbuf[i++] = readw(ioaddr + SDCFG);
3029 writew(0, ioaddr + PGSEL);
3030
3031
3032 rfcr = readl(ioaddr + RxFilterAddr);
3033 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3034 writel(j*2, ioaddr + RxFilterAddr);
3035 rbuf[i++] = readw(ioaddr + RxFilterData);
3036 }
3037 writel(rfcr, ioaddr + RxFilterAddr);
3038
3039
3040 if (rbuf[4] & rbuf[5]) {
3041 printk(KERN_WARNING
3042 "%s: shoot, we dropped an interrupt (%#08x)\n",
3043 dev->name, rbuf[4] & rbuf[5]);
3044 }
3045
3046 return 0;
3047 }
3048
3049 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3050 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3051 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3052 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3053 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3054 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3055 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3056 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3057
3058 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3059 {
3060 int i;
3061 u16 *ebuf = (u16 *)buf;
3062 void __iomem * ioaddr = ns_ioaddr(dev);
3063 struct netdev_private *np = netdev_priv(dev);
3064
3065
3066 for (i = 0; i < np->eeprom_size/2; i++) {
3067 ebuf[i] = eeprom_read(ioaddr, i);
3068
3069
3070
3071 ebuf[i] = SWAP_BITS(ebuf[i]);
3072 }
3073 return 0;
3074 }
3075
3076 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3077 {
3078 struct mii_ioctl_data *data = if_mii(rq);
3079 struct netdev_private *np = netdev_priv(dev);
3080
3081 switch(cmd) {
3082 case SIOCGMIIPHY:
3083 data->phy_id = np->phy_addr_external;
3084
3085
3086 case SIOCGMIIREG:
3087
3088
3089
3090
3091 if (dev->if_port == PORT_TP) {
3092 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3093 data->val_out = mdio_read(dev,
3094 data->reg_num & 0x1f);
3095 else
3096 data->val_out = 0;
3097 } else {
3098 move_int_phy(dev, data->phy_id & 0x1f);
3099 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3100 data->reg_num & 0x1f);
3101 }
3102 return 0;
3103
3104 case SIOCSMIIREG:
3105 if (dev->if_port == PORT_TP) {
3106 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3107 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3108 np->advertising = data->val_in;
3109 mdio_write(dev, data->reg_num & 0x1f,
3110 data->val_in);
3111 }
3112 } else {
3113 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3114 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3115 np->advertising = data->val_in;
3116 }
3117 move_int_phy(dev, data->phy_id & 0x1f);
3118 miiport_write(dev, data->phy_id & 0x1f,
3119 data->reg_num & 0x1f,
3120 data->val_in);
3121 }
3122 return 0;
3123 default:
3124 return -EOPNOTSUPP;
3125 }
3126 }
3127
3128 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3129 {
3130 void __iomem * ioaddr = ns_ioaddr(dev);
3131 struct netdev_private *np = netdev_priv(dev);
3132
3133 if (netif_msg_wol(np))
3134 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3135 dev->name);
3136
3137
3138
3139
3140
3141 writel(0, ioaddr + RxRingPtr);
3142
3143
3144 readl(ioaddr + WOLCmd);
3145
3146
3147 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3148
3149
3150 writel(RxOn, ioaddr + ChipCmd);
3151
3152 if (enable_intr) {
3153
3154
3155
3156 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3157 natsemi_irq_enable(dev);
3158 }
3159 }
3160
3161 static int netdev_close(struct net_device *dev)
3162 {
3163 void __iomem * ioaddr = ns_ioaddr(dev);
3164 struct netdev_private *np = netdev_priv(dev);
3165 const int irq = np->pci_dev->irq;
3166
3167 if (netif_msg_ifdown(np))
3168 printk(KERN_DEBUG
3169 "%s: Shutting down ethercard, status was %#04x.\n",
3170 dev->name, (int)readl(ioaddr + ChipCmd));
3171 if (netif_msg_pktdata(np))
3172 printk(KERN_DEBUG
3173 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3174 dev->name, np->cur_tx, np->dirty_tx,
3175 np->cur_rx, np->dirty_rx);
3176
3177 napi_disable(&np->napi);
3178
3179
3180
3181
3182
3183
3184
3185
3186 del_timer_sync(&np->timer);
3187 disable_irq(irq);
3188 spin_lock_irq(&np->lock);
3189 natsemi_irq_disable(dev);
3190 np->hands_off = 1;
3191 spin_unlock_irq(&np->lock);
3192 enable_irq(irq);
3193
3194 free_irq(irq, dev);
3195
3196
3197
3198
3199
3200 spin_lock_irq(&np->lock);
3201 np->hands_off = 0;
3202 readl(ioaddr + IntrMask);
3203 readw(ioaddr + MIntrStatus);
3204
3205
3206 writel(StatsFreeze, ioaddr + StatsCtrl);
3207
3208
3209 natsemi_stop_rxtx(dev);
3210
3211 __get_stats(dev);
3212 spin_unlock_irq(&np->lock);
3213
3214
3215 netif_carrier_off(dev);
3216 netif_stop_queue(dev);
3217
3218 dump_ring(dev);
3219 drain_ring(dev);
3220 free_ring(dev);
3221
3222 {
3223 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3224 if (wol) {
3225
3226
3227
3228 enable_wol_mode(dev, 0);
3229 } else {
3230
3231 writel(np->SavedClkRun, ioaddr + ClkRun);
3232 }
3233 }
3234 return 0;
3235 }
3236
3237
3238 static void natsemi_remove1(struct pci_dev *pdev)
3239 {
3240 struct net_device *dev = pci_get_drvdata(pdev);
3241 void __iomem * ioaddr = ns_ioaddr(dev);
3242
3243 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3244 unregister_netdev (dev);
3245 pci_release_regions (pdev);
3246 iounmap(ioaddr);
3247 free_netdev (dev);
3248 }
3249
3250 #ifdef CONFIG_PM
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3279 {
3280 struct net_device *dev = pci_get_drvdata (pdev);
3281 struct netdev_private *np = netdev_priv(dev);
3282 void __iomem * ioaddr = ns_ioaddr(dev);
3283
3284 rtnl_lock();
3285 if (netif_running (dev)) {
3286 const int irq = np->pci_dev->irq;
3287
3288 del_timer_sync(&np->timer);
3289
3290 disable_irq(irq);
3291 spin_lock_irq(&np->lock);
3292
3293 natsemi_irq_disable(dev);
3294 np->hands_off = 1;
3295 natsemi_stop_rxtx(dev);
3296 netif_stop_queue(dev);
3297
3298 spin_unlock_irq(&np->lock);
3299 enable_irq(irq);
3300
3301 napi_disable(&np->napi);
3302
3303
3304 __get_stats(dev);
3305
3306
3307 drain_ring(dev);
3308 {
3309 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3310
3311 if (wol) {
3312
3313
3314
3315
3316 enable_wol_mode(dev, 0);
3317 } else {
3318
3319 writel(np->SavedClkRun, ioaddr + ClkRun);
3320 }
3321 }
3322 }
3323 netif_device_detach(dev);
3324 rtnl_unlock();
3325 return 0;
3326 }
3327
3328
3329 static int natsemi_resume (struct pci_dev *pdev)
3330 {
3331 struct net_device *dev = pci_get_drvdata (pdev);
3332 struct netdev_private *np = netdev_priv(dev);
3333 int ret = 0;
3334
3335 rtnl_lock();
3336 if (netif_device_present(dev))
3337 goto out;
3338 if (netif_running(dev)) {
3339 const int irq = np->pci_dev->irq;
3340
3341 BUG_ON(!np->hands_off);
3342 ret = pci_enable_device(pdev);
3343 if (ret < 0) {
3344 dev_err(&pdev->dev,
3345 "pci_enable_device() failed: %d\n", ret);
3346 goto out;
3347 }
3348
3349
3350 napi_enable(&np->napi);
3351
3352 natsemi_reset(dev);
3353 init_ring(dev);
3354 disable_irq(irq);
3355 spin_lock_irq(&np->lock);
3356 np->hands_off = 0;
3357 init_registers(dev);
3358 netif_device_attach(dev);
3359 spin_unlock_irq(&np->lock);
3360 enable_irq(irq);
3361
3362 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3363 }
3364 netif_device_attach(dev);
3365 out:
3366 rtnl_unlock();
3367 return ret;
3368 }
3369
3370 #endif
3371
3372 static struct pci_driver natsemi_driver = {
3373 .name = DRV_NAME,
3374 .id_table = natsemi_pci_tbl,
3375 .probe = natsemi_probe1,
3376 .remove = natsemi_remove1,
3377 #ifdef CONFIG_PM
3378 .suspend = natsemi_suspend,
3379 .resume = natsemi_resume,
3380 #endif
3381 };
3382
3383 static int __init natsemi_init_mod (void)
3384 {
3385
3386 #ifdef MODULE
3387 printk(version);
3388 #endif
3389
3390 return pci_register_driver(&natsemi_driver);
3391 }
3392
3393 static void __exit natsemi_exit_mod (void)
3394 {
3395 pci_unregister_driver (&natsemi_driver);
3396 }
3397
3398 module_init(natsemi_init_mod);
3399 module_exit(natsemi_exit_mod);
3400