root/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. bnx2x_map_q_cos
  2. bnx2x_dcb_config_qm
  3. bnx2x_init_max
  4. bnx2x_init_min
  5. bnx2x_init_fw_wrr
  6. bnx2x_init_safc
  7. bnx2x_init_cmng
  8. bnx2x_set_mcp_parity
  9. bnx2x_parity_reg_mask
  10. bnx2x_disable_blocks_parity
  11. bnx2x_clear_blocks_parity
  12. bnx2x_enable_blocks_parity

   1 /* bnx2x_init.h: Qlogic Everest network driver.
   2  *               Structures and macroes needed during the initialization.
   3  *
   4  * Copyright (c) 2007-2013 Broadcom Corporation
   5  * Copyright (c) 2014 QLogic Corporation
   6  All rights reserved
   7  *
   8  * This program is free software; you can redistribute it and/or modify
   9  * it under the terms of the GNU General Public License as published by
  10  * the Free Software Foundation.
  11  *
  12  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
  13  * Written by: Eliezer Tamir
  14  * Modified by: Vladislav Zolotarov
  15  */
  16 
  17 #ifndef BNX2X_INIT_H
  18 #define BNX2X_INIT_H
  19 
  20 /* Init operation types and structures */
  21 enum {
  22         OP_RD = 0x1,    /* read a single register */
  23         OP_WR,          /* write a single register */
  24         OP_SW,          /* copy a string to the device */
  25         OP_ZR,          /* clear memory */
  26         OP_ZP,          /* unzip then copy with DMAE */
  27         OP_WR_64,       /* write 64 bit pattern */
  28         OP_WB,          /* copy a string using DMAE */
  29         OP_WB_ZR,       /* Clear a string using DMAE or indirect-wr */
  30         /* Skip the following ops if all of the init modes don't match */
  31         OP_IF_MODE_OR,
  32         /* Skip the following ops if any of the init modes don't match */
  33         OP_IF_MODE_AND,
  34         OP_MAX
  35 };
  36 
  37 enum {
  38         STAGE_START,
  39         STAGE_END,
  40 };
  41 
  42 /* Returns the index of start or end of a specific block stage in ops array*/
  43 #define BLOCK_OPS_IDX(block, stage, end) \
  44         (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
  45 
  46 
  47 /* structs for the various opcodes */
  48 struct raw_op {
  49         u32 op:8;
  50         u32 offset:24;
  51         u32 raw_data;
  52 };
  53 
  54 struct op_read {
  55         u32 op:8;
  56         u32 offset:24;
  57         u32 val;
  58 };
  59 
  60 struct op_write {
  61         u32 op:8;
  62         u32 offset:24;
  63         u32 val;
  64 };
  65 
  66 struct op_arr_write {
  67         u32 op:8;
  68         u32 offset:24;
  69 #ifdef __BIG_ENDIAN
  70         u16 data_len;
  71         u16 data_off;
  72 #else /* __LITTLE_ENDIAN */
  73         u16 data_off;
  74         u16 data_len;
  75 #endif
  76 };
  77 
  78 struct op_zero {
  79         u32 op:8;
  80         u32 offset:24;
  81         u32 len;
  82 };
  83 
  84 struct op_if_mode {
  85         u32 op:8;
  86         u32 cmd_offset:24;
  87         u32 mode_bit_map;
  88 };
  89 
  90 
  91 union init_op {
  92         struct op_read          read;
  93         struct op_write         write;
  94         struct op_arr_write     arr_wr;
  95         struct op_zero          zero;
  96         struct raw_op           raw;
  97         struct op_if_mode       if_mode;
  98 };
  99 
 100 
 101 /* Init Phases */
 102 enum {
 103         PHASE_COMMON,
 104         PHASE_PORT0,
 105         PHASE_PORT1,
 106         PHASE_PF0,
 107         PHASE_PF1,
 108         PHASE_PF2,
 109         PHASE_PF3,
 110         PHASE_PF4,
 111         PHASE_PF5,
 112         PHASE_PF6,
 113         PHASE_PF7,
 114         NUM_OF_INIT_PHASES
 115 };
 116 
 117 /* Init Modes */
 118 enum {
 119         MODE_ASIC                      = 0x00000001,
 120         MODE_FPGA                      = 0x00000002,
 121         MODE_EMUL                      = 0x00000004,
 122         MODE_E2                        = 0x00000008,
 123         MODE_E3                        = 0x00000010,
 124         MODE_PORT2                     = 0x00000020,
 125         MODE_PORT4                     = 0x00000040,
 126         MODE_SF                        = 0x00000080,
 127         MODE_MF                        = 0x00000100,
 128         MODE_MF_SD                     = 0x00000200,
 129         MODE_MF_SI                     = 0x00000400,
 130         MODE_MF_AFEX                   = 0x00000800,
 131         MODE_E3_A0                     = 0x00001000,
 132         MODE_E3_B0                     = 0x00002000,
 133         MODE_COS3                      = 0x00004000,
 134         MODE_COS6                      = 0x00008000,
 135         MODE_LITTLE_ENDIAN             = 0x00010000,
 136         MODE_BIG_ENDIAN                = 0x00020000,
 137 };
 138 
 139 /* Init Blocks */
 140 enum {
 141         BLOCK_ATC,
 142         BLOCK_BRB1,
 143         BLOCK_CCM,
 144         BLOCK_CDU,
 145         BLOCK_CFC,
 146         BLOCK_CSDM,
 147         BLOCK_CSEM,
 148         BLOCK_DBG,
 149         BLOCK_DMAE,
 150         BLOCK_DORQ,
 151         BLOCK_HC,
 152         BLOCK_IGU,
 153         BLOCK_MISC,
 154         BLOCK_NIG,
 155         BLOCK_PBF,
 156         BLOCK_PGLUE_B,
 157         BLOCK_PRS,
 158         BLOCK_PXP2,
 159         BLOCK_PXP,
 160         BLOCK_QM,
 161         BLOCK_SRC,
 162         BLOCK_TCM,
 163         BLOCK_TM,
 164         BLOCK_TSDM,
 165         BLOCK_TSEM,
 166         BLOCK_UCM,
 167         BLOCK_UPB,
 168         BLOCK_USDM,
 169         BLOCK_USEM,
 170         BLOCK_XCM,
 171         BLOCK_XPB,
 172         BLOCK_XSDM,
 173         BLOCK_XSEM,
 174         BLOCK_MISC_AEU,
 175         NUM_OF_INIT_BLOCKS
 176 };
 177 
 178 /* QM queue numbers */
 179 #define BNX2X_ETH_Q             0
 180 #define BNX2X_TOE_Q             3
 181 #define BNX2X_TOE_ACK_Q         6
 182 #define BNX2X_ISCSI_Q           9
 183 #define BNX2X_ISCSI_ACK_Q       11
 184 #define BNX2X_FCOE_Q            10
 185 
 186 /* Vnics per mode */
 187 #define BNX2X_PORT2_MODE_NUM_VNICS 4
 188 #define BNX2X_PORT4_MODE_NUM_VNICS 2
 189 
 190 /* COS offset for port1 in E3 B0 4port mode */
 191 #define BNX2X_E3B0_PORT1_COS_OFFSET 3
 192 
 193 /* QM Register addresses */
 194 #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
 195         (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
 196 #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
 197         (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
 198 #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
 199         (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
 200 
 201 /* extracts the QM queue number for the specified port and vnic */
 202 #define BNX2X_PF_Q_NUM(q_num, port, vnic)\
 203         ((((port) << 1) | (vnic)) * 16 + (q_num))
 204 
 205 
 206 /* Maps the specified queue to the specified COS */
 207 static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
 208 {
 209         /* find current COS mapping */
 210         u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
 211 
 212         /* check if queue->COS mapping has changed */
 213         if (curr_cos != new_cos) {
 214                 u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
 215                 u32 reg_addr, reg_bit_map, vnic;
 216 
 217                 /* update parameters for 4port mode */
 218                 if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
 219                         num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
 220                         if (BP_PORT(bp)) {
 221                                 curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
 222                                 new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
 223                         }
 224                 }
 225 
 226                 /* change queue mapping for each VNIC */
 227                 for (vnic = 0; vnic < num_vnics; vnic++) {
 228                         u32 pf_q_num =
 229                                 BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
 230                         u32 q_bit_map = 1 << (pf_q_num & 0x1f);
 231 
 232                         /* overwrite queue->VOQ mapping */
 233                         REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
 234 
 235                         /* clear queue bit from current COS bit map */
 236                         reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
 237                         reg_bit_map = REG_RD(bp, reg_addr);
 238                         REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
 239 
 240                         /* set queue bit in new COS bit map */
 241                         reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
 242                         reg_bit_map = REG_RD(bp, reg_addr);
 243                         REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
 244 
 245                         /* set/clear queue bit in command-queue bit map
 246                          * (E2/E3A0 only, valid COS values are 0/1)
 247                          */
 248                         if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
 249                                 reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
 250                                 reg_bit_map = REG_RD(bp, reg_addr);
 251                                 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
 252                                 reg_bit_map = new_cos ?
 253                                               (reg_bit_map | q_bit_map) :
 254                                               (reg_bit_map & (~q_bit_map));
 255                                 REG_WR(bp, reg_addr, reg_bit_map);
 256                         }
 257                 }
 258         }
 259 }
 260 
 261 /* Configures the QM according to the specified per-traffic-type COSes */
 262 static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
 263                                        struct priority_cos *traffic_cos)
 264 {
 265         bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
 266                         traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
 267         bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
 268                         traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
 269         bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
 270                 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
 271         if (mode != STATIC_COS) {
 272                 /* required only in backward compatible COS mode */
 273                 bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
 274                                 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 275                 bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
 276                                 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 277                 bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
 278                                 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
 279         }
 280 }
 281 
 282 
 283 /* congestion management port init api description
 284  * the api works as follows:
 285  * the driver should pass the cmng_init_input struct, the port_init function
 286  * will prepare the required internal ram structure which will be passed back
 287  * to the driver (cmng_init) that will write it into the internal ram.
 288  *
 289  * IMPORTANT REMARKS:
 290  * 1. the cmng_init struct does not represent the contiguous internal ram
 291  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
 292  *    offset in order to write the port sub struct and the
 293  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
 294  *    words - don't use memcpy!).
 295  * 2. although the cmng_init struct is filled for the maximal vnic number
 296  *    possible, the driver should only write the valid vnics into the internal
 297  *    ram according to the appropriate port mode.
 298  */
 299 #define BITS_TO_BYTES(x) ((x)/8)
 300 
 301 /* CMNG constants, as derived from system spec calculations */
 302 
 303 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
 304 #define DEF_MIN_RATE 100
 305 
 306 /* resolution of the rate shaping timer - 400 usec */
 307 #define RS_PERIODIC_TIMEOUT_USEC 400
 308 
 309 /* number of bytes in single QM arbitration cycle -
 310  * coefficient for calculating the fairness timer
 311  */
 312 #define QM_ARB_BYTES 160000
 313 
 314 /* resolution of Min algorithm 1:100 */
 315 #define MIN_RES 100
 316 
 317 /* how many bytes above threshold for
 318  * the minimal credit of Min algorithm
 319  */
 320 #define MIN_ABOVE_THRESH 32768
 321 
 322 /* Fairness algorithm integration time coefficient -
 323  * for calculating the actual Tfair
 324  */
 325 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
 326 
 327 /* Memory of fairness algorithm - 2 cycles */
 328 #define FAIR_MEM 2
 329 #define SAFC_TIMEOUT_USEC 52
 330 
 331 #define SDM_TICKS 4
 332 
 333 
 334 static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
 335                                   u32 r_param, struct cmng_init *ram_data)
 336 {
 337         u32 vnic;
 338         struct cmng_vnic *vdata = &ram_data->vnic;
 339         struct cmng_struct_per_port *pdata = &ram_data->port;
 340         /* rate shaping per-port variables
 341          * 100 micro seconds in SDM ticks = 25
 342          * since each tick is 4 microSeconds
 343          */
 344 
 345         pdata->rs_vars.rs_periodic_timeout =
 346         RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
 347 
 348         /* this is the threshold below which no timer arming will occur.
 349          * 1.25 coefficient is for the threshold to be a little bigger
 350          * then the real time to compensate for timer in-accuracy
 351          */
 352         pdata->rs_vars.rs_threshold =
 353         (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
 354 
 355         /* rate shaping per-vnic variables */
 356         for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 357                 /* global vnic counter */
 358                 vdata->vnic_max_rate[vnic].vn_counter.rate =
 359                 input_data->vnic_max_rate[vnic];
 360                 /* maximal Mbps for this vnic
 361                  * the quota in each timer period - number of bytes
 362                  * transmitted in this period
 363                  */
 364                 vdata->vnic_max_rate[vnic].vn_counter.quota =
 365                         RS_PERIODIC_TIMEOUT_USEC *
 366                         (u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
 367         }
 368 
 369 }
 370 
 371 static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
 372                                   u32 r_param, struct cmng_init *ram_data)
 373 {
 374         u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
 375         struct cmng_vnic *vdata = &ram_data->vnic;
 376         struct cmng_struct_per_port *pdata = &ram_data->port;
 377 
 378         /* this is the resolution of the fairness timer */
 379         fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
 380 
 381         /* fairness per-port variables
 382          * for 10G it is 1000usec. for 1G it is 10000usec.
 383          */
 384         tFair = T_FAIR_COEF / input_data->port_rate;
 385 
 386         /* this is the threshold below which we won't arm the timer anymore */
 387         pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
 388 
 389         /* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
 390          * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
 391          */
 392         pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
 393 
 394         /* since each tick is 4 microSeconds */
 395         pdata->fair_vars.fairness_timeout =
 396                                 fair_periodic_timeout_usec / SDM_TICKS;
 397 
 398         /* calculate sum of weights */
 399         vnicWeightSum = 0;
 400 
 401         for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
 402                 vnicWeightSum += input_data->vnic_min_rate[vnic];
 403 
 404         /* global vnic counter */
 405         if (vnicWeightSum > 0) {
 406                 /* fairness per-vnic variables */
 407                 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 408                         /* this is the credit for each period of the fairness
 409                          * algorithm - number of bytes in T_FAIR (this vnic
 410                          * share of the port rate)
 411                          */
 412                         vdata->vnic_min_rate[vnic].vn_credit_delta =
 413                                 (u32)input_data->vnic_min_rate[vnic] * 100 *
 414                                 (T_FAIR_COEF / (8 * 100 * vnicWeightSum));
 415                         if (vdata->vnic_min_rate[vnic].vn_credit_delta <
 416                             pdata->fair_vars.fair_threshold +
 417                             MIN_ABOVE_THRESH) {
 418                                 vdata->vnic_min_rate[vnic].vn_credit_delta =
 419                                         pdata->fair_vars.fair_threshold +
 420                                         MIN_ABOVE_THRESH;
 421                         }
 422                 }
 423         }
 424 }
 425 
 426 static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
 427                                      u32 r_param, struct cmng_init *ram_data)
 428 {
 429         u32 vnic, cos;
 430         u32 cosWeightSum = 0;
 431         struct cmng_vnic *vdata = &ram_data->vnic;
 432         struct cmng_struct_per_port *pdata = &ram_data->port;
 433 
 434         for (cos = 0; cos < MAX_COS_NUMBER; cos++)
 435                 cosWeightSum += input_data->cos_min_rate[cos];
 436 
 437         if (cosWeightSum > 0) {
 438 
 439                 for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
 440                         /* Since cos and vnic shouldn't work together the rate
 441                          * to divide between the coses is the port rate.
 442                          */
 443                         u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
 444                         for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
 445                                 /* this is the credit for each period of
 446                                  * the fairness algorithm - number of bytes
 447                                  * in T_FAIR (this cos share of the vnic rate)
 448                                  */
 449                                 ccd[cos] =
 450                                     (u32)input_data->cos_min_rate[cos] * 100 *
 451                                     (T_FAIR_COEF / (8 * 100 * cosWeightSum));
 452                                 if (ccd[cos] < pdata->fair_vars.fair_threshold
 453                                                 + MIN_ABOVE_THRESH) {
 454                                         ccd[cos] =
 455                                             pdata->fair_vars.fair_threshold +
 456                                             MIN_ABOVE_THRESH;
 457                                 }
 458                         }
 459                 }
 460         }
 461 }
 462 
 463 static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
 464                                    struct cmng_init *ram_data)
 465 {
 466         /* in microSeconds */
 467         ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
 468 }
 469 
 470 /* Congestion management port init */
 471 static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
 472                                    struct cmng_init *ram_data)
 473 {
 474         u32 r_param;
 475         memset(ram_data, 0, sizeof(struct cmng_init));
 476 
 477         ram_data->port.flags = input_data->flags;
 478 
 479         /* number of bytes transmitted in a rate of 10Gbps
 480          * in one usec = 1.25KB.
 481          */
 482         r_param = BITS_TO_BYTES(input_data->port_rate);
 483         bnx2x_init_max(input_data, r_param, ram_data);
 484         bnx2x_init_min(input_data, r_param, ram_data);
 485         bnx2x_init_fw_wrr(input_data, r_param, ram_data);
 486         bnx2x_init_safc(input_data, ram_data);
 487 }
 488 
 489 
 490 
 491 /* Returns the index of start or end of a specific block stage in ops array */
 492 #define BLOCK_OPS_IDX(block, stage, end) \
 493                         (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
 494 
 495 
 496 #define INITOP_SET              0       /* set the HW directly */
 497 #define INITOP_CLEAR            1       /* clear the HW directly */
 498 #define INITOP_INIT             2       /* set the init-value array */
 499 
 500 /****************************************************************************
 501 * ILT management
 502 ****************************************************************************/
 503 struct ilt_line {
 504         dma_addr_t page_mapping;
 505         void *page;
 506         u32 size;
 507 };
 508 
 509 struct ilt_client_info {
 510         u32 page_size;
 511         u16 start;
 512         u16 end;
 513         u16 client_num;
 514         u16 flags;
 515 #define ILT_CLIENT_SKIP_INIT    0x1
 516 #define ILT_CLIENT_SKIP_MEM     0x2
 517 };
 518 
 519 struct bnx2x_ilt {
 520         u32 start_line;
 521         struct ilt_line         *lines;
 522         struct ilt_client_info  clients[4];
 523 #define ILT_CLIENT_CDU  0
 524 #define ILT_CLIENT_QM   1
 525 #define ILT_CLIENT_SRC  2
 526 #define ILT_CLIENT_TM   3
 527 };
 528 
 529 /****************************************************************************
 530 * SRC configuration
 531 ****************************************************************************/
 532 struct src_ent {
 533         u8 opaque[56];
 534         u64 next;
 535 };
 536 
 537 /****************************************************************************
 538 * Parity configuration
 539 ****************************************************************************/
 540 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
 541 { \
 542         block##_REG_##block##_PRTY_MASK, \
 543         block##_REG_##block##_PRTY_STS_CLR, \
 544         en_mask, {m1, m1h, m2, m3}, #block \
 545 }
 546 
 547 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
 548 { \
 549         block##_REG_##block##_PRTY_MASK_0, \
 550         block##_REG_##block##_PRTY_STS_CLR_0, \
 551         en_mask, {m1, m1h, m2, m3}, #block"_0" \
 552 }
 553 
 554 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
 555 { \
 556         block##_REG_##block##_PRTY_MASK_1, \
 557         block##_REG_##block##_PRTY_STS_CLR_1, \
 558         en_mask, {m1, m1h, m2, m3}, #block"_1" \
 559 }
 560 
 561 static const struct {
 562         u32 mask_addr;
 563         u32 sts_clr_addr;
 564         u32 en_mask;            /* Mask to enable parity attentions */
 565         struct {
 566                 u32 e1;         /* 57710 */
 567                 u32 e1h;        /* 57711 */
 568                 u32 e2;         /* 57712 */
 569                 u32 e3;         /* 578xx */
 570         } reg_mask;             /* Register mask (all valid bits) */
 571         char name[8];           /* Block's longest name is 7 characters long
 572                                  * (name + suffix)
 573                                  */
 574 } bnx2x_blocks_parity_data[] = {
 575         /* bit 19 masked */
 576         /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
 577         /* bit 5,18,20-31 */
 578         /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
 579         /* bit 5 */
 580         /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
 581         /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
 582         /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
 583 
 584         /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
 585          * want to handle "system kill" flow at the moment.
 586          */
 587         BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
 588                         0x7ffffff),
 589         BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
 590                           0xffffffff),
 591         BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
 592         BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
 593         BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
 594         BLOCK_PRTY_INFO_0(NIG,  0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
 595         BLOCK_PRTY_INFO_1(NIG,  0xffff, 0, 0, 0xff, 0xffff),
 596         BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
 597         BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
 598         BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
 599         BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
 600         BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
 601         BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
 602         {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
 603                 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
 604                 {0xf, 0xf, 0xf, 0xf}, "UPB"},
 605         {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
 606                 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
 607                 {0xf, 0xf, 0xf, 0xf}, "XPB"},
 608         BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
 609         BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
 610         BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
 611         BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
 612         BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
 613         BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
 614         BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
 615         BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
 616         BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
 617         BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 618         BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 619         BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 620         BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
 621         BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 622         BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 623         BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
 624         BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
 625         BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 626                           0xffffffff),
 627         BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
 628         BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 629                           0xffffffff),
 630         BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
 631         BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 632                           0xffffffff),
 633         BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
 634         BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
 635                           0xffffffff),
 636         BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
 637 };
 638 
 639 
 640 /* [28] MCP Latched rom_parity
 641  * [29] MCP Latched ump_rx_parity
 642  * [30] MCP Latched ump_tx_parity
 643  * [31] MCP Latched scpad_parity
 644  */
 645 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS       \
 646         (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
 647          AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
 648          AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
 649 
 650 #define MISC_AEU_ENABLE_MCP_PRTY_BITS   \
 651         (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
 652          AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
 653 
 654 /* Below registers control the MCP parity attention output. When
 655  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
 656  * enabled, when cleared - disabled.
 657  */
 658 static const struct {
 659         u32 addr;
 660         u32 bits;
 661 } mcp_attn_ctl_regs[] = {
 662         { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
 663                 MISC_AEU_ENABLE_MCP_PRTY_BITS },
 664         { MISC_REG_AEU_ENABLE4_NIG_0,
 665                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 666         { MISC_REG_AEU_ENABLE4_PXP_0,
 667                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 668         { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
 669                 MISC_AEU_ENABLE_MCP_PRTY_BITS },
 670         { MISC_REG_AEU_ENABLE4_NIG_1,
 671                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
 672         { MISC_REG_AEU_ENABLE4_PXP_1,
 673                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
 674 };
 675 
 676 static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
 677 {
 678         int i;
 679         u32 reg_val;
 680 
 681         for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
 682                 reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
 683 
 684                 if (enable)
 685                         reg_val |= mcp_attn_ctl_regs[i].bits;
 686                 else
 687                         reg_val &= ~mcp_attn_ctl_regs[i].bits;
 688 
 689                 REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
 690         }
 691 }
 692 
 693 static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
 694 {
 695         if (CHIP_IS_E1(bp))
 696                 return bnx2x_blocks_parity_data[idx].reg_mask.e1;
 697         else if (CHIP_IS_E1H(bp))
 698                 return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
 699         else if (CHIP_IS_E2(bp))
 700                 return bnx2x_blocks_parity_data[idx].reg_mask.e2;
 701         else /* CHIP_IS_E3 */
 702                 return bnx2x_blocks_parity_data[idx].reg_mask.e3;
 703 }
 704 
 705 static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
 706 {
 707         int i;
 708 
 709         for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 710                 u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
 711 
 712                 if (dis_mask) {
 713                         REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
 714                                dis_mask);
 715                         DP(NETIF_MSG_HW, "Setting parity mask "
 716                                                  "for %s to\t\t0x%x\n",
 717                                     bnx2x_blocks_parity_data[i].name, dis_mask);
 718                 }
 719         }
 720 
 721         /* Disable MCP parity attentions */
 722         bnx2x_set_mcp_parity(bp, false);
 723 }
 724 
 725 /* Clear the parity error status registers. */
 726 static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
 727 {
 728         int i;
 729         u32 reg_val, mcp_aeu_bits =
 730                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
 731                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
 732                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
 733                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
 734 
 735         /* Clear SEM_FAST parities */
 736         REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 737         REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 738         REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 739         REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
 740 
 741         for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 742                 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
 743 
 744                 if (reg_mask) {
 745                         reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
 746                                          sts_clr_addr);
 747                         if (reg_val & reg_mask)
 748                                 DP(NETIF_MSG_HW,
 749                                             "Parity errors in %s: 0x%x\n",
 750                                             bnx2x_blocks_parity_data[i].name,
 751                                             reg_val & reg_mask);
 752                 }
 753         }
 754 
 755         /* Check if there were parity attentions in MCP */
 756         reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
 757         if (reg_val & mcp_aeu_bits)
 758                 DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
 759                    reg_val & mcp_aeu_bits);
 760 
 761         /* Clear parity attentions in MCP:
 762          * [7]  clears Latched rom_parity
 763          * [8]  clears Latched ump_rx_parity
 764          * [9]  clears Latched ump_tx_parity
 765          * [10] clears Latched scpad_parity (both ports)
 766          */
 767         REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
 768 }
 769 
 770 static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
 771 {
 772         int i;
 773 
 774         for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
 775                 u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
 776 
 777                 if (reg_mask)
 778                         REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
 779                                 bnx2x_blocks_parity_data[i].en_mask & reg_mask);
 780         }
 781 
 782         /* Enable MCP parity attentions */
 783         bnx2x_set_mcp_parity(bp, true);
 784 }
 785 
 786 
 787 #endif /* BNX2X_INIT_H */
 788 

/* [<][>][^][v][top][bottom][index][help] */