root/drivers/net/ethernet/tehuti/tehuti.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. print_hw_id
  2. print_fw_id
  3. print_eth_id
  4. bdx_fifo_init
  5. bdx_fifo_free
  6. bdx_link_changed
  7. bdx_isr_extra
  8. bdx_isr_napi
  9. bdx_poll
  10. bdx_fw_load
  11. bdx_restore_mac
  12. bdx_hw_start
  13. bdx_hw_stop
  14. bdx_hw_reset_direct
  15. bdx_hw_reset
  16. bdx_sw_reset
  17. bdx_reset
  18. bdx_close
  19. bdx_open
  20. bdx_range_check
  21. bdx_ioctl_priv
  22. bdx_ioctl
  23. __bdx_vlan_rx_vid
  24. bdx_vlan_rx_add_vid
  25. bdx_vlan_rx_kill_vid
  26. bdx_change_mtu
  27. bdx_setmulti
  28. bdx_set_mac
  29. bdx_read_mac
  30. bdx_read_l2stat
  31. bdx_update_stats
  32. bdx_rxdb_destroy
  33. bdx_rxdb_create
  34. bdx_rxdb_alloc_elem
  35. bdx_rxdb_addr_elem
  36. bdx_rxdb_available
  37. bdx_rxdb_free_elem
  38. bdx_rx_init
  39. bdx_rx_free_skbs
  40. bdx_rx_free
  41. bdx_rx_alloc_skbs
  42. NETIF_RX_MUX
  43. bdx_recycle_skb
  44. bdx_rx_receive
  45. print_rxdd
  46. print_rxfd
  47. bdx_tx_db_size
  48. __bdx_tx_db_ptr_next
  49. bdx_tx_db_inc_rptr
  50. bdx_tx_db_inc_wptr
  51. bdx_tx_db_init
  52. bdx_tx_db_close
  53. bdx_tx_map_skb
  54. init_txd_sizes
  55. bdx_tx_init
  56. bdx_tx_space
  57. bdx_tx_transmit
  58. bdx_tx_cleanup
  59. bdx_tx_free_skbs
  60. bdx_tx_free
  61. bdx_tx_push_desc
  62. bdx_tx_push_desc_safe
  63. bdx_probe
  64. bdx_get_link_ksettings
  65. bdx_get_drvinfo
  66. bdx_get_coalesce
  67. bdx_set_coalesce
  68. bdx_rx_fifo_size_to_packets
  69. bdx_tx_fifo_size_to_packets
  70. bdx_get_ringparam
  71. bdx_set_ringparam
  72. bdx_get_strings
  73. bdx_get_sset_count
  74. bdx_get_ethtool_stats
  75. bdx_set_ethtool_ops
  76. bdx_remove
  77. print_driver_id
  78. bdx_module_init
  79. bdx_module_exit

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Tehuti Networks(R) Network Driver
   4  * ethtool interface implementation
   5  * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   6  */
   7 
   8 /*
   9  * RX HW/SW interaction overview
  10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11  * There are 2 types of RX communication channels between driver and NIC.
  12  * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  13  * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  14  * info about buffer's location, size and ID. An ID field is used to identify a
  15  * buffer when it's returned with data via RXD Fifo (see below)
  16  * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  17  * filled by HW and is readen by SW. Each descriptor holds status and ID.
  18  * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  19  * via dma moves it into host memory, builds new RXD descriptor with same ID,
  20  * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  21  *
  22  * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  23  * One holds 1.5K packets and another - 26K packets. Depending on incoming
  24  * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  25  * filled with data, HW builds new RXD descriptor for it and push it into single
  26  * RXD Fifo.
  27  *
  28  * RX SW Data Structures
  29  * ~~~~~~~~~~~~~~~~~~~~~
  30  * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  31  * For RX case, ownership lasts from allocating new empty skb for RXF until
  32  * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  33  * skb db. Implemented as array with bitmask.
  34  * fifo - keeps info about fifo's size and location, relevant HW registers,
  35  * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  36  * Implemented as simple struct.
  37  *
  38  * RX SW Execution Flow
  39  * ~~~~~~~~~~~~~~~~~~~~
  40  * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  41  * relevant registers. At the end of init phase, driver enables interrupts.
  42  * NIC sees that there is no RXF buffers and raises
  43  * RD_INTR interrupt, isr fills skbs and Rx begins.
  44  * Driver has two receive operation modes:
  45  *    NAPI - interrupt-driven mixed with polling
  46  *    interrupt-driven only
  47  *
  48  * Interrupt-driven only flow is following. When buffer is ready, HW raises
  49  * interrupt and isr is called. isr collects all available packets
  50  * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  51 
  52  * Rx buffer allocation note
  53  * ~~~~~~~~~~~~~~~~~~~~~~~~~
  54  * Driver cares to feed such amount of RxF descriptors that respective amount of
  55  * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  56  * overflow check in Bordeaux for RxD fifo free/used size.
  57  * FIXME: this is NOT fully implemented, more work should be done
  58  *
  59  */
  60 
  61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  62 
  63 #include "tehuti.h"
  64 
  65 static const struct pci_device_id bdx_pci_tbl[] = {
  66         { PCI_VDEVICE(TEHUTI, 0x3009), },
  67         { PCI_VDEVICE(TEHUTI, 0x3010), },
  68         { PCI_VDEVICE(TEHUTI, 0x3014), },
  69         { 0 }
  70 };
  71 
  72 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  73 
  74 /* Definitions needed by ISR or NAPI functions */
  75 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  76 static void bdx_tx_cleanup(struct bdx_priv *priv);
  77 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  78 
  79 /* Definitions needed by FW loading */
  80 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  81 
  82 /* Definitions needed by hw_start */
  83 static int bdx_tx_init(struct bdx_priv *priv);
  84 static int bdx_rx_init(struct bdx_priv *priv);
  85 
  86 /* Definitions needed by bdx_close */
  87 static void bdx_rx_free(struct bdx_priv *priv);
  88 static void bdx_tx_free(struct bdx_priv *priv);
  89 
  90 /* Definitions needed by bdx_probe */
  91 static void bdx_set_ethtool_ops(struct net_device *netdev);
  92 
  93 /*************************************************************************
  94  *    Print Info                                                         *
  95  *************************************************************************/
  96 
  97 static void print_hw_id(struct pci_dev *pdev)
  98 {
  99         struct pci_nic *nic = pci_get_drvdata(pdev);
 100         u16 pci_link_status = 0;
 101         u16 pci_ctrl = 0;
 102 
 103         pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 104         pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 105 
 106         pr_info("%s%s\n", BDX_NIC_NAME,
 107                 nic->port_num == 1 ? "" : ", 2-Port");
 108         pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 109                 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 110                 readl(nic->regs + FPGA_SEED),
 111                 GET_LINK_STATUS_LANES(pci_link_status),
 112                 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 113 }
 114 
 115 static void print_fw_id(struct pci_nic *nic)
 116 {
 117         pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 118 }
 119 
 120 static void print_eth_id(struct net_device *ndev)
 121 {
 122         netdev_info(ndev, "%s, Port %c\n",
 123                     BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 124 
 125 }
 126 
 127 /*************************************************************************
 128  *    Code                                                               *
 129  *************************************************************************/
 130 
 131 #define bdx_enable_interrupts(priv)     \
 132         do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 133 #define bdx_disable_interrupts(priv)    \
 134         do { WRITE_REG(priv, regIMR, 0); } while (0)
 135 
 136 /**
 137  * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 138  * @priv: NIC private structure
 139  * @f: fifo to initialize
 140  * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 141  * @reg_XXX: offsets of registers relative to base address
 142  *
 143  * 1K extra space is allocated at the end of the fifo to simplify
 144  * processing of descriptors that wraps around fifo's end
 145  *
 146  * Returns 0 on success, negative value on failure
 147  *
 148  */
 149 static int
 150 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 151               u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 152 {
 153         u16 memsz = FIFO_SIZE * (1 << fsz_type);
 154 
 155         memset(f, 0, sizeof(struct fifo));
 156         /* pci_alloc_consistent gives us 4k-aligned memory */
 157         f->va = pci_alloc_consistent(priv->pdev,
 158                                      memsz + FIFO_EXTRA_SPACE, &f->da);
 159         if (!f->va) {
 160                 pr_err("pci_alloc_consistent failed\n");
 161                 RET(-ENOMEM);
 162         }
 163         f->reg_CFG0 = reg_CFG0;
 164         f->reg_CFG1 = reg_CFG1;
 165         f->reg_RPTR = reg_RPTR;
 166         f->reg_WPTR = reg_WPTR;
 167         f->rptr = 0;
 168         f->wptr = 0;
 169         f->memsz = memsz;
 170         f->size_mask = memsz - 1;
 171         WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 172         WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 173 
 174         RET(0);
 175 }
 176 
 177 /**
 178  * bdx_fifo_free - free all resources used by fifo
 179  * @priv: NIC private structure
 180  * @f: fifo to release
 181  */
 182 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 183 {
 184         ENTER;
 185         if (f->va) {
 186                 pci_free_consistent(priv->pdev,
 187                                     f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 188                 f->va = NULL;
 189         }
 190         RET();
 191 }
 192 
 193 /**
 194  * bdx_link_changed - notifies OS about hw link state.
 195  * @priv: hw adapter structure
 196  */
 197 static void bdx_link_changed(struct bdx_priv *priv)
 198 {
 199         u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 200 
 201         if (!link) {
 202                 if (netif_carrier_ok(priv->ndev)) {
 203                         netif_stop_queue(priv->ndev);
 204                         netif_carrier_off(priv->ndev);
 205                         netdev_err(priv->ndev, "Link Down\n");
 206                 }
 207         } else {
 208                 if (!netif_carrier_ok(priv->ndev)) {
 209                         netif_wake_queue(priv->ndev);
 210                         netif_carrier_on(priv->ndev);
 211                         netdev_err(priv->ndev, "Link Up\n");
 212                 }
 213         }
 214 }
 215 
 216 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 217 {
 218         if (isr & IR_RX_FREE_0) {
 219                 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 220                 DBG("RX_FREE_0\n");
 221         }
 222 
 223         if (isr & IR_LNKCHG0)
 224                 bdx_link_changed(priv);
 225 
 226         if (isr & IR_PCIE_LINK)
 227                 netdev_err(priv->ndev, "PCI-E Link Fault\n");
 228 
 229         if (isr & IR_PCIE_TOUT)
 230                 netdev_err(priv->ndev, "PCI-E Time Out\n");
 231 
 232 }
 233 
 234 /**
 235  * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 236  * @irq: interrupt number
 237  * @dev: network device
 238  *
 239  * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 240  *
 241  * It reads ISR register to know interrupt reasons, and proceed them one by one.
 242  * Reasons of interest are:
 243  *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 244  *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 245  *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 246  */
 247 
 248 static irqreturn_t bdx_isr_napi(int irq, void *dev)
 249 {
 250         struct net_device *ndev = dev;
 251         struct bdx_priv *priv = netdev_priv(ndev);
 252         u32 isr;
 253 
 254         ENTER;
 255         isr = (READ_REG(priv, regISR) & IR_RUN);
 256         if (unlikely(!isr)) {
 257                 bdx_enable_interrupts(priv);
 258                 return IRQ_NONE;        /* Not our interrupt */
 259         }
 260 
 261         if (isr & IR_EXTRA)
 262                 bdx_isr_extra(priv, isr);
 263 
 264         if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 265                 if (likely(napi_schedule_prep(&priv->napi))) {
 266                         __napi_schedule(&priv->napi);
 267                         RET(IRQ_HANDLED);
 268                 } else {
 269                         /* NOTE: we get here if intr has slipped into window
 270                          * between these lines in bdx_poll:
 271                          *    bdx_enable_interrupts(priv);
 272                          *    return 0;
 273                          * currently intrs are disabled (since we read ISR),
 274                          * and we have failed to register next poll.
 275                          * so we read the regs to trigger chip
 276                          * and allow further interupts. */
 277                         READ_REG(priv, regTXF_WPTR_0);
 278                         READ_REG(priv, regRXD_WPTR_0);
 279                 }
 280         }
 281 
 282         bdx_enable_interrupts(priv);
 283         RET(IRQ_HANDLED);
 284 }
 285 
 286 static int bdx_poll(struct napi_struct *napi, int budget)
 287 {
 288         struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 289         int work_done;
 290 
 291         ENTER;
 292         bdx_tx_cleanup(priv);
 293         work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 294         if ((work_done < budget) ||
 295             (priv->napi_stop++ >= 30)) {
 296                 DBG("rx poll is done. backing to isr-driven\n");
 297 
 298                 /* from time to time we exit to let NAPI layer release
 299                  * device lock and allow waiting tasks (eg rmmod) to advance) */
 300                 priv->napi_stop = 0;
 301 
 302                 napi_complete_done(napi, work_done);
 303                 bdx_enable_interrupts(priv);
 304         }
 305         return work_done;
 306 }
 307 
 308 /**
 309  * bdx_fw_load - loads firmware to NIC
 310  * @priv: NIC private structure
 311  *
 312  * Firmware is loaded via TXD fifo, so it must be initialized first.
 313  * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 314  * can have few of them). So all drivers use semaphore register to choose one
 315  * that will actually load FW to NIC.
 316  */
 317 
 318 static int bdx_fw_load(struct bdx_priv *priv)
 319 {
 320         const struct firmware *fw = NULL;
 321         int master, i;
 322         int rc;
 323 
 324         ENTER;
 325         master = READ_REG(priv, regINIT_SEMAPHORE);
 326         if (!READ_REG(priv, regINIT_STATUS) && master) {
 327                 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 328                 if (rc)
 329                         goto out;
 330                 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 331                 mdelay(100);
 332         }
 333         for (i = 0; i < 200; i++) {
 334                 if (READ_REG(priv, regINIT_STATUS)) {
 335                         rc = 0;
 336                         goto out;
 337                 }
 338                 mdelay(2);
 339         }
 340         rc = -EIO;
 341 out:
 342         if (master)
 343                 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 344 
 345         release_firmware(fw);
 346 
 347         if (rc) {
 348                 netdev_err(priv->ndev, "firmware loading failed\n");
 349                 if (rc == -EIO)
 350                         DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 351                             READ_REG(priv, regVPC),
 352                             READ_REG(priv, regVIC),
 353                             READ_REG(priv, regINIT_STATUS), i);
 354                 RET(rc);
 355         } else {
 356                 DBG("%s: firmware loading success\n", priv->ndev->name);
 357                 RET(0);
 358         }
 359 }
 360 
 361 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 362 {
 363         u32 val;
 364 
 365         ENTER;
 366         DBG("mac0=%x mac1=%x mac2=%x\n",
 367             READ_REG(priv, regUNC_MAC0_A),
 368             READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 369 
 370         val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 371         WRITE_REG(priv, regUNC_MAC2_A, val);
 372         val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 373         WRITE_REG(priv, regUNC_MAC1_A, val);
 374         val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 375         WRITE_REG(priv, regUNC_MAC0_A, val);
 376 
 377         DBG("mac0=%x mac1=%x mac2=%x\n",
 378             READ_REG(priv, regUNC_MAC0_A),
 379             READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 380         RET();
 381 }
 382 
 383 /**
 384  * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 385  * @priv: NIC private structure
 386  */
 387 static int bdx_hw_start(struct bdx_priv *priv)
 388 {
 389         int rc = -EIO;
 390         struct net_device *ndev = priv->ndev;
 391 
 392         ENTER;
 393         bdx_link_changed(priv);
 394 
 395         /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 396         WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 397         WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 398         WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 399         WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 400         WRITE_REG(priv, regRX_FULLNESS, 0);
 401         WRITE_REG(priv, regTX_FULLNESS, 0);
 402         WRITE_REG(priv, regCTRLST,
 403                   regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 404 
 405         WRITE_REG(priv, regVGLB, 0);
 406         WRITE_REG(priv, regMAX_FRAME_A,
 407                   priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 408 
 409         DBG("RDINTCM=%08x\n", priv->rdintcm);   /*NOTE: test script uses this */
 410         WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 411         WRITE_REG(priv, regRDINTCM2, 0);        /*cpu_to_le32(rcm.val)); */
 412 
 413         DBG("TDINTCM=%08x\n", priv->tdintcm);   /*NOTE: test script uses this */
 414         WRITE_REG(priv, regTDINTCM0, priv->tdintcm);    /* old val = 0x300064 */
 415 
 416         /* Enable timer interrupt once in 2 secs. */
 417         /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 418         bdx_restore_mac(priv->ndev, priv);
 419 
 420         WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 421                   GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 422 
 423 #define BDX_IRQ_TYPE    ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 424 
 425         rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 426                          ndev->name, ndev);
 427         if (rc)
 428                 goto err_irq;
 429         bdx_enable_interrupts(priv);
 430 
 431         RET(0);
 432 
 433 err_irq:
 434         RET(rc);
 435 }
 436 
 437 static void bdx_hw_stop(struct bdx_priv *priv)
 438 {
 439         ENTER;
 440         bdx_disable_interrupts(priv);
 441         free_irq(priv->pdev->irq, priv->ndev);
 442 
 443         netif_carrier_off(priv->ndev);
 444         netif_stop_queue(priv->ndev);
 445 
 446         RET();
 447 }
 448 
 449 static int bdx_hw_reset_direct(void __iomem *regs)
 450 {
 451         u32 val, i;
 452         ENTER;
 453 
 454         /* reset sequences: read, write 1, read, write 0 */
 455         val = readl(regs + regCLKPLL);
 456         writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 457         udelay(50);
 458         val = readl(regs + regCLKPLL);
 459         writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 460 
 461         /* check that the PLLs are locked and reset ended */
 462         for (i = 0; i < 70; i++, mdelay(10))
 463                 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 464                         /* do any PCI-E read transaction */
 465                         readl(regs + regRXD_CFG0_0);
 466                         return 0;
 467                 }
 468         pr_err("HW reset failed\n");
 469         return 1;               /* failure */
 470 }
 471 
 472 static int bdx_hw_reset(struct bdx_priv *priv)
 473 {
 474         u32 val, i;
 475         ENTER;
 476 
 477         if (priv->port == 0) {
 478                 /* reset sequences: read, write 1, read, write 0 */
 479                 val = READ_REG(priv, regCLKPLL);
 480                 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 481                 udelay(50);
 482                 val = READ_REG(priv, regCLKPLL);
 483                 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 484         }
 485         /* check that the PLLs are locked and reset ended */
 486         for (i = 0; i < 70; i++, mdelay(10))
 487                 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 488                         /* do any PCI-E read transaction */
 489                         READ_REG(priv, regRXD_CFG0_0);
 490                         return 0;
 491                 }
 492         pr_err("HW reset failed\n");
 493         return 1;               /* failure */
 494 }
 495 
 496 static int bdx_sw_reset(struct bdx_priv *priv)
 497 {
 498         int i;
 499 
 500         ENTER;
 501         /* 1. load MAC (obsolete) */
 502         /* 2. disable Rx (and Tx) */
 503         WRITE_REG(priv, regGMAC_RXF_A, 0);
 504         mdelay(100);
 505         /* 3. disable port */
 506         WRITE_REG(priv, regDIS_PORT, 1);
 507         /* 4. disable queue */
 508         WRITE_REG(priv, regDIS_QU, 1);
 509         /* 5. wait until hw is disabled */
 510         for (i = 0; i < 50; i++) {
 511                 if (READ_REG(priv, regRST_PORT) & 1)
 512                         break;
 513                 mdelay(10);
 514         }
 515         if (i == 50)
 516                 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 517 
 518         /* 6. disable intrs */
 519         WRITE_REG(priv, regRDINTCM0, 0);
 520         WRITE_REG(priv, regTDINTCM0, 0);
 521         WRITE_REG(priv, regIMR, 0);
 522         READ_REG(priv, regISR);
 523 
 524         /* 7. reset queue */
 525         WRITE_REG(priv, regRST_QU, 1);
 526         /* 8. reset port */
 527         WRITE_REG(priv, regRST_PORT, 1);
 528         /* 9. zero all read and write pointers */
 529         for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 530                 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 531         for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 532                 WRITE_REG(priv, i, 0);
 533         /* 10. unseet port disable */
 534         WRITE_REG(priv, regDIS_PORT, 0);
 535         /* 11. unset queue disable */
 536         WRITE_REG(priv, regDIS_QU, 0);
 537         /* 12. unset queue reset */
 538         WRITE_REG(priv, regRST_QU, 0);
 539         /* 13. unset port reset */
 540         WRITE_REG(priv, regRST_PORT, 0);
 541         /* 14. enable Rx */
 542         /* skiped. will be done later */
 543         /* 15. save MAC (obsolete) */
 544         for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 545                 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 546 
 547         RET(0);
 548 }
 549 
 550 /* bdx_reset - performs right type of reset depending on hw type */
 551 static int bdx_reset(struct bdx_priv *priv)
 552 {
 553         ENTER;
 554         RET((priv->pdev->device == 0x3009)
 555             ? bdx_hw_reset(priv)
 556             : bdx_sw_reset(priv));
 557 }
 558 
 559 /**
 560  * bdx_close - Disables a network interface
 561  * @netdev: network interface device structure
 562  *
 563  * Returns 0, this is not allowed to fail
 564  *
 565  * The close entry point is called when an interface is de-activated
 566  * by the OS.  The hardware is still under the drivers control, but
 567  * needs to be disabled.  A global MAC reset is issued to stop the
 568  * hardware, and all transmit and receive resources are freed.
 569  **/
 570 static int bdx_close(struct net_device *ndev)
 571 {
 572         struct bdx_priv *priv = NULL;
 573 
 574         ENTER;
 575         priv = netdev_priv(ndev);
 576 
 577         napi_disable(&priv->napi);
 578 
 579         bdx_reset(priv);
 580         bdx_hw_stop(priv);
 581         bdx_rx_free(priv);
 582         bdx_tx_free(priv);
 583         RET(0);
 584 }
 585 
 586 /**
 587  * bdx_open - Called when a network interface is made active
 588  * @netdev: network interface device structure
 589  *
 590  * Returns 0 on success, negative value on failure
 591  *
 592  * The open entry point is called when a network interface is made
 593  * active by the system (IFF_UP).  At this point all resources needed
 594  * for transmit and receive operations are allocated, the interrupt
 595  * handler is registered with the OS, the watchdog timer is started,
 596  * and the stack is notified that the interface is ready.
 597  **/
 598 static int bdx_open(struct net_device *ndev)
 599 {
 600         struct bdx_priv *priv;
 601         int rc;
 602 
 603         ENTER;
 604         priv = netdev_priv(ndev);
 605         bdx_reset(priv);
 606         if (netif_running(ndev))
 607                 netif_stop_queue(priv->ndev);
 608 
 609         if ((rc = bdx_tx_init(priv)) ||
 610             (rc = bdx_rx_init(priv)) ||
 611             (rc = bdx_fw_load(priv)))
 612                 goto err;
 613 
 614         bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 615 
 616         rc = bdx_hw_start(priv);
 617         if (rc)
 618                 goto err;
 619 
 620         napi_enable(&priv->napi);
 621 
 622         print_fw_id(priv->nic);
 623 
 624         RET(0);
 625 
 626 err:
 627         bdx_close(ndev);
 628         RET(rc);
 629 }
 630 
 631 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 632 {
 633         return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 634                 -EINVAL : 0;
 635 }
 636 
 637 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 638 {
 639         struct bdx_priv *priv = netdev_priv(ndev);
 640         u32 data[3];
 641         int error;
 642 
 643         ENTER;
 644 
 645         DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 646         if (cmd != SIOCDEVPRIVATE) {
 647                 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 648                 if (error) {
 649                         pr_err("can't copy from user\n");
 650                         RET(-EFAULT);
 651                 }
 652                 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 653         } else {
 654                 return -EOPNOTSUPP;
 655         }
 656 
 657         if (!capable(CAP_SYS_RAWIO))
 658                 return -EPERM;
 659 
 660         switch (data[0]) {
 661 
 662         case BDX_OP_READ:
 663                 error = bdx_range_check(priv, data[1]);
 664                 if (error < 0)
 665                         return error;
 666                 data[2] = READ_REG(priv, data[1]);
 667                 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 668                     data[2]);
 669                 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 670                 if (error)
 671                         RET(-EFAULT);
 672                 break;
 673 
 674         case BDX_OP_WRITE:
 675                 error = bdx_range_check(priv, data[1]);
 676                 if (error < 0)
 677                         return error;
 678                 WRITE_REG(priv, data[1], data[2]);
 679                 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 680                 break;
 681 
 682         default:
 683                 RET(-EOPNOTSUPP);
 684         }
 685         return 0;
 686 }
 687 
 688 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 689 {
 690         ENTER;
 691         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 692                 RET(bdx_ioctl_priv(ndev, ifr, cmd));
 693         else
 694                 RET(-EOPNOTSUPP);
 695 }
 696 
 697 /**
 698  * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 699  * @ndev: network device
 700  * @vid:  VLAN vid
 701  * @op:   add or kill operation
 702  *
 703  * Passes VLAN filter table to hardware
 704  */
 705 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 706 {
 707         struct bdx_priv *priv = netdev_priv(ndev);
 708         u32 reg, bit, val;
 709 
 710         ENTER;
 711         DBG2("vid=%d value=%d\n", (int)vid, enable);
 712         if (unlikely(vid >= 4096)) {
 713                 pr_err("invalid VID: %u (> 4096)\n", vid);
 714                 RET();
 715         }
 716         reg = regVLAN_0 + (vid / 32) * 4;
 717         bit = 1 << vid % 32;
 718         val = READ_REG(priv, reg);
 719         DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 720         if (enable)
 721                 val |= bit;
 722         else
 723                 val &= ~bit;
 724         DBG2("new val %x\n", val);
 725         WRITE_REG(priv, reg, val);
 726         RET();
 727 }
 728 
 729 /**
 730  * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 731  * @ndev: network device
 732  * @vid:  VLAN vid to add
 733  */
 734 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 735 {
 736         __bdx_vlan_rx_vid(ndev, vid, 1);
 737         return 0;
 738 }
 739 
 740 /**
 741  * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 742  * @ndev: network device
 743  * @vid:  VLAN vid to kill
 744  */
 745 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 746 {
 747         __bdx_vlan_rx_vid(ndev, vid, 0);
 748         return 0;
 749 }
 750 
 751 /**
 752  * bdx_change_mtu - Change the Maximum Transfer Unit
 753  * @netdev: network interface device structure
 754  * @new_mtu: new value for maximum frame size
 755  *
 756  * Returns 0 on success, negative on failure
 757  */
 758 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 759 {
 760         ENTER;
 761 
 762         ndev->mtu = new_mtu;
 763         if (netif_running(ndev)) {
 764                 bdx_close(ndev);
 765                 bdx_open(ndev);
 766         }
 767         RET(0);
 768 }
 769 
 770 static void bdx_setmulti(struct net_device *ndev)
 771 {
 772         struct bdx_priv *priv = netdev_priv(ndev);
 773 
 774         u32 rxf_val =
 775             GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 776         int i;
 777 
 778         ENTER;
 779         /* IMF - imperfect (hash) rx multicat filter */
 780         /* PMF - perfect rx multicat filter */
 781 
 782         /* FIXME: RXE(OFF) */
 783         if (ndev->flags & IFF_PROMISC) {
 784                 rxf_val |= GMAC_RX_FILTER_PRM;
 785         } else if (ndev->flags & IFF_ALLMULTI) {
 786                 /* set IMF to accept all multicast frmaes */
 787                 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 788                         WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 789         } else if (!netdev_mc_empty(ndev)) {
 790                 u8 hash;
 791                 struct netdev_hw_addr *ha;
 792                 u32 reg, val;
 793 
 794                 /* set IMF to deny all multicast frames */
 795                 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 796                         WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 797                 /* set PMF to deny all multicast frames */
 798                 for (i = 0; i < MAC_MCST_NUM; i++) {
 799                         WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 800                         WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 801                 }
 802 
 803                 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
 804                 /* TBD: sort addresses and write them in ascending order
 805                  * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 806                  * multicast frames throu IMF */
 807                 /* accept the rest of addresses throu IMF */
 808                 netdev_for_each_mc_addr(ha, ndev) {
 809                         hash = 0;
 810                         for (i = 0; i < ETH_ALEN; i++)
 811                                 hash ^= ha->addr[i];
 812                         reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 813                         val = READ_REG(priv, reg);
 814                         val |= (1 << (hash % 32));
 815                         WRITE_REG(priv, reg, val);
 816                 }
 817 
 818         } else {
 819                 DBG("only own mac %d\n", netdev_mc_count(ndev));
 820                 rxf_val |= GMAC_RX_FILTER_AB;
 821         }
 822         WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 823         /* enable RX */
 824         /* FIXME: RXE(ON) */
 825         RET();
 826 }
 827 
 828 static int bdx_set_mac(struct net_device *ndev, void *p)
 829 {
 830         struct bdx_priv *priv = netdev_priv(ndev);
 831         struct sockaddr *addr = p;
 832 
 833         ENTER;
 834         /*
 835            if (netif_running(dev))
 836            return -EBUSY
 837          */
 838         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 839         bdx_restore_mac(ndev, priv);
 840         RET(0);
 841 }
 842 
 843 static int bdx_read_mac(struct bdx_priv *priv)
 844 {
 845         u16 macAddress[3], i;
 846         ENTER;
 847 
 848         macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 849         macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 850         macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 851         macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 852         macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 853         macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 854         for (i = 0; i < 3; i++) {
 855                 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 856                 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 857         }
 858         RET(0);
 859 }
 860 
 861 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 862 {
 863         u64 val;
 864 
 865         val = READ_REG(priv, reg);
 866         val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 867         return val;
 868 }
 869 
 870 /*Do the statistics-update work*/
 871 static void bdx_update_stats(struct bdx_priv *priv)
 872 {
 873         struct bdx_stats *stats = &priv->hw_stats;
 874         u64 *stats_vector = (u64 *) stats;
 875         int i;
 876         int addr;
 877 
 878         /*Fill HW structure */
 879         addr = 0x7200;
 880         /*First 12 statistics - 0x7200 - 0x72B0 */
 881         for (i = 0; i < 12; i++) {
 882                 stats_vector[i] = bdx_read_l2stat(priv, addr);
 883                 addr += 0x10;
 884         }
 885         BDX_ASSERT(addr != 0x72C0);
 886         /* 0x72C0-0x72E0 RSRV */
 887         addr = 0x72F0;
 888         for (; i < 16; i++) {
 889                 stats_vector[i] = bdx_read_l2stat(priv, addr);
 890                 addr += 0x10;
 891         }
 892         BDX_ASSERT(addr != 0x7330);
 893         /* 0x7330-0x7360 RSRV */
 894         addr = 0x7370;
 895         for (; i < 19; i++) {
 896                 stats_vector[i] = bdx_read_l2stat(priv, addr);
 897                 addr += 0x10;
 898         }
 899         BDX_ASSERT(addr != 0x73A0);
 900         /* 0x73A0-0x73B0 RSRV */
 901         addr = 0x73C0;
 902         for (; i < 23; i++) {
 903                 stats_vector[i] = bdx_read_l2stat(priv, addr);
 904                 addr += 0x10;
 905         }
 906         BDX_ASSERT(addr != 0x7400);
 907         BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 908 }
 909 
 910 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 911                        u16 rxd_vlan);
 912 static void print_rxfd(struct rxf_desc *rxfd);
 913 
 914 /*************************************************************************
 915  *     Rx DB                                                             *
 916  *************************************************************************/
 917 
 918 static void bdx_rxdb_destroy(struct rxdb *db)
 919 {
 920         vfree(db);
 921 }
 922 
 923 static struct rxdb *bdx_rxdb_create(int nelem)
 924 {
 925         struct rxdb *db;
 926         int i;
 927 
 928         db = vmalloc(sizeof(struct rxdb)
 929                      + (nelem * sizeof(int))
 930                      + (nelem * sizeof(struct rx_map)));
 931         if (likely(db != NULL)) {
 932                 db->stack = (int *)(db + 1);
 933                 db->elems = (void *)(db->stack + nelem);
 934                 db->nelem = nelem;
 935                 db->top = nelem;
 936                 for (i = 0; i < nelem; i++)
 937                         db->stack[i] = nelem - i - 1;   /* to make first allocs
 938                                                            close to db struct*/
 939         }
 940 
 941         return db;
 942 }
 943 
 944 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 945 {
 946         BDX_ASSERT(db->top <= 0);
 947         return db->stack[--(db->top)];
 948 }
 949 
 950 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 951 {
 952         BDX_ASSERT((n < 0) || (n >= db->nelem));
 953         return db->elems + n;
 954 }
 955 
 956 static inline int bdx_rxdb_available(struct rxdb *db)
 957 {
 958         return db->top;
 959 }
 960 
 961 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 962 {
 963         BDX_ASSERT((n >= db->nelem) || (n < 0));
 964         db->stack[(db->top)++] = n;
 965 }
 966 
 967 /*************************************************************************
 968  *     Rx Init                                                           *
 969  *************************************************************************/
 970 
 971 /**
 972  * bdx_rx_init - initialize RX all related HW and SW resources
 973  * @priv: NIC private structure
 974  *
 975  * Returns 0 on success, negative value on failure
 976  *
 977  * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 978  * skb for rx. It assumes that Rx is desabled in HW
 979  * funcs are grouped for better cache usage
 980  *
 981  * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 982  * filled and packets will be dropped by nic without getting into host or
 983  * cousing interrupt. Anyway, in that condition, host has no chance to process
 984  * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 985  */
 986 
 987 /* TBD: ensure proper packet size */
 988 
 989 static int bdx_rx_init(struct bdx_priv *priv)
 990 {
 991         ENTER;
 992 
 993         if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 994                           regRXD_CFG0_0, regRXD_CFG1_0,
 995                           regRXD_RPTR_0, regRXD_WPTR_0))
 996                 goto err_mem;
 997         if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
 998                           regRXF_CFG0_0, regRXF_CFG1_0,
 999                           regRXF_RPTR_0, regRXF_WPTR_0))
1000                 goto err_mem;
1001         priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1002                                      sizeof(struct rxf_desc));
1003         if (!priv->rxdb)
1004                 goto err_mem;
1005 
1006         priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1007         return 0;
1008 
1009 err_mem:
1010         netdev_err(priv->ndev, "Rx init failed\n");
1011         return -ENOMEM;
1012 }
1013 
1014 /**
1015  * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1016  * @priv: NIC private structure
1017  * @f: RXF fifo
1018  */
1019 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1020 {
1021         struct rx_map *dm;
1022         struct rxdb *db = priv->rxdb;
1023         u16 i;
1024 
1025         ENTER;
1026         DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1027             db->nelem - bdx_rxdb_available(db));
1028         while (bdx_rxdb_available(db) > 0) {
1029                 i = bdx_rxdb_alloc_elem(db);
1030                 dm = bdx_rxdb_addr_elem(db, i);
1031                 dm->dma = 0;
1032         }
1033         for (i = 0; i < db->nelem; i++) {
1034                 dm = bdx_rxdb_addr_elem(db, i);
1035                 if (dm->dma) {
1036                         pci_unmap_single(priv->pdev,
1037                                          dm->dma, f->m.pktsz,
1038                                          PCI_DMA_FROMDEVICE);
1039                         dev_kfree_skb(dm->skb);
1040                 }
1041         }
1042 }
1043 
1044 /**
1045  * bdx_rx_free - release all Rx resources
1046  * @priv: NIC private structure
1047  *
1048  * It assumes that Rx is desabled in HW
1049  */
1050 static void bdx_rx_free(struct bdx_priv *priv)
1051 {
1052         ENTER;
1053         if (priv->rxdb) {
1054                 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1055                 bdx_rxdb_destroy(priv->rxdb);
1056                 priv->rxdb = NULL;
1057         }
1058         bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1059         bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1060 
1061         RET();
1062 }
1063 
1064 /*************************************************************************
1065  *     Rx Engine                                                         *
1066  *************************************************************************/
1067 
1068 /**
1069  * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1070  * @priv: nic's private structure
1071  * @f: RXF fifo that needs skbs
1072  *
1073  * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074  * skb's virtual and physical addresses are stored in skb db.
1075  * To calculate free space, func uses cached values of RPTR and WPTR
1076  * When needed, it also updates RPTR and WPTR.
1077  */
1078 
1079 /* TBD: do not update WPTR if no desc were written */
1080 
1081 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1082 {
1083         struct sk_buff *skb;
1084         struct rxf_desc *rxfd;
1085         struct rx_map *dm;
1086         int dno, delta, idx;
1087         struct rxdb *db = priv->rxdb;
1088 
1089         ENTER;
1090         dno = bdx_rxdb_available(db) - 1;
1091         while (dno > 0) {
1092                 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1093                 if (!skb)
1094                         break;
1095 
1096                 skb_reserve(skb, NET_IP_ALIGN);
1097 
1098                 idx = bdx_rxdb_alloc_elem(db);
1099                 dm = bdx_rxdb_addr_elem(db, idx);
1100                 dm->dma = pci_map_single(priv->pdev,
1101                                          skb->data, f->m.pktsz,
1102                                          PCI_DMA_FROMDEVICE);
1103                 dm->skb = skb;
1104                 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1105                 rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1106                 rxfd->va_lo = idx;
1107                 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1108                 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1109                 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1110                 print_rxfd(rxfd);
1111 
1112                 f->m.wptr += sizeof(struct rxf_desc);
1113                 delta = f->m.wptr - f->m.memsz;
1114                 if (unlikely(delta >= 0)) {
1115                         f->m.wptr = delta;
1116                         if (delta > 0) {
1117                                 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1118                                 DBG("wrapped descriptor\n");
1119                         }
1120                 }
1121                 dno--;
1122         }
1123         /*TBD: to do - delayed rxf wptr like in txd */
1124         WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1125         RET();
1126 }
1127 
1128 static inline void
1129 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1130              struct sk_buff *skb)
1131 {
1132         ENTER;
1133         DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1134         if (GET_RXD_VTAG(rxd_val1)) {
1135                 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1136                     priv->ndev->name,
1137                     GET_RXD_VLAN_ID(rxd_vlan),
1138                     GET_RXD_VTAG(rxd_val1));
1139                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1140         }
1141         netif_receive_skb(skb);
1142 }
1143 
1144 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1145 {
1146         struct rxf_desc *rxfd;
1147         struct rx_map *dm;
1148         struct rxf_fifo *f;
1149         struct rxdb *db;
1150         int delta;
1151 
1152         ENTER;
1153         DBG("priv=%p rxdd=%p\n", priv, rxdd);
1154         f = &priv->rxf_fifo0;
1155         db = priv->rxdb;
1156         DBG("db=%p f=%p\n", db, f);
1157         dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1158         DBG("dm=%p\n", dm);
1159         rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1160         rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1161         rxfd->va_lo = rxdd->va_lo;
1162         rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1163         rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1164         rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1165         print_rxfd(rxfd);
1166 
1167         f->m.wptr += sizeof(struct rxf_desc);
1168         delta = f->m.wptr - f->m.memsz;
1169         if (unlikely(delta >= 0)) {
1170                 f->m.wptr = delta;
1171                 if (delta > 0) {
1172                         memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1173                         DBG("wrapped descriptor\n");
1174                 }
1175         }
1176         RET();
1177 }
1178 
1179 /**
1180  * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1181  * NOTE: a special treatment is given to non-continuous descriptors
1182  * that start near the end, wraps around and continue at the beginning. a second
1183  * part is copied right after the first, and then descriptor is interpreted as
1184  * normal. fifo has an extra space to allow such operations
1185  * @priv: nic's private structure
1186  * @f: RXF fifo that needs skbs
1187  * @budget: maximum number of packets to receive
1188  */
1189 
1190 /* TBD: replace memcpy func call by explicite inline asm */
1191 
1192 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1193 {
1194         struct net_device *ndev = priv->ndev;
1195         struct sk_buff *skb, *skb2;
1196         struct rxd_desc *rxdd;
1197         struct rx_map *dm;
1198         struct rxf_fifo *rxf_fifo;
1199         int tmp_len, size;
1200         int done = 0;
1201         int max_done = BDX_MAX_RX_DONE;
1202         struct rxdb *db = NULL;
1203         /* Unmarshalled descriptor - copy of descriptor in host order */
1204         u32 rxd_val1;
1205         u16 len;
1206         u16 rxd_vlan;
1207 
1208         ENTER;
1209         max_done = budget;
1210 
1211         f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1212 
1213         size = f->m.wptr - f->m.rptr;
1214         if (size < 0)
1215                 size = f->m.memsz + size;       /* size is negative :-) */
1216 
1217         while (size > 0) {
1218 
1219                 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1220                 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1221 
1222                 len = CPU_CHIP_SWAP16(rxdd->len);
1223 
1224                 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1225 
1226                 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1227 
1228                 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1229                 BDX_ASSERT(tmp_len <= 0);
1230                 size -= tmp_len;
1231                 if (size < 0)   /* test for partially arrived descriptor */
1232                         break;
1233 
1234                 f->m.rptr += tmp_len;
1235 
1236                 tmp_len = f->m.rptr - f->m.memsz;
1237                 if (unlikely(tmp_len >= 0)) {
1238                         f->m.rptr = tmp_len;
1239                         if (tmp_len > 0) {
1240                                 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241                                     f->m.rptr, tmp_len);
1242                                 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1243                         }
1244                 }
1245 
1246                 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1247                         DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1248                         ndev->stats.rx_errors++;
1249                         bdx_recycle_skb(priv, rxdd);
1250                         continue;
1251                 }
1252 
1253                 rxf_fifo = &priv->rxf_fifo0;
1254                 db = priv->rxdb;
1255                 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1256                 skb = dm->skb;
1257 
1258                 if (len < BDX_COPYBREAK &&
1259                     (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1260                         skb_reserve(skb2, NET_IP_ALIGN);
1261                         /*skb_put(skb2, len); */
1262                         pci_dma_sync_single_for_cpu(priv->pdev,
1263                                                     dm->dma, rxf_fifo->m.pktsz,
1264                                                     PCI_DMA_FROMDEVICE);
1265                         memcpy(skb2->data, skb->data, len);
1266                         bdx_recycle_skb(priv, rxdd);
1267                         skb = skb2;
1268                 } else {
1269                         pci_unmap_single(priv->pdev,
1270                                          dm->dma, rxf_fifo->m.pktsz,
1271                                          PCI_DMA_FROMDEVICE);
1272                         bdx_rxdb_free_elem(db, rxdd->va_lo);
1273                 }
1274 
1275                 ndev->stats.rx_bytes += len;
1276 
1277                 skb_put(skb, len);
1278                 skb->protocol = eth_type_trans(skb, ndev);
1279 
1280                 /* Non-IP packets aren't checksum-offloaded */
1281                 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1282                         skb_checksum_none_assert(skb);
1283                 else
1284                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1285 
1286                 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1287 
1288                 if (++done >= max_done)
1289                         break;
1290         }
1291 
1292         ndev->stats.rx_packets += done;
1293 
1294         /* FIXME: do smth to minimize pci accesses    */
1295         WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1296 
1297         bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1298 
1299         RET(done);
1300 }
1301 
1302 /*************************************************************************
1303  * Debug / Temprorary Code                                               *
1304  *************************************************************************/
1305 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1306                        u16 rxd_vlan)
1307 {
1308         DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309             GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1310             GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1311             GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1312             GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1313             GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1314             rxdd->va_hi);
1315 }
1316 
1317 static void print_rxfd(struct rxf_desc *rxfd)
1318 {
1319         DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1320             "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321             rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1322 }
1323 
1324 /*
1325  * TX HW/SW interaction overview
1326  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327  * There are 2 types of TX communication channels between driver and NIC.
1328  * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329  * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1330  *
1331  * Currently NIC supports TSO, checksuming and gather DMA
1332  * UFO and IP fragmentation is on the way
1333  *
1334  * RX SW Data Structures
1335  * ~~~~~~~~~~~~~~~~~~~~~
1336  * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337  * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338  * acknowledges sent by TXF descriptors.
1339  * Implemented as cyclic buffer.
1340  * fifo - keeps info about fifo's size and location, relevant HW registers,
1341  * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342  * Implemented as simple struct.
1343  *
1344  * TX SW Execution Flow
1345  * ~~~~~~~~~~~~~~~~~~~~
1346  * OS calls driver's hard_xmit method with packet to sent.
1347  * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348  * by updating TXD WPTR.
1349  * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350  * To prevent TXD fifo overflow without reading HW registers every time,
1351  * SW deploys "tx level" technique.
1352  * Upon strart up, tx level is initialized to TXD fifo length.
1353  * For every sent packet, SW gets its TXD descriptor sizei
1354  * (from precalculated array) and substructs it from tx level.
1355  * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356  * original TXD descriptor from txdb and adds it to tx level.
1357  * When Tx level drops under some predefined treshhold, the driver
1358  * stops the TX queue. When TX level rises above that level,
1359  * the tx queue is enabled again.
1360  *
1361  * This technique avoids eccessive reading of RPTR and WPTR registers.
1362  * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1363  */
1364 
1365 /*************************************************************************
1366  *     Tx DB                                                             *
1367  *************************************************************************/
1368 static inline int bdx_tx_db_size(struct txdb *db)
1369 {
1370         int taken = db->wptr - db->rptr;
1371         if (taken < 0)
1372                 taken = db->size + 1 + taken;   /* (size + 1) equals memsz */
1373 
1374         return db->size - taken;
1375 }
1376 
1377 /**
1378  * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1379  * @db: tx data base
1380  * @pptr: read or write pointer
1381  */
1382 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1383 {
1384         BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1385 
1386         BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1387                    *pptr != db->wptr);  /* or write pointer */
1388 
1389         BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1390                    *pptr >= db->end);   /* in range */
1391 
1392         ++*pptr;
1393         if (unlikely(*pptr == db->end))
1394                 *pptr = db->start;
1395 }
1396 
1397 /**
1398  * bdx_tx_db_inc_rptr - increment read pointer
1399  * @db: tx data base
1400  */
1401 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1402 {
1403         BDX_ASSERT(db->rptr == db->wptr);       /* can't read from empty db */
1404         __bdx_tx_db_ptr_next(db, &db->rptr);
1405 }
1406 
1407 /**
1408  * bdx_tx_db_inc_wptr - increment write pointer
1409  * @db: tx data base
1410  */
1411 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1412 {
1413         __bdx_tx_db_ptr_next(db, &db->wptr);
1414         BDX_ASSERT(db->rptr == db->wptr);       /* we can not get empty db as
1415                                                    a result of write */
1416 }
1417 
1418 /**
1419  * bdx_tx_db_init - creates and initializes tx db
1420  * @d: tx data base
1421  * @sz_type: size of tx fifo
1422  *
1423  * Returns 0 on success, error code otherwise
1424  */
1425 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1426 {
1427         int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1428 
1429         d->start = vmalloc(memsz);
1430         if (!d->start)
1431                 return -ENOMEM;
1432 
1433         /*
1434          * In order to differentiate between db is empty and db is full
1435          * states at least one element should always be empty in order to
1436          * avoid rptr == wptr which means db is empty
1437          */
1438         d->size = memsz / sizeof(struct tx_map) - 1;
1439         d->end = d->start + d->size + 1;        /* just after last element */
1440 
1441         /* all dbs are created equally empty */
1442         d->rptr = d->start;
1443         d->wptr = d->start;
1444 
1445         return 0;
1446 }
1447 
1448 /**
1449  * bdx_tx_db_close - closes tx db and frees all memory
1450  * @d: tx data base
1451  */
1452 static void bdx_tx_db_close(struct txdb *d)
1453 {
1454         BDX_ASSERT(d == NULL);
1455 
1456         vfree(d->start);
1457         d->start = NULL;
1458 }
1459 
1460 /*************************************************************************
1461  *     Tx Engine                                                         *
1462  *************************************************************************/
1463 
1464 /* sizes of tx desc (including padding if needed) as function
1465  * of skb's frag number */
1466 static struct {
1467         u16 bytes;
1468         u16 qwords;             /* qword = 64 bit */
1469 } txd_sizes[MAX_SKB_FRAGS + 1];
1470 
1471 /**
1472  * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1473  * @priv: NIC private structure
1474  * @skb: socket buffer to map
1475  * @txdd: TX descriptor to use
1476  *
1477  * It makes dma mappings for skb's data blocks and writes them to PBL of
1478  * new tx descriptor. It also stores them in the tx db, so they could be
1479  * unmaped after data was sent. It is reponsibility of a caller to make
1480  * sure that there is enough space in the tx db. Last element holds pointer
1481  * to skb itself and marked with zero length
1482  */
1483 static inline void
1484 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1485                struct txd_desc *txdd)
1486 {
1487         struct txdb *db = &priv->txdb;
1488         struct pbl *pbl = &txdd->pbl[0];
1489         int nr_frags = skb_shinfo(skb)->nr_frags;
1490         int i;
1491 
1492         db->wptr->len = skb_headlen(skb);
1493         db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1494                                             db->wptr->len, PCI_DMA_TODEVICE);
1495         pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1496         pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1497         pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1498         DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1499         DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1500         DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1501         bdx_tx_db_inc_wptr(db);
1502 
1503         for (i = 0; i < nr_frags; i++) {
1504                 const skb_frag_t *frag;
1505 
1506                 frag = &skb_shinfo(skb)->frags[i];
1507                 db->wptr->len = skb_frag_size(frag);
1508                 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1509                                                       0, skb_frag_size(frag),
1510                                                       DMA_TO_DEVICE);
1511 
1512                 pbl++;
1513                 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1514                 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1515                 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1516                 bdx_tx_db_inc_wptr(db);
1517         }
1518 
1519         /* add skb clean up info. */
1520         db->wptr->len = -txd_sizes[nr_frags].bytes;
1521         db->wptr->addr.skb = skb;
1522         bdx_tx_db_inc_wptr(db);
1523 }
1524 
1525 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1526  * number of frags is used as index to fetch correct descriptors size,
1527  * instead of calculating it each time */
1528 static void __init init_txd_sizes(void)
1529 {
1530         int i, lwords;
1531 
1532         /* 7 - is number of lwords in txd with one phys buffer
1533          * 3 - is number of lwords used for every additional phys buffer */
1534         for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1535                 lwords = 7 + (i * 3);
1536                 if (lwords & 1)
1537                         lwords++;       /* pad it with 1 lword */
1538                 txd_sizes[i].qwords = lwords >> 1;
1539                 txd_sizes[i].bytes = lwords << 2;
1540         }
1541 }
1542 
1543 /* bdx_tx_init - initialize all Tx related stuff.
1544  * Namely, TXD and TXF fifos, database etc */
1545 static int bdx_tx_init(struct bdx_priv *priv)
1546 {
1547         if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1548                           regTXD_CFG0_0,
1549                           regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1550                 goto err_mem;
1551         if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1552                           regTXF_CFG0_0,
1553                           regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1554                 goto err_mem;
1555 
1556         /* The TX db has to keep mappings for all packets sent (on TxD)
1557          * and not yet reclaimed (on TxF) */
1558         if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1559                 goto err_mem;
1560 
1561         priv->tx_level = BDX_MAX_TX_LEVEL;
1562 #ifdef BDX_DELAY_WPTR
1563         priv->tx_update_mark = priv->tx_level - 1024;
1564 #endif
1565         return 0;
1566 
1567 err_mem:
1568         netdev_err(priv->ndev, "Tx init failed\n");
1569         return -ENOMEM;
1570 }
1571 
1572 /**
1573  * bdx_tx_space - calculates available space in TX fifo
1574  * @priv: NIC private structure
1575  *
1576  * Returns available space in TX fifo in bytes
1577  */
1578 static inline int bdx_tx_space(struct bdx_priv *priv)
1579 {
1580         struct txd_fifo *f = &priv->txd_fifo0;
1581         int fsize;
1582 
1583         f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1584         fsize = f->m.rptr - f->m.wptr;
1585         if (fsize <= 0)
1586                 fsize = f->m.memsz + fsize;
1587         return fsize;
1588 }
1589 
1590 /**
1591  * bdx_tx_transmit - send packet to NIC
1592  * @skb: packet to send
1593  * @ndev: network device assigned to NIC
1594  * Return codes:
1595  * o NETDEV_TX_OK everything ok.
1596  * o NETDEV_TX_BUSY Cannot transmit packet, try later
1597  *   Usually a bug, means queue start/stop flow control is broken in
1598  *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1599  */
1600 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1601                                    struct net_device *ndev)
1602 {
1603         struct bdx_priv *priv = netdev_priv(ndev);
1604         struct txd_fifo *f = &priv->txd_fifo0;
1605         int txd_checksum = 7;   /* full checksum */
1606         int txd_lgsnd = 0;
1607         int txd_vlan_id = 0;
1608         int txd_vtag = 0;
1609         int txd_mss = 0;
1610 
1611         int nr_frags = skb_shinfo(skb)->nr_frags;
1612         struct txd_desc *txdd;
1613         int len;
1614         unsigned long flags;
1615 
1616         ENTER;
1617         local_irq_save(flags);
1618         spin_lock(&priv->tx_lock);
1619 
1620         /* build tx descriptor */
1621         BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* started with valid wptr */
1622         txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1623         if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1624                 txd_checksum = 0;
1625 
1626         if (skb_shinfo(skb)->gso_size) {
1627                 txd_mss = skb_shinfo(skb)->gso_size;
1628                 txd_lgsnd = 1;
1629                 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1630                     txd_mss);
1631         }
1632 
1633         if (skb_vlan_tag_present(skb)) {
1634                 /*Cut VLAN ID to 12 bits */
1635                 txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1636                 txd_vtag = 1;
1637         }
1638 
1639         txdd->length = CPU_CHIP_SWAP16(skb->len);
1640         txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1641         txdd->txd_val1 =
1642             CPU_CHIP_SWAP32(TXD_W1_VAL
1643                             (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1644                              txd_lgsnd, txd_vlan_id));
1645         DBG("=== TxD desc =====================\n");
1646         DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1647         DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1648 
1649         bdx_tx_map_skb(priv, skb, txdd);
1650 
1651         /* increment TXD write pointer. In case of
1652            fifo wrapping copy reminder of the descriptor
1653            to the beginning */
1654         f->m.wptr += txd_sizes[nr_frags].bytes;
1655         len = f->m.wptr - f->m.memsz;
1656         if (unlikely(len >= 0)) {
1657                 f->m.wptr = len;
1658                 if (len > 0) {
1659                         BDX_ASSERT(len > f->m.memsz);
1660                         memcpy(f->m.va, f->m.va + f->m.memsz, len);
1661                 }
1662         }
1663         BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* finished with valid wptr */
1664 
1665         priv->tx_level -= txd_sizes[nr_frags].bytes;
1666         BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1667 #ifdef BDX_DELAY_WPTR
1668         if (priv->tx_level > priv->tx_update_mark) {
1669                 /* Force memory writes to complete before letting h/w
1670                    know there are new descriptors to fetch.
1671                    (might be needed on platforms like IA64)
1672                    wmb(); */
1673                 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1674         } else {
1675                 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1676                         priv->tx_noupd = 0;
1677                         WRITE_REG(priv, f->m.reg_WPTR,
1678                                   f->m.wptr & TXF_WPTR_WR_PTR);
1679                 }
1680         }
1681 #else
1682         /* Force memory writes to complete before letting h/w
1683            know there are new descriptors to fetch.
1684            (might be needed on platforms like IA64)
1685            wmb(); */
1686         WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1687 
1688 #endif
1689 #ifdef BDX_LLTX
1690         netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1691 #endif
1692         ndev->stats.tx_packets++;
1693         ndev->stats.tx_bytes += skb->len;
1694 
1695         if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1696                 DBG("%s: %s: TX Q STOP level %d\n",
1697                     BDX_DRV_NAME, ndev->name, priv->tx_level);
1698                 netif_stop_queue(ndev);
1699         }
1700 
1701         spin_unlock_irqrestore(&priv->tx_lock, flags);
1702         return NETDEV_TX_OK;
1703 }
1704 
1705 /**
1706  * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1707  * @priv: bdx adapter
1708  *
1709  * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1710  * that those packets were sent
1711  */
1712 static void bdx_tx_cleanup(struct bdx_priv *priv)
1713 {
1714         struct txf_fifo *f = &priv->txf_fifo0;
1715         struct txdb *db = &priv->txdb;
1716         int tx_level = 0;
1717 
1718         ENTER;
1719         f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1720         BDX_ASSERT(f->m.rptr >= f->m.memsz);    /* started with valid rptr */
1721 
1722         while (f->m.wptr != f->m.rptr) {
1723                 f->m.rptr += BDX_TXF_DESC_SZ;
1724                 f->m.rptr &= f->m.size_mask;
1725 
1726                 /* unmap all the fragments */
1727                 /* first has to come tx_maps containing dma */
1728                 BDX_ASSERT(db->rptr->len == 0);
1729                 do {
1730                         BDX_ASSERT(db->rptr->addr.dma == 0);
1731                         pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1732                                        db->rptr->len, PCI_DMA_TODEVICE);
1733                         bdx_tx_db_inc_rptr(db);
1734                 } while (db->rptr->len > 0);
1735                 tx_level -= db->rptr->len;      /* '-' koz len is negative */
1736 
1737                 /* now should come skb pointer - free it */
1738                 dev_consume_skb_irq(db->rptr->addr.skb);
1739                 bdx_tx_db_inc_rptr(db);
1740         }
1741 
1742         /* let h/w know which TXF descriptors were cleaned */
1743         BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1744         WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1745 
1746         /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1747          * we resume the transmission and use tx_lock to synchronize with xmit.*/
1748         spin_lock(&priv->tx_lock);
1749         priv->tx_level += tx_level;
1750         BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1751 #ifdef BDX_DELAY_WPTR
1752         if (priv->tx_noupd) {
1753                 priv->tx_noupd = 0;
1754                 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1755                           priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1756         }
1757 #endif
1758 
1759         if (unlikely(netif_queue_stopped(priv->ndev) &&
1760                      netif_carrier_ok(priv->ndev) &&
1761                      (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1762                 DBG("%s: %s: TX Q WAKE level %d\n",
1763                     BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1764                 netif_wake_queue(priv->ndev);
1765         }
1766         spin_unlock(&priv->tx_lock);
1767 }
1768 
1769 /**
1770  * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1771  * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1772  */
1773 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1774 {
1775         struct txdb *db = &priv->txdb;
1776 
1777         ENTER;
1778         while (db->rptr != db->wptr) {
1779                 if (likely(db->rptr->len))
1780                         pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1781                                        db->rptr->len, PCI_DMA_TODEVICE);
1782                 else
1783                         dev_kfree_skb(db->rptr->addr.skb);
1784                 bdx_tx_db_inc_rptr(db);
1785         }
1786         RET();
1787 }
1788 
1789 /* bdx_tx_free - frees all Tx resources */
1790 static void bdx_tx_free(struct bdx_priv *priv)
1791 {
1792         ENTER;
1793         bdx_tx_free_skbs(priv);
1794         bdx_fifo_free(priv, &priv->txd_fifo0.m);
1795         bdx_fifo_free(priv, &priv->txf_fifo0.m);
1796         bdx_tx_db_close(&priv->txdb);
1797 }
1798 
1799 /**
1800  * bdx_tx_push_desc - push descriptor to TxD fifo
1801  * @priv: NIC private structure
1802  * @data: desc's data
1803  * @size: desc's size
1804  *
1805  * Pushes desc to TxD fifo and overlaps it if needed.
1806  * NOTE: this func does not check for available space. this is responsibility
1807  *    of the caller. Neither does it check that data size is smaller than
1808  *    fifo size.
1809  */
1810 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1811 {
1812         struct txd_fifo *f = &priv->txd_fifo0;
1813         int i = f->m.memsz - f->m.wptr;
1814 
1815         if (size == 0)
1816                 return;
1817 
1818         if (i > size) {
1819                 memcpy(f->m.va + f->m.wptr, data, size);
1820                 f->m.wptr += size;
1821         } else {
1822                 memcpy(f->m.va + f->m.wptr, data, i);
1823                 f->m.wptr = size - i;
1824                 memcpy(f->m.va, data + i, f->m.wptr);
1825         }
1826         WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1827 }
1828 
1829 /**
1830  * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1831  * @priv: NIC private structure
1832  * @data: desc's data
1833  * @size: desc's size
1834  *
1835  * NOTE: this func does check for available space and, if necessary, waits for
1836  *   NIC to read existing data before writing new one.
1837  */
1838 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1839 {
1840         int timer = 0;
1841         ENTER;
1842 
1843         while (size > 0) {
1844                 /* we substruct 8 because when fifo is full rptr == wptr
1845                    which also means that fifo is empty, we can understand
1846                    the difference, but could hw do the same ??? :) */
1847                 int avail = bdx_tx_space(priv) - 8;
1848                 if (avail <= 0) {
1849                         if (timer++ > 300) {    /* prevent endless loop */
1850                                 DBG("timeout while writing desc to TxD fifo\n");
1851                                 break;
1852                         }
1853                         udelay(50);     /* give hw a chance to clean fifo */
1854                         continue;
1855                 }
1856                 avail = min(avail, size);
1857                 DBG("about to push  %d bytes starting %p size %d\n", avail,
1858                     data, size);
1859                 bdx_tx_push_desc(priv, data, avail);
1860                 size -= avail;
1861                 data += avail;
1862         }
1863         RET();
1864 }
1865 
1866 static const struct net_device_ops bdx_netdev_ops = {
1867         .ndo_open               = bdx_open,
1868         .ndo_stop               = bdx_close,
1869         .ndo_start_xmit         = bdx_tx_transmit,
1870         .ndo_validate_addr      = eth_validate_addr,
1871         .ndo_do_ioctl           = bdx_ioctl,
1872         .ndo_set_rx_mode        = bdx_setmulti,
1873         .ndo_change_mtu         = bdx_change_mtu,
1874         .ndo_set_mac_address    = bdx_set_mac,
1875         .ndo_vlan_rx_add_vid    = bdx_vlan_rx_add_vid,
1876         .ndo_vlan_rx_kill_vid   = bdx_vlan_rx_kill_vid,
1877 };
1878 
1879 /**
1880  * bdx_probe - Device Initialization Routine
1881  * @pdev: PCI device information struct
1882  * @ent: entry in bdx_pci_tbl
1883  *
1884  * Returns 0 on success, negative on failure
1885  *
1886  * bdx_probe initializes an adapter identified by a pci_dev structure.
1887  * The OS initialization, configuring of the adapter private structure,
1888  * and a hardware reset occur.
1889  *
1890  * functions and their order used as explained in
1891  * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1892  *
1893  */
1894 
1895 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1896 static int
1897 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1898 {
1899         struct net_device *ndev;
1900         struct bdx_priv *priv;
1901         int err, pci_using_dac, port;
1902         unsigned long pciaddr;
1903         u32 regionSize;
1904         struct pci_nic *nic;
1905 
1906         ENTER;
1907 
1908         nic = vmalloc(sizeof(*nic));
1909         if (!nic)
1910                 RET(-ENOMEM);
1911 
1912     /************** pci *****************/
1913         err = pci_enable_device(pdev);
1914         if (err)                        /* it triggers interrupt, dunno why. */
1915                 goto err_pci;           /* it's not a problem though */
1916 
1917         if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1918             !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1919                 pci_using_dac = 1;
1920         } else {
1921                 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1922                     (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1923                         pr_err("No usable DMA configuration, aborting\n");
1924                         goto err_dma;
1925                 }
1926                 pci_using_dac = 0;
1927         }
1928 
1929         err = pci_request_regions(pdev, BDX_DRV_NAME);
1930         if (err)
1931                 goto err_dma;
1932 
1933         pci_set_master(pdev);
1934 
1935         pciaddr = pci_resource_start(pdev, 0);
1936         if (!pciaddr) {
1937                 err = -EIO;
1938                 pr_err("no MMIO resource\n");
1939                 goto err_out_res;
1940         }
1941         regionSize = pci_resource_len(pdev, 0);
1942         if (regionSize < BDX_REGS_SIZE) {
1943                 err = -EIO;
1944                 pr_err("MMIO resource (%x) too small\n", regionSize);
1945                 goto err_out_res;
1946         }
1947 
1948         nic->regs = ioremap(pciaddr, regionSize);
1949         if (!nic->regs) {
1950                 err = -EIO;
1951                 pr_err("ioremap failed\n");
1952                 goto err_out_res;
1953         }
1954 
1955         if (pdev->irq < 2) {
1956                 err = -EIO;
1957                 pr_err("invalid irq (%d)\n", pdev->irq);
1958                 goto err_out_iomap;
1959         }
1960         pci_set_drvdata(pdev, nic);
1961 
1962         if (pdev->device == 0x3014)
1963                 nic->port_num = 2;
1964         else
1965                 nic->port_num = 1;
1966 
1967         print_hw_id(pdev);
1968 
1969         bdx_hw_reset_direct(nic->regs);
1970 
1971         nic->irq_type = IRQ_INTX;
1972 #ifdef BDX_MSI
1973         if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1974                 err = pci_enable_msi(pdev);
1975                 if (err)
1976                         pr_err("Can't enable msi. error is %d\n", err);
1977                 else
1978                         nic->irq_type = IRQ_MSI;
1979         } else
1980                 DBG("HW does not support MSI\n");
1981 #endif
1982 
1983     /************** netdev **************/
1984         for (port = 0; port < nic->port_num; port++) {
1985                 ndev = alloc_etherdev(sizeof(struct bdx_priv));
1986                 if (!ndev) {
1987                         err = -ENOMEM;
1988                         goto err_out_iomap;
1989                 }
1990 
1991                 ndev->netdev_ops = &bdx_netdev_ops;
1992                 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1993 
1994                 bdx_set_ethtool_ops(ndev);      /* ethtool interface */
1995 
1996                 /* these fields are used for info purposes only
1997                  * so we can have them same for all ports of the board */
1998                 ndev->if_port = port;
1999                 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2000                     | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2001                     NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
2002                     ;
2003                 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2004                         NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
2005 
2006                 if (pci_using_dac)
2007                         ndev->features |= NETIF_F_HIGHDMA;
2008 
2009         /************** priv ****************/
2010                 priv = nic->priv[port] = netdev_priv(ndev);
2011 
2012                 priv->pBdxRegs = nic->regs + port * 0x8000;
2013                 priv->port = port;
2014                 priv->pdev = pdev;
2015                 priv->ndev = ndev;
2016                 priv->nic = nic;
2017                 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2018 
2019                 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2020 
2021                 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2022                         DBG("HW statistics not supported\n");
2023                         priv->stats_flag = 0;
2024                 } else {
2025                         priv->stats_flag = 1;
2026                 }
2027 
2028                 /* Initialize fifo sizes. */
2029                 priv->txd_size = 2;
2030                 priv->txf_size = 2;
2031                 priv->rxd_size = 2;
2032                 priv->rxf_size = 3;
2033 
2034                 /* Initialize the initial coalescing registers. */
2035                 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2036                 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2037 
2038                 /* ndev->xmit_lock spinlock is not used.
2039                  * Private priv->tx_lock is used for synchronization
2040                  * between transmit and TX irq cleanup.  In addition
2041                  * set multicast list callback has to use priv->tx_lock.
2042                  */
2043 #ifdef BDX_LLTX
2044                 ndev->features |= NETIF_F_LLTX;
2045 #endif
2046                 /* MTU range: 60 - 16384 */
2047                 ndev->min_mtu = ETH_ZLEN;
2048                 ndev->max_mtu = BDX_MAX_MTU;
2049 
2050                 spin_lock_init(&priv->tx_lock);
2051 
2052                 /*bdx_hw_reset(priv); */
2053                 if (bdx_read_mac(priv)) {
2054                         pr_err("load MAC address failed\n");
2055                         goto err_out_iomap;
2056                 }
2057                 SET_NETDEV_DEV(ndev, &pdev->dev);
2058                 err = register_netdev(ndev);
2059                 if (err) {
2060                         pr_err("register_netdev failed\n");
2061                         goto err_out_free;
2062                 }
2063                 netif_carrier_off(ndev);
2064                 netif_stop_queue(ndev);
2065 
2066                 print_eth_id(ndev);
2067         }
2068         RET(0);
2069 
2070 err_out_free:
2071         free_netdev(ndev);
2072 err_out_iomap:
2073         iounmap(nic->regs);
2074 err_out_res:
2075         pci_release_regions(pdev);
2076 err_dma:
2077         pci_disable_device(pdev);
2078 err_pci:
2079         vfree(nic);
2080 
2081         RET(err);
2082 }
2083 
2084 /****************** Ethtool interface *********************/
2085 /* get strings for statistics counters */
2086 static const char
2087  bdx_stat_names[][ETH_GSTRING_LEN] = {
2088         "InUCast",              /* 0x7200 */
2089         "InMCast",              /* 0x7210 */
2090         "InBCast",              /* 0x7220 */
2091         "InPkts",               /* 0x7230 */
2092         "InErrors",             /* 0x7240 */
2093         "InDropped",            /* 0x7250 */
2094         "FrameTooLong",         /* 0x7260 */
2095         "FrameSequenceErrors",  /* 0x7270 */
2096         "InVLAN",               /* 0x7280 */
2097         "InDroppedDFE",         /* 0x7290 */
2098         "InDroppedIntFull",     /* 0x72A0 */
2099         "InFrameAlignErrors",   /* 0x72B0 */
2100 
2101         /* 0x72C0-0x72E0 RSRV */
2102 
2103         "OutUCast",             /* 0x72F0 */
2104         "OutMCast",             /* 0x7300 */
2105         "OutBCast",             /* 0x7310 */
2106         "OutPkts",              /* 0x7320 */
2107 
2108         /* 0x7330-0x7360 RSRV */
2109 
2110         "OutVLAN",              /* 0x7370 */
2111         "InUCastOctects",       /* 0x7380 */
2112         "OutUCastOctects",      /* 0x7390 */
2113 
2114         /* 0x73A0-0x73B0 RSRV */
2115 
2116         "InBCastOctects",       /* 0x73C0 */
2117         "OutBCastOctects",      /* 0x73D0 */
2118         "InOctects",            /* 0x73E0 */
2119         "OutOctects",           /* 0x73F0 */
2120 };
2121 
2122 /*
2123  * bdx_get_link_ksettings - get device-specific settings
2124  * @netdev
2125  * @ecmd
2126  */
2127 static int bdx_get_link_ksettings(struct net_device *netdev,
2128                                   struct ethtool_link_ksettings *ecmd)
2129 {
2130         ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2131         ethtool_link_ksettings_add_link_mode(ecmd, supported,
2132                                              10000baseT_Full);
2133         ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2134         ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2135         ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2136                                              10000baseT_Full);
2137         ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2138 
2139         ecmd->base.speed = SPEED_10000;
2140         ecmd->base.duplex = DUPLEX_FULL;
2141         ecmd->base.port = PORT_FIBRE;
2142         ecmd->base.autoneg = AUTONEG_DISABLE;
2143 
2144         return 0;
2145 }
2146 
2147 /*
2148  * bdx_get_drvinfo - report driver information
2149  * @netdev
2150  * @drvinfo
2151  */
2152 static void
2153 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2154 {
2155         struct bdx_priv *priv = netdev_priv(netdev);
2156 
2157         strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2158         strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2159         strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2160         strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2161                 sizeof(drvinfo->bus_info));
2162 }
2163 
2164 /*
2165  * bdx_get_coalesce - get interrupt coalescing parameters
2166  * @netdev
2167  * @ecoal
2168  */
2169 static int
2170 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2171 {
2172         u32 rdintcm;
2173         u32 tdintcm;
2174         struct bdx_priv *priv = netdev_priv(netdev);
2175 
2176         rdintcm = priv->rdintcm;
2177         tdintcm = priv->tdintcm;
2178 
2179         /* PCK_TH measures in multiples of FIFO bytes
2180            We translate to packets */
2181         ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2182         ecoal->rx_max_coalesced_frames =
2183             ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2184 
2185         ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2186         ecoal->tx_max_coalesced_frames =
2187             ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2188 
2189         /* adaptive parameters ignored */
2190         return 0;
2191 }
2192 
2193 /*
2194  * bdx_set_coalesce - set interrupt coalescing parameters
2195  * @netdev
2196  * @ecoal
2197  */
2198 static int
2199 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2200 {
2201         u32 rdintcm;
2202         u32 tdintcm;
2203         struct bdx_priv *priv = netdev_priv(netdev);
2204         int rx_coal;
2205         int tx_coal;
2206         int rx_max_coal;
2207         int tx_max_coal;
2208 
2209         /* Check for valid input */
2210         rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2211         tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2212         rx_max_coal = ecoal->rx_max_coalesced_frames;
2213         tx_max_coal = ecoal->tx_max_coalesced_frames;
2214 
2215         /* Translate from packets to multiples of FIFO bytes */
2216         rx_max_coal =
2217             (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2218              / PCK_TH_MULT);
2219         tx_max_coal =
2220             (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2221              / PCK_TH_MULT);
2222 
2223         if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2224             (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2225                 return -EINVAL;
2226 
2227         rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2228                               GET_RXF_TH(priv->rdintcm), rx_max_coal);
2229         tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2230                               tx_max_coal);
2231 
2232         priv->rdintcm = rdintcm;
2233         priv->tdintcm = tdintcm;
2234 
2235         WRITE_REG(priv, regRDINTCM0, rdintcm);
2236         WRITE_REG(priv, regTDINTCM0, tdintcm);
2237 
2238         return 0;
2239 }
2240 
2241 /* Convert RX fifo size to number of pending packets */
2242 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2243 {
2244         return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2245 }
2246 
2247 /* Convert TX fifo size to number of pending packets */
2248 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2249 {
2250         return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2251 }
2252 
2253 /*
2254  * bdx_get_ringparam - report ring sizes
2255  * @netdev
2256  * @ring
2257  */
2258 static void
2259 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2260 {
2261         struct bdx_priv *priv = netdev_priv(netdev);
2262 
2263         /*max_pending - the maximum-sized FIFO we allow */
2264         ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2265         ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2266         ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2267         ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2268 }
2269 
2270 /*
2271  * bdx_set_ringparam - set ring sizes
2272  * @netdev
2273  * @ring
2274  */
2275 static int
2276 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2277 {
2278         struct bdx_priv *priv = netdev_priv(netdev);
2279         int rx_size = 0;
2280         int tx_size = 0;
2281 
2282         for (; rx_size < 4; rx_size++) {
2283                 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2284                         break;
2285         }
2286         if (rx_size == 4)
2287                 rx_size = 3;
2288 
2289         for (; tx_size < 4; tx_size++) {
2290                 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2291                         break;
2292         }
2293         if (tx_size == 4)
2294                 tx_size = 3;
2295 
2296         /*Is there anything to do? */
2297         if ((rx_size == priv->rxf_size) &&
2298             (tx_size == priv->txd_size))
2299                 return 0;
2300 
2301         priv->rxf_size = rx_size;
2302         if (rx_size > 1)
2303                 priv->rxd_size = rx_size - 1;
2304         else
2305                 priv->rxd_size = rx_size;
2306 
2307         priv->txf_size = priv->txd_size = tx_size;
2308 
2309         if (netif_running(netdev)) {
2310                 bdx_close(netdev);
2311                 bdx_open(netdev);
2312         }
2313         return 0;
2314 }
2315 
2316 /*
2317  * bdx_get_strings - return a set of strings that describe the requested objects
2318  * @netdev
2319  * @data
2320  */
2321 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2322 {
2323         switch (stringset) {
2324         case ETH_SS_STATS:
2325                 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2326                 break;
2327         }
2328 }
2329 
2330 /*
2331  * bdx_get_sset_count - return number of statistics or tests
2332  * @netdev
2333  */
2334 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2335 {
2336         struct bdx_priv *priv = netdev_priv(netdev);
2337 
2338         switch (stringset) {
2339         case ETH_SS_STATS:
2340                 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2341                            != sizeof(struct bdx_stats) / sizeof(u64));
2342                 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)  : 0;
2343         }
2344 
2345         return -EINVAL;
2346 }
2347 
2348 /*
2349  * bdx_get_ethtool_stats - return device's hardware L2 statistics
2350  * @netdev
2351  * @stats
2352  * @data
2353  */
2354 static void bdx_get_ethtool_stats(struct net_device *netdev,
2355                                   struct ethtool_stats *stats, u64 *data)
2356 {
2357         struct bdx_priv *priv = netdev_priv(netdev);
2358 
2359         if (priv->stats_flag) {
2360 
2361                 /* Update stats from HW */
2362                 bdx_update_stats(priv);
2363 
2364                 /* Copy data to user buffer */
2365                 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2366         }
2367 }
2368 
2369 /*
2370  * bdx_set_ethtool_ops - ethtool interface implementation
2371  * @netdev
2372  */
2373 static void bdx_set_ethtool_ops(struct net_device *netdev)
2374 {
2375         static const struct ethtool_ops bdx_ethtool_ops = {
2376                 .get_drvinfo = bdx_get_drvinfo,
2377                 .get_link = ethtool_op_get_link,
2378                 .get_coalesce = bdx_get_coalesce,
2379                 .set_coalesce = bdx_set_coalesce,
2380                 .get_ringparam = bdx_get_ringparam,
2381                 .set_ringparam = bdx_set_ringparam,
2382                 .get_strings = bdx_get_strings,
2383                 .get_sset_count = bdx_get_sset_count,
2384                 .get_ethtool_stats = bdx_get_ethtool_stats,
2385                 .get_link_ksettings = bdx_get_link_ksettings,
2386         };
2387 
2388         netdev->ethtool_ops = &bdx_ethtool_ops;
2389 }
2390 
2391 /**
2392  * bdx_remove - Device Removal Routine
2393  * @pdev: PCI device information struct
2394  *
2395  * bdx_remove is called by the PCI subsystem to alert the driver
2396  * that it should release a PCI device.  The could be caused by a
2397  * Hot-Plug event, or because the driver is going to be removed from
2398  * memory.
2399  **/
2400 static void bdx_remove(struct pci_dev *pdev)
2401 {
2402         struct pci_nic *nic = pci_get_drvdata(pdev);
2403         struct net_device *ndev;
2404         int port;
2405 
2406         for (port = 0; port < nic->port_num; port++) {
2407                 ndev = nic->priv[port]->ndev;
2408                 unregister_netdev(ndev);
2409                 free_netdev(ndev);
2410         }
2411 
2412         /*bdx_hw_reset_direct(nic->regs); */
2413 #ifdef BDX_MSI
2414         if (nic->irq_type == IRQ_MSI)
2415                 pci_disable_msi(pdev);
2416 #endif
2417 
2418         iounmap(nic->regs);
2419         pci_release_regions(pdev);
2420         pci_disable_device(pdev);
2421         vfree(nic);
2422 
2423         RET();
2424 }
2425 
2426 static struct pci_driver bdx_pci_driver = {
2427         .name = BDX_DRV_NAME,
2428         .id_table = bdx_pci_tbl,
2429         .probe = bdx_probe,
2430         .remove = bdx_remove,
2431 };
2432 
2433 /*
2434  * print_driver_id - print parameters of the driver build
2435  */
2436 static void __init print_driver_id(void)
2437 {
2438         pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2439         pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2440 }
2441 
2442 static int __init bdx_module_init(void)
2443 {
2444         ENTER;
2445         init_txd_sizes();
2446         print_driver_id();
2447         RET(pci_register_driver(&bdx_pci_driver));
2448 }
2449 
2450 module_init(bdx_module_init);
2451 
2452 static void __exit bdx_module_exit(void)
2453 {
2454         ENTER;
2455         pci_unregister_driver(&bdx_pci_driver);
2456         RET();
2457 }
2458 
2459 module_exit(bdx_module_exit);
2460 
2461 MODULE_LICENSE("GPL");
2462 MODULE_AUTHOR(DRIVER_AUTHOR);
2463 MODULE_DESCRIPTION(BDX_DRV_DESC);
2464 MODULE_FIRMWARE("tehuti/bdx.bin");

/* [<][>][^][v][top][bottom][index][help] */