root/drivers/net/ethernet/netronome/nfp/bpf/jit.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nfp_meta_has_prev
  2. nfp_prog_push
  3. nfp_prog_current_offset
  4. nfp_prog_confirm_current_offset
  5. __emit_cmd
  6. emit_cmd_any
  7. emit_cmd
  8. emit_cmd_indir
  9. __emit_br
  10. emit_br_relo
  11. emit_br
  12. __emit_br_bit
  13. emit_br_bit_relo
  14. emit_br_bset
  15. __emit_br_alu
  16. emit_rtn
  17. __emit_immed
  18. emit_immed
  19. __emit_shf
  20. emit_shf
  21. emit_shf_indir
  22. __emit_alu
  23. emit_alu
  24. __emit_mul
  25. emit_mul
  26. __emit_ld_field
  27. emit_ld_field_any
  28. emit_ld_field
  29. __emit_lcsr
  30. emit_csr_wr
  31. __emit_csr_rd
  32. emit_nop
  33. pack_immed
  34. wrp_immed
  35. wrp_zext
  36. wrp_immed_relo
  37. ur_load_imm_any
  38. re_load_imm_any
  39. wrp_nops
  40. wrp_mov
  41. wrp_reg_mov
  42. wrp_reg_subpart
  43. wrp_reg_or_subpart
  44. addr40_offset
  45. nfp_cpp_memcpy
  46. data_ld
  47. data_ld_host_order
  48. data_ld_host_order_addr32
  49. data_ld_host_order_addr40
  50. construct_data_ind_ld
  51. construct_data_ld
  52. data_stx_host_order
  53. data_st_host_order
  54. wrp_lmem_load
  55. wrp_lmem_store
  56. mem_op_stack
  57. wrp_alu_imm
  58. wrp_alu64_imm
  59. wrp_alu64_reg
  60. wrp_alu32_imm
  61. wrp_alu32_reg
  62. wrp_test_reg_one
  63. wrp_test_reg
  64. nfp_jmp_code_get
  65. cmp_imm
  66. cmp_reg
  67. wrp_end32
  68. wrp_mul_u32
  69. wrp_mul_u16
  70. wrp_mul
  71. wrp_div_imm
  72. adjust_head
  73. adjust_tail
  74. map_call_stack_common
  75. nfp_get_prandom_u32
  76. nfp_perf_event_output
  77. nfp_queue_select
  78. mov_reg64
  79. mov_imm64
  80. xor_reg64
  81. xor_imm64
  82. and_reg64
  83. and_imm64
  84. or_reg64
  85. or_imm64
  86. add_reg64
  87. add_imm64
  88. sub_reg64
  89. sub_imm64
  90. mul_reg64
  91. mul_imm64
  92. div_imm64
  93. div_reg64
  94. neg_reg64
  95. __shl_imm64
  96. shl_imm64
  97. shl_reg64_lt32_high
  98. shl_reg64_lt32_low
  99. shl_reg64_lt32
  100. shl_reg64_ge32
  101. shl_reg64
  102. __shr_imm64
  103. shr_imm64
  104. shr_reg64_lt32_high
  105. shr_reg64_lt32_low
  106. shr_reg64_lt32
  107. shr_reg64_ge32
  108. shr_reg64
  109. __ashr_imm64
  110. ashr_imm64
  111. ashr_reg64_lt32_high
  112. ashr_reg64_lt32_low
  113. ashr_reg64_lt32
  114. ashr_reg64_ge32
  115. ashr_reg64
  116. mov_reg
  117. mov_imm
  118. xor_reg
  119. xor_imm
  120. and_reg
  121. and_imm
  122. or_reg
  123. or_imm
  124. add_reg
  125. add_imm
  126. sub_reg
  127. sub_imm
  128. mul_reg
  129. mul_imm
  130. div_reg
  131. div_imm
  132. neg_reg
  133. __ashr_imm
  134. ashr_reg
  135. ashr_imm
  136. __shr_imm
  137. shr_imm
  138. shr_reg
  139. __shl_imm
  140. shl_imm
  141. shl_reg
  142. end_reg32
  143. imm_ld8_part2
  144. imm_ld8
  145. data_ld1
  146. data_ld2
  147. data_ld4
  148. data_ind_ld1
  149. data_ind_ld2
  150. data_ind_ld4
  151. mem_ldx_stack
  152. mem_ldx_skb
  153. mem_ldx_xdp
  154. mem_ldx_data
  155. mem_ldx_emem
  156. mem_ldx_data_init_pktcache
  157. mem_ldx_data_from_pktcache_unaligned
  158. mem_ldx_data_from_pktcache_aligned
  159. mem_ldx_data_from_pktcache
  160. mem_ldx
  161. mem_ldx1
  162. mem_ldx2
  163. mem_ldx4
  164. mem_ldx8
  165. mem_st_data
  166. mem_st
  167. mem_st1
  168. mem_st2
  169. mem_st4
  170. mem_st8
  171. mem_stx_data
  172. mem_stx_stack
  173. mem_stx_xdp
  174. mem_stx
  175. mem_stx1
  176. mem_stx2
  177. mem_stx4
  178. mem_stx8
  179. mem_xadd
  180. mem_xadd4
  181. mem_xadd8
  182. jump
  183. jeq_imm
  184. jeq32_imm
  185. jset_imm
  186. jne_imm
  187. jeq_reg
  188. jset_reg
  189. jne_reg
  190. bpf_to_bpf_call
  191. helper_call
  192. call
  193. nfp_is_main_function
  194. goto_out
  195. nfp_subprog_epilogue
  196. jmp_exit
  197. nfp_fixup_immed_relo
  198. nfp_fixup_branches
  199. nfp_intro
  200. nfp_subprog_prologue
  201. nfp_start_subprog
  202. nfp_is_subprog_start
  203. nfp_outro_tc_da
  204. nfp_outro_xdp
  205. nfp_prog_needs_callee_reg_save
  206. nfp_push_callee_registers
  207. nfp_pop_callee_registers
  208. nfp_outro
  209. nfp_translate
  210. nfp_bpf_opt_reg_init
  211. nfp_bpf_opt_neg_add_sub
  212. nfp_bpf_opt_ld_mask
  213. nfp_bpf_opt_ld_shift
  214. curr_pair_is_memcpy
  215. curr_pair_chain_with_previous
  216. cross_mem_access
  217. nfp_bpf_opt_ldst_gather
  218. nfp_bpf_opt_pkt_cache
  219. nfp_bpf_optimize
  220. nfp_bpf_replace_map_ptrs
  221. nfp_bpf_ustore_calc
  222. nfp_bpf_prog_trim
  223. nfp_bpf_jit
  224. nfp_bpf_jit_prepare
  225. nfp_bpf_supported_opcode
  226. nfp_bpf_relo_for_vnic

   1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
   2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
   3 
   4 #define pr_fmt(fmt)     "NFP net bpf: " fmt
   5 
   6 #include <linux/bug.h>
   7 #include <linux/bpf.h>
   8 #include <linux/filter.h>
   9 #include <linux/kernel.h>
  10 #include <linux/pkt_cls.h>
  11 #include <linux/reciprocal_div.h>
  12 #include <linux/unistd.h>
  13 
  14 #include "main.h"
  15 #include "../nfp_asm.h"
  16 #include "../nfp_net_ctrl.h"
  17 
  18 /* --- NFP prog --- */
  19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
  20  * It's safe to modify the next pointers (but not pos).
  21  */
  22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next)                    \
  23         for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
  24              next = list_next_entry(pos, l);                    \
  25              &(nfp_prog)->insns != &pos->l &&                   \
  26              &(nfp_prog)->insns != &next->l;                    \
  27              pos = nfp_meta_next(pos),                          \
  28              next = nfp_meta_next(pos))
  29 
  30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2)             \
  31         for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
  32              next = list_next_entry(pos, l),                    \
  33              next2 = list_next_entry(next, l);                  \
  34              &(nfp_prog)->insns != &pos->l &&                   \
  35              &(nfp_prog)->insns != &next->l &&                  \
  36              &(nfp_prog)->insns != &next2->l;                   \
  37              pos = nfp_meta_next(pos),                          \
  38              next = nfp_meta_next(pos),                         \
  39              next2 = nfp_meta_next(next))
  40 
  41 static bool
  42 nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
  43 {
  44         return meta->l.prev != &nfp_prog->insns;
  45 }
  46 
  47 static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn)
  48 {
  49         if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) {
  50                 pr_warn("instruction limit reached (%u NFP instructions)\n",
  51                         nfp_prog->prog_len);
  52                 nfp_prog->error = -ENOSPC;
  53                 return;
  54         }
  55 
  56         nfp_prog->prog[nfp_prog->prog_len] = insn;
  57         nfp_prog->prog_len++;
  58 }
  59 
  60 static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog)
  61 {
  62         return nfp_prog->prog_len;
  63 }
  64 
  65 static bool
  66 nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off)
  67 {
  68         /* If there is a recorded error we may have dropped instructions;
  69          * that doesn't have to be due to translator bug, and the translation
  70          * will fail anyway, so just return OK.
  71          */
  72         if (nfp_prog->error)
  73                 return true;
  74         return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off);
  75 }
  76 
  77 /* --- Emitters --- */
  78 static void
  79 __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op,
  80            u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx,
  81            bool indir)
  82 {
  83         u64 insn;
  84 
  85         insn =  FIELD_PREP(OP_CMD_A_SRC, areg) |
  86                 FIELD_PREP(OP_CMD_CTX, ctx) |
  87                 FIELD_PREP(OP_CMD_B_SRC, breg) |
  88                 FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) |
  89                 FIELD_PREP(OP_CMD_XFER, xfer) |
  90                 FIELD_PREP(OP_CMD_CNT, size) |
  91                 FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) |
  92                 FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) |
  93                 FIELD_PREP(OP_CMD_INDIR, indir) |
  94                 FIELD_PREP(OP_CMD_MODE, mode);
  95 
  96         nfp_prog_push(nfp_prog, insn);
  97 }
  98 
  99 static void
 100 emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
 101              swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir)
 102 {
 103         struct nfp_insn_re_regs reg;
 104         int err;
 105 
 106         err = swreg_to_restricted(reg_none(), lreg, rreg, &reg, false);
 107         if (err) {
 108                 nfp_prog->error = err;
 109                 return;
 110         }
 111         if (reg.swap) {
 112                 pr_err("cmd can't swap arguments\n");
 113                 nfp_prog->error = -EFAULT;
 114                 return;
 115         }
 116         if (reg.dst_lmextn || reg.src_lmextn) {
 117                 pr_err("cmd can't use LMextn\n");
 118                 nfp_prog->error = -EFAULT;
 119                 return;
 120         }
 121 
 122         __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx,
 123                    indir);
 124 }
 125 
 126 static void
 127 emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
 128          swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
 129 {
 130         emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false);
 131 }
 132 
 133 static void
 134 emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer,
 135                swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx)
 136 {
 137         emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true);
 138 }
 139 
 140 static void
 141 __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip,
 142           enum br_ctx_signal_state css, u16 addr, u8 defer)
 143 {
 144         u16 addr_lo, addr_hi;
 145         u64 insn;
 146 
 147         addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO));
 148         addr_hi = addr != addr_lo;
 149 
 150         insn = OP_BR_BASE |
 151                 FIELD_PREP(OP_BR_MASK, mask) |
 152                 FIELD_PREP(OP_BR_EV_PIP, ev_pip) |
 153                 FIELD_PREP(OP_BR_CSS, css) |
 154                 FIELD_PREP(OP_BR_DEFBR, defer) |
 155                 FIELD_PREP(OP_BR_ADDR_LO, addr_lo) |
 156                 FIELD_PREP(OP_BR_ADDR_HI, addr_hi);
 157 
 158         nfp_prog_push(nfp_prog, insn);
 159 }
 160 
 161 static void
 162 emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer,
 163              enum nfp_relo_type relo)
 164 {
 165         if (mask == BR_UNC && defer > 2) {
 166                 pr_err("BUG: branch defer out of bounds %d\n", defer);
 167                 nfp_prog->error = -EFAULT;
 168                 return;
 169         }
 170 
 171         __emit_br(nfp_prog, mask,
 172                   mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND,
 173                   BR_CSS_NONE, addr, defer);
 174 
 175         nfp_prog->prog[nfp_prog->prog_len - 1] |=
 176                 FIELD_PREP(OP_RELO_TYPE, relo);
 177 }
 178 
 179 static void
 180 emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer)
 181 {
 182         emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL);
 183 }
 184 
 185 static void
 186 __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer,
 187               bool set, bool src_lmextn)
 188 {
 189         u16 addr_lo, addr_hi;
 190         u64 insn;
 191 
 192         addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO));
 193         addr_hi = addr != addr_lo;
 194 
 195         insn = OP_BR_BIT_BASE |
 196                 FIELD_PREP(OP_BR_BIT_A_SRC, areg) |
 197                 FIELD_PREP(OP_BR_BIT_B_SRC, breg) |
 198                 FIELD_PREP(OP_BR_BIT_BV, set) |
 199                 FIELD_PREP(OP_BR_BIT_DEFBR, defer) |
 200                 FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) |
 201                 FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) |
 202                 FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn);
 203 
 204         nfp_prog_push(nfp_prog, insn);
 205 }
 206 
 207 static void
 208 emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr,
 209                  u8 defer, bool set, enum nfp_relo_type relo)
 210 {
 211         struct nfp_insn_re_regs reg;
 212         int err;
 213 
 214         /* NOTE: The bit to test is specified as an rotation amount, such that
 215          *       the bit to test will be placed on the MSB of the result when
 216          *       doing a rotate right. For bit X, we need right rotate X + 1.
 217          */
 218         bit += 1;
 219 
 220         err = swreg_to_restricted(reg_none(), src, reg_imm(bit), &reg, false);
 221         if (err) {
 222                 nfp_prog->error = err;
 223                 return;
 224         }
 225 
 226         __emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set,
 227                       reg.src_lmextn);
 228 
 229         nfp_prog->prog[nfp_prog->prog_len - 1] |=
 230                 FIELD_PREP(OP_RELO_TYPE, relo);
 231 }
 232 
 233 static void
 234 emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer)
 235 {
 236         emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL);
 237 }
 238 
 239 static void
 240 __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
 241               u8 defer, bool dst_lmextn, bool src_lmextn)
 242 {
 243         u64 insn;
 244 
 245         insn = OP_BR_ALU_BASE |
 246                 FIELD_PREP(OP_BR_ALU_A_SRC, areg) |
 247                 FIELD_PREP(OP_BR_ALU_B_SRC, breg) |
 248                 FIELD_PREP(OP_BR_ALU_DEFBR, defer) |
 249                 FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) |
 250                 FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) |
 251                 FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn);
 252 
 253         nfp_prog_push(nfp_prog, insn);
 254 }
 255 
 256 static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer)
 257 {
 258         struct nfp_insn_ur_regs reg;
 259         int err;
 260 
 261         err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), &reg);
 262         if (err) {
 263                 nfp_prog->error = err;
 264                 return;
 265         }
 266 
 267         __emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn,
 268                       reg.src_lmextn);
 269 }
 270 
 271 static void
 272 __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi,
 273              enum immed_width width, bool invert,
 274              enum immed_shift shift, bool wr_both,
 275              bool dst_lmextn, bool src_lmextn)
 276 {
 277         u64 insn;
 278 
 279         insn = OP_IMMED_BASE |
 280                 FIELD_PREP(OP_IMMED_A_SRC, areg) |
 281                 FIELD_PREP(OP_IMMED_B_SRC, breg) |
 282                 FIELD_PREP(OP_IMMED_IMM, imm_hi) |
 283                 FIELD_PREP(OP_IMMED_WIDTH, width) |
 284                 FIELD_PREP(OP_IMMED_INV, invert) |
 285                 FIELD_PREP(OP_IMMED_SHIFT, shift) |
 286                 FIELD_PREP(OP_IMMED_WR_AB, wr_both) |
 287                 FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) |
 288                 FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn);
 289 
 290         nfp_prog_push(nfp_prog, insn);
 291 }
 292 
 293 static void
 294 emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm,
 295            enum immed_width width, bool invert, enum immed_shift shift)
 296 {
 297         struct nfp_insn_ur_regs reg;
 298         int err;
 299 
 300         if (swreg_type(dst) == NN_REG_IMM) {
 301                 nfp_prog->error = -EFAULT;
 302                 return;
 303         }
 304 
 305         err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), &reg);
 306         if (err) {
 307                 nfp_prog->error = err;
 308                 return;
 309         }
 310 
 311         /* Use reg.dst when destination is No-Dest. */
 312         __emit_immed(nfp_prog,
 313                      swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg,
 314                      reg.breg, imm >> 8, width, invert, shift,
 315                      reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
 316 }
 317 
 318 static void
 319 __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
 320            enum shf_sc sc, u8 shift,
 321            u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both,
 322            bool dst_lmextn, bool src_lmextn)
 323 {
 324         u64 insn;
 325 
 326         if (!FIELD_FIT(OP_SHF_SHIFT, shift)) {
 327                 nfp_prog->error = -EFAULT;
 328                 return;
 329         }
 330 
 331         /* NFP shift instruction has something special. If shift direction is
 332          * left then shift amount of 1 to 31 is specified as 32 minus the amount
 333          * to shift.
 334          *
 335          * But no need to do this for indirect shift which has shift amount be
 336          * 0. Even after we do this subtraction, shift amount 0 will be turned
 337          * into 32 which will eventually be encoded the same as 0 because only
 338          * low 5 bits are encoded, but shift amount be 32 will fail the
 339          * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
 340          * mask range.
 341          */
 342         if (sc == SHF_SC_L_SHF && shift)
 343                 shift = 32 - shift;
 344 
 345         insn = OP_SHF_BASE |
 346                 FIELD_PREP(OP_SHF_A_SRC, areg) |
 347                 FIELD_PREP(OP_SHF_SC, sc) |
 348                 FIELD_PREP(OP_SHF_B_SRC, breg) |
 349                 FIELD_PREP(OP_SHF_I8, i8) |
 350                 FIELD_PREP(OP_SHF_SW, sw) |
 351                 FIELD_PREP(OP_SHF_DST, dst) |
 352                 FIELD_PREP(OP_SHF_SHIFT, shift) |
 353                 FIELD_PREP(OP_SHF_OP, op) |
 354                 FIELD_PREP(OP_SHF_DST_AB, dst_ab) |
 355                 FIELD_PREP(OP_SHF_WR_AB, wr_both) |
 356                 FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) |
 357                 FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn);
 358 
 359         nfp_prog_push(nfp_prog, insn);
 360 }
 361 
 362 static void
 363 emit_shf(struct nfp_prog *nfp_prog, swreg dst,
 364          swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift)
 365 {
 366         struct nfp_insn_re_regs reg;
 367         int err;
 368 
 369         err = swreg_to_restricted(dst, lreg, rreg, &reg, true);
 370         if (err) {
 371                 nfp_prog->error = err;
 372                 return;
 373         }
 374 
 375         __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift,
 376                    reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both,
 377                    reg.dst_lmextn, reg.src_lmextn);
 378 }
 379 
 380 static void
 381 emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst,
 382                swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc)
 383 {
 384         if (sc == SHF_SC_R_ROT) {
 385                 pr_err("indirect shift is not allowed on rotation\n");
 386                 nfp_prog->error = -EFAULT;
 387                 return;
 388         }
 389 
 390         emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0);
 391 }
 392 
 393 static void
 394 __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab,
 395            u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both,
 396            bool dst_lmextn, bool src_lmextn)
 397 {
 398         u64 insn;
 399 
 400         insn = OP_ALU_BASE |
 401                 FIELD_PREP(OP_ALU_A_SRC, areg) |
 402                 FIELD_PREP(OP_ALU_B_SRC, breg) |
 403                 FIELD_PREP(OP_ALU_DST, dst) |
 404                 FIELD_PREP(OP_ALU_SW, swap) |
 405                 FIELD_PREP(OP_ALU_OP, op) |
 406                 FIELD_PREP(OP_ALU_DST_AB, dst_ab) |
 407                 FIELD_PREP(OP_ALU_WR_AB, wr_both) |
 408                 FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) |
 409                 FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn);
 410 
 411         nfp_prog_push(nfp_prog, insn);
 412 }
 413 
 414 static void
 415 emit_alu(struct nfp_prog *nfp_prog, swreg dst,
 416          swreg lreg, enum alu_op op, swreg rreg)
 417 {
 418         struct nfp_insn_ur_regs reg;
 419         int err;
 420 
 421         err = swreg_to_unrestricted(dst, lreg, rreg, &reg);
 422         if (err) {
 423                 nfp_prog->error = err;
 424                 return;
 425         }
 426 
 427         __emit_alu(nfp_prog, reg.dst, reg.dst_ab,
 428                    reg.areg, op, reg.breg, reg.swap, reg.wr_both,
 429                    reg.dst_lmextn, reg.src_lmextn);
 430 }
 431 
 432 static void
 433 __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg,
 434            enum mul_type type, enum mul_step step, u16 breg, bool swap,
 435            bool wr_both, bool dst_lmextn, bool src_lmextn)
 436 {
 437         u64 insn;
 438 
 439         insn = OP_MUL_BASE |
 440                 FIELD_PREP(OP_MUL_A_SRC, areg) |
 441                 FIELD_PREP(OP_MUL_B_SRC, breg) |
 442                 FIELD_PREP(OP_MUL_STEP, step) |
 443                 FIELD_PREP(OP_MUL_DST_AB, dst_ab) |
 444                 FIELD_PREP(OP_MUL_SW, swap) |
 445                 FIELD_PREP(OP_MUL_TYPE, type) |
 446                 FIELD_PREP(OP_MUL_WR_AB, wr_both) |
 447                 FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) |
 448                 FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn);
 449 
 450         nfp_prog_push(nfp_prog, insn);
 451 }
 452 
 453 static void
 454 emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type,
 455          enum mul_step step, swreg rreg)
 456 {
 457         struct nfp_insn_ur_regs reg;
 458         u16 areg;
 459         int err;
 460 
 461         if (type == MUL_TYPE_START && step != MUL_STEP_NONE) {
 462                 nfp_prog->error = -EINVAL;
 463                 return;
 464         }
 465 
 466         if (step == MUL_LAST || step == MUL_LAST_2) {
 467                 /* When type is step and step Number is LAST or LAST2, left
 468                  * source is used as destination.
 469                  */
 470                 err = swreg_to_unrestricted(lreg, reg_none(), rreg, &reg);
 471                 areg = reg.dst;
 472         } else {
 473                 err = swreg_to_unrestricted(reg_none(), lreg, rreg, &reg);
 474                 areg = reg.areg;
 475         }
 476 
 477         if (err) {
 478                 nfp_prog->error = err;
 479                 return;
 480         }
 481 
 482         __emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap,
 483                    reg.wr_both, reg.dst_lmextn, reg.src_lmextn);
 484 }
 485 
 486 static void
 487 __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc,
 488                 u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8,
 489                 bool zero, bool swap, bool wr_both,
 490                 bool dst_lmextn, bool src_lmextn)
 491 {
 492         u64 insn;
 493 
 494         insn = OP_LDF_BASE |
 495                 FIELD_PREP(OP_LDF_A_SRC, areg) |
 496                 FIELD_PREP(OP_LDF_SC, sc) |
 497                 FIELD_PREP(OP_LDF_B_SRC, breg) |
 498                 FIELD_PREP(OP_LDF_I8, imm8) |
 499                 FIELD_PREP(OP_LDF_SW, swap) |
 500                 FIELD_PREP(OP_LDF_ZF, zero) |
 501                 FIELD_PREP(OP_LDF_BMASK, bmask) |
 502                 FIELD_PREP(OP_LDF_SHF, shift) |
 503                 FIELD_PREP(OP_LDF_WR_AB, wr_both) |
 504                 FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) |
 505                 FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn);
 506 
 507         nfp_prog_push(nfp_prog, insn);
 508 }
 509 
 510 static void
 511 emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
 512                   enum shf_sc sc, u8 shift, bool zero)
 513 {
 514         struct nfp_insn_re_regs reg;
 515         int err;
 516 
 517         /* Note: ld_field is special as it uses one of the src regs as dst */
 518         err = swreg_to_restricted(dst, dst, src, &reg, true);
 519         if (err) {
 520                 nfp_prog->error = err;
 521                 return;
 522         }
 523 
 524         __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift,
 525                         reg.i8, zero, reg.swap, reg.wr_both,
 526                         reg.dst_lmextn, reg.src_lmextn);
 527 }
 528 
 529 static void
 530 emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src,
 531               enum shf_sc sc, u8 shift)
 532 {
 533         emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false);
 534 }
 535 
 536 static void
 537 __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr,
 538             bool dst_lmextn, bool src_lmextn)
 539 {
 540         u64 insn;
 541 
 542         insn = OP_LCSR_BASE |
 543                 FIELD_PREP(OP_LCSR_A_SRC, areg) |
 544                 FIELD_PREP(OP_LCSR_B_SRC, breg) |
 545                 FIELD_PREP(OP_LCSR_WRITE, wr) |
 546                 FIELD_PREP(OP_LCSR_ADDR, addr / 4) |
 547                 FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) |
 548                 FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn);
 549 
 550         nfp_prog_push(nfp_prog, insn);
 551 }
 552 
 553 static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr)
 554 {
 555         struct nfp_insn_ur_regs reg;
 556         int err;
 557 
 558         /* This instruction takes immeds instead of reg_none() for the ignored
 559          * operand, but we can't encode 2 immeds in one instr with our normal
 560          * swreg infra so if param is an immed, we encode as reg_none() and
 561          * copy the immed to both operands.
 562          */
 563         if (swreg_type(src) == NN_REG_IMM) {
 564                 err = swreg_to_unrestricted(reg_none(), src, reg_none(), &reg);
 565                 reg.breg = reg.areg;
 566         } else {
 567                 err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), &reg);
 568         }
 569         if (err) {
 570                 nfp_prog->error = err;
 571                 return;
 572         }
 573 
 574         __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr,
 575                     false, reg.src_lmextn);
 576 }
 577 
 578 /* CSR value is read in following immed[gpr, 0] */
 579 static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr)
 580 {
 581         __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false);
 582 }
 583 
 584 static void emit_nop(struct nfp_prog *nfp_prog)
 585 {
 586         __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0);
 587 }
 588 
 589 /* --- Wrappers --- */
 590 static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift)
 591 {
 592         if (!(imm & 0xffff0000)) {
 593                 *val = imm;
 594                 *shift = IMMED_SHIFT_0B;
 595         } else if (!(imm & 0xff0000ff)) {
 596                 *val = imm >> 8;
 597                 *shift = IMMED_SHIFT_1B;
 598         } else if (!(imm & 0x0000ffff)) {
 599                 *val = imm >> 16;
 600                 *shift = IMMED_SHIFT_2B;
 601         } else {
 602                 return false;
 603         }
 604 
 605         return true;
 606 }
 607 
 608 static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm)
 609 {
 610         enum immed_shift shift;
 611         u16 val;
 612 
 613         if (pack_immed(imm, &val, &shift)) {
 614                 emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift);
 615         } else if (pack_immed(~imm, &val, &shift)) {
 616                 emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift);
 617         } else {
 618                 emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL,
 619                            false, IMMED_SHIFT_0B);
 620                 emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD,
 621                            false, IMMED_SHIFT_2B);
 622         }
 623 }
 624 
 625 static void
 626 wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst)
 627 {
 628         if (meta->flags & FLAG_INSN_DO_ZEXT)
 629                 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
 630 }
 631 
 632 static void
 633 wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm,
 634                enum nfp_relo_type relo)
 635 {
 636         if (imm > 0xffff) {
 637                 pr_err("relocation of a large immediate!\n");
 638                 nfp_prog->error = -EFAULT;
 639                 return;
 640         }
 641         emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
 642 
 643         nfp_prog->prog[nfp_prog->prog_len - 1] |=
 644                 FIELD_PREP(OP_RELO_TYPE, relo);
 645 }
 646 
 647 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
 648  * If the @imm is small enough encode it directly in operand and return
 649  * otherwise load @imm to a spare register and return its encoding.
 650  */
 651 static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
 652 {
 653         if (FIELD_FIT(UR_REG_IMM_MAX, imm))
 654                 return reg_imm(imm);
 655 
 656         wrp_immed(nfp_prog, tmp_reg, imm);
 657         return tmp_reg;
 658 }
 659 
 660 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
 661  * If the @imm is small enough encode it directly in operand and return
 662  * otherwise load @imm to a spare register and return its encoding.
 663  */
 664 static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg)
 665 {
 666         if (FIELD_FIT(RE_REG_IMM_MAX, imm))
 667                 return reg_imm(imm);
 668 
 669         wrp_immed(nfp_prog, tmp_reg, imm);
 670         return tmp_reg;
 671 }
 672 
 673 static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count)
 674 {
 675         while (count--)
 676                 emit_nop(nfp_prog);
 677 }
 678 
 679 static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src)
 680 {
 681         emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src);
 682 }
 683 
 684 static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src)
 685 {
 686         wrp_mov(nfp_prog, reg_both(dst), reg_b(src));
 687 }
 688 
 689 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
 690  * result to @dst from low end.
 691  */
 692 static void
 693 wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len,
 694                 u8 offset)
 695 {
 696         enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE;
 697         u8 mask = (1 << field_len) - 1;
 698 
 699         emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true);
 700 }
 701 
 702 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
 703  * result to @dst from offset, there is no change on the other bits of @dst.
 704  */
 705 static void
 706 wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src,
 707                    u8 field_len, u8 offset)
 708 {
 709         enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE;
 710         u8 mask = ((1 << field_len) - 1) << offset;
 711 
 712         emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8);
 713 }
 714 
 715 static void
 716 addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset,
 717               swreg *rega, swreg *regb)
 718 {
 719         if (offset == reg_imm(0)) {
 720                 *rega = reg_a(src_gpr);
 721                 *regb = reg_b(src_gpr + 1);
 722                 return;
 723         }
 724 
 725         emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset);
 726         emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C,
 727                  reg_imm(0));
 728         *rega = imm_a(nfp_prog);
 729         *regb = imm_b(nfp_prog);
 730 }
 731 
 732 /* NFP has Command Push Pull bus which supports bluk memory operations. */
 733 static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
 734 {
 735         bool descending_seq = meta->ldst_gather_len < 0;
 736         s16 len = abs(meta->ldst_gather_len);
 737         swreg src_base, off;
 738         bool src_40bit_addr;
 739         unsigned int i;
 740         u8 xfer_num;
 741 
 742         off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
 743         src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE;
 744         src_base = reg_a(meta->insn.src_reg * 2);
 745         xfer_num = round_up(len, 4) / 4;
 746 
 747         if (src_40bit_addr)
 748                 addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base,
 749                               &off);
 750 
 751         /* Setup PREV_ALU fields to override memory read length. */
 752         if (len > 32)
 753                 wrp_immed(nfp_prog, reg_none(),
 754                           CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
 755 
 756         /* Memory read from source addr into transfer-in registers. */
 757         emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP,
 758                      src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0,
 759                      src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32);
 760 
 761         /* Move from transfer-in to transfer-out. */
 762         for (i = 0; i < xfer_num; i++)
 763                 wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i));
 764 
 765         off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog));
 766 
 767         if (len <= 8) {
 768                 /* Use single direct_ref write8. */
 769                 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
 770                          reg_a(meta->paired_st->dst_reg * 2), off, len - 1,
 771                          CMD_CTX_SWAP);
 772         } else if (len <= 32 && IS_ALIGNED(len, 4)) {
 773                 /* Use single direct_ref write32. */
 774                 emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 775                          reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1,
 776                          CMD_CTX_SWAP);
 777         } else if (len <= 32) {
 778                 /* Use single indirect_ref write8. */
 779                 wrp_immed(nfp_prog, reg_none(),
 780                           CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1));
 781                 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
 782                                reg_a(meta->paired_st->dst_reg * 2), off,
 783                                len - 1, CMD_CTX_SWAP);
 784         } else if (IS_ALIGNED(len, 4)) {
 785                 /* Use single indirect_ref write32. */
 786                 wrp_immed(nfp_prog, reg_none(),
 787                           CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
 788                 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 789                                reg_a(meta->paired_st->dst_reg * 2), off,
 790                                xfer_num - 1, CMD_CTX_SWAP);
 791         } else if (len <= 40) {
 792                 /* Use one direct_ref write32 to write the first 32-bytes, then
 793                  * another direct_ref write8 to write the remaining bytes.
 794                  */
 795                 emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 796                          reg_a(meta->paired_st->dst_reg * 2), off, 7,
 797                          CMD_CTX_SWAP);
 798 
 799                 off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32,
 800                                       imm_b(nfp_prog));
 801                 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8,
 802                          reg_a(meta->paired_st->dst_reg * 2), off, len - 33,
 803                          CMD_CTX_SWAP);
 804         } else {
 805                 /* Use one indirect_ref write32 to write 4-bytes aligned length,
 806                  * then another direct_ref write8 to write the remaining bytes.
 807                  */
 808                 u8 new_off;
 809 
 810                 wrp_immed(nfp_prog, reg_none(),
 811                           CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2));
 812                 emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0,
 813                                reg_a(meta->paired_st->dst_reg * 2), off,
 814                                xfer_num - 2, CMD_CTX_SWAP);
 815                 new_off = meta->paired_st->off + (xfer_num - 1) * 4;
 816                 off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog));
 817                 emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b,
 818                          xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off,
 819                          (len & 0x3) - 1, CMD_CTX_SWAP);
 820         }
 821 
 822         /* TODO: The following extra load is to make sure data flow be identical
 823          *  before and after we do memory copy optimization.
 824          *
 825          *  The load destination register is not guaranteed to be dead, so we
 826          *  need to make sure it is loaded with the value the same as before
 827          *  this transformation.
 828          *
 829          *  These extra loads could be removed once we have accurate register
 830          *  usage information.
 831          */
 832         if (descending_seq)
 833                 xfer_num = 0;
 834         else if (BPF_SIZE(meta->insn.code) != BPF_DW)
 835                 xfer_num = xfer_num - 1;
 836         else
 837                 xfer_num = xfer_num - 2;
 838 
 839         switch (BPF_SIZE(meta->insn.code)) {
 840         case BPF_B:
 841                 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 842                                 reg_xfer(xfer_num), 1,
 843                                 IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1);
 844                 break;
 845         case BPF_H:
 846                 wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 847                                 reg_xfer(xfer_num), 2, (len & 3) ^ 2);
 848                 break;
 849         case BPF_W:
 850                 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 851                         reg_xfer(0));
 852                 break;
 853         case BPF_DW:
 854                 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2),
 855                         reg_xfer(xfer_num));
 856                 wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1),
 857                         reg_xfer(xfer_num + 1));
 858                 break;
 859         }
 860 
 861         if (BPF_SIZE(meta->insn.code) != BPF_DW)
 862                 wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
 863 
 864         return 0;
 865 }
 866 
 867 static int
 868 data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset,
 869         u8 dst_gpr, int size)
 870 {
 871         unsigned int i;
 872         u16 shift, sz;
 873 
 874         /* We load the value from the address indicated in @offset and then
 875          * shift out the data we don't need.  Note: this is big endian!
 876          */
 877         sz = max(size, 4);
 878         shift = size < 4 ? 4 - size : 0;
 879 
 880         emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0,
 881                  pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP);
 882 
 883         i = 0;
 884         if (shift)
 885                 emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE,
 886                          reg_xfer(0), SHF_SC_R_SHF, shift * 8);
 887         else
 888                 for (; i * 4 < size; i++)
 889                         wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
 890 
 891         if (i < 2)
 892                 wrp_zext(nfp_prog, meta, dst_gpr);
 893 
 894         return 0;
 895 }
 896 
 897 static int
 898 data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 899                    u8 dst_gpr, swreg lreg, swreg rreg, int size,
 900                    enum cmd_mode mode)
 901 {
 902         unsigned int i;
 903         u8 mask, sz;
 904 
 905         /* We load the value from the address indicated in rreg + lreg and then
 906          * mask out the data we don't need.  Note: this is little endian!
 907          */
 908         sz = max(size, 4);
 909         mask = size < 4 ? GENMASK(size - 1, 0) : 0;
 910 
 911         emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0,
 912                  lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP);
 913 
 914         i = 0;
 915         if (mask)
 916                 emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask,
 917                                   reg_xfer(0), SHF_SC_NONE, 0, true);
 918         else
 919                 for (; i * 4 < size; i++)
 920                         wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i));
 921 
 922         if (i < 2)
 923                 wrp_zext(nfp_prog, meta, dst_gpr);
 924 
 925         return 0;
 926 }
 927 
 928 static int
 929 data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 930                           u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
 931 {
 932         return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr),
 933                                   offset, size, CMD_MODE_32b);
 934 }
 935 
 936 static int
 937 data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 938                           u8 src_gpr, swreg offset, u8 dst_gpr, u8 size)
 939 {
 940         swreg rega, regb;
 941 
 942         addr40_offset(nfp_prog, src_gpr, offset, &rega, &regb);
 943 
 944         return data_ld_host_order(nfp_prog, meta, dst_gpr, rega, regb,
 945                                   size, CMD_MODE_40b_BA);
 946 }
 947 
 948 static int
 949 construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 950                       u16 offset, u16 src, u8 size)
 951 {
 952         swreg tmp_reg;
 953 
 954         /* Calculate the true offset (src_reg + imm) */
 955         tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
 956         emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg);
 957 
 958         /* Check packet length (size guaranteed to fit b/c it's u8) */
 959         emit_alu(nfp_prog, imm_a(nfp_prog),
 960                  imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size));
 961         emit_alu(nfp_prog, reg_none(),
 962                  plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog));
 963         emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
 964 
 965         /* Load data */
 966         return data_ld(nfp_prog, meta, imm_b(nfp_prog), 0, size);
 967 }
 968 
 969 static int
 970 construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
 971                   u16 offset, u8 size)
 972 {
 973         swreg tmp_reg;
 974 
 975         /* Check packet length */
 976         tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog));
 977         emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
 978         emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT);
 979 
 980         /* Load data */
 981         tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog));
 982         return data_ld(nfp_prog, meta, tmp_reg, 0, size);
 983 }
 984 
 985 static int
 986 data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
 987                     u8 src_gpr, u8 size)
 988 {
 989         unsigned int i;
 990 
 991         for (i = 0; i * 4 < size; i++)
 992                 wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i));
 993 
 994         emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
 995                  reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
 996 
 997         return 0;
 998 }
 999 
1000 static int
1001 data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset,
1002                    u64 imm, u8 size)
1003 {
1004         wrp_immed(nfp_prog, reg_xfer(0), imm);
1005         if (size == 8)
1006                 wrp_immed(nfp_prog, reg_xfer(1), imm >> 32);
1007 
1008         emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0,
1009                  reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP);
1010 
1011         return 0;
1012 }
1013 
1014 typedef int
1015 (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off,
1016              unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1017              bool needs_inc);
1018 
1019 static int
1020 wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off,
1021               unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1022               bool needs_inc)
1023 {
1024         bool should_inc = needs_inc && new_gpr && !last;
1025         u32 idx, src_byte;
1026         enum shf_sc sc;
1027         swreg reg;
1028         int shf;
1029         u8 mask;
1030 
1031         if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4))
1032                 return -EOPNOTSUPP;
1033 
1034         idx = off / 4;
1035 
1036         /* Move the entire word */
1037         if (size == 4) {
1038                 wrp_mov(nfp_prog, reg_both(dst),
1039                         should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx));
1040                 return 0;
1041         }
1042 
1043         if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1044                 return -EOPNOTSUPP;
1045 
1046         src_byte = off % 4;
1047 
1048         mask = (1 << size) - 1;
1049         mask <<= dst_byte;
1050 
1051         if (WARN_ON_ONCE(mask > 0xf))
1052                 return -EOPNOTSUPP;
1053 
1054         shf = abs(src_byte - dst_byte) * 8;
1055         if (src_byte == dst_byte) {
1056                 sc = SHF_SC_NONE;
1057         } else if (src_byte < dst_byte) {
1058                 shf = 32 - shf;
1059                 sc = SHF_SC_L_SHF;
1060         } else {
1061                 sc = SHF_SC_R_SHF;
1062         }
1063 
1064         /* ld_field can address fewer indexes, if offset too large do RMW.
1065          * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1066          */
1067         if (idx <= RE_REG_LM_IDX_MAX) {
1068                 reg = reg_lm(lm3 ? 3 : 0, idx);
1069         } else {
1070                 reg = imm_a(nfp_prog);
1071                 /* If it's not the first part of the load and we start a new GPR
1072                  * that means we are loading a second part of the LMEM word into
1073                  * a new GPR.  IOW we've already looked that LMEM word and
1074                  * therefore it has been loaded into imm_a().
1075                  */
1076                 if (first || !new_gpr)
1077                         wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1078         }
1079 
1080         emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr);
1081 
1082         if (should_inc)
1083                 wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1084 
1085         return 0;
1086 }
1087 
1088 static int
1089 wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off,
1090                unsigned int size, bool first, bool new_gpr, bool last, bool lm3,
1091                bool needs_inc)
1092 {
1093         bool should_inc = needs_inc && new_gpr && !last;
1094         u32 idx, dst_byte;
1095         enum shf_sc sc;
1096         swreg reg;
1097         int shf;
1098         u8 mask;
1099 
1100         if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4))
1101                 return -EOPNOTSUPP;
1102 
1103         idx = off / 4;
1104 
1105         /* Move the entire word */
1106         if (size == 4) {
1107                 wrp_mov(nfp_prog,
1108                         should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx),
1109                         reg_b(src));
1110                 return 0;
1111         }
1112 
1113         if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX))
1114                 return -EOPNOTSUPP;
1115 
1116         dst_byte = off % 4;
1117 
1118         mask = (1 << size) - 1;
1119         mask <<= dst_byte;
1120 
1121         if (WARN_ON_ONCE(mask > 0xf))
1122                 return -EOPNOTSUPP;
1123 
1124         shf = abs(src_byte - dst_byte) * 8;
1125         if (src_byte == dst_byte) {
1126                 sc = SHF_SC_NONE;
1127         } else if (src_byte < dst_byte) {
1128                 shf = 32 - shf;
1129                 sc = SHF_SC_L_SHF;
1130         } else {
1131                 sc = SHF_SC_R_SHF;
1132         }
1133 
1134         /* ld_field can address fewer indexes, if offset too large do RMW.
1135          * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1136          */
1137         if (idx <= RE_REG_LM_IDX_MAX) {
1138                 reg = reg_lm(lm3 ? 3 : 0, idx);
1139         } else {
1140                 reg = imm_a(nfp_prog);
1141                 /* Only first and last LMEM locations are going to need RMW,
1142                  * the middle location will be overwritten fully.
1143                  */
1144                 if (first || last)
1145                         wrp_mov(nfp_prog, reg, reg_lm(0, idx));
1146         }
1147 
1148         emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf);
1149 
1150         if (new_gpr || last) {
1151                 if (idx > RE_REG_LM_IDX_MAX)
1152                         wrp_mov(nfp_prog, reg_lm(0, idx), reg);
1153                 if (should_inc)
1154                         wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3));
1155         }
1156 
1157         return 0;
1158 }
1159 
1160 static int
1161 mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1162              unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr,
1163              bool clr_gpr, lmem_step step)
1164 {
1165         s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off;
1166         bool first = true, narrow_ld, last;
1167         bool needs_inc = false;
1168         swreg stack_off_reg;
1169         u8 prev_gpr = 255;
1170         u32 gpr_byte = 0;
1171         bool lm3 = true;
1172         int ret;
1173 
1174         if (meta->ptr_not_const ||
1175             meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) {
1176                 /* Use of the last encountered ptr_off is OK, they all have
1177                  * the same alignment.  Depend on low bits of value being
1178                  * discarded when written to LMaddr register.
1179                  */
1180                 stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off,
1181                                                 stack_imm(nfp_prog));
1182 
1183                 emit_alu(nfp_prog, imm_b(nfp_prog),
1184                          reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg);
1185 
1186                 needs_inc = true;
1187         } else if (off + size <= 64) {
1188                 /* We can reach bottom 64B with LMaddr0 */
1189                 lm3 = false;
1190         } else if (round_down(off, 32) == round_down(off + size - 1, 32)) {
1191                 /* We have to set up a new pointer.  If we know the offset
1192                  * and the entire access falls into a single 32 byte aligned
1193                  * window we won't have to increment the LM pointer.
1194                  * The 32 byte alignment is imporant because offset is ORed in
1195                  * not added when doing *l$indexN[off].
1196                  */
1197                 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32),
1198                                                 stack_imm(nfp_prog));
1199                 emit_alu(nfp_prog, imm_b(nfp_prog),
1200                          stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1201 
1202                 off %= 32;
1203         } else {
1204                 stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4),
1205                                                 stack_imm(nfp_prog));
1206 
1207                 emit_alu(nfp_prog, imm_b(nfp_prog),
1208                          stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg);
1209 
1210                 needs_inc = true;
1211         }
1212 
1213         narrow_ld = clr_gpr && size < 8;
1214 
1215         if (lm3) {
1216                 unsigned int nop_cnt;
1217 
1218                 emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3);
1219                 /* For size < 4 one slot will be filled by zeroing of upper,
1220                  * but be careful, that zeroing could be eliminated by zext
1221                  * optimization.
1222                  */
1223                 nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3;
1224                 wrp_nops(nfp_prog, nop_cnt);
1225         }
1226 
1227         if (narrow_ld)
1228                 wrp_zext(nfp_prog, meta, gpr);
1229 
1230         while (size) {
1231                 u32 slice_end;
1232                 u8 slice_size;
1233 
1234                 slice_size = min(size, 4 - gpr_byte);
1235                 slice_end = min(off + slice_size, round_up(off + 1, 4));
1236                 slice_size = slice_end - off;
1237 
1238                 last = slice_size == size;
1239 
1240                 if (needs_inc)
1241                         off %= 4;
1242 
1243                 ret = step(nfp_prog, gpr, gpr_byte, off, slice_size,
1244                            first, gpr != prev_gpr, last, lm3, needs_inc);
1245                 if (ret)
1246                         return ret;
1247 
1248                 prev_gpr = gpr;
1249                 first = false;
1250 
1251                 gpr_byte += slice_size;
1252                 if (gpr_byte >= 4) {
1253                         gpr_byte -= 4;
1254                         gpr++;
1255                 }
1256 
1257                 size -= slice_size;
1258                 off += slice_size;
1259         }
1260 
1261         return 0;
1262 }
1263 
1264 static void
1265 wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm)
1266 {
1267         swreg tmp_reg;
1268 
1269         if (alu_op == ALU_OP_AND) {
1270                 if (!imm)
1271                         wrp_immed(nfp_prog, reg_both(dst), 0);
1272                 if (!imm || !~imm)
1273                         return;
1274         }
1275         if (alu_op == ALU_OP_OR) {
1276                 if (!~imm)
1277                         wrp_immed(nfp_prog, reg_both(dst), ~0U);
1278                 if (!imm || !~imm)
1279                         return;
1280         }
1281         if (alu_op == ALU_OP_XOR) {
1282                 if (!~imm)
1283                         emit_alu(nfp_prog, reg_both(dst), reg_none(),
1284                                  ALU_OP_NOT, reg_b(dst));
1285                 if (!imm || !~imm)
1286                         return;
1287         }
1288 
1289         tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1290         emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg);
1291 }
1292 
1293 static int
1294 wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1295               enum alu_op alu_op, bool skip)
1296 {
1297         const struct bpf_insn *insn = &meta->insn;
1298         u64 imm = insn->imm; /* sign extend */
1299 
1300         if (skip) {
1301                 meta->flags |= FLAG_INSN_SKIP_NOOP;
1302                 return 0;
1303         }
1304 
1305         wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U);
1306         wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32);
1307 
1308         return 0;
1309 }
1310 
1311 static int
1312 wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1313               enum alu_op alu_op)
1314 {
1315         u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1316 
1317         emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1318         emit_alu(nfp_prog, reg_both(dst + 1),
1319                  reg_a(dst + 1), alu_op, reg_b(src + 1));
1320 
1321         return 0;
1322 }
1323 
1324 static int
1325 wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1326               enum alu_op alu_op)
1327 {
1328         const struct bpf_insn *insn = &meta->insn;
1329         u8 dst = insn->dst_reg * 2;
1330 
1331         wrp_alu_imm(nfp_prog, dst, alu_op, insn->imm);
1332         wrp_zext(nfp_prog, meta, dst);
1333 
1334         return 0;
1335 }
1336 
1337 static int
1338 wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1339               enum alu_op alu_op)
1340 {
1341         u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2;
1342 
1343         emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src));
1344         wrp_zext(nfp_prog, meta, dst);
1345 
1346         return 0;
1347 }
1348 
1349 static void
1350 wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src,
1351                  enum br_mask br_mask, u16 off)
1352 {
1353         emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src));
1354         emit_br(nfp_prog, br_mask, off, 0);
1355 }
1356 
1357 static int
1358 wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1359              enum alu_op alu_op, enum br_mask br_mask)
1360 {
1361         const struct bpf_insn *insn = &meta->insn;
1362 
1363         wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op,
1364                          insn->src_reg * 2, br_mask, insn->off);
1365         if (is_mbpf_jmp64(meta))
1366                 wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op,
1367                                  insn->src_reg * 2 + 1, br_mask, insn->off);
1368 
1369         return 0;
1370 }
1371 
1372 static const struct jmp_code_map {
1373         enum br_mask br_mask;
1374         bool swap;
1375 } jmp_code_map[] = {
1376         [BPF_JGT >> 4]  = { BR_BLO, true },
1377         [BPF_JGE >> 4]  = { BR_BHS, false },
1378         [BPF_JLT >> 4]  = { BR_BLO, false },
1379         [BPF_JLE >> 4]  = { BR_BHS, true },
1380         [BPF_JSGT >> 4] = { BR_BLT, true },
1381         [BPF_JSGE >> 4] = { BR_BGE, false },
1382         [BPF_JSLT >> 4] = { BR_BLT, false },
1383         [BPF_JSLE >> 4] = { BR_BGE, true },
1384 };
1385 
1386 static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta)
1387 {
1388         unsigned int op;
1389 
1390         op = BPF_OP(meta->insn.code) >> 4;
1391         /* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1392         if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) ||
1393                       !jmp_code_map[op].br_mask,
1394                       "no code found for jump instruction"))
1395                 return NULL;
1396 
1397         return &jmp_code_map[op];
1398 }
1399 
1400 static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1401 {
1402         const struct bpf_insn *insn = &meta->insn;
1403         u64 imm = insn->imm; /* sign extend */
1404         const struct jmp_code_map *code;
1405         enum alu_op alu_op, carry_op;
1406         u8 reg = insn->dst_reg * 2;
1407         swreg tmp_reg;
1408 
1409         code = nfp_jmp_code_get(meta);
1410         if (!code)
1411                 return -EINVAL;
1412 
1413         alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB;
1414         carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C;
1415 
1416         tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
1417         if (!code->swap)
1418                 emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg);
1419         else
1420                 emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg));
1421 
1422         if (is_mbpf_jmp64(meta)) {
1423                 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
1424                 if (!code->swap)
1425                         emit_alu(nfp_prog, reg_none(),
1426                                  reg_a(reg + 1), carry_op, tmp_reg);
1427                 else
1428                         emit_alu(nfp_prog, reg_none(),
1429                                  tmp_reg, carry_op, reg_a(reg + 1));
1430         }
1431 
1432         emit_br(nfp_prog, code->br_mask, insn->off, 0);
1433 
1434         return 0;
1435 }
1436 
1437 static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1438 {
1439         const struct bpf_insn *insn = &meta->insn;
1440         const struct jmp_code_map *code;
1441         u8 areg, breg;
1442 
1443         code = nfp_jmp_code_get(meta);
1444         if (!code)
1445                 return -EINVAL;
1446 
1447         areg = insn->dst_reg * 2;
1448         breg = insn->src_reg * 2;
1449 
1450         if (code->swap) {
1451                 areg ^= breg;
1452                 breg ^= areg;
1453                 areg ^= breg;
1454         }
1455 
1456         emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg));
1457         if (is_mbpf_jmp64(meta))
1458                 emit_alu(nfp_prog, reg_none(),
1459                          reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1));
1460         emit_br(nfp_prog, code->br_mask, insn->off, 0);
1461 
1462         return 0;
1463 }
1464 
1465 static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out)
1466 {
1467         emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in,
1468                       SHF_SC_R_ROT, 8);
1469         emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out),
1470                       SHF_SC_R_ROT, 16);
1471 }
1472 
1473 static void
1474 wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1475             swreg rreg, bool gen_high_half)
1476 {
1477         emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1478         emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg);
1479         emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg);
1480         emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg);
1481         emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg);
1482         emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none());
1483         if (gen_high_half)
1484                 emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2,
1485                          reg_none());
1486         else
1487                 wrp_immed(nfp_prog, dst_hi, 0);
1488 }
1489 
1490 static void
1491 wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg,
1492             swreg rreg)
1493 {
1494         emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg);
1495         emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg);
1496         emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg);
1497         emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none());
1498 }
1499 
1500 static int
1501 wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
1502         bool gen_high_half, bool ropnd_from_reg)
1503 {
1504         swreg multiplier, multiplicand, dst_hi, dst_lo;
1505         const struct bpf_insn *insn = &meta->insn;
1506         u32 lopnd_max, ropnd_max;
1507         u8 dst_reg;
1508 
1509         dst_reg = insn->dst_reg;
1510         multiplicand = reg_a(dst_reg * 2);
1511         dst_hi = reg_both(dst_reg * 2 + 1);
1512         dst_lo = reg_both(dst_reg * 2);
1513         lopnd_max = meta->umax_dst;
1514         if (ropnd_from_reg) {
1515                 multiplier = reg_b(insn->src_reg * 2);
1516                 ropnd_max = meta->umax_src;
1517         } else {
1518                 u32 imm = insn->imm;
1519 
1520                 multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1521                 ropnd_max = imm;
1522         }
1523         if (lopnd_max > U16_MAX || ropnd_max > U16_MAX)
1524                 wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier,
1525                             gen_high_half);
1526         else
1527                 wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier);
1528 
1529         return 0;
1530 }
1531 
1532 static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm)
1533 {
1534         swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst);
1535         struct reciprocal_value_adv rvalue;
1536         u8 pre_shift, exp;
1537         swreg magic;
1538 
1539         if (imm > U32_MAX) {
1540                 wrp_immed(nfp_prog, dst_both, 0);
1541                 return 0;
1542         }
1543 
1544         /* NOTE: because we are using "reciprocal_value_adv" which doesn't
1545          * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1546          * to handle such case which actually equals to the result of unsigned
1547          * comparison "dst >= imm" which could be calculated using the following
1548          * NFP sequence:
1549          *
1550          *  alu[--, dst, -, imm]
1551          *  immed[imm, 0]
1552          *  alu[dst, imm, +carry, 0]
1553          *
1554          */
1555         if (imm > 1U << 31) {
1556                 swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog));
1557 
1558                 emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b);
1559                 wrp_immed(nfp_prog, imm_a(nfp_prog), 0);
1560                 emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C,
1561                          reg_imm(0));
1562                 return 0;
1563         }
1564 
1565         rvalue = reciprocal_value_adv(imm, 32);
1566         exp = rvalue.exp;
1567         if (rvalue.is_wide_m && !(imm & 1)) {
1568                 pre_shift = fls(imm & -imm) - 1;
1569                 rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift);
1570         } else {
1571                 pre_shift = 0;
1572         }
1573         magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog));
1574         if (imm == 1U << exp) {
1575                 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1576                          SHF_SC_R_SHF, exp);
1577         } else if (rvalue.is_wide_m) {
1578                 wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a,
1579                             magic, true);
1580                 emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB,
1581                          imm_b(nfp_prog));
1582                 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1583                          SHF_SC_R_SHF, 1);
1584                 emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD,
1585                          imm_b(nfp_prog));
1586                 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b,
1587                          SHF_SC_R_SHF, rvalue.sh - 1);
1588         } else {
1589                 if (pre_shift)
1590                         emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1591                                  dst_b, SHF_SC_R_SHF, pre_shift);
1592                 wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true);
1593                 emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE,
1594                          dst_b, SHF_SC_R_SHF, rvalue.sh);
1595         }
1596 
1597         return 0;
1598 }
1599 
1600 static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1601 {
1602         swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog);
1603         struct nfp_bpf_cap_adjust_head *adjust_head;
1604         u32 ret_einval, end;
1605 
1606         adjust_head = &nfp_prog->bpf->adjust_head;
1607 
1608         /* Optimized version - 5 vs 14 cycles */
1609         if (nfp_prog->adjust_head_location != UINT_MAX) {
1610                 if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n))
1611                         return -EINVAL;
1612 
1613                 emit_alu(nfp_prog, pptr_reg(nfp_prog),
1614                          reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog));
1615                 emit_alu(nfp_prog, plen_reg(nfp_prog),
1616                          plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1617                 emit_alu(nfp_prog, pv_len(nfp_prog),
1618                          pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1619 
1620                 wrp_immed(nfp_prog, reg_both(0), 0);
1621                 wrp_immed(nfp_prog, reg_both(1), 0);
1622 
1623                 /* TODO: when adjust head is guaranteed to succeed we can
1624                  * also eliminate the following if (r0 == 0) branch.
1625                  */
1626 
1627                 return 0;
1628         }
1629 
1630         ret_einval = nfp_prog_current_offset(nfp_prog) + 14;
1631         end = ret_einval + 2;
1632 
1633         /* We need to use a temp because offset is just a part of the pkt ptr */
1634         emit_alu(nfp_prog, tmp,
1635                  reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog));
1636 
1637         /* Validate result will fit within FW datapath constraints */
1638         emit_alu(nfp_prog, reg_none(),
1639                  tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min));
1640         emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1641         emit_alu(nfp_prog, reg_none(),
1642                  reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp);
1643         emit_br(nfp_prog, BR_BLO, ret_einval, 0);
1644 
1645         /* Validate the length is at least ETH_HLEN */
1646         emit_alu(nfp_prog, tmp_len,
1647                  plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1648         emit_alu(nfp_prog, reg_none(),
1649                  tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN));
1650         emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1651 
1652         /* Load the ret code */
1653         wrp_immed(nfp_prog, reg_both(0), 0);
1654         wrp_immed(nfp_prog, reg_both(1), 0);
1655 
1656         /* Modify the packet metadata */
1657         emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0);
1658 
1659         /* Skip over the -EINVAL ret code (defer 2) */
1660         emit_br(nfp_prog, BR_UNC, end, 2);
1661 
1662         emit_alu(nfp_prog, plen_reg(nfp_prog),
1663                  plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1664         emit_alu(nfp_prog, pv_len(nfp_prog),
1665                  pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2));
1666 
1667         /* return -EINVAL target */
1668         if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1669                 return -EINVAL;
1670 
1671         wrp_immed(nfp_prog, reg_both(0), -22);
1672         wrp_immed(nfp_prog, reg_both(1), ~0);
1673 
1674         if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1675                 return -EINVAL;
1676 
1677         return 0;
1678 }
1679 
1680 static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1681 {
1682         u32 ret_einval, end;
1683         swreg plen, delta;
1684 
1685         BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN));
1686 
1687         plen = imm_a(nfp_prog);
1688         delta = reg_a(2 * 2);
1689 
1690         ret_einval = nfp_prog_current_offset(nfp_prog) + 9;
1691         end = nfp_prog_current_offset(nfp_prog) + 11;
1692 
1693         /* Calculate resulting length */
1694         emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta);
1695         /* delta == 0 is not allowed by the kernel, add must overflow to make
1696          * length smaller.
1697          */
1698         emit_br(nfp_prog, BR_BCC, ret_einval, 0);
1699 
1700         /* if (new_len < 14) then -EINVAL */
1701         emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN));
1702         emit_br(nfp_prog, BR_BMI, ret_einval, 0);
1703 
1704         emit_alu(nfp_prog, plen_reg(nfp_prog),
1705                  plen_reg(nfp_prog), ALU_OP_ADD, delta);
1706         emit_alu(nfp_prog, pv_len(nfp_prog),
1707                  pv_len(nfp_prog), ALU_OP_ADD, delta);
1708 
1709         emit_br(nfp_prog, BR_UNC, end, 2);
1710         wrp_immed(nfp_prog, reg_both(0), 0);
1711         wrp_immed(nfp_prog, reg_both(1), 0);
1712 
1713         if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval))
1714                 return -EINVAL;
1715 
1716         wrp_immed(nfp_prog, reg_both(0), -22);
1717         wrp_immed(nfp_prog, reg_both(1), ~0);
1718 
1719         if (!nfp_prog_confirm_current_offset(nfp_prog, end))
1720                 return -EINVAL;
1721 
1722         return 0;
1723 }
1724 
1725 static int
1726 map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1727 {
1728         bool load_lm_ptr;
1729         u32 ret_tgt;
1730         s64 lm_off;
1731 
1732         /* We only have to reload LM0 if the key is not at start of stack */
1733         lm_off = nfp_prog->stack_frame_depth;
1734         lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off;
1735         load_lm_ptr = meta->arg2.var_off || lm_off;
1736 
1737         /* Set LM0 to start of key */
1738         if (load_lm_ptr)
1739                 emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0);
1740         if (meta->func_id == BPF_FUNC_map_update_elem)
1741                 emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2);
1742 
1743         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1744                      2, RELO_BR_HELPER);
1745         ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
1746 
1747         /* Load map ID into A0 */
1748         wrp_mov(nfp_prog, reg_a(0), reg_a(2));
1749 
1750         /* Load the return address into B0 */
1751         wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1752 
1753         if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1754                 return -EINVAL;
1755 
1756         /* Reset the LM0 pointer */
1757         if (!load_lm_ptr)
1758                 return 0;
1759 
1760         emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0);
1761         wrp_nops(nfp_prog, 3);
1762 
1763         return 0;
1764 }
1765 
1766 static int
1767 nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1768 {
1769         __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM);
1770         /* CSR value is read in following immed[gpr, 0] */
1771         emit_immed(nfp_prog, reg_both(0), 0,
1772                    IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1773         emit_immed(nfp_prog, reg_both(1), 0,
1774                    IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B);
1775         return 0;
1776 }
1777 
1778 static int
1779 nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1780 {
1781         swreg ptr_type;
1782         u32 ret_tgt;
1783 
1784         ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog));
1785 
1786         ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
1787 
1788         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id,
1789                      2, RELO_BR_HELPER);
1790 
1791         /* Load ptr type into A1 */
1792         wrp_mov(nfp_prog, reg_a(1), ptr_type);
1793 
1794         /* Load the return address into B0 */
1795         wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL);
1796 
1797         if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
1798                 return -EINVAL;
1799 
1800         return 0;
1801 }
1802 
1803 static int
1804 nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1805 {
1806         u32 jmp_tgt;
1807 
1808         jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5;
1809 
1810         /* Make sure the queue id fits into FW field */
1811         emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2),
1812                  ALU_OP_AND_NOT_B, reg_imm(0xff));
1813         emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2);
1814 
1815         /* Set the 'queue selected' bit and the queue value */
1816         emit_shf(nfp_prog, pv_qsel_set(nfp_prog),
1817                  pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1),
1818                  SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT);
1819         emit_ld_field(nfp_prog,
1820                       pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2),
1821                       SHF_SC_NONE, 0);
1822         /* Delay slots end here, we will jump over next instruction if queue
1823          * value fits into the field.
1824          */
1825         emit_ld_field(nfp_prog,
1826                       pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX),
1827                       SHF_SC_NONE, 0);
1828 
1829         if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt))
1830                 return -EINVAL;
1831 
1832         return 0;
1833 }
1834 
1835 /* --- Callbacks --- */
1836 static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1837 {
1838         const struct bpf_insn *insn = &meta->insn;
1839         u8 dst = insn->dst_reg * 2;
1840         u8 src = insn->src_reg * 2;
1841 
1842         if (insn->src_reg == BPF_REG_10) {
1843                 swreg stack_depth_reg;
1844 
1845                 stack_depth_reg = ur_load_imm_any(nfp_prog,
1846                                                   nfp_prog->stack_frame_depth,
1847                                                   stack_imm(nfp_prog));
1848                 emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog),
1849                          ALU_OP_ADD, stack_depth_reg);
1850                 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
1851         } else {
1852                 wrp_reg_mov(nfp_prog, dst, src);
1853                 wrp_reg_mov(nfp_prog, dst + 1, src + 1);
1854         }
1855 
1856         return 0;
1857 }
1858 
1859 static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1860 {
1861         u64 imm = meta->insn.imm; /* sign extend */
1862 
1863         wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U);
1864         wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32);
1865 
1866         return 0;
1867 }
1868 
1869 static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1870 {
1871         return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR);
1872 }
1873 
1874 static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1875 {
1876         return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm);
1877 }
1878 
1879 static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1880 {
1881         return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND);
1882 }
1883 
1884 static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1885 {
1886         return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm);
1887 }
1888 
1889 static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1890 {
1891         return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR);
1892 }
1893 
1894 static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1895 {
1896         return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm);
1897 }
1898 
1899 static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1900 {
1901         const struct bpf_insn *insn = &meta->insn;
1902 
1903         emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1904                  reg_a(insn->dst_reg * 2), ALU_OP_ADD,
1905                  reg_b(insn->src_reg * 2));
1906         emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1907                  reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C,
1908                  reg_b(insn->src_reg * 2 + 1));
1909 
1910         return 0;
1911 }
1912 
1913 static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1914 {
1915         const struct bpf_insn *insn = &meta->insn;
1916         u64 imm = insn->imm; /* sign extend */
1917 
1918         wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U);
1919         wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32);
1920 
1921         return 0;
1922 }
1923 
1924 static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1925 {
1926         const struct bpf_insn *insn = &meta->insn;
1927 
1928         emit_alu(nfp_prog, reg_both(insn->dst_reg * 2),
1929                  reg_a(insn->dst_reg * 2), ALU_OP_SUB,
1930                  reg_b(insn->src_reg * 2));
1931         emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1),
1932                  reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C,
1933                  reg_b(insn->src_reg * 2 + 1));
1934 
1935         return 0;
1936 }
1937 
1938 static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1939 {
1940         const struct bpf_insn *insn = &meta->insn;
1941         u64 imm = insn->imm; /* sign extend */
1942 
1943         wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U);
1944         wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32);
1945 
1946         return 0;
1947 }
1948 
1949 static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1950 {
1951         return wrp_mul(nfp_prog, meta, true, true);
1952 }
1953 
1954 static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1955 {
1956         return wrp_mul(nfp_prog, meta, true, false);
1957 }
1958 
1959 static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1960 {
1961         const struct bpf_insn *insn = &meta->insn;
1962 
1963         return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm);
1964 }
1965 
1966 static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1967 {
1968         /* NOTE: verifier hook has rejected cases for which verifier doesn't
1969          * know whether the source operand is constant or not.
1970          */
1971         return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src);
1972 }
1973 
1974 static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
1975 {
1976         const struct bpf_insn *insn = &meta->insn;
1977 
1978         emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0),
1979                  ALU_OP_SUB, reg_b(insn->dst_reg * 2));
1980         emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0),
1981                  ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1));
1982 
1983         return 0;
1984 }
1985 
1986 /* Pseudo code:
1987  *   if shift_amt >= 32
1988  *     dst_high = dst_low << shift_amt[4:0]
1989  *     dst_low = 0;
1990  *   else
1991  *     dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1992  *     dst_low = dst_low << shift_amt
1993  *
1994  * The indirect shift will use the same logic at runtime.
1995  */
1996 static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
1997 {
1998         if (!shift_amt)
1999                 return 0;
2000 
2001         if (shift_amt < 32) {
2002                 emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1),
2003                          SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF,
2004                          32 - shift_amt);
2005                 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2006                          reg_b(dst), SHF_SC_L_SHF, shift_amt);
2007         } else if (shift_amt == 32) {
2008                 wrp_reg_mov(nfp_prog, dst + 1, dst);
2009                 wrp_immed(nfp_prog, reg_both(dst), 0);
2010         } else if (shift_amt > 32) {
2011                 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2012                          reg_b(dst), SHF_SC_L_SHF, shift_amt - 32);
2013                 wrp_immed(nfp_prog, reg_both(dst), 0);
2014         }
2015 
2016         return 0;
2017 }
2018 
2019 static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2020 {
2021         const struct bpf_insn *insn = &meta->insn;
2022         u8 dst = insn->dst_reg * 2;
2023 
2024         return __shl_imm64(nfp_prog, dst, insn->imm);
2025 }
2026 
2027 static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2028 {
2029         emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB,
2030                  reg_b(src));
2031         emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0));
2032         emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE,
2033                        reg_b(dst), SHF_SC_R_DSHF);
2034 }
2035 
2036 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
2037 static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2038 {
2039         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2040         emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2041                        reg_b(dst), SHF_SC_L_SHF);
2042 }
2043 
2044 static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2045 {
2046         shl_reg64_lt32_high(nfp_prog, dst, src);
2047         shl_reg64_lt32_low(nfp_prog, dst, src);
2048 }
2049 
2050 static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2051 {
2052         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2053         emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2054                        reg_b(dst), SHF_SC_L_SHF);
2055         wrp_immed(nfp_prog, reg_both(dst), 0);
2056 }
2057 
2058 static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2059 {
2060         const struct bpf_insn *insn = &meta->insn;
2061         u64 umin, umax;
2062         u8 dst, src;
2063 
2064         dst = insn->dst_reg * 2;
2065         umin = meta->umin_src;
2066         umax = meta->umax_src;
2067         if (umin == umax)
2068                 return __shl_imm64(nfp_prog, dst, umin);
2069 
2070         src = insn->src_reg * 2;
2071         if (umax < 32) {
2072                 shl_reg64_lt32(nfp_prog, dst, src);
2073         } else if (umin >= 32) {
2074                 shl_reg64_ge32(nfp_prog, dst, src);
2075         } else {
2076                 /* Generate different instruction sequences depending on runtime
2077                  * value of shift amount.
2078                  */
2079                 u16 label_ge32, label_end;
2080 
2081                 label_ge32 = nfp_prog_current_offset(nfp_prog) + 7;
2082                 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2083 
2084                 shl_reg64_lt32_high(nfp_prog, dst, src);
2085                 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2086                 emit_br(nfp_prog, BR_UNC, label_end, 2);
2087                 /* shl_reg64_lt32_low packed in delay slot. */
2088                 shl_reg64_lt32_low(nfp_prog, dst, src);
2089 
2090                 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2091                         return -EINVAL;
2092                 shl_reg64_ge32(nfp_prog, dst, src);
2093 
2094                 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2095                         return -EINVAL;
2096         }
2097 
2098         return 0;
2099 }
2100 
2101 /* Pseudo code:
2102  *   if shift_amt >= 32
2103  *     dst_high = 0;
2104  *     dst_low = dst_high >> shift_amt[4:0]
2105  *   else
2106  *     dst_high = dst_high >> shift_amt
2107  *     dst_low = (dst_high, dst_low) >> shift_amt
2108  *
2109  * The indirect shift will use the same logic at runtime.
2110  */
2111 static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2112 {
2113         if (!shift_amt)
2114                 return 0;
2115 
2116         if (shift_amt < 32) {
2117                 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2118                          reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2119                 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2120                          reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2121         } else if (shift_amt == 32) {
2122                 wrp_reg_mov(nfp_prog, dst, dst + 1);
2123                 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2124         } else if (shift_amt > 32) {
2125                 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2126                          reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2127                 wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2128         }
2129 
2130         return 0;
2131 }
2132 
2133 static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2134 {
2135         const struct bpf_insn *insn = &meta->insn;
2136         u8 dst = insn->dst_reg * 2;
2137 
2138         return __shr_imm64(nfp_prog, dst, insn->imm);
2139 }
2140 
2141 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2142 static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2143 {
2144         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2145         emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE,
2146                        reg_b(dst + 1), SHF_SC_R_SHF);
2147 }
2148 
2149 static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2150 {
2151         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2152         emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2153                        reg_b(dst), SHF_SC_R_DSHF);
2154 }
2155 
2156 static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2157 {
2158         shr_reg64_lt32_low(nfp_prog, dst, src);
2159         shr_reg64_lt32_high(nfp_prog, dst, src);
2160 }
2161 
2162 static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2163 {
2164         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2165         emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2166                        reg_b(dst + 1), SHF_SC_R_SHF);
2167         wrp_immed(nfp_prog, reg_both(dst + 1), 0);
2168 }
2169 
2170 static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2171 {
2172         const struct bpf_insn *insn = &meta->insn;
2173         u64 umin, umax;
2174         u8 dst, src;
2175 
2176         dst = insn->dst_reg * 2;
2177         umin = meta->umin_src;
2178         umax = meta->umax_src;
2179         if (umin == umax)
2180                 return __shr_imm64(nfp_prog, dst, umin);
2181 
2182         src = insn->src_reg * 2;
2183         if (umax < 32) {
2184                 shr_reg64_lt32(nfp_prog, dst, src);
2185         } else if (umin >= 32) {
2186                 shr_reg64_ge32(nfp_prog, dst, src);
2187         } else {
2188                 /* Generate different instruction sequences depending on runtime
2189                  * value of shift amount.
2190                  */
2191                 u16 label_ge32, label_end;
2192 
2193                 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2194                 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2195                 shr_reg64_lt32_low(nfp_prog, dst, src);
2196                 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2197                 emit_br(nfp_prog, BR_UNC, label_end, 2);
2198                 /* shr_reg64_lt32_high packed in delay slot. */
2199                 shr_reg64_lt32_high(nfp_prog, dst, src);
2200 
2201                 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2202                         return -EINVAL;
2203                 shr_reg64_ge32(nfp_prog, dst, src);
2204 
2205                 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2206                         return -EINVAL;
2207         }
2208 
2209         return 0;
2210 }
2211 
2212 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2213  * told through PREV_ALU result.
2214  */
2215 static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt)
2216 {
2217         if (!shift_amt)
2218                 return 0;
2219 
2220         if (shift_amt < 32) {
2221                 emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE,
2222                          reg_b(dst), SHF_SC_R_DSHF, shift_amt);
2223                 /* Set signedness bit. */
2224                 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2225                          reg_imm(0));
2226                 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2227                          reg_b(dst + 1), SHF_SC_R_SHF, shift_amt);
2228         } else if (shift_amt == 32) {
2229                 /* NOTE: this also helps setting signedness bit. */
2230                 wrp_reg_mov(nfp_prog, dst, dst + 1);
2231                 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2232                          reg_b(dst + 1), SHF_SC_R_SHF, 31);
2233         } else if (shift_amt > 32) {
2234                 emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR,
2235                          reg_imm(0));
2236                 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2237                          reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32);
2238                 emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2239                          reg_b(dst + 1), SHF_SC_R_SHF, 31);
2240         }
2241 
2242         return 0;
2243 }
2244 
2245 static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2246 {
2247         const struct bpf_insn *insn = &meta->insn;
2248         u8 dst = insn->dst_reg * 2;
2249 
2250         return __ashr_imm64(nfp_prog, dst, insn->imm);
2251 }
2252 
2253 static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2254 {
2255         /* NOTE: the first insn will set both indirect shift amount (source A)
2256          * and signedness bit (MSB of result).
2257          */
2258         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2259         emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2260                        reg_b(dst + 1), SHF_SC_R_SHF);
2261 }
2262 
2263 static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2264 {
2265         /* NOTE: it is the same as logic shift because we don't need to shift in
2266          * signedness bit when the shift amount is less than 32.
2267          */
2268         return shr_reg64_lt32_low(nfp_prog, dst, src);
2269 }
2270 
2271 static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2272 {
2273         ashr_reg64_lt32_low(nfp_prog, dst, src);
2274         ashr_reg64_lt32_high(nfp_prog, dst, src);
2275 }
2276 
2277 static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src)
2278 {
2279         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1));
2280         emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2281                        reg_b(dst + 1), SHF_SC_R_SHF);
2282         emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR,
2283                  reg_b(dst + 1), SHF_SC_R_SHF, 31);
2284 }
2285 
2286 /* Like ashr_imm64, but need to use indirect shift. */
2287 static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2288 {
2289         const struct bpf_insn *insn = &meta->insn;
2290         u64 umin, umax;
2291         u8 dst, src;
2292 
2293         dst = insn->dst_reg * 2;
2294         umin = meta->umin_src;
2295         umax = meta->umax_src;
2296         if (umin == umax)
2297                 return __ashr_imm64(nfp_prog, dst, umin);
2298 
2299         src = insn->src_reg * 2;
2300         if (umax < 32) {
2301                 ashr_reg64_lt32(nfp_prog, dst, src);
2302         } else if (umin >= 32) {
2303                 ashr_reg64_ge32(nfp_prog, dst, src);
2304         } else {
2305                 u16 label_ge32, label_end;
2306 
2307                 label_ge32 = nfp_prog_current_offset(nfp_prog) + 6;
2308                 emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0);
2309                 ashr_reg64_lt32_low(nfp_prog, dst, src);
2310                 label_end = nfp_prog_current_offset(nfp_prog) + 6;
2311                 emit_br(nfp_prog, BR_UNC, label_end, 2);
2312                 /* ashr_reg64_lt32_high packed in delay slot. */
2313                 ashr_reg64_lt32_high(nfp_prog, dst, src);
2314 
2315                 if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32))
2316                         return -EINVAL;
2317                 ashr_reg64_ge32(nfp_prog, dst, src);
2318 
2319                 if (!nfp_prog_confirm_current_offset(nfp_prog, label_end))
2320                         return -EINVAL;
2321         }
2322 
2323         return 0;
2324 }
2325 
2326 static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2327 {
2328         const struct bpf_insn *insn = &meta->insn;
2329 
2330         wrp_reg_mov(nfp_prog, insn->dst_reg * 2,  insn->src_reg * 2);
2331         wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2332 
2333         return 0;
2334 }
2335 
2336 static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2337 {
2338         const struct bpf_insn *insn = &meta->insn;
2339 
2340         wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm);
2341         wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0);
2342 
2343         return 0;
2344 }
2345 
2346 static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2347 {
2348         return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR);
2349 }
2350 
2351 static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2352 {
2353         return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR);
2354 }
2355 
2356 static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2357 {
2358         return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND);
2359 }
2360 
2361 static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2362 {
2363         return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND);
2364 }
2365 
2366 static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2367 {
2368         return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR);
2369 }
2370 
2371 static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2372 {
2373         return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR);
2374 }
2375 
2376 static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2377 {
2378         return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD);
2379 }
2380 
2381 static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2382 {
2383         return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD);
2384 }
2385 
2386 static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2387 {
2388         return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB);
2389 }
2390 
2391 static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2392 {
2393         return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB);
2394 }
2395 
2396 static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2397 {
2398         return wrp_mul(nfp_prog, meta, false, true);
2399 }
2400 
2401 static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2402 {
2403         return wrp_mul(nfp_prog, meta, false, false);
2404 }
2405 
2406 static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2407 {
2408         return div_reg64(nfp_prog, meta);
2409 }
2410 
2411 static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2412 {
2413         return div_imm64(nfp_prog, meta);
2414 }
2415 
2416 static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2417 {
2418         u8 dst = meta->insn.dst_reg * 2;
2419 
2420         emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst));
2421         wrp_zext(nfp_prog, meta, dst);
2422 
2423         return 0;
2424 }
2425 
2426 static int
2427 __ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2428            u8 shift_amt)
2429 {
2430         if (shift_amt) {
2431                 /* Set signedness bit (MSB of result). */
2432                 emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR,
2433                          reg_imm(0));
2434                 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2435                          reg_b(dst), SHF_SC_R_SHF, shift_amt);
2436         }
2437         wrp_zext(nfp_prog, meta, dst);
2438 
2439         return 0;
2440 }
2441 
2442 static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2443 {
2444         const struct bpf_insn *insn = &meta->insn;
2445         u64 umin, umax;
2446         u8 dst, src;
2447 
2448         dst = insn->dst_reg * 2;
2449         umin = meta->umin_src;
2450         umax = meta->umax_src;
2451         if (umin == umax)
2452                 return __ashr_imm(nfp_prog, meta, dst, umin);
2453 
2454         src = insn->src_reg * 2;
2455         /* NOTE: the first insn will set both indirect shift amount (source A)
2456          * and signedness bit (MSB of result).
2457          */
2458         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst));
2459         emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR,
2460                        reg_b(dst), SHF_SC_R_SHF);
2461         wrp_zext(nfp_prog, meta, dst);
2462 
2463         return 0;
2464 }
2465 
2466 static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2467 {
2468         const struct bpf_insn *insn = &meta->insn;
2469         u8 dst = insn->dst_reg * 2;
2470 
2471         return __ashr_imm(nfp_prog, meta, dst, insn->imm);
2472 }
2473 
2474 static int
2475 __shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2476           u8 shift_amt)
2477 {
2478         if (shift_amt)
2479                 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2480                          reg_b(dst), SHF_SC_R_SHF, shift_amt);
2481         wrp_zext(nfp_prog, meta, dst);
2482         return 0;
2483 }
2484 
2485 static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2486 {
2487         const struct bpf_insn *insn = &meta->insn;
2488         u8 dst = insn->dst_reg * 2;
2489 
2490         return __shr_imm(nfp_prog, meta, dst, insn->imm);
2491 }
2492 
2493 static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2494 {
2495         const struct bpf_insn *insn = &meta->insn;
2496         u64 umin, umax;
2497         u8 dst, src;
2498 
2499         dst = insn->dst_reg * 2;
2500         umin = meta->umin_src;
2501         umax = meta->umax_src;
2502         if (umin == umax)
2503                 return __shr_imm(nfp_prog, meta, dst, umin);
2504 
2505         src = insn->src_reg * 2;
2506         emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0));
2507         emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2508                        reg_b(dst), SHF_SC_R_SHF);
2509         wrp_zext(nfp_prog, meta, dst);
2510         return 0;
2511 }
2512 
2513 static int
2514 __shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst,
2515           u8 shift_amt)
2516 {
2517         if (shift_amt)
2518                 emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE,
2519                          reg_b(dst), SHF_SC_L_SHF, shift_amt);
2520         wrp_zext(nfp_prog, meta, dst);
2521         return 0;
2522 }
2523 
2524 static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2525 {
2526         const struct bpf_insn *insn = &meta->insn;
2527         u8 dst = insn->dst_reg * 2;
2528 
2529         return __shl_imm(nfp_prog, meta, dst, insn->imm);
2530 }
2531 
2532 static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2533 {
2534         const struct bpf_insn *insn = &meta->insn;
2535         u64 umin, umax;
2536         u8 dst, src;
2537 
2538         dst = insn->dst_reg * 2;
2539         umin = meta->umin_src;
2540         umax = meta->umax_src;
2541         if (umin == umax)
2542                 return __shl_imm(nfp_prog, meta, dst, umin);
2543 
2544         src = insn->src_reg * 2;
2545         shl_reg64_lt32_low(nfp_prog, dst, src);
2546         wrp_zext(nfp_prog, meta, dst);
2547         return 0;
2548 }
2549 
2550 static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2551 {
2552         const struct bpf_insn *insn = &meta->insn;
2553         u8 gpr = insn->dst_reg * 2;
2554 
2555         switch (insn->imm) {
2556         case 16:
2557                 emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr),
2558                               SHF_SC_R_ROT, 8);
2559                 emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr),
2560                               SHF_SC_R_SHF, 16);
2561 
2562                 wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2563                 break;
2564         case 32:
2565                 wrp_end32(nfp_prog, reg_a(gpr), gpr);
2566                 wrp_immed(nfp_prog, reg_both(gpr + 1), 0);
2567                 break;
2568         case 64:
2569                 wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1));
2570 
2571                 wrp_end32(nfp_prog, reg_a(gpr), gpr + 1);
2572                 wrp_end32(nfp_prog, imm_a(nfp_prog), gpr);
2573                 break;
2574         }
2575 
2576         return 0;
2577 }
2578 
2579 static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2580 {
2581         struct nfp_insn_meta *prev = nfp_meta_prev(meta);
2582         u32 imm_lo, imm_hi;
2583         u8 dst;
2584 
2585         dst = prev->insn.dst_reg * 2;
2586         imm_lo = prev->insn.imm;
2587         imm_hi = meta->insn.imm;
2588 
2589         wrp_immed(nfp_prog, reg_both(dst), imm_lo);
2590 
2591         /* mov is always 1 insn, load imm may be two, so try to use mov */
2592         if (imm_hi == imm_lo)
2593                 wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst));
2594         else
2595                 wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi);
2596 
2597         return 0;
2598 }
2599 
2600 static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2601 {
2602         meta->double_cb = imm_ld8_part2;
2603         return 0;
2604 }
2605 
2606 static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2607 {
2608         return construct_data_ld(nfp_prog, meta, meta->insn.imm, 1);
2609 }
2610 
2611 static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2612 {
2613         return construct_data_ld(nfp_prog, meta, meta->insn.imm, 2);
2614 }
2615 
2616 static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2617 {
2618         return construct_data_ld(nfp_prog, meta, meta->insn.imm, 4);
2619 }
2620 
2621 static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2622 {
2623         return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2624                                      meta->insn.src_reg * 2, 1);
2625 }
2626 
2627 static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2628 {
2629         return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2630                                      meta->insn.src_reg * 2, 2);
2631 }
2632 
2633 static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2634 {
2635         return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm,
2636                                      meta->insn.src_reg * 2, 4);
2637 }
2638 
2639 static int
2640 mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2641               unsigned int size, unsigned int ptr_off)
2642 {
2643         return mem_op_stack(nfp_prog, meta, size, ptr_off,
2644                             meta->insn.dst_reg * 2, meta->insn.src_reg * 2,
2645                             true, wrp_lmem_load);
2646 }
2647 
2648 static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2649                        u8 size)
2650 {
2651         swreg dst = reg_both(meta->insn.dst_reg * 2);
2652 
2653         switch (meta->insn.off) {
2654         case offsetof(struct __sk_buff, len):
2655                 if (size != FIELD_SIZEOF(struct __sk_buff, len))
2656                         return -EOPNOTSUPP;
2657                 wrp_mov(nfp_prog, dst, plen_reg(nfp_prog));
2658                 break;
2659         case offsetof(struct __sk_buff, data):
2660                 if (size != FIELD_SIZEOF(struct __sk_buff, data))
2661                         return -EOPNOTSUPP;
2662                 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2663                 break;
2664         case offsetof(struct __sk_buff, data_end):
2665                 if (size != FIELD_SIZEOF(struct __sk_buff, data_end))
2666                         return -EOPNOTSUPP;
2667                 emit_alu(nfp_prog, dst,
2668                          plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2669                 break;
2670         default:
2671                 return -EOPNOTSUPP;
2672         }
2673 
2674         wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2675 
2676         return 0;
2677 }
2678 
2679 static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2680                        u8 size)
2681 {
2682         swreg dst = reg_both(meta->insn.dst_reg * 2);
2683 
2684         switch (meta->insn.off) {
2685         case offsetof(struct xdp_md, data):
2686                 if (size != FIELD_SIZEOF(struct xdp_md, data))
2687                         return -EOPNOTSUPP;
2688                 wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog));
2689                 break;
2690         case offsetof(struct xdp_md, data_end):
2691                 if (size != FIELD_SIZEOF(struct xdp_md, data_end))
2692                         return -EOPNOTSUPP;
2693                 emit_alu(nfp_prog, dst,
2694                          plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog));
2695                 break;
2696         default:
2697                 return -EOPNOTSUPP;
2698         }
2699 
2700         wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0);
2701 
2702         return 0;
2703 }
2704 
2705 static int
2706 mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2707              unsigned int size)
2708 {
2709         swreg tmp_reg;
2710 
2711         tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2712 
2713         return data_ld_host_order_addr32(nfp_prog, meta, meta->insn.src_reg * 2,
2714                                          tmp_reg, meta->insn.dst_reg * 2, size);
2715 }
2716 
2717 static int
2718 mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2719              unsigned int size)
2720 {
2721         swreg tmp_reg;
2722 
2723         tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2724 
2725         return data_ld_host_order_addr40(nfp_prog, meta, meta->insn.src_reg * 2,
2726                                          tmp_reg, meta->insn.dst_reg * 2, size);
2727 }
2728 
2729 static void
2730 mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog,
2731                            struct nfp_insn_meta *meta)
2732 {
2733         s16 range_start = meta->pkt_cache.range_start;
2734         s16 range_end = meta->pkt_cache.range_end;
2735         swreg src_base, off;
2736         u8 xfer_num, len;
2737         bool indir;
2738 
2739         off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog));
2740         src_base = reg_a(meta->insn.src_reg * 2);
2741         len = range_end - range_start;
2742         xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH;
2743 
2744         indir = len > 8 * REG_WIDTH;
2745         /* Setup PREV_ALU for indirect mode. */
2746         if (indir)
2747                 wrp_immed(nfp_prog, reg_none(),
2748                           CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1));
2749 
2750         /* Cache memory into transfer-in registers. */
2751         emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base,
2752                      off, xfer_num - 1, CMD_CTX_SWAP, indir);
2753 }
2754 
2755 static int
2756 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog,
2757                                      struct nfp_insn_meta *meta,
2758                                      unsigned int size)
2759 {
2760         s16 range_start = meta->pkt_cache.range_start;
2761         s16 insn_off = meta->insn.off - range_start;
2762         swreg dst_lo, dst_hi, src_lo, src_mid;
2763         u8 dst_gpr = meta->insn.dst_reg * 2;
2764         u8 len_lo = size, len_mid = 0;
2765         u8 idx = insn_off / REG_WIDTH;
2766         u8 off = insn_off % REG_WIDTH;
2767 
2768         dst_hi = reg_both(dst_gpr + 1);
2769         dst_lo = reg_both(dst_gpr);
2770         src_lo = reg_xfer(idx);
2771 
2772         /* The read length could involve as many as three registers. */
2773         if (size > REG_WIDTH - off) {
2774                 /* Calculate the part in the second register. */
2775                 len_lo = REG_WIDTH - off;
2776                 len_mid = size - len_lo;
2777 
2778                 /* Calculate the part in the third register. */
2779                 if (size > 2 * REG_WIDTH - off)
2780                         len_mid = REG_WIDTH;
2781         }
2782 
2783         wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off);
2784 
2785         if (!len_mid) {
2786                 wrp_zext(nfp_prog, meta, dst_gpr);
2787                 return 0;
2788         }
2789 
2790         src_mid = reg_xfer(idx + 1);
2791 
2792         if (size <= REG_WIDTH) {
2793                 wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo);
2794                 wrp_zext(nfp_prog, meta, dst_gpr);
2795         } else {
2796                 swreg src_hi = reg_xfer(idx + 2);
2797 
2798                 wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid,
2799                                    REG_WIDTH - len_lo, len_lo);
2800                 wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo,
2801                                 REG_WIDTH - len_lo);
2802                 wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo,
2803                                    len_lo);
2804         }
2805 
2806         return 0;
2807 }
2808 
2809 static int
2810 mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog,
2811                                    struct nfp_insn_meta *meta,
2812                                    unsigned int size)
2813 {
2814         swreg dst_lo, dst_hi, src_lo;
2815         u8 dst_gpr, idx;
2816 
2817         idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH;
2818         dst_gpr = meta->insn.dst_reg * 2;
2819         dst_hi = reg_both(dst_gpr + 1);
2820         dst_lo = reg_both(dst_gpr);
2821         src_lo = reg_xfer(idx);
2822 
2823         if (size < REG_WIDTH) {
2824                 wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0);
2825                 wrp_zext(nfp_prog, meta, dst_gpr);
2826         } else if (size == REG_WIDTH) {
2827                 wrp_mov(nfp_prog, dst_lo, src_lo);
2828                 wrp_zext(nfp_prog, meta, dst_gpr);
2829         } else {
2830                 swreg src_hi = reg_xfer(idx + 1);
2831 
2832                 wrp_mov(nfp_prog, dst_lo, src_lo);
2833                 wrp_mov(nfp_prog, dst_hi, src_hi);
2834         }
2835 
2836         return 0;
2837 }
2838 
2839 static int
2840 mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog,
2841                            struct nfp_insn_meta *meta, unsigned int size)
2842 {
2843         u8 off = meta->insn.off - meta->pkt_cache.range_start;
2844 
2845         if (IS_ALIGNED(off, REG_WIDTH))
2846                 return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size);
2847 
2848         return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size);
2849 }
2850 
2851 static int
2852 mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2853         unsigned int size)
2854 {
2855         if (meta->ldst_gather_len)
2856                 return nfp_cpp_memcpy(nfp_prog, meta);
2857 
2858         if (meta->ptr.type == PTR_TO_CTX) {
2859                 if (nfp_prog->type == BPF_PROG_TYPE_XDP)
2860                         return mem_ldx_xdp(nfp_prog, meta, size);
2861                 else
2862                         return mem_ldx_skb(nfp_prog, meta, size);
2863         }
2864 
2865         if (meta->ptr.type == PTR_TO_PACKET) {
2866                 if (meta->pkt_cache.range_end) {
2867                         if (meta->pkt_cache.do_init)
2868                                 mem_ldx_data_init_pktcache(nfp_prog, meta);
2869 
2870                         return mem_ldx_data_from_pktcache(nfp_prog, meta, size);
2871                 } else {
2872                         return mem_ldx_data(nfp_prog, meta, size);
2873                 }
2874         }
2875 
2876         if (meta->ptr.type == PTR_TO_STACK)
2877                 return mem_ldx_stack(nfp_prog, meta, size,
2878                                      meta->ptr.off + meta->ptr.var_off.value);
2879 
2880         if (meta->ptr.type == PTR_TO_MAP_VALUE)
2881                 return mem_ldx_emem(nfp_prog, meta, size);
2882 
2883         return -EOPNOTSUPP;
2884 }
2885 
2886 static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2887 {
2888         return mem_ldx(nfp_prog, meta, 1);
2889 }
2890 
2891 static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2892 {
2893         return mem_ldx(nfp_prog, meta, 2);
2894 }
2895 
2896 static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2897 {
2898         return mem_ldx(nfp_prog, meta, 4);
2899 }
2900 
2901 static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2902 {
2903         return mem_ldx(nfp_prog, meta, 8);
2904 }
2905 
2906 static int
2907 mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2908             unsigned int size)
2909 {
2910         u64 imm = meta->insn.imm; /* sign extend */
2911         swreg off_reg;
2912 
2913         off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2914 
2915         return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2916                                   imm, size);
2917 }
2918 
2919 static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2920                   unsigned int size)
2921 {
2922         if (meta->ptr.type == PTR_TO_PACKET)
2923                 return mem_st_data(nfp_prog, meta, size);
2924 
2925         return -EOPNOTSUPP;
2926 }
2927 
2928 static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2929 {
2930         return mem_st(nfp_prog, meta, 1);
2931 }
2932 
2933 static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2934 {
2935         return mem_st(nfp_prog, meta, 2);
2936 }
2937 
2938 static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2939 {
2940         return mem_st(nfp_prog, meta, 4);
2941 }
2942 
2943 static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2944 {
2945         return mem_st(nfp_prog, meta, 8);
2946 }
2947 
2948 static int
2949 mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2950              unsigned int size)
2951 {
2952         swreg off_reg;
2953 
2954         off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
2955 
2956         return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg,
2957                                    meta->insn.src_reg * 2, size);
2958 }
2959 
2960 static int
2961 mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2962               unsigned int size, unsigned int ptr_off)
2963 {
2964         return mem_op_stack(nfp_prog, meta, size, ptr_off,
2965                             meta->insn.src_reg * 2, meta->insn.dst_reg * 2,
2966                             false, wrp_lmem_store);
2967 }
2968 
2969 static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2970 {
2971         switch (meta->insn.off) {
2972         case offsetof(struct xdp_md, rx_queue_index):
2973                 return nfp_queue_select(nfp_prog, meta);
2974         }
2975 
2976         WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2977         return -EOPNOTSUPP;
2978 }
2979 
2980 static int
2981 mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
2982         unsigned int size)
2983 {
2984         if (meta->ptr.type == PTR_TO_PACKET)
2985                 return mem_stx_data(nfp_prog, meta, size);
2986 
2987         if (meta->ptr.type == PTR_TO_STACK)
2988                 return mem_stx_stack(nfp_prog, meta, size,
2989                                      meta->ptr.off + meta->ptr.var_off.value);
2990 
2991         return -EOPNOTSUPP;
2992 }
2993 
2994 static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
2995 {
2996         return mem_stx(nfp_prog, meta, 1);
2997 }
2998 
2999 static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3000 {
3001         return mem_stx(nfp_prog, meta, 2);
3002 }
3003 
3004 static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3005 {
3006         if (meta->ptr.type == PTR_TO_CTX)
3007                 if (nfp_prog->type == BPF_PROG_TYPE_XDP)
3008                         return mem_stx_xdp(nfp_prog, meta);
3009         return mem_stx(nfp_prog, meta, 4);
3010 }
3011 
3012 static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3013 {
3014         return mem_stx(nfp_prog, meta, 8);
3015 }
3016 
3017 static int
3018 mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64)
3019 {
3020         u8 dst_gpr = meta->insn.dst_reg * 2;
3021         u8 src_gpr = meta->insn.src_reg * 2;
3022         unsigned int full_add, out;
3023         swreg addra, addrb, off;
3024 
3025         off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog));
3026 
3027         /* We can fit 16 bits into command immediate, if we know the immediate
3028          * is guaranteed to either always or never fit into 16 bit we only
3029          * generate code to handle that particular case, otherwise generate
3030          * code for both.
3031          */
3032         out = nfp_prog_current_offset(nfp_prog);
3033         full_add = nfp_prog_current_offset(nfp_prog);
3034 
3035         if (meta->insn.off) {
3036                 out += 2;
3037                 full_add += 2;
3038         }
3039         if (meta->xadd_maybe_16bit) {
3040                 out += 3;
3041                 full_add += 3;
3042         }
3043         if (meta->xadd_over_16bit)
3044                 out += 2 + is64;
3045         if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3046                 out += 5;
3047                 full_add += 5;
3048         }
3049 
3050         /* Generate the branch for choosing add_imm vs add */
3051         if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) {
3052                 swreg max_imm = imm_a(nfp_prog);
3053 
3054                 wrp_immed(nfp_prog, max_imm, 0xffff);
3055                 emit_alu(nfp_prog, reg_none(),
3056                          max_imm, ALU_OP_SUB, reg_b(src_gpr));
3057                 emit_alu(nfp_prog, reg_none(),
3058                          reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1));
3059                 emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0);
3060                 /* defer for add */
3061         }
3062 
3063         /* If insn has an offset add to the address */
3064         if (!meta->insn.off) {
3065                 addra = reg_a(dst_gpr);
3066                 addrb = reg_b(dst_gpr + 1);
3067         } else {
3068                 emit_alu(nfp_prog, imma_a(nfp_prog),
3069                          reg_a(dst_gpr), ALU_OP_ADD, off);
3070                 emit_alu(nfp_prog, imma_b(nfp_prog),
3071                          reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0));
3072                 addra = imma_a(nfp_prog);
3073                 addrb = imma_b(nfp_prog);
3074         }
3075 
3076         /* Generate the add_imm if 16 bits are possible */
3077         if (meta->xadd_maybe_16bit) {
3078                 swreg prev_alu = imm_a(nfp_prog);
3079 
3080                 wrp_immed(nfp_prog, prev_alu,
3081                           FIELD_PREP(CMD_OVE_DATA, 2) |
3082                           CMD_OVE_LEN |
3083                           FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2));
3084                 wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2);
3085                 emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0,
3086                                addra, addrb, 0, CMD_CTX_NO_SWAP);
3087 
3088                 if (meta->xadd_over_16bit)
3089                         emit_br(nfp_prog, BR_UNC, out, 0);
3090         }
3091 
3092         if (!nfp_prog_confirm_current_offset(nfp_prog, full_add))
3093                 return -EINVAL;
3094 
3095         /* Generate the add if 16 bits are not guaranteed */
3096         if (meta->xadd_over_16bit) {
3097                 emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0,
3098                          addra, addrb, is64 << 2,
3099                          is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1);
3100 
3101                 wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr));
3102                 if (is64)
3103                         wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1));
3104         }
3105 
3106         if (!nfp_prog_confirm_current_offset(nfp_prog, out))
3107                 return -EINVAL;
3108 
3109         return 0;
3110 }
3111 
3112 static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3113 {
3114         return mem_xadd(nfp_prog, meta, false);
3115 }
3116 
3117 static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3118 {
3119         return mem_xadd(nfp_prog, meta, true);
3120 }
3121 
3122 static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3123 {
3124         emit_br(nfp_prog, BR_UNC, meta->insn.off, 0);
3125 
3126         return 0;
3127 }
3128 
3129 static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3130 {
3131         const struct bpf_insn *insn = &meta->insn;
3132         u64 imm = insn->imm; /* sign extend */
3133         swreg or1, or2, tmp_reg;
3134 
3135         or1 = reg_a(insn->dst_reg * 2);
3136         or2 = reg_b(insn->dst_reg * 2 + 1);
3137 
3138         if (imm & ~0U) {
3139                 tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3140                 emit_alu(nfp_prog, imm_a(nfp_prog),
3141                          reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3142                 or1 = imm_a(nfp_prog);
3143         }
3144 
3145         if (imm >> 32) {
3146                 tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3147                 emit_alu(nfp_prog, imm_b(nfp_prog),
3148                          reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3149                 or2 = imm_b(nfp_prog);
3150         }
3151 
3152         emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2);
3153         emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3154 
3155         return 0;
3156 }
3157 
3158 static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3159 {
3160         const struct bpf_insn *insn = &meta->insn;
3161         swreg tmp_reg;
3162 
3163         tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog));
3164         emit_alu(nfp_prog, reg_none(),
3165                  reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3166         emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3167 
3168         return 0;
3169 }
3170 
3171 static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3172 {
3173         const struct bpf_insn *insn = &meta->insn;
3174         u64 imm = insn->imm; /* sign extend */
3175         u8 dst_gpr = insn->dst_reg * 2;
3176         swreg tmp_reg;
3177 
3178         tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3179         emit_alu(nfp_prog, imm_b(nfp_prog),
3180                  reg_a(dst_gpr), ALU_OP_AND, tmp_reg);
3181         /* Upper word of the mask can only be 0 or ~0 from sign extension,
3182          * so either ignore it or OR the whole thing in.
3183          */
3184         if (is_mbpf_jmp64(meta) && imm >> 32) {
3185                 emit_alu(nfp_prog, reg_none(),
3186                          reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog));
3187         }
3188         emit_br(nfp_prog, BR_BNE, insn->off, 0);
3189 
3190         return 0;
3191 }
3192 
3193 static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3194 {
3195         const struct bpf_insn *insn = &meta->insn;
3196         u64 imm = insn->imm; /* sign extend */
3197         bool is_jmp32 = is_mbpf_jmp32(meta);
3198         swreg tmp_reg;
3199 
3200         if (!imm) {
3201                 if (is_jmp32)
3202                         emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE,
3203                                  reg_b(insn->dst_reg * 2));
3204                 else
3205                         emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2),
3206                                  ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1));
3207                 emit_br(nfp_prog, BR_BNE, insn->off, 0);
3208                 return 0;
3209         }
3210 
3211         tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog));
3212         emit_alu(nfp_prog, reg_none(),
3213                  reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg);
3214         emit_br(nfp_prog, BR_BNE, insn->off, 0);
3215 
3216         if (is_jmp32)
3217                 return 0;
3218 
3219         tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog));
3220         emit_alu(nfp_prog, reg_none(),
3221                  reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg);
3222         emit_br(nfp_prog, BR_BNE, insn->off, 0);
3223 
3224         return 0;
3225 }
3226 
3227 static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3228 {
3229         const struct bpf_insn *insn = &meta->insn;
3230 
3231         emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2),
3232                  ALU_OP_XOR, reg_b(insn->src_reg * 2));
3233         if (is_mbpf_jmp64(meta)) {
3234                 emit_alu(nfp_prog, imm_b(nfp_prog),
3235                          reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR,
3236                          reg_b(insn->src_reg * 2 + 1));
3237                 emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR,
3238                          imm_b(nfp_prog));
3239         }
3240         emit_br(nfp_prog, BR_BEQ, insn->off, 0);
3241 
3242         return 0;
3243 }
3244 
3245 static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3246 {
3247         return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE);
3248 }
3249 
3250 static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3251 {
3252         return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE);
3253 }
3254 
3255 static int
3256 bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3257 {
3258         u32 ret_tgt, stack_depth, offset_br;
3259         swreg tmp_reg;
3260 
3261         stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN);
3262         /* Space for saving the return address is accounted for by the callee,
3263          * so stack_depth can be zero for the main function.
3264          */
3265         if (stack_depth) {
3266                 tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3267                                           stack_imm(nfp_prog));
3268                 emit_alu(nfp_prog, stack_reg(nfp_prog),
3269                          stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg);
3270                 emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3271                             NFP_CSR_ACT_LM_ADDR0);
3272         }
3273 
3274         /* Two cases for jumping to the callee:
3275          *
3276          * - If callee uses and needs to save R6~R9 then:
3277          *     1. Put the start offset of the callee into imm_b(). This will
3278          *        require a fixup step, as we do not necessarily know this
3279          *        address yet.
3280          *     2. Put the return address from the callee to the caller into
3281          *        register ret_reg().
3282          *     3. (After defer slots are consumed) Jump to the subroutine that
3283          *        pushes the registers to the stack.
3284          *   The subroutine acts as a trampoline, and returns to the address in
3285          *   imm_b(), i.e. jumps to the callee.
3286          *
3287          * - If callee does not need to save R6~R9 then just load return
3288          *   address to the caller in ret_reg(), and jump to the callee
3289          *   directly.
3290          *
3291          * Using ret_reg() to pass the return address to the callee is set here
3292          * as a convention. The callee can then push this address onto its
3293          * stack frame in its prologue. The advantages of passing the return
3294          * address through ret_reg(), instead of pushing it to the stack right
3295          * here, are the following:
3296          * - It looks cleaner.
3297          * - If the called function is called multiple time, we get a lower
3298          *   program size.
3299          * - We save two no-op instructions that should be added just before
3300          *   the emit_br() when stack depth is not null otherwise.
3301          * - If we ever find a register to hold the return address during whole
3302          *   execution of the callee, we will not have to push the return
3303          *   address to the stack for leaf functions.
3304          */
3305         if (!meta->jmp_dst) {
3306                 pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3307                 return -ELOOP;
3308         }
3309         if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) {
3310                 ret_tgt = nfp_prog_current_offset(nfp_prog) + 3;
3311                 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2,
3312                              RELO_BR_GO_CALL_PUSH_REGS);
3313                 offset_br = nfp_prog_current_offset(nfp_prog);
3314                 wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL);
3315         } else {
3316                 ret_tgt = nfp_prog_current_offset(nfp_prog) + 2;
3317                 emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1);
3318                 offset_br = nfp_prog_current_offset(nfp_prog);
3319         }
3320         wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL);
3321 
3322         if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt))
3323                 return -EINVAL;
3324 
3325         if (stack_depth) {
3326                 tmp_reg = ur_load_imm_any(nfp_prog, stack_depth,
3327                                           stack_imm(nfp_prog));
3328                 emit_alu(nfp_prog, stack_reg(nfp_prog),
3329                          stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg);
3330                 emit_csr_wr(nfp_prog, stack_reg(nfp_prog),
3331                             NFP_CSR_ACT_LM_ADDR0);
3332                 wrp_nops(nfp_prog, 3);
3333         }
3334 
3335         meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog);
3336         meta->num_insns_after_br -= offset_br;
3337 
3338         return 0;
3339 }
3340 
3341 static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3342 {
3343         switch (meta->insn.imm) {
3344         case BPF_FUNC_xdp_adjust_head:
3345                 return adjust_head(nfp_prog, meta);
3346         case BPF_FUNC_xdp_adjust_tail:
3347                 return adjust_tail(nfp_prog, meta);
3348         case BPF_FUNC_map_lookup_elem:
3349         case BPF_FUNC_map_update_elem:
3350         case BPF_FUNC_map_delete_elem:
3351                 return map_call_stack_common(nfp_prog, meta);
3352         case BPF_FUNC_get_prandom_u32:
3353                 return nfp_get_prandom_u32(nfp_prog, meta);
3354         case BPF_FUNC_perf_event_output:
3355                 return nfp_perf_event_output(nfp_prog, meta);
3356         default:
3357                 WARN_ONCE(1, "verifier allowed unsupported function\n");
3358                 return -EOPNOTSUPP;
3359         }
3360 }
3361 
3362 static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3363 {
3364         if (is_mbpf_pseudo_call(meta))
3365                 return bpf_to_bpf_call(nfp_prog, meta);
3366         else
3367                 return helper_call(nfp_prog, meta);
3368 }
3369 
3370 static bool nfp_is_main_function(struct nfp_insn_meta *meta)
3371 {
3372         return meta->subprog_idx == 0;
3373 }
3374 
3375 static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3376 {
3377         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT);
3378 
3379         return 0;
3380 }
3381 
3382 static int
3383 nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3384 {
3385         if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) {
3386                 /* Pop R6~R9 to the stack via related subroutine.
3387                  * We loaded the return address to the caller into ret_reg().
3388                  * This means that the subroutine does not come back here, we
3389                  * make it jump back to the subprogram caller directly!
3390                  */
3391                 emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1,
3392                              RELO_BR_GO_CALL_POP_REGS);
3393                 /* Pop return address from the stack. */
3394                 wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3395         } else {
3396                 /* Pop return address from the stack. */
3397                 wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0));
3398                 /* Jump back to caller if no callee-saved registers were used
3399                  * by the subprogram.
3400                  */
3401                 emit_rtn(nfp_prog, ret_reg(nfp_prog), 0);
3402         }
3403 
3404         return 0;
3405 }
3406 
3407 static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3408 {
3409         if (nfp_is_main_function(meta))
3410                 return goto_out(nfp_prog, meta);
3411         else
3412                 return nfp_subprog_epilogue(nfp_prog, meta);
3413 }
3414 
3415 static const instr_cb_t instr_cb[256] = {
3416         [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64,
3417         [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64,
3418         [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64,
3419         [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64,
3420         [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64,
3421         [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64,
3422         [BPF_ALU64 | BPF_OR | BPF_X] =  or_reg64,
3423         [BPF_ALU64 | BPF_OR | BPF_K] =  or_imm64,
3424         [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64,
3425         [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64,
3426         [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64,
3427         [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64,
3428         [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64,
3429         [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64,
3430         [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64,
3431         [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64,
3432         [BPF_ALU64 | BPF_NEG] =         neg_reg64,
3433         [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64,
3434         [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64,
3435         [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64,
3436         [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64,
3437         [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64,
3438         [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64,
3439         [BPF_ALU | BPF_MOV | BPF_X] =   mov_reg,
3440         [BPF_ALU | BPF_MOV | BPF_K] =   mov_imm,
3441         [BPF_ALU | BPF_XOR | BPF_X] =   xor_reg,
3442         [BPF_ALU | BPF_XOR | BPF_K] =   xor_imm,
3443         [BPF_ALU | BPF_AND | BPF_X] =   and_reg,
3444         [BPF_ALU | BPF_AND | BPF_K] =   and_imm,
3445         [BPF_ALU | BPF_OR | BPF_X] =    or_reg,
3446         [BPF_ALU | BPF_OR | BPF_K] =    or_imm,
3447         [BPF_ALU | BPF_ADD | BPF_X] =   add_reg,
3448         [BPF_ALU | BPF_ADD | BPF_K] =   add_imm,
3449         [BPF_ALU | BPF_SUB | BPF_X] =   sub_reg,
3450         [BPF_ALU | BPF_SUB | BPF_K] =   sub_imm,
3451         [BPF_ALU | BPF_MUL | BPF_X] =   mul_reg,
3452         [BPF_ALU | BPF_MUL | BPF_K] =   mul_imm,
3453         [BPF_ALU | BPF_DIV | BPF_X] =   div_reg,
3454         [BPF_ALU | BPF_DIV | BPF_K] =   div_imm,
3455         [BPF_ALU | BPF_NEG] =           neg_reg,
3456         [BPF_ALU | BPF_LSH | BPF_X] =   shl_reg,
3457         [BPF_ALU | BPF_LSH | BPF_K] =   shl_imm,
3458         [BPF_ALU | BPF_RSH | BPF_X] =   shr_reg,
3459         [BPF_ALU | BPF_RSH | BPF_K] =   shr_imm,
3460         [BPF_ALU | BPF_ARSH | BPF_X] =  ashr_reg,
3461         [BPF_ALU | BPF_ARSH | BPF_K] =  ashr_imm,
3462         [BPF_ALU | BPF_END | BPF_X] =   end_reg32,
3463         [BPF_LD | BPF_IMM | BPF_DW] =   imm_ld8,
3464         [BPF_LD | BPF_ABS | BPF_B] =    data_ld1,
3465         [BPF_LD | BPF_ABS | BPF_H] =    data_ld2,
3466         [BPF_LD | BPF_ABS | BPF_W] =    data_ld4,
3467         [BPF_LD | BPF_IND | BPF_B] =    data_ind_ld1,
3468         [BPF_LD | BPF_IND | BPF_H] =    data_ind_ld2,
3469         [BPF_LD | BPF_IND | BPF_W] =    data_ind_ld4,
3470         [BPF_LDX | BPF_MEM | BPF_B] =   mem_ldx1,
3471         [BPF_LDX | BPF_MEM | BPF_H] =   mem_ldx2,
3472         [BPF_LDX | BPF_MEM | BPF_W] =   mem_ldx4,
3473         [BPF_LDX | BPF_MEM | BPF_DW] =  mem_ldx8,
3474         [BPF_STX | BPF_MEM | BPF_B] =   mem_stx1,
3475         [BPF_STX | BPF_MEM | BPF_H] =   mem_stx2,
3476         [BPF_STX | BPF_MEM | BPF_W] =   mem_stx4,
3477         [BPF_STX | BPF_MEM | BPF_DW] =  mem_stx8,
3478         [BPF_STX | BPF_XADD | BPF_W] =  mem_xadd4,
3479         [BPF_STX | BPF_XADD | BPF_DW] = mem_xadd8,
3480         [BPF_ST | BPF_MEM | BPF_B] =    mem_st1,
3481         [BPF_ST | BPF_MEM | BPF_H] =    mem_st2,
3482         [BPF_ST | BPF_MEM | BPF_W] =    mem_st4,
3483         [BPF_ST | BPF_MEM | BPF_DW] =   mem_st8,
3484         [BPF_JMP | BPF_JA | BPF_K] =    jump,
3485         [BPF_JMP | BPF_JEQ | BPF_K] =   jeq_imm,
3486         [BPF_JMP | BPF_JGT | BPF_K] =   cmp_imm,
3487         [BPF_JMP | BPF_JGE | BPF_K] =   cmp_imm,
3488         [BPF_JMP | BPF_JLT | BPF_K] =   cmp_imm,
3489         [BPF_JMP | BPF_JLE | BPF_K] =   cmp_imm,
3490         [BPF_JMP | BPF_JSGT | BPF_K] =  cmp_imm,
3491         [BPF_JMP | BPF_JSGE | BPF_K] =  cmp_imm,
3492         [BPF_JMP | BPF_JSLT | BPF_K] =  cmp_imm,
3493         [BPF_JMP | BPF_JSLE | BPF_K] =  cmp_imm,
3494         [BPF_JMP | BPF_JSET | BPF_K] =  jset_imm,
3495         [BPF_JMP | BPF_JNE | BPF_K] =   jne_imm,
3496         [BPF_JMP | BPF_JEQ | BPF_X] =   jeq_reg,
3497         [BPF_JMP | BPF_JGT | BPF_X] =   cmp_reg,
3498         [BPF_JMP | BPF_JGE | BPF_X] =   cmp_reg,
3499         [BPF_JMP | BPF_JLT | BPF_X] =   cmp_reg,
3500         [BPF_JMP | BPF_JLE | BPF_X] =   cmp_reg,
3501         [BPF_JMP | BPF_JSGT | BPF_X] =  cmp_reg,
3502         [BPF_JMP | BPF_JSGE | BPF_X] =  cmp_reg,
3503         [BPF_JMP | BPF_JSLT | BPF_X] =  cmp_reg,
3504         [BPF_JMP | BPF_JSLE | BPF_X] =  cmp_reg,
3505         [BPF_JMP | BPF_JSET | BPF_X] =  jset_reg,
3506         [BPF_JMP | BPF_JNE | BPF_X] =   jne_reg,
3507         [BPF_JMP32 | BPF_JEQ | BPF_K] = jeq32_imm,
3508         [BPF_JMP32 | BPF_JGT | BPF_K] = cmp_imm,
3509         [BPF_JMP32 | BPF_JGE | BPF_K] = cmp_imm,
3510         [BPF_JMP32 | BPF_JLT | BPF_K] = cmp_imm,
3511         [BPF_JMP32 | BPF_JLE | BPF_K] = cmp_imm,
3512         [BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm,
3513         [BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm,
3514         [BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm,
3515         [BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm,
3516         [BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm,
3517         [BPF_JMP32 | BPF_JNE | BPF_K] = jne_imm,
3518         [BPF_JMP32 | BPF_JEQ | BPF_X] = jeq_reg,
3519         [BPF_JMP32 | BPF_JGT | BPF_X] = cmp_reg,
3520         [BPF_JMP32 | BPF_JGE | BPF_X] = cmp_reg,
3521         [BPF_JMP32 | BPF_JLT | BPF_X] = cmp_reg,
3522         [BPF_JMP32 | BPF_JLE | BPF_X] = cmp_reg,
3523         [BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg,
3524         [BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg,
3525         [BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg,
3526         [BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg,
3527         [BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg,
3528         [BPF_JMP32 | BPF_JNE | BPF_X] = jne_reg,
3529         [BPF_JMP | BPF_CALL] =          call,
3530         [BPF_JMP | BPF_EXIT] =          jmp_exit,
3531 };
3532 
3533 /* --- Assembler logic --- */
3534 static int
3535 nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta,
3536                      struct nfp_insn_meta *jmp_dst, u32 br_idx)
3537 {
3538         if (immed_get_value(nfp_prog->prog[br_idx + 1])) {
3539                 pr_err("BUG: failed to fix up callee register saving\n");
3540                 return -EINVAL;
3541         }
3542 
3543         immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off);
3544 
3545         return 0;
3546 }
3547 
3548 static int nfp_fixup_branches(struct nfp_prog *nfp_prog)
3549 {
3550         struct nfp_insn_meta *meta, *jmp_dst;
3551         u32 idx, br_idx;
3552         int err;
3553 
3554         list_for_each_entry(meta, &nfp_prog->insns, l) {
3555                 if (meta->flags & FLAG_INSN_SKIP_MASK)
3556                         continue;
3557                 if (!is_mbpf_jmp(meta))
3558                         continue;
3559                 if (meta->insn.code == (BPF_JMP | BPF_EXIT) &&
3560                     !nfp_is_main_function(meta))
3561                         continue;
3562                 if (is_mbpf_helper_call(meta))
3563                         continue;
3564 
3565                 if (list_is_last(&meta->l, &nfp_prog->insns))
3566                         br_idx = nfp_prog->last_bpf_off;
3567                 else
3568                         br_idx = list_next_entry(meta, l)->off - 1;
3569 
3570                 /* For BPF-to-BPF function call, a stack adjustment sequence is
3571                  * generated after the return instruction. Therefore, we must
3572                  * withdraw the length of this sequence to have br_idx pointing
3573                  * to where the "branch" NFP instruction is expected to be.
3574                  */
3575                 if (is_mbpf_pseudo_call(meta))
3576                         br_idx -= meta->num_insns_after_br;
3577 
3578                 if (!nfp_is_br(nfp_prog->prog[br_idx])) {
3579                         pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3580                                br_idx, meta->insn.code, nfp_prog->prog[br_idx]);
3581                         return -ELOOP;
3582                 }
3583 
3584                 if (meta->insn.code == (BPF_JMP | BPF_EXIT))
3585                         continue;
3586 
3587                 /* Leave special branches for later */
3588                 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3589                     RELO_BR_REL && !is_mbpf_pseudo_call(meta))
3590                         continue;
3591 
3592                 if (!meta->jmp_dst) {
3593                         pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3594                         return -ELOOP;
3595                 }
3596 
3597                 jmp_dst = meta->jmp_dst;
3598 
3599                 if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) {
3600                         pr_err("Branch landing on removed instruction!!\n");
3601                         return -ELOOP;
3602                 }
3603 
3604                 if (is_mbpf_pseudo_call(meta) &&
3605                     nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) {
3606                         err = nfp_fixup_immed_relo(nfp_prog, meta,
3607                                                    jmp_dst, br_idx);
3608                         if (err)
3609                                 return err;
3610                 }
3611 
3612                 if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) !=
3613                     RELO_BR_REL)
3614                         continue;
3615 
3616                 for (idx = meta->off; idx <= br_idx; idx++) {
3617                         if (!nfp_is_br(nfp_prog->prog[idx]))
3618                                 continue;
3619                         br_set_offset(&nfp_prog->prog[idx], jmp_dst->off);
3620                 }
3621         }
3622 
3623         return 0;
3624 }
3625 
3626 static void nfp_intro(struct nfp_prog *nfp_prog)
3627 {
3628         wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0));
3629         emit_alu(nfp_prog, plen_reg(nfp_prog),
3630                  plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog));
3631 }
3632 
3633 static void
3634 nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3635 {
3636         /* Save return address into the stack. */
3637         wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog));
3638 }
3639 
3640 static void
3641 nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta)
3642 {
3643         unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth;
3644 
3645         nfp_prog->stack_frame_depth = round_up(depth, 4);
3646         nfp_subprog_prologue(nfp_prog, meta);
3647 }
3648 
3649 bool nfp_is_subprog_start(struct nfp_insn_meta *meta)
3650 {
3651         return meta->flags & FLAG_INSN_IS_SUBPROG_START;
3652 }
3653 
3654 static void nfp_outro_tc_da(struct nfp_prog *nfp_prog)
3655 {
3656         /* TC direct-action mode:
3657          *   0,1   ok        NOT SUPPORTED[1]
3658          *   2   drop  0x22 -> drop,  count as stat1
3659          *   4,5 nuke  0x02 -> drop
3660          *   7  redir  0x44 -> redir, count as stat2
3661          *   * unspec  0x11 -> pass,  count as stat0
3662          *
3663          * [1] We can't support OK and RECLASSIFY because we can't tell TC
3664          *     the exact decision made.  We are forced to support UNSPEC
3665          *     to handle aborts so that's the only one we handle for passing
3666          *     packets up the stack.
3667          */
3668         /* Target for aborts */
3669         nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3670 
3671         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3672 
3673         wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3674         emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16);
3675 
3676         /* Target for normal exits */
3677         nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3678 
3679         /* if R0 > 7 jump to abort */
3680         emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0));
3681         emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3682         wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3683 
3684         wrp_immed(nfp_prog, reg_b(2), 0x41221211);
3685         wrp_immed(nfp_prog, reg_b(3), 0x41001211);
3686 
3687         emit_shf(nfp_prog, reg_a(1),
3688                  reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2);
3689 
3690         emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3691         emit_shf(nfp_prog, reg_a(2),
3692                  reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3693 
3694         emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3695         emit_shf(nfp_prog, reg_b(2),
3696                  reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0);
3697 
3698         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3699 
3700         emit_shf(nfp_prog, reg_b(2),
3701                  reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4);
3702         emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3703 }
3704 
3705 static void nfp_outro_xdp(struct nfp_prog *nfp_prog)
3706 {
3707         /* XDP return codes:
3708          *   0 aborted  0x82 -> drop,  count as stat3
3709          *   1    drop  0x22 -> drop,  count as stat1
3710          *   2    pass  0x11 -> pass,  count as stat0
3711          *   3      tx  0x44 -> redir, count as stat2
3712          *   * unknown  0x82 -> drop,  count as stat3
3713          */
3714         /* Target for aborts */
3715         nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog);
3716 
3717         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3718 
3719         wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3720         emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16);
3721 
3722         /* Target for normal exits */
3723         nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog);
3724 
3725         /* if R0 > 3 jump to abort */
3726         emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0));
3727         emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0);
3728 
3729         wrp_immed(nfp_prog, reg_b(2), 0x44112282);
3730 
3731         emit_shf(nfp_prog, reg_a(1),
3732                  reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3);
3733 
3734         emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0));
3735         emit_shf(nfp_prog, reg_b(2),
3736                  reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0);
3737 
3738         emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT);
3739 
3740         wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS);
3741         emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16);
3742 }
3743 
3744 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog)
3745 {
3746         unsigned int idx;
3747 
3748         for (idx = 1; idx < nfp_prog->subprog_cnt; idx++)
3749                 if (nfp_prog->subprog[idx].needs_reg_push)
3750                         return true;
3751 
3752         return false;
3753 }
3754 
3755 static void nfp_push_callee_registers(struct nfp_prog *nfp_prog)
3756 {
3757         u8 reg;
3758 
3759         /* Subroutine: Save all callee saved registers (R6 ~ R9).
3760          * imm_b() holds the return address.
3761          */
3762         nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog);
3763         for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3764                 u8 adj = (reg - BPF_REG_0) * 2;
3765                 u8 idx = (reg - BPF_REG_6) * 2;
3766 
3767                 /* The first slot in the stack frame is used to push the return
3768                  * address in bpf_to_bpf_call(), start just after.
3769                  */
3770                 wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj));
3771 
3772                 if (reg == BPF_REG_8)
3773                         /* Prepare to jump back, last 3 insns use defer slots */
3774                         emit_rtn(nfp_prog, imm_b(nfp_prog), 3);
3775 
3776                 wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1));
3777         }
3778 }
3779 
3780 static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog)
3781 {
3782         u8 reg;
3783 
3784         /* Subroutine: Restore all callee saved registers (R6 ~ R9).
3785          * ret_reg() holds the return address.
3786          */
3787         nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog);
3788         for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) {
3789                 u8 adj = (reg - BPF_REG_0) * 2;
3790                 u8 idx = (reg - BPF_REG_6) * 2;
3791 
3792                 /* The first slot in the stack frame holds the return address,
3793                  * start popping just after that.
3794                  */
3795                 wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx));
3796 
3797                 if (reg == BPF_REG_8)
3798                         /* Prepare to jump back, last 3 insns use defer slots */
3799                         emit_rtn(nfp_prog, ret_reg(nfp_prog), 3);
3800 
3801                 wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1));
3802         }
3803 }
3804 
3805 static void nfp_outro(struct nfp_prog *nfp_prog)
3806 {
3807         switch (nfp_prog->type) {
3808         case BPF_PROG_TYPE_SCHED_CLS:
3809                 nfp_outro_tc_da(nfp_prog);
3810                 break;
3811         case BPF_PROG_TYPE_XDP:
3812                 nfp_outro_xdp(nfp_prog);
3813                 break;
3814         default:
3815                 WARN_ON(1);
3816         }
3817 
3818         if (!nfp_prog_needs_callee_reg_save(nfp_prog))
3819                 return;
3820 
3821         nfp_push_callee_registers(nfp_prog);
3822         nfp_pop_callee_registers(nfp_prog);
3823 }
3824 
3825 static int nfp_translate(struct nfp_prog *nfp_prog)
3826 {
3827         struct nfp_insn_meta *meta;
3828         unsigned int depth;
3829         int err;
3830 
3831         depth = nfp_prog->subprog[0].stack_depth;
3832         nfp_prog->stack_frame_depth = round_up(depth, 4);
3833 
3834         nfp_intro(nfp_prog);
3835         if (nfp_prog->error)
3836                 return nfp_prog->error;
3837 
3838         list_for_each_entry(meta, &nfp_prog->insns, l) {
3839                 instr_cb_t cb = instr_cb[meta->insn.code];
3840 
3841                 meta->off = nfp_prog_current_offset(nfp_prog);
3842 
3843                 if (nfp_is_subprog_start(meta)) {
3844                         nfp_start_subprog(nfp_prog, meta);
3845                         if (nfp_prog->error)
3846                                 return nfp_prog->error;
3847                 }
3848 
3849                 if (meta->flags & FLAG_INSN_SKIP_MASK) {
3850                         nfp_prog->n_translated++;
3851                         continue;
3852                 }
3853 
3854                 if (nfp_meta_has_prev(nfp_prog, meta) &&
3855                     nfp_meta_prev(meta)->double_cb)
3856                         cb = nfp_meta_prev(meta)->double_cb;
3857                 if (!cb)
3858                         return -ENOENT;
3859                 err = cb(nfp_prog, meta);
3860                 if (err)
3861                         return err;
3862                 if (nfp_prog->error)
3863                         return nfp_prog->error;
3864 
3865                 nfp_prog->n_translated++;
3866         }
3867 
3868         nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1;
3869 
3870         nfp_outro(nfp_prog);
3871         if (nfp_prog->error)
3872                 return nfp_prog->error;
3873 
3874         wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW);
3875         if (nfp_prog->error)
3876                 return nfp_prog->error;
3877 
3878         return nfp_fixup_branches(nfp_prog);
3879 }
3880 
3881 /* --- Optimizations --- */
3882 static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog)
3883 {
3884         struct nfp_insn_meta *meta;
3885 
3886         list_for_each_entry(meta, &nfp_prog->insns, l) {
3887                 struct bpf_insn insn = meta->insn;
3888 
3889                 /* Programs converted from cBPF start with register xoring */
3890                 if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) &&
3891                     insn.src_reg == insn.dst_reg)
3892                         continue;
3893 
3894                 /* Programs start with R6 = R1 but we ignore the skb pointer */
3895                 if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
3896                     insn.src_reg == 1 && insn.dst_reg == 6)
3897                         meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3898 
3899                 /* Return as soon as something doesn't match */
3900                 if (!(meta->flags & FLAG_INSN_SKIP_MASK))
3901                         return;
3902         }
3903 }
3904 
3905 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3906  * convert add/sub of a negative number into a sub/add of a positive one.
3907  */
3908 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog)
3909 {
3910         struct nfp_insn_meta *meta;
3911 
3912         list_for_each_entry(meta, &nfp_prog->insns, l) {
3913                 struct bpf_insn insn = meta->insn;
3914 
3915                 if (meta->flags & FLAG_INSN_SKIP_MASK)
3916                         continue;
3917 
3918                 if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta))
3919                         continue;
3920                 if (BPF_SRC(insn.code) != BPF_K)
3921                         continue;
3922                 if (insn.imm >= 0)
3923                         continue;
3924 
3925                 if (is_mbpf_jmp(meta)) {
3926                         switch (BPF_OP(insn.code)) {
3927                         case BPF_JGE:
3928                         case BPF_JSGE:
3929                         case BPF_JLT:
3930                         case BPF_JSLT:
3931                                 meta->jump_neg_op = true;
3932                                 break;
3933                         default:
3934                                 continue;
3935                         }
3936                 } else {
3937                         if (BPF_OP(insn.code) == BPF_ADD)
3938                                 insn.code = BPF_CLASS(insn.code) | BPF_SUB;
3939                         else if (BPF_OP(insn.code) == BPF_SUB)
3940                                 insn.code = BPF_CLASS(insn.code) | BPF_ADD;
3941                         else
3942                                 continue;
3943 
3944                         meta->insn.code = insn.code | BPF_K;
3945                 }
3946 
3947                 meta->insn.imm = -insn.imm;
3948         }
3949 }
3950 
3951 /* Remove masking after load since our load guarantees this is not needed */
3952 static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog)
3953 {
3954         struct nfp_insn_meta *meta1, *meta2;
3955         const s32 exp_mask[] = {
3956                 [BPF_B] = 0x000000ffU,
3957                 [BPF_H] = 0x0000ffffU,
3958                 [BPF_W] = 0xffffffffU,
3959         };
3960 
3961         nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
3962                 struct bpf_insn insn, next;
3963 
3964                 insn = meta1->insn;
3965                 next = meta2->insn;
3966 
3967                 if (BPF_CLASS(insn.code) != BPF_LD)
3968                         continue;
3969                 if (BPF_MODE(insn.code) != BPF_ABS &&
3970                     BPF_MODE(insn.code) != BPF_IND)
3971                         continue;
3972 
3973                 if (next.code != (BPF_ALU64 | BPF_AND | BPF_K))
3974                         continue;
3975 
3976                 if (!exp_mask[BPF_SIZE(insn.code)])
3977                         continue;
3978                 if (exp_mask[BPF_SIZE(insn.code)] != next.imm)
3979                         continue;
3980 
3981                 if (next.src_reg || next.dst_reg)
3982                         continue;
3983 
3984                 if (meta2->flags & FLAG_INSN_IS_JUMP_DST)
3985                         continue;
3986 
3987                 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
3988         }
3989 }
3990 
3991 static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog)
3992 {
3993         struct nfp_insn_meta *meta1, *meta2, *meta3;
3994 
3995         nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) {
3996                 struct bpf_insn insn, next1, next2;
3997 
3998                 insn = meta1->insn;
3999                 next1 = meta2->insn;
4000                 next2 = meta3->insn;
4001 
4002                 if (BPF_CLASS(insn.code) != BPF_LD)
4003                         continue;
4004                 if (BPF_MODE(insn.code) != BPF_ABS &&
4005                     BPF_MODE(insn.code) != BPF_IND)
4006                         continue;
4007                 if (BPF_SIZE(insn.code) != BPF_W)
4008                         continue;
4009 
4010                 if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) &&
4011                       next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) &&
4012                     !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) &&
4013                       next2.code == (BPF_LSH | BPF_K | BPF_ALU64)))
4014                         continue;
4015 
4016                 if (next1.src_reg || next1.dst_reg ||
4017                     next2.src_reg || next2.dst_reg)
4018                         continue;
4019 
4020                 if (next1.imm != 0x20 || next2.imm != 0x20)
4021                         continue;
4022 
4023                 if (meta2->flags & FLAG_INSN_IS_JUMP_DST ||
4024                     meta3->flags & FLAG_INSN_IS_JUMP_DST)
4025                         continue;
4026 
4027                 meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4028                 meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4029         }
4030 }
4031 
4032 /* load/store pair that forms memory copy sould look like the following:
4033  *
4034  *   ld_width R, [addr_src + offset_src]
4035  *   st_width [addr_dest + offset_dest], R
4036  *
4037  * The destination register of load and source register of store should
4038  * be the same, load and store should also perform at the same width.
4039  * If either of addr_src or addr_dest is stack pointer, we don't do the
4040  * CPP optimization as stack is modelled by registers on NFP.
4041  */
4042 static bool
4043 curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta,
4044                     struct nfp_insn_meta *st_meta)
4045 {
4046         struct bpf_insn *ld = &ld_meta->insn;
4047         struct bpf_insn *st = &st_meta->insn;
4048 
4049         if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta))
4050                 return false;
4051 
4052         if (ld_meta->ptr.type != PTR_TO_PACKET &&
4053             ld_meta->ptr.type != PTR_TO_MAP_VALUE)
4054                 return false;
4055 
4056         if (st_meta->ptr.type != PTR_TO_PACKET)
4057                 return false;
4058 
4059         if (BPF_SIZE(ld->code) != BPF_SIZE(st->code))
4060                 return false;
4061 
4062         if (ld->dst_reg != st->src_reg)
4063                 return false;
4064 
4065         /* There is jump to the store insn in this pair. */
4066         if (st_meta->flags & FLAG_INSN_IS_JUMP_DST)
4067                 return false;
4068 
4069         return true;
4070 }
4071 
4072 /* Currently, we only support chaining load/store pairs if:
4073  *
4074  *  - Their address base registers are the same.
4075  *  - Their address offsets are in the same order.
4076  *  - They operate at the same memory width.
4077  *  - There is no jump into the middle of them.
4078  */
4079 static bool
4080 curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta,
4081                               struct nfp_insn_meta *st_meta,
4082                               struct bpf_insn *prev_ld,
4083                               struct bpf_insn *prev_st)
4084 {
4085         u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst;
4086         struct bpf_insn *ld = &ld_meta->insn;
4087         struct bpf_insn *st = &st_meta->insn;
4088         s16 prev_ld_off, prev_st_off;
4089 
4090         /* This pair is the start pair. */
4091         if (!prev_ld)
4092                 return true;
4093 
4094         prev_size = BPF_LDST_BYTES(prev_ld);
4095         curr_size = BPF_LDST_BYTES(ld);
4096         prev_ld_base = prev_ld->src_reg;
4097         prev_st_base = prev_st->dst_reg;
4098         prev_ld_dst = prev_ld->dst_reg;
4099         prev_ld_off = prev_ld->off;
4100         prev_st_off = prev_st->off;
4101 
4102         if (ld->dst_reg != prev_ld_dst)
4103                 return false;
4104 
4105         if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base)
4106                 return false;
4107 
4108         if (curr_size != prev_size)
4109                 return false;
4110 
4111         /* There is jump to the head of this pair. */
4112         if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST)
4113                 return false;
4114 
4115         /* Both in ascending order. */
4116         if (prev_ld_off + prev_size == ld->off &&
4117             prev_st_off + prev_size == st->off)
4118                 return true;
4119 
4120         /* Both in descending order. */
4121         if (ld->off + curr_size == prev_ld_off &&
4122             st->off + curr_size == prev_st_off)
4123                 return true;
4124 
4125         return false;
4126 }
4127 
4128 /* Return TRUE if cross memory access happens. Cross memory access means
4129  * store area is overlapping with load area that a later load might load
4130  * the value from previous store, for this case we can't treat the sequence
4131  * as an memory copy.
4132  */
4133 static bool
4134 cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta,
4135                  struct nfp_insn_meta *head_st_meta)
4136 {
4137         s16 head_ld_off, head_st_off, ld_off;
4138 
4139         /* Different pointer types does not overlap. */
4140         if (head_ld_meta->ptr.type != head_st_meta->ptr.type)
4141                 return false;
4142 
4143         /* load and store are both PTR_TO_PACKET, check ID info.  */
4144         if (head_ld_meta->ptr.id != head_st_meta->ptr.id)
4145                 return true;
4146 
4147         /* Canonicalize the offsets. Turn all of them against the original
4148          * base register.
4149          */
4150         head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off;
4151         head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off;
4152         ld_off = ld->off + head_ld_meta->ptr.off;
4153 
4154         /* Ascending order cross. */
4155         if (ld_off > head_ld_off &&
4156             head_ld_off < head_st_off && ld_off >= head_st_off)
4157                 return true;
4158 
4159         /* Descending order cross. */
4160         if (ld_off < head_ld_off &&
4161             head_ld_off > head_st_off && ld_off <= head_st_off)
4162                 return true;
4163 
4164         return false;
4165 }
4166 
4167 /* This pass try to identify the following instructoin sequences.
4168  *
4169  *   load R, [regA + offA]
4170  *   store [regB + offB], R
4171  *   load R, [regA + offA + const_imm_A]
4172  *   store [regB + offB + const_imm_A], R
4173  *   load R, [regA + offA + 2 * const_imm_A]
4174  *   store [regB + offB + 2 * const_imm_A], R
4175  *   ...
4176  *
4177  * Above sequence is typically generated by compiler when lowering
4178  * memcpy. NFP prefer using CPP instructions to accelerate it.
4179  */
4180 static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog)
4181 {
4182         struct nfp_insn_meta *head_ld_meta = NULL;
4183         struct nfp_insn_meta *head_st_meta = NULL;
4184         struct nfp_insn_meta *meta1, *meta2;
4185         struct bpf_insn *prev_ld = NULL;
4186         struct bpf_insn *prev_st = NULL;
4187         u8 count = 0;
4188 
4189         nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4190                 struct bpf_insn *ld = &meta1->insn;
4191                 struct bpf_insn *st = &meta2->insn;
4192 
4193                 /* Reset record status if any of the following if true:
4194                  *   - The current insn pair is not load/store.
4195                  *   - The load/store pair doesn't chain with previous one.
4196                  *   - The chained load/store pair crossed with previous pair.
4197                  *   - The chained load/store pair has a total size of memory
4198                  *     copy beyond 128 bytes which is the maximum length a
4199                  *     single NFP CPP command can transfer.
4200                  */
4201                 if (!curr_pair_is_memcpy(meta1, meta2) ||
4202                     !curr_pair_chain_with_previous(meta1, meta2, prev_ld,
4203                                                    prev_st) ||
4204                     (head_ld_meta && (cross_mem_access(ld, head_ld_meta,
4205                                                        head_st_meta) ||
4206                                       head_ld_meta->ldst_gather_len >= 128))) {
4207                         if (!count)
4208                                 continue;
4209 
4210                         if (count > 1) {
4211                                 s16 prev_ld_off = prev_ld->off;
4212                                 s16 prev_st_off = prev_st->off;
4213                                 s16 head_ld_off = head_ld_meta->insn.off;
4214 
4215                                 if (prev_ld_off < head_ld_off) {
4216                                         head_ld_meta->insn.off = prev_ld_off;
4217                                         head_st_meta->insn.off = prev_st_off;
4218                                         head_ld_meta->ldst_gather_len =
4219                                                 -head_ld_meta->ldst_gather_len;
4220                                 }
4221 
4222                                 head_ld_meta->paired_st = &head_st_meta->insn;
4223                                 head_st_meta->flags |=
4224                                         FLAG_INSN_SKIP_PREC_DEPENDENT;
4225                         } else {
4226                                 head_ld_meta->ldst_gather_len = 0;
4227                         }
4228 
4229                         /* If the chain is ended by an load/store pair then this
4230                          * could serve as the new head of the the next chain.
4231                          */
4232                         if (curr_pair_is_memcpy(meta1, meta2)) {
4233                                 head_ld_meta = meta1;
4234                                 head_st_meta = meta2;
4235                                 head_ld_meta->ldst_gather_len =
4236                                         BPF_LDST_BYTES(ld);
4237                                 meta1 = nfp_meta_next(meta1);
4238                                 meta2 = nfp_meta_next(meta2);
4239                                 prev_ld = ld;
4240                                 prev_st = st;
4241                                 count = 1;
4242                         } else {
4243                                 head_ld_meta = NULL;
4244                                 head_st_meta = NULL;
4245                                 prev_ld = NULL;
4246                                 prev_st = NULL;
4247                                 count = 0;
4248                         }
4249 
4250                         continue;
4251                 }
4252 
4253                 if (!head_ld_meta) {
4254                         head_ld_meta = meta1;
4255                         head_st_meta = meta2;
4256                 } else {
4257                         meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4258                         meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT;
4259                 }
4260 
4261                 head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld);
4262                 meta1 = nfp_meta_next(meta1);
4263                 meta2 = nfp_meta_next(meta2);
4264                 prev_ld = ld;
4265                 prev_st = st;
4266                 count++;
4267         }
4268 }
4269 
4270 static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog)
4271 {
4272         struct nfp_insn_meta *meta, *range_node = NULL;
4273         s16 range_start = 0, range_end = 0;
4274         bool cache_avail = false;
4275         struct bpf_insn *insn;
4276         s32 range_ptr_off = 0;
4277         u32 range_ptr_id = 0;
4278 
4279         list_for_each_entry(meta, &nfp_prog->insns, l) {
4280                 if (meta->flags & FLAG_INSN_IS_JUMP_DST)
4281                         cache_avail = false;
4282 
4283                 if (meta->flags & FLAG_INSN_SKIP_MASK)
4284                         continue;
4285 
4286                 insn = &meta->insn;
4287 
4288                 if (is_mbpf_store_pkt(meta) ||
4289                     insn->code == (BPF_JMP | BPF_CALL) ||
4290                     is_mbpf_classic_store_pkt(meta) ||
4291                     is_mbpf_classic_load(meta)) {
4292                         cache_avail = false;
4293                         continue;
4294                 }
4295 
4296                 if (!is_mbpf_load(meta))
4297                         continue;
4298 
4299                 if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) {
4300                         cache_avail = false;
4301                         continue;
4302                 }
4303 
4304                 if (!cache_avail) {
4305                         cache_avail = true;
4306                         if (range_node)
4307                                 goto end_current_then_start_new;
4308                         goto start_new;
4309                 }
4310 
4311                 /* Check ID to make sure two reads share the same
4312                  * variable offset against PTR_TO_PACKET, and check OFF
4313                  * to make sure they also share the same constant
4314                  * offset.
4315                  *
4316                  * OFFs don't really need to be the same, because they
4317                  * are the constant offsets against PTR_TO_PACKET, so
4318                  * for different OFFs, we could canonicalize them to
4319                  * offsets against original packet pointer. We don't
4320                  * support this.
4321                  */
4322                 if (meta->ptr.id == range_ptr_id &&
4323                     meta->ptr.off == range_ptr_off) {
4324                         s16 new_start = range_start;
4325                         s16 end, off = insn->off;
4326                         s16 new_end = range_end;
4327                         bool changed = false;
4328 
4329                         if (off < range_start) {
4330                                 new_start = off;
4331                                 changed = true;
4332                         }
4333 
4334                         end = off + BPF_LDST_BYTES(insn);
4335                         if (end > range_end) {
4336                                 new_end = end;
4337                                 changed = true;
4338                         }
4339 
4340                         if (!changed)
4341                                 continue;
4342 
4343                         if (new_end - new_start <= 64) {
4344                                 /* Install new range. */
4345                                 range_start = new_start;
4346                                 range_end = new_end;
4347                                 continue;
4348                         }
4349                 }
4350 
4351 end_current_then_start_new:
4352                 range_node->pkt_cache.range_start = range_start;
4353                 range_node->pkt_cache.range_end = range_end;
4354 start_new:
4355                 range_node = meta;
4356                 range_node->pkt_cache.do_init = true;
4357                 range_ptr_id = range_node->ptr.id;
4358                 range_ptr_off = range_node->ptr.off;
4359                 range_start = insn->off;
4360                 range_end = insn->off + BPF_LDST_BYTES(insn);
4361         }
4362 
4363         if (range_node) {
4364                 range_node->pkt_cache.range_start = range_start;
4365                 range_node->pkt_cache.range_end = range_end;
4366         }
4367 
4368         list_for_each_entry(meta, &nfp_prog->insns, l) {
4369                 if (meta->flags & FLAG_INSN_SKIP_MASK)
4370                         continue;
4371 
4372                 if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) {
4373                         if (meta->pkt_cache.do_init) {
4374                                 range_start = meta->pkt_cache.range_start;
4375                                 range_end = meta->pkt_cache.range_end;
4376                         } else {
4377                                 meta->pkt_cache.range_start = range_start;
4378                                 meta->pkt_cache.range_end = range_end;
4379                         }
4380                 }
4381         }
4382 }
4383 
4384 static int nfp_bpf_optimize(struct nfp_prog *nfp_prog)
4385 {
4386         nfp_bpf_opt_reg_init(nfp_prog);
4387 
4388         nfp_bpf_opt_neg_add_sub(nfp_prog);
4389         nfp_bpf_opt_ld_mask(nfp_prog);
4390         nfp_bpf_opt_ld_shift(nfp_prog);
4391         nfp_bpf_opt_ldst_gather(nfp_prog);
4392         nfp_bpf_opt_pkt_cache(nfp_prog);
4393 
4394         return 0;
4395 }
4396 
4397 static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog)
4398 {
4399         struct nfp_insn_meta *meta1, *meta2;
4400         struct nfp_bpf_map *nfp_map;
4401         struct bpf_map *map;
4402         u32 id;
4403 
4404         nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) {
4405                 if (meta1->flags & FLAG_INSN_SKIP_MASK ||
4406                     meta2->flags & FLAG_INSN_SKIP_MASK)
4407                         continue;
4408 
4409                 if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) ||
4410                     meta1->insn.src_reg != BPF_PSEUDO_MAP_FD)
4411                         continue;
4412 
4413                 map = (void *)(unsigned long)((u32)meta1->insn.imm |
4414                                               (u64)meta2->insn.imm << 32);
4415                 if (bpf_map_offload_neutral(map)) {
4416                         id = map->id;
4417                 } else {
4418                         nfp_map = map_to_offmap(map)->dev_priv;
4419                         id = nfp_map->tid;
4420                 }
4421 
4422                 meta1->insn.imm = id;
4423                 meta2->insn.imm = 0;
4424         }
4425 
4426         return 0;
4427 }
4428 
4429 static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len)
4430 {
4431         __le64 *ustore = (__force __le64 *)prog;
4432         int i;
4433 
4434         for (i = 0; i < len; i++) {
4435                 int err;
4436 
4437                 err = nfp_ustore_check_valid_no_ecc(prog[i]);
4438                 if (err)
4439                         return err;
4440 
4441                 ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i]));
4442         }
4443 
4444         return 0;
4445 }
4446 
4447 static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog)
4448 {
4449         void *prog;
4450 
4451         prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL);
4452         if (!prog)
4453                 return;
4454 
4455         nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64);
4456         memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len);
4457         kvfree(nfp_prog->prog);
4458         nfp_prog->prog = prog;
4459 }
4460 
4461 int nfp_bpf_jit(struct nfp_prog *nfp_prog)
4462 {
4463         int ret;
4464 
4465         ret = nfp_bpf_replace_map_ptrs(nfp_prog);
4466         if (ret)
4467                 return ret;
4468 
4469         ret = nfp_bpf_optimize(nfp_prog);
4470         if (ret)
4471                 return ret;
4472 
4473         ret = nfp_translate(nfp_prog);
4474         if (ret) {
4475                 pr_err("Translation failed with error %d (translated: %u)\n",
4476                        ret, nfp_prog->n_translated);
4477                 return -EINVAL;
4478         }
4479 
4480         nfp_bpf_prog_trim(nfp_prog);
4481 
4482         return ret;
4483 }
4484 
4485 void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog)
4486 {
4487         struct nfp_insn_meta *meta;
4488 
4489         /* Another pass to record jump information. */
4490         list_for_each_entry(meta, &nfp_prog->insns, l) {
4491                 struct nfp_insn_meta *dst_meta;
4492                 u64 code = meta->insn.code;
4493                 unsigned int dst_idx;
4494                 bool pseudo_call;
4495 
4496                 if (!is_mbpf_jmp(meta))
4497                         continue;
4498                 if (BPF_OP(code) == BPF_EXIT)
4499                         continue;
4500                 if (is_mbpf_helper_call(meta))
4501                         continue;
4502 
4503                 /* If opcode is BPF_CALL at this point, this can only be a
4504                  * BPF-to-BPF call (a.k.a pseudo call).
4505                  */
4506                 pseudo_call = BPF_OP(code) == BPF_CALL;
4507 
4508                 if (pseudo_call)
4509                         dst_idx = meta->n + 1 + meta->insn.imm;
4510                 else
4511                         dst_idx = meta->n + 1 + meta->insn.off;
4512 
4513                 dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx);
4514 
4515                 if (pseudo_call)
4516                         dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START;
4517 
4518                 dst_meta->flags |= FLAG_INSN_IS_JUMP_DST;
4519                 meta->jmp_dst = dst_meta;
4520         }
4521 }
4522 
4523 bool nfp_bpf_supported_opcode(u8 code)
4524 {
4525         return !!instr_cb[code];
4526 }
4527 
4528 void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv)
4529 {
4530         unsigned int i;
4531         u64 *prog;
4532         int err;
4533 
4534         prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64),
4535                        GFP_KERNEL);
4536         if (!prog)
4537                 return ERR_PTR(-ENOMEM);
4538 
4539         for (i = 0; i < nfp_prog->prog_len; i++) {
4540                 enum nfp_relo_type special;
4541                 u32 val;
4542                 u16 off;
4543 
4544                 special = FIELD_GET(OP_RELO_TYPE, prog[i]);
4545                 switch (special) {
4546                 case RELO_NONE:
4547                         continue;
4548                 case RELO_BR_REL:
4549                         br_add_offset(&prog[i], bv->start_off);
4550                         break;
4551                 case RELO_BR_GO_OUT:
4552                         br_set_offset(&prog[i],
4553                                       nfp_prog->tgt_out + bv->start_off);
4554                         break;
4555                 case RELO_BR_GO_ABORT:
4556                         br_set_offset(&prog[i],
4557                                       nfp_prog->tgt_abort + bv->start_off);
4558                         break;
4559                 case RELO_BR_GO_CALL_PUSH_REGS:
4560                         if (!nfp_prog->tgt_call_push_regs) {
4561                                 pr_err("BUG: failed to detect subprogram registers needs\n");
4562                                 err = -EINVAL;
4563                                 goto err_free_prog;
4564                         }
4565                         off = nfp_prog->tgt_call_push_regs + bv->start_off;
4566                         br_set_offset(&prog[i], off);
4567                         break;
4568                 case RELO_BR_GO_CALL_POP_REGS:
4569                         if (!nfp_prog->tgt_call_pop_regs) {
4570                                 pr_err("BUG: failed to detect subprogram registers needs\n");
4571                                 err = -EINVAL;
4572                                 goto err_free_prog;
4573                         }
4574                         off = nfp_prog->tgt_call_pop_regs + bv->start_off;
4575                         br_set_offset(&prog[i], off);
4576                         break;
4577                 case RELO_BR_NEXT_PKT:
4578                         br_set_offset(&prog[i], bv->tgt_done);
4579                         break;
4580                 case RELO_BR_HELPER:
4581                         val = br_get_offset(prog[i]);
4582                         val -= BR_OFF_RELO;
4583                         switch (val) {
4584                         case BPF_FUNC_map_lookup_elem:
4585                                 val = nfp_prog->bpf->helpers.map_lookup;
4586                                 break;
4587                         case BPF_FUNC_map_update_elem:
4588                                 val = nfp_prog->bpf->helpers.map_update;
4589                                 break;
4590                         case BPF_FUNC_map_delete_elem:
4591                                 val = nfp_prog->bpf->helpers.map_delete;
4592                                 break;
4593                         case BPF_FUNC_perf_event_output:
4594                                 val = nfp_prog->bpf->helpers.perf_event_output;
4595                                 break;
4596                         default:
4597                                 pr_err("relocation of unknown helper %d\n",
4598                                        val);
4599                                 err = -EINVAL;
4600                                 goto err_free_prog;
4601                         }
4602                         br_set_offset(&prog[i], val);
4603                         break;
4604                 case RELO_IMMED_REL:
4605                         immed_add_value(&prog[i], bv->start_off);
4606                         break;
4607                 }
4608 
4609                 prog[i] &= ~OP_RELO_TYPE;
4610         }
4611 
4612         err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len);
4613         if (err)
4614                 goto err_free_prog;
4615 
4616         return prog;
4617 
4618 err_free_prog:
4619         kfree(prog);
4620         return ERR_PTR(err);
4621 }

/* [<][>][^][v][top][bottom][index][help] */