root/drivers/net/ethernet/netronome/nfp/nfp_net_common.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nfp_net_get_fw_version
  2. nfp_net_dma_map_rx
  3. nfp_net_dma_sync_dev_rx
  4. nfp_net_dma_unmap_rx
  5. nfp_net_dma_sync_cpu_rx
  6. nfp_net_reconfig_start
  7. nfp_net_reconfig_start_async
  8. nfp_net_reconfig_check_done
  9. __nfp_net_reconfig_wait
  10. nfp_net_reconfig_wait
  11. nfp_net_reconfig_timer
  12. nfp_net_reconfig_post
  13. nfp_net_reconfig_sync_enter
  14. nfp_net_reconfig_wait_posted
  15. __nfp_net_reconfig
  16. nfp_net_reconfig
  17. nfp_net_mbox_lock
  18. nfp_net_mbox_reconfig
  19. nfp_net_mbox_reconfig_post
  20. nfp_net_mbox_reconfig_wait_posted
  21. nfp_net_mbox_reconfig_and_unlock
  22. nfp_net_irq_unmask
  23. nfp_net_irqs_alloc
  24. nfp_net_irqs_assign
  25. nfp_net_irqs_disable
  26. nfp_net_irq_rxtx
  27. nfp_ctrl_irq_rxtx
  28. nfp_net_read_link_status
  29. nfp_net_irq_lsc
  30. nfp_net_irq_exn
  31. nfp_net_tx_ring_init
  32. nfp_net_rx_ring_init
  33. nfp_net_aux_irq_request
  34. nfp_net_aux_irq_free
  35. nfp_net_tx_full
  36. nfp_net_tx_ring_should_wake
  37. nfp_net_tx_ring_should_stop
  38. nfp_net_tx_ring_stop
  39. nfp_net_tx_tso
  40. nfp_net_tx_csum
  41. nfp_net_tls_tx
  42. nfp_net_tls_tx_undo
  43. nfp_net_tx_xmit_more_flush
  44. nfp_net_prep_tx_meta
  45. nfp_net_tx
  46. nfp_net_tx_complete
  47. nfp_net_xdp_complete
  48. nfp_net_tx_ring_reset
  49. nfp_net_tx_timeout
  50. nfp_net_calc_fl_bufsz
  51. nfp_net_free_frag
  52. nfp_net_rx_alloc_one
  53. nfp_net_napi_alloc_one
  54. nfp_net_rx_give_one
  55. nfp_net_rx_ring_reset
  56. nfp_net_rx_ring_bufs_free
  57. nfp_net_rx_ring_bufs_alloc
  58. nfp_net_rx_ring_fill_freelist
  59. nfp_net_rx_csum_has_errors
  60. nfp_net_rx_csum
  61. nfp_net_set_hash
  62. nfp_net_set_hash_desc
  63. nfp_net_parse_meta
  64. nfp_net_rx_drop
  65. nfp_net_tx_xdp_buf
  66. nfp_net_rx
  67. nfp_net_poll
  68. nfp_ctrl_tx_one
  69. __nfp_ctrl_tx
  70. nfp_ctrl_tx
  71. __nfp_ctrl_tx_queued
  72. nfp_ctrl_meta_ok
  73. nfp_ctrl_rx_one
  74. nfp_ctrl_rx
  75. nfp_ctrl_poll
  76. nfp_net_vecs_init
  77. nfp_net_tx_ring_free
  78. nfp_net_tx_ring_alloc
  79. nfp_net_tx_ring_bufs_free
  80. nfp_net_tx_ring_bufs_alloc
  81. nfp_net_tx_rings_prepare
  82. nfp_net_tx_rings_free
  83. nfp_net_rx_ring_free
  84. nfp_net_rx_ring_alloc
  85. nfp_net_rx_rings_prepare
  86. nfp_net_rx_rings_free
  87. nfp_net_vector_assign_rings
  88. nfp_net_prepare_vector
  89. nfp_net_cleanup_vector
  90. nfp_net_rss_write_itbl
  91. nfp_net_rss_write_key
  92. nfp_net_coalesce_write_cfg
  93. nfp_net_write_mac_addr
  94. nfp_net_vec_clear_ring_data
  95. nfp_net_clear_config_and_disable
  96. nfp_net_rx_ring_hw_cfg_write
  97. nfp_net_tx_ring_hw_cfg_write
  98. nfp_net_set_config_and_enable
  99. nfp_net_close_stack
  100. nfp_net_close_free_all
  101. nfp_net_netdev_close
  102. nfp_ctrl_close
  103. nfp_net_open_stack
  104. nfp_net_open_alloc_all
  105. nfp_net_netdev_open
  106. nfp_ctrl_open
  107. nfp_net_set_rx_mode
  108. nfp_net_rss_init_itbl
  109. nfp_net_dp_swap
  110. nfp_net_dp_swap_enable
  111. nfp_net_clone_dp
  112. nfp_net_check_config
  113. nfp_net_ring_reconfig
  114. nfp_net_change_mtu
  115. nfp_net_vlan_rx_add_vid
  116. nfp_net_vlan_rx_kill_vid
  117. nfp_net_stat64
  118. nfp_net_set_features
  119. nfp_net_features_check
  120. nfp_net_get_phys_port_name
  121. nfp_net_set_vxlan_port
  122. nfp_net_find_vxlan_idx
  123. nfp_net_add_vxlan_port
  124. nfp_net_del_vxlan_port
  125. nfp_net_xdp_setup_drv
  126. nfp_net_xdp_setup_hw
  127. nfp_net_xdp
  128. nfp_net_set_mac_address
  129. nfp_net_info
  130. nfp_net_alloc
  131. nfp_net_free
  132. nfp_net_rss_key_sz
  133. nfp_net_rss_init
  134. nfp_net_irqmod_init
  135. nfp_net_netdev_init
  136. nfp_net_read_caps
  137. nfp_net_init
  138. nfp_net_clean

   1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
   2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
   3 
   4 /*
   5  * nfp_net_common.c
   6  * Netronome network device driver: Common functions between PF and VF
   7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
   8  *          Jason McMullan <jason.mcmullan@netronome.com>
   9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
  10  *          Brad Petrus <brad.petrus@netronome.com>
  11  *          Chris Telfer <chris.telfer@netronome.com>
  12  */
  13 
  14 #include <linux/bitfield.h>
  15 #include <linux/bpf.h>
  16 #include <linux/bpf_trace.h>
  17 #include <linux/module.h>
  18 #include <linux/kernel.h>
  19 #include <linux/init.h>
  20 #include <linux/fs.h>
  21 #include <linux/netdevice.h>
  22 #include <linux/etherdevice.h>
  23 #include <linux/interrupt.h>
  24 #include <linux/ip.h>
  25 #include <linux/ipv6.h>
  26 #include <linux/mm.h>
  27 #include <linux/overflow.h>
  28 #include <linux/page_ref.h>
  29 #include <linux/pci.h>
  30 #include <linux/pci_regs.h>
  31 #include <linux/msi.h>
  32 #include <linux/ethtool.h>
  33 #include <linux/log2.h>
  34 #include <linux/if_vlan.h>
  35 #include <linux/random.h>
  36 #include <linux/vmalloc.h>
  37 #include <linux/ktime.h>
  38 
  39 #include <net/tls.h>
  40 #include <net/vxlan.h>
  41 
  42 #include "nfpcore/nfp_nsp.h"
  43 #include "ccm.h"
  44 #include "nfp_app.h"
  45 #include "nfp_net_ctrl.h"
  46 #include "nfp_net.h"
  47 #include "nfp_net_sriov.h"
  48 #include "nfp_port.h"
  49 #include "crypto/crypto.h"
  50 
  51 /**
  52  * nfp_net_get_fw_version() - Read and parse the FW version
  53  * @fw_ver:     Output fw_version structure to read to
  54  * @ctrl_bar:   Mapped address of the control BAR
  55  */
  56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
  57                             void __iomem *ctrl_bar)
  58 {
  59         u32 reg;
  60 
  61         reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
  62         put_unaligned_le32(reg, fw_ver);
  63 }
  64 
  65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
  66 {
  67         return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
  68                                     dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
  69                                     dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
  70 }
  71 
  72 static void
  73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
  74 {
  75         dma_sync_single_for_device(dp->dev, dma_addr,
  76                                    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
  77                                    dp->rx_dma_dir);
  78 }
  79 
  80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
  81 {
  82         dma_unmap_single_attrs(dp->dev, dma_addr,
  83                                dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
  84                                dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
  85 }
  86 
  87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
  88                                     unsigned int len)
  89 {
  90         dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
  91                                 len, dp->rx_dma_dir);
  92 }
  93 
  94 /* Firmware reconfig
  95  *
  96  * Firmware reconfig may take a while so we have two versions of it -
  97  * synchronous and asynchronous (posted).  All synchronous callers are holding
  98  * RTNL so we don't have to worry about serializing them.
  99  */
 100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
 101 {
 102         nn_writel(nn, NFP_NET_CFG_UPDATE, update);
 103         /* ensure update is written before pinging HW */
 104         nn_pci_flush(nn);
 105         nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
 106         nn->reconfig_in_progress_update = update;
 107 }
 108 
 109 /* Pass 0 as update to run posted reconfigs. */
 110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
 111 {
 112         update |= nn->reconfig_posted;
 113         nn->reconfig_posted = 0;
 114 
 115         nfp_net_reconfig_start(nn, update);
 116 
 117         nn->reconfig_timer_active = true;
 118         mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
 119 }
 120 
 121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
 122 {
 123         u32 reg;
 124 
 125         reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
 126         if (reg == 0)
 127                 return true;
 128         if (reg & NFP_NET_CFG_UPDATE_ERR) {
 129                 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
 130                        reg, nn->reconfig_in_progress_update,
 131                        nn_readl(nn, NFP_NET_CFG_CTRL));
 132                 return true;
 133         } else if (last_check) {
 134                 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
 135                        reg, nn->reconfig_in_progress_update,
 136                        nn_readl(nn, NFP_NET_CFG_CTRL));
 137                 return true;
 138         }
 139 
 140         return false;
 141 }
 142 
 143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
 144 {
 145         bool timed_out = false;
 146         int i;
 147 
 148         /* Poll update field, waiting for NFP to ack the config.
 149          * Do an opportunistic wait-busy loop, afterward sleep.
 150          */
 151         for (i = 0; i < 50; i++) {
 152                 if (nfp_net_reconfig_check_done(nn, false))
 153                         return false;
 154                 udelay(4);
 155         }
 156 
 157         while (!nfp_net_reconfig_check_done(nn, timed_out)) {
 158                 usleep_range(250, 500);
 159                 timed_out = time_is_before_eq_jiffies(deadline);
 160         }
 161 
 162         return timed_out;
 163 }
 164 
 165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
 166 {
 167         if (__nfp_net_reconfig_wait(nn, deadline))
 168                 return -EIO;
 169 
 170         if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
 171                 return -EIO;
 172 
 173         return 0;
 174 }
 175 
 176 static void nfp_net_reconfig_timer(struct timer_list *t)
 177 {
 178         struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
 179 
 180         spin_lock_bh(&nn->reconfig_lock);
 181 
 182         nn->reconfig_timer_active = false;
 183 
 184         /* If sync caller is present it will take over from us */
 185         if (nn->reconfig_sync_present)
 186                 goto done;
 187 
 188         /* Read reconfig status and report errors */
 189         nfp_net_reconfig_check_done(nn, true);
 190 
 191         if (nn->reconfig_posted)
 192                 nfp_net_reconfig_start_async(nn, 0);
 193 done:
 194         spin_unlock_bh(&nn->reconfig_lock);
 195 }
 196 
 197 /**
 198  * nfp_net_reconfig_post() - Post async reconfig request
 199  * @nn:      NFP Net device to reconfigure
 200  * @update:  The value for the update field in the BAR config
 201  *
 202  * Record FW reconfiguration request.  Reconfiguration will be kicked off
 203  * whenever reconfiguration machinery is idle.  Multiple requests can be
 204  * merged together!
 205  */
 206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
 207 {
 208         spin_lock_bh(&nn->reconfig_lock);
 209 
 210         /* Sync caller will kick off async reconf when it's done, just post */
 211         if (nn->reconfig_sync_present) {
 212                 nn->reconfig_posted |= update;
 213                 goto done;
 214         }
 215 
 216         /* Opportunistically check if the previous command is done */
 217         if (!nn->reconfig_timer_active ||
 218             nfp_net_reconfig_check_done(nn, false))
 219                 nfp_net_reconfig_start_async(nn, update);
 220         else
 221                 nn->reconfig_posted |= update;
 222 done:
 223         spin_unlock_bh(&nn->reconfig_lock);
 224 }
 225 
 226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
 227 {
 228         bool cancelled_timer = false;
 229         u32 pre_posted_requests;
 230 
 231         spin_lock_bh(&nn->reconfig_lock);
 232 
 233         WARN_ON(nn->reconfig_sync_present);
 234         nn->reconfig_sync_present = true;
 235 
 236         if (nn->reconfig_timer_active) {
 237                 nn->reconfig_timer_active = false;
 238                 cancelled_timer = true;
 239         }
 240         pre_posted_requests = nn->reconfig_posted;
 241         nn->reconfig_posted = 0;
 242 
 243         spin_unlock_bh(&nn->reconfig_lock);
 244 
 245         if (cancelled_timer) {
 246                 del_timer_sync(&nn->reconfig_timer);
 247                 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
 248         }
 249 
 250         /* Run the posted reconfigs which were issued before we started */
 251         if (pre_posted_requests) {
 252                 nfp_net_reconfig_start(nn, pre_posted_requests);
 253                 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
 254         }
 255 }
 256 
 257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
 258 {
 259         nfp_net_reconfig_sync_enter(nn);
 260 
 261         spin_lock_bh(&nn->reconfig_lock);
 262         nn->reconfig_sync_present = false;
 263         spin_unlock_bh(&nn->reconfig_lock);
 264 }
 265 
 266 /**
 267  * __nfp_net_reconfig() - Reconfigure the firmware
 268  * @nn:      NFP Net device to reconfigure
 269  * @update:  The value for the update field in the BAR config
 270  *
 271  * Write the update word to the BAR and ping the reconfig queue.  The
 272  * poll until the firmware has acknowledged the update by zeroing the
 273  * update word.
 274  *
 275  * Return: Negative errno on error, 0 on success
 276  */
 277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
 278 {
 279         int ret;
 280 
 281         nfp_net_reconfig_sync_enter(nn);
 282 
 283         nfp_net_reconfig_start(nn, update);
 284         ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
 285 
 286         spin_lock_bh(&nn->reconfig_lock);
 287 
 288         if (nn->reconfig_posted)
 289                 nfp_net_reconfig_start_async(nn, 0);
 290 
 291         nn->reconfig_sync_present = false;
 292 
 293         spin_unlock_bh(&nn->reconfig_lock);
 294 
 295         return ret;
 296 }
 297 
 298 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
 299 {
 300         int ret;
 301 
 302         nn_ctrl_bar_lock(nn);
 303         ret = __nfp_net_reconfig(nn, update);
 304         nn_ctrl_bar_unlock(nn);
 305 
 306         return ret;
 307 }
 308 
 309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
 310 {
 311         if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
 312                 nn_err(nn, "mailbox too small for %u of data (%u)\n",
 313                        data_size, nn->tlv_caps.mbox_len);
 314                 return -EIO;
 315         }
 316 
 317         nn_ctrl_bar_lock(nn);
 318         return 0;
 319 }
 320 
 321 /**
 322  * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
 323  * @nn:        NFP Net device to reconfigure
 324  * @mbox_cmd:  The value for the mailbox command
 325  *
 326  * Helper function for mailbox updates
 327  *
 328  * Return: Negative errno on error, 0 on success
 329  */
 330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
 331 {
 332         u32 mbox = nn->tlv_caps.mbox_off;
 333         int ret;
 334 
 335         nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
 336 
 337         ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
 338         if (ret) {
 339                 nn_err(nn, "Mailbox update error\n");
 340                 return ret;
 341         }
 342 
 343         return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
 344 }
 345 
 346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
 347 {
 348         u32 mbox = nn->tlv_caps.mbox_off;
 349 
 350         nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
 351 
 352         nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
 353 }
 354 
 355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
 356 {
 357         u32 mbox = nn->tlv_caps.mbox_off;
 358 
 359         nfp_net_reconfig_wait_posted(nn);
 360 
 361         return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
 362 }
 363 
 364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
 365 {
 366         int ret;
 367 
 368         ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
 369         nn_ctrl_bar_unlock(nn);
 370         return ret;
 371 }
 372 
 373 /* Interrupt configuration and handling
 374  */
 375 
 376 /**
 377  * nfp_net_irq_unmask() - Unmask automasked interrupt
 378  * @nn:       NFP Network structure
 379  * @entry_nr: MSI-X table entry
 380  *
 381  * Clear the ICR for the IRQ entry.
 382  */
 383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
 384 {
 385         nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
 386         nn_pci_flush(nn);
 387 }
 388 
 389 /**
 390  * nfp_net_irqs_alloc() - allocates MSI-X irqs
 391  * @pdev:        PCI device structure
 392  * @irq_entries: Array to be initialized and used to hold the irq entries
 393  * @min_irqs:    Minimal acceptable number of interrupts
 394  * @wanted_irqs: Target number of interrupts to allocate
 395  *
 396  * Return: Number of irqs obtained or 0 on error.
 397  */
 398 unsigned int
 399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
 400                    unsigned int min_irqs, unsigned int wanted_irqs)
 401 {
 402         unsigned int i;
 403         int got_irqs;
 404 
 405         for (i = 0; i < wanted_irqs; i++)
 406                 irq_entries[i].entry = i;
 407 
 408         got_irqs = pci_enable_msix_range(pdev, irq_entries,
 409                                          min_irqs, wanted_irqs);
 410         if (got_irqs < 0) {
 411                 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
 412                         min_irqs, wanted_irqs, got_irqs);
 413                 return 0;
 414         }
 415 
 416         if (got_irqs < wanted_irqs)
 417                 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
 418                          wanted_irqs, got_irqs);
 419 
 420         return got_irqs;
 421 }
 422 
 423 /**
 424  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 425  * @nn:          NFP Network structure
 426  * @irq_entries: Table of allocated interrupts
 427  * @n:           Size of @irq_entries (number of entries to grab)
 428  *
 429  * After interrupts are allocated with nfp_net_irqs_alloc() this function
 430  * should be called to assign them to a specific netdev (port).
 431  */
 432 void
 433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
 434                     unsigned int n)
 435 {
 436         struct nfp_net_dp *dp = &nn->dp;
 437 
 438         nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
 439         dp->num_r_vecs = nn->max_r_vecs;
 440 
 441         memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
 442 
 443         if (dp->num_rx_rings > dp->num_r_vecs ||
 444             dp->num_tx_rings > dp->num_r_vecs)
 445                 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
 446                          dp->num_rx_rings, dp->num_tx_rings,
 447                          dp->num_r_vecs);
 448 
 449         dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
 450         dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
 451         dp->num_stack_tx_rings = dp->num_tx_rings;
 452 }
 453 
 454 /**
 455  * nfp_net_irqs_disable() - Disable interrupts
 456  * @pdev:        PCI device structure
 457  *
 458  * Undoes what @nfp_net_irqs_alloc() does.
 459  */
 460 void nfp_net_irqs_disable(struct pci_dev *pdev)
 461 {
 462         pci_disable_msix(pdev);
 463 }
 464 
 465 /**
 466  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 467  * @irq:      Interrupt
 468  * @data:     Opaque data structure
 469  *
 470  * Return: Indicate if the interrupt has been handled.
 471  */
 472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
 473 {
 474         struct nfp_net_r_vector *r_vec = data;
 475 
 476         napi_schedule_irqoff(&r_vec->napi);
 477 
 478         /* The FW auto-masks any interrupt, either via the MASK bit in
 479          * the MSI-X table or via the per entry ICR field.  So there
 480          * is no need to disable interrupts here.
 481          */
 482         return IRQ_HANDLED;
 483 }
 484 
 485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
 486 {
 487         struct nfp_net_r_vector *r_vec = data;
 488 
 489         tasklet_schedule(&r_vec->tasklet);
 490 
 491         return IRQ_HANDLED;
 492 }
 493 
 494 /**
 495  * nfp_net_read_link_status() - Reread link status from control BAR
 496  * @nn:       NFP Network structure
 497  */
 498 static void nfp_net_read_link_status(struct nfp_net *nn)
 499 {
 500         unsigned long flags;
 501         bool link_up;
 502         u32 sts;
 503 
 504         spin_lock_irqsave(&nn->link_status_lock, flags);
 505 
 506         sts = nn_readl(nn, NFP_NET_CFG_STS);
 507         link_up = !!(sts & NFP_NET_CFG_STS_LINK);
 508 
 509         if (nn->link_up == link_up)
 510                 goto out;
 511 
 512         nn->link_up = link_up;
 513         if (nn->port)
 514                 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
 515 
 516         if (nn->link_up) {
 517                 netif_carrier_on(nn->dp.netdev);
 518                 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
 519         } else {
 520                 netif_carrier_off(nn->dp.netdev);
 521                 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
 522         }
 523 out:
 524         spin_unlock_irqrestore(&nn->link_status_lock, flags);
 525 }
 526 
 527 /**
 528  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 529  * @irq:      Interrupt
 530  * @data:     Opaque data structure
 531  *
 532  * Return: Indicate if the interrupt has been handled.
 533  */
 534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
 535 {
 536         struct nfp_net *nn = data;
 537         struct msix_entry *entry;
 538 
 539         entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
 540 
 541         nfp_net_read_link_status(nn);
 542 
 543         nfp_net_irq_unmask(nn, entry->entry);
 544 
 545         return IRQ_HANDLED;
 546 }
 547 
 548 /**
 549  * nfp_net_irq_exn() - Interrupt service routine for exceptions
 550  * @irq:      Interrupt
 551  * @data:     Opaque data structure
 552  *
 553  * Return: Indicate if the interrupt has been handled.
 554  */
 555 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
 556 {
 557         struct nfp_net *nn = data;
 558 
 559         nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
 560         /* XXX TO BE IMPLEMENTED */
 561         return IRQ_HANDLED;
 562 }
 563 
 564 /**
 565  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 566  * @tx_ring:  TX ring structure
 567  * @r_vec:    IRQ vector servicing this ring
 568  * @idx:      Ring index
 569  * @is_xdp:   Is this an XDP TX ring?
 570  */
 571 static void
 572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
 573                      struct nfp_net_r_vector *r_vec, unsigned int idx,
 574                      bool is_xdp)
 575 {
 576         struct nfp_net *nn = r_vec->nfp_net;
 577 
 578         tx_ring->idx = idx;
 579         tx_ring->r_vec = r_vec;
 580         tx_ring->is_xdp = is_xdp;
 581         u64_stats_init(&tx_ring->r_vec->tx_sync);
 582 
 583         tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
 584         tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
 585 }
 586 
 587 /**
 588  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 589  * @rx_ring:  RX ring structure
 590  * @r_vec:    IRQ vector servicing this ring
 591  * @idx:      Ring index
 592  */
 593 static void
 594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
 595                      struct nfp_net_r_vector *r_vec, unsigned int idx)
 596 {
 597         struct nfp_net *nn = r_vec->nfp_net;
 598 
 599         rx_ring->idx = idx;
 600         rx_ring->r_vec = r_vec;
 601         u64_stats_init(&rx_ring->r_vec->rx_sync);
 602 
 603         rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
 604         rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
 605 }
 606 
 607 /**
 608  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 609  * @nn:         NFP Network structure
 610  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 611  * @format:     printf-style format to construct the interrupt name
 612  * @name:       Pointer to allocated space for interrupt name
 613  * @name_sz:    Size of space for interrupt name
 614  * @vector_idx: Index of MSI-X vector used for this interrupt
 615  * @handler:    IRQ handler to register for this interrupt
 616  */
 617 static int
 618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
 619                         const char *format, char *name, size_t name_sz,
 620                         unsigned int vector_idx, irq_handler_t handler)
 621 {
 622         struct msix_entry *entry;
 623         int err;
 624 
 625         entry = &nn->irq_entries[vector_idx];
 626 
 627         snprintf(name, name_sz, format, nfp_net_name(nn));
 628         err = request_irq(entry->vector, handler, 0, name, nn);
 629         if (err) {
 630                 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
 631                        entry->vector, err);
 632                 return err;
 633         }
 634         nn_writeb(nn, ctrl_offset, entry->entry);
 635         nfp_net_irq_unmask(nn, entry->entry);
 636 
 637         return 0;
 638 }
 639 
 640 /**
 641  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 642  * @nn:         NFP Network structure
 643  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 644  * @vector_idx: Index of MSI-X vector used for this interrupt
 645  */
 646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
 647                                  unsigned int vector_idx)
 648 {
 649         nn_writeb(nn, ctrl_offset, 0xff);
 650         nn_pci_flush(nn);
 651         free_irq(nn->irq_entries[vector_idx].vector, nn);
 652 }
 653 
 654 /* Transmit
 655  *
 656  * One queue controller peripheral queue is used for transmit.  The
 657  * driver en-queues packets for transmit by advancing the write
 658  * pointer.  The device indicates that packets have transmitted by
 659  * advancing the read pointer.  The driver maintains a local copy of
 660  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 661  * keeps @wr_p in sync with the queue controller write pointer and can
 662  * determine how many packets have been transmitted by comparing its
 663  * copy of the read pointer @rd_p with the read pointer maintained by
 664  * the queue controller peripheral.
 665  */
 666 
 667 /**
 668  * nfp_net_tx_full() - Check if the TX ring is full
 669  * @tx_ring: TX ring to check
 670  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 671  *
 672  * This function checks, based on the *host copy* of read/write
 673  * pointer if a given TX ring is full.  The real TX queue may have
 674  * some newly made available slots.
 675  *
 676  * Return: True if the ring is full.
 677  */
 678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
 679 {
 680         return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
 681 }
 682 
 683 /* Wrappers for deciding when to stop and restart TX queues */
 684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
 685 {
 686         return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
 687 }
 688 
 689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
 690 {
 691         return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
 692 }
 693 
 694 /**
 695  * nfp_net_tx_ring_stop() - stop tx ring
 696  * @nd_q:    netdev queue
 697  * @tx_ring: driver tx queue structure
 698  *
 699  * Safely stop TX ring.  Remember that while we are running .start_xmit()
 700  * someone else may be cleaning the TX ring completions so we need to be
 701  * extra careful here.
 702  */
 703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
 704                                  struct nfp_net_tx_ring *tx_ring)
 705 {
 706         netif_tx_stop_queue(nd_q);
 707 
 708         /* We can race with the TX completion out of NAPI so recheck */
 709         smp_mb();
 710         if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
 711                 netif_tx_start_queue(nd_q);
 712 }
 713 
 714 /**
 715  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 716  * @r_vec: per-ring structure
 717  * @txbuf: Pointer to driver soft TX descriptor
 718  * @txd: Pointer to HW TX descriptor
 719  * @skb: Pointer to SKB
 720  * @md_bytes: Prepend length
 721  *
 722  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 723  * Return error on packet header greater than maximum supported LSO header size.
 724  */
 725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
 726                            struct nfp_net_tx_buf *txbuf,
 727                            struct nfp_net_tx_desc *txd, struct sk_buff *skb,
 728                            u32 md_bytes)
 729 {
 730         u32 l3_offset, l4_offset, hdrlen;
 731         u16 mss;
 732 
 733         if (!skb_is_gso(skb))
 734                 return;
 735 
 736         if (!skb->encapsulation) {
 737                 l3_offset = skb_network_offset(skb);
 738                 l4_offset = skb_transport_offset(skb);
 739                 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
 740         } else {
 741                 l3_offset = skb_inner_network_offset(skb);
 742                 l4_offset = skb_inner_transport_offset(skb);
 743                 hdrlen = skb_inner_transport_header(skb) - skb->data +
 744                         inner_tcp_hdrlen(skb);
 745         }
 746 
 747         txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
 748         txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
 749 
 750         mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
 751         txd->l3_offset = l3_offset - md_bytes;
 752         txd->l4_offset = l4_offset - md_bytes;
 753         txd->lso_hdrlen = hdrlen - md_bytes;
 754         txd->mss = cpu_to_le16(mss);
 755         txd->flags |= PCIE_DESC_TX_LSO;
 756 
 757         u64_stats_update_begin(&r_vec->tx_sync);
 758         r_vec->tx_lso++;
 759         u64_stats_update_end(&r_vec->tx_sync);
 760 }
 761 
 762 /**
 763  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
 764  * @dp:  NFP Net data path struct
 765  * @r_vec: per-ring structure
 766  * @txbuf: Pointer to driver soft TX descriptor
 767  * @txd: Pointer to TX descriptor
 768  * @skb: Pointer to SKB
 769  *
 770  * This function sets the TX checksum flags in the TX descriptor based
 771  * on the configuration and the protocol of the packet to be transmitted.
 772  */
 773 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
 774                             struct nfp_net_r_vector *r_vec,
 775                             struct nfp_net_tx_buf *txbuf,
 776                             struct nfp_net_tx_desc *txd, struct sk_buff *skb)
 777 {
 778         struct ipv6hdr *ipv6h;
 779         struct iphdr *iph;
 780         u8 l4_hdr;
 781 
 782         if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
 783                 return;
 784 
 785         if (skb->ip_summed != CHECKSUM_PARTIAL)
 786                 return;
 787 
 788         txd->flags |= PCIE_DESC_TX_CSUM;
 789         if (skb->encapsulation)
 790                 txd->flags |= PCIE_DESC_TX_ENCAP;
 791 
 792         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
 793         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
 794 
 795         if (iph->version == 4) {
 796                 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
 797                 l4_hdr = iph->protocol;
 798         } else if (ipv6h->version == 6) {
 799                 l4_hdr = ipv6h->nexthdr;
 800         } else {
 801                 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
 802                 return;
 803         }
 804 
 805         switch (l4_hdr) {
 806         case IPPROTO_TCP:
 807                 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
 808                 break;
 809         case IPPROTO_UDP:
 810                 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
 811                 break;
 812         default:
 813                 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
 814                 return;
 815         }
 816 
 817         u64_stats_update_begin(&r_vec->tx_sync);
 818         if (skb->encapsulation)
 819                 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
 820         else
 821                 r_vec->hw_csum_tx += txbuf->pkt_cnt;
 822         u64_stats_update_end(&r_vec->tx_sync);
 823 }
 824 
 825 static struct sk_buff *
 826 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
 827                struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
 828 {
 829 #ifdef CONFIG_TLS_DEVICE
 830         struct nfp_net_tls_offload_ctx *ntls;
 831         struct sk_buff *nskb;
 832         bool resync_pending;
 833         u32 datalen, seq;
 834 
 835         if (likely(!dp->ktls_tx))
 836                 return skb;
 837         if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
 838                 return skb;
 839 
 840         datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
 841         seq = ntohl(tcp_hdr(skb)->seq);
 842         ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
 843         resync_pending = tls_offload_tx_resync_pending(skb->sk);
 844         if (unlikely(resync_pending || ntls->next_seq != seq)) {
 845                 /* Pure ACK out of order already */
 846                 if (!datalen)
 847                         return skb;
 848 
 849                 u64_stats_update_begin(&r_vec->tx_sync);
 850                 r_vec->tls_tx_fallback++;
 851                 u64_stats_update_end(&r_vec->tx_sync);
 852 
 853                 nskb = tls_encrypt_skb(skb);
 854                 if (!nskb) {
 855                         u64_stats_update_begin(&r_vec->tx_sync);
 856                         r_vec->tls_tx_no_fallback++;
 857                         u64_stats_update_end(&r_vec->tx_sync);
 858                         return NULL;
 859                 }
 860                 /* encryption wasn't necessary */
 861                 if (nskb == skb)
 862                         return skb;
 863                 /* we don't re-check ring space */
 864                 if (unlikely(skb_is_nonlinear(nskb))) {
 865                         nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
 866                         u64_stats_update_begin(&r_vec->tx_sync);
 867                         r_vec->tx_errors++;
 868                         u64_stats_update_end(&r_vec->tx_sync);
 869                         dev_kfree_skb_any(nskb);
 870                         return NULL;
 871                 }
 872 
 873                 /* jump forward, a TX may have gotten lost, need to sync TX */
 874                 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
 875                         tls_offload_tx_resync_request(nskb->sk);
 876 
 877                 *nr_frags = 0;
 878                 return nskb;
 879         }
 880 
 881         if (datalen) {
 882                 u64_stats_update_begin(&r_vec->tx_sync);
 883                 if (!skb_is_gso(skb))
 884                         r_vec->hw_tls_tx++;
 885                 else
 886                         r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs;
 887                 u64_stats_update_end(&r_vec->tx_sync);
 888         }
 889 
 890         memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
 891         ntls->next_seq += datalen;
 892 #endif
 893         return skb;
 894 }
 895 
 896 static void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle)
 897 {
 898 #ifdef CONFIG_TLS_DEVICE
 899         struct nfp_net_tls_offload_ctx *ntls;
 900         u32 datalen, seq;
 901 
 902         if (!tls_handle)
 903                 return;
 904         if (WARN_ON_ONCE(!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)))
 905                 return;
 906 
 907         datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
 908         seq = ntohl(tcp_hdr(skb)->seq);
 909 
 910         ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
 911         if (ntls->next_seq == seq + datalen)
 912                 ntls->next_seq = seq;
 913         else
 914                 WARN_ON_ONCE(1);
 915 #endif
 916 }
 917 
 918 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
 919 {
 920         wmb();
 921         nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
 922         tx_ring->wr_ptr_add = 0;
 923 }
 924 
 925 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
 926 {
 927         struct metadata_dst *md_dst = skb_metadata_dst(skb);
 928         unsigned char *data;
 929         u32 meta_id = 0;
 930         int md_bytes;
 931 
 932         if (likely(!md_dst && !tls_handle))
 933                 return 0;
 934         if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
 935                 if (!tls_handle)
 936                         return 0;
 937                 md_dst = NULL;
 938         }
 939 
 940         md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
 941 
 942         if (unlikely(skb_cow_head(skb, md_bytes)))
 943                 return -ENOMEM;
 944 
 945         meta_id = 0;
 946         data = skb_push(skb, md_bytes) + md_bytes;
 947         if (md_dst) {
 948                 data -= 4;
 949                 put_unaligned_be32(md_dst->u.port_info.port_id, data);
 950                 meta_id = NFP_NET_META_PORTID;
 951         }
 952         if (tls_handle) {
 953                 /* conn handle is opaque, we just use u64 to be able to quickly
 954                  * compare it to zero
 955                  */
 956                 data -= 8;
 957                 memcpy(data, &tls_handle, sizeof(tls_handle));
 958                 meta_id <<= NFP_NET_META_FIELD_SIZE;
 959                 meta_id |= NFP_NET_META_CONN_HANDLE;
 960         }
 961 
 962         data -= 4;
 963         put_unaligned_be32(meta_id, data);
 964 
 965         return md_bytes;
 966 }
 967 
 968 /**
 969  * nfp_net_tx() - Main transmit entry point
 970  * @skb:    SKB to transmit
 971  * @netdev: netdev structure
 972  *
 973  * Return: NETDEV_TX_OK on success.
 974  */
 975 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
 976 {
 977         struct nfp_net *nn = netdev_priv(netdev);
 978         const skb_frag_t *frag;
 979         int f, nr_frags, wr_idx, md_bytes;
 980         struct nfp_net_tx_ring *tx_ring;
 981         struct nfp_net_r_vector *r_vec;
 982         struct nfp_net_tx_buf *txbuf;
 983         struct nfp_net_tx_desc *txd;
 984         struct netdev_queue *nd_q;
 985         struct nfp_net_dp *dp;
 986         dma_addr_t dma_addr;
 987         unsigned int fsize;
 988         u64 tls_handle = 0;
 989         u16 qidx;
 990 
 991         dp = &nn->dp;
 992         qidx = skb_get_queue_mapping(skb);
 993         tx_ring = &dp->tx_rings[qidx];
 994         r_vec = tx_ring->r_vec;
 995 
 996         nr_frags = skb_shinfo(skb)->nr_frags;
 997 
 998         if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
 999                 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
1000                            qidx, tx_ring->wr_p, tx_ring->rd_p);
1001                 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
1002                 netif_tx_stop_queue(nd_q);
1003                 nfp_net_tx_xmit_more_flush(tx_ring);
1004                 u64_stats_update_begin(&r_vec->tx_sync);
1005                 r_vec->tx_busy++;
1006                 u64_stats_update_end(&r_vec->tx_sync);
1007                 return NETDEV_TX_BUSY;
1008         }
1009 
1010         skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
1011         if (unlikely(!skb)) {
1012                 nfp_net_tx_xmit_more_flush(tx_ring);
1013                 return NETDEV_TX_OK;
1014         }
1015 
1016         md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
1017         if (unlikely(md_bytes < 0))
1018                 goto err_flush;
1019 
1020         /* Start with the head skbuf */
1021         dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1022                                   DMA_TO_DEVICE);
1023         if (dma_mapping_error(dp->dev, dma_addr))
1024                 goto err_dma_err;
1025 
1026         wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1027 
1028         /* Stash the soft descriptor of the head then initialize it */
1029         txbuf = &tx_ring->txbufs[wr_idx];
1030         txbuf->skb = skb;
1031         txbuf->dma_addr = dma_addr;
1032         txbuf->fidx = -1;
1033         txbuf->pkt_cnt = 1;
1034         txbuf->real_len = skb->len;
1035 
1036         /* Build TX descriptor */
1037         txd = &tx_ring->txds[wr_idx];
1038         txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1039         txd->dma_len = cpu_to_le16(skb_headlen(skb));
1040         nfp_desc_set_dma_addr(txd, dma_addr);
1041         txd->data_len = cpu_to_le16(skb->len);
1042 
1043         txd->flags = 0;
1044         txd->mss = 0;
1045         txd->lso_hdrlen = 0;
1046 
1047         /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1048         nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1049         nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1050         if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1051                 txd->flags |= PCIE_DESC_TX_VLAN;
1052                 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1053         }
1054 
1055         /* Gather DMA */
1056         if (nr_frags > 0) {
1057                 __le64 second_half;
1058 
1059                 /* all descs must match except for in addr, length and eop */
1060                 second_half = txd->vals8[1];
1061 
1062                 for (f = 0; f < nr_frags; f++) {
1063                         frag = &skb_shinfo(skb)->frags[f];
1064                         fsize = skb_frag_size(frag);
1065 
1066                         dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1067                                                     fsize, DMA_TO_DEVICE);
1068                         if (dma_mapping_error(dp->dev, dma_addr))
1069                                 goto err_unmap;
1070 
1071                         wr_idx = D_IDX(tx_ring, wr_idx + 1);
1072                         tx_ring->txbufs[wr_idx].skb = skb;
1073                         tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1074                         tx_ring->txbufs[wr_idx].fidx = f;
1075 
1076                         txd = &tx_ring->txds[wr_idx];
1077                         txd->dma_len = cpu_to_le16(fsize);
1078                         nfp_desc_set_dma_addr(txd, dma_addr);
1079                         txd->offset_eop = md_bytes |
1080                                 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1081                         txd->vals8[1] = second_half;
1082                 }
1083 
1084                 u64_stats_update_begin(&r_vec->tx_sync);
1085                 r_vec->tx_gather++;
1086                 u64_stats_update_end(&r_vec->tx_sync);
1087         }
1088 
1089         skb_tx_timestamp(skb);
1090 
1091         nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1092 
1093         tx_ring->wr_p += nr_frags + 1;
1094         if (nfp_net_tx_ring_should_stop(tx_ring))
1095                 nfp_net_tx_ring_stop(nd_q, tx_ring);
1096 
1097         tx_ring->wr_ptr_add += nr_frags + 1;
1098         if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1099                 nfp_net_tx_xmit_more_flush(tx_ring);
1100 
1101         return NETDEV_TX_OK;
1102 
1103 err_unmap:
1104         while (--f >= 0) {
1105                 frag = &skb_shinfo(skb)->frags[f];
1106                 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1107                                skb_frag_size(frag), DMA_TO_DEVICE);
1108                 tx_ring->txbufs[wr_idx].skb = NULL;
1109                 tx_ring->txbufs[wr_idx].dma_addr = 0;
1110                 tx_ring->txbufs[wr_idx].fidx = -2;
1111                 wr_idx = wr_idx - 1;
1112                 if (wr_idx < 0)
1113                         wr_idx += tx_ring->cnt;
1114         }
1115         dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1116                          skb_headlen(skb), DMA_TO_DEVICE);
1117         tx_ring->txbufs[wr_idx].skb = NULL;
1118         tx_ring->txbufs[wr_idx].dma_addr = 0;
1119         tx_ring->txbufs[wr_idx].fidx = -2;
1120 err_dma_err:
1121         nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1122 err_flush:
1123         nfp_net_tx_xmit_more_flush(tx_ring);
1124         u64_stats_update_begin(&r_vec->tx_sync);
1125         r_vec->tx_errors++;
1126         u64_stats_update_end(&r_vec->tx_sync);
1127         nfp_net_tls_tx_undo(skb, tls_handle);
1128         dev_kfree_skb_any(skb);
1129         return NETDEV_TX_OK;
1130 }
1131 
1132 /**
1133  * nfp_net_tx_complete() - Handled completed TX packets
1134  * @tx_ring:    TX ring structure
1135  * @budget:     NAPI budget (only used as bool to determine if in NAPI context)
1136  */
1137 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1138 {
1139         struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1140         struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1141         struct netdev_queue *nd_q;
1142         u32 done_pkts = 0, done_bytes = 0;
1143         u32 qcp_rd_p;
1144         int todo;
1145 
1146         if (tx_ring->wr_p == tx_ring->rd_p)
1147                 return;
1148 
1149         /* Work out how many descriptors have been transmitted */
1150         qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1151 
1152         if (qcp_rd_p == tx_ring->qcp_rd_p)
1153                 return;
1154 
1155         todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1156 
1157         while (todo--) {
1158                 const skb_frag_t *frag;
1159                 struct nfp_net_tx_buf *tx_buf;
1160                 struct sk_buff *skb;
1161                 int fidx, nr_frags;
1162                 int idx;
1163 
1164                 idx = D_IDX(tx_ring, tx_ring->rd_p++);
1165                 tx_buf = &tx_ring->txbufs[idx];
1166 
1167                 skb = tx_buf->skb;
1168                 if (!skb)
1169                         continue;
1170 
1171                 nr_frags = skb_shinfo(skb)->nr_frags;
1172                 fidx = tx_buf->fidx;
1173 
1174                 if (fidx == -1) {
1175                         /* unmap head */
1176                         dma_unmap_single(dp->dev, tx_buf->dma_addr,
1177                                          skb_headlen(skb), DMA_TO_DEVICE);
1178 
1179                         done_pkts += tx_buf->pkt_cnt;
1180                         done_bytes += tx_buf->real_len;
1181                 } else {
1182                         /* unmap fragment */
1183                         frag = &skb_shinfo(skb)->frags[fidx];
1184                         dma_unmap_page(dp->dev, tx_buf->dma_addr,
1185                                        skb_frag_size(frag), DMA_TO_DEVICE);
1186                 }
1187 
1188                 /* check for last gather fragment */
1189                 if (fidx == nr_frags - 1)
1190                         napi_consume_skb(skb, budget);
1191 
1192                 tx_buf->dma_addr = 0;
1193                 tx_buf->skb = NULL;
1194                 tx_buf->fidx = -2;
1195         }
1196 
1197         tx_ring->qcp_rd_p = qcp_rd_p;
1198 
1199         u64_stats_update_begin(&r_vec->tx_sync);
1200         r_vec->tx_bytes += done_bytes;
1201         r_vec->tx_pkts += done_pkts;
1202         u64_stats_update_end(&r_vec->tx_sync);
1203 
1204         if (!dp->netdev)
1205                 return;
1206 
1207         nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1208         netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1209         if (nfp_net_tx_ring_should_wake(tx_ring)) {
1210                 /* Make sure TX thread will see updated tx_ring->rd_p */
1211                 smp_mb();
1212 
1213                 if (unlikely(netif_tx_queue_stopped(nd_q)))
1214                         netif_tx_wake_queue(nd_q);
1215         }
1216 
1217         WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1218                   "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1219                   tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1220 }
1221 
1222 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1223 {
1224         struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1225         u32 done_pkts = 0, done_bytes = 0;
1226         bool done_all;
1227         int idx, todo;
1228         u32 qcp_rd_p;
1229 
1230         /* Work out how many descriptors have been transmitted */
1231         qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1232 
1233         if (qcp_rd_p == tx_ring->qcp_rd_p)
1234                 return true;
1235 
1236         todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1237 
1238         done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1239         todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1240 
1241         tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1242 
1243         done_pkts = todo;
1244         while (todo--) {
1245                 idx = D_IDX(tx_ring, tx_ring->rd_p);
1246                 tx_ring->rd_p++;
1247 
1248                 done_bytes += tx_ring->txbufs[idx].real_len;
1249         }
1250 
1251         u64_stats_update_begin(&r_vec->tx_sync);
1252         r_vec->tx_bytes += done_bytes;
1253         r_vec->tx_pkts += done_pkts;
1254         u64_stats_update_end(&r_vec->tx_sync);
1255 
1256         WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1257                   "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1258                   tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1259 
1260         return done_all;
1261 }
1262 
1263 /**
1264  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1265  * @dp:         NFP Net data path struct
1266  * @tx_ring:    TX ring structure
1267  *
1268  * Assumes that the device is stopped, must be idempotent.
1269  */
1270 static void
1271 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1272 {
1273         const skb_frag_t *frag;
1274         struct netdev_queue *nd_q;
1275 
1276         while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1277                 struct nfp_net_tx_buf *tx_buf;
1278                 struct sk_buff *skb;
1279                 int idx, nr_frags;
1280 
1281                 idx = D_IDX(tx_ring, tx_ring->rd_p);
1282                 tx_buf = &tx_ring->txbufs[idx];
1283 
1284                 skb = tx_ring->txbufs[idx].skb;
1285                 nr_frags = skb_shinfo(skb)->nr_frags;
1286 
1287                 if (tx_buf->fidx == -1) {
1288                         /* unmap head */
1289                         dma_unmap_single(dp->dev, tx_buf->dma_addr,
1290                                          skb_headlen(skb), DMA_TO_DEVICE);
1291                 } else {
1292                         /* unmap fragment */
1293                         frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1294                         dma_unmap_page(dp->dev, tx_buf->dma_addr,
1295                                        skb_frag_size(frag), DMA_TO_DEVICE);
1296                 }
1297 
1298                 /* check for last gather fragment */
1299                 if (tx_buf->fidx == nr_frags - 1)
1300                         dev_kfree_skb_any(skb);
1301 
1302                 tx_buf->dma_addr = 0;
1303                 tx_buf->skb = NULL;
1304                 tx_buf->fidx = -2;
1305 
1306                 tx_ring->qcp_rd_p++;
1307                 tx_ring->rd_p++;
1308         }
1309 
1310         memset(tx_ring->txds, 0, tx_ring->size);
1311         tx_ring->wr_p = 0;
1312         tx_ring->rd_p = 0;
1313         tx_ring->qcp_rd_p = 0;
1314         tx_ring->wr_ptr_add = 0;
1315 
1316         if (tx_ring->is_xdp || !dp->netdev)
1317                 return;
1318 
1319         nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1320         netdev_tx_reset_queue(nd_q);
1321 }
1322 
1323 static void nfp_net_tx_timeout(struct net_device *netdev)
1324 {
1325         struct nfp_net *nn = netdev_priv(netdev);
1326         int i;
1327 
1328         for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1329                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1330                         continue;
1331                 nn_warn(nn, "TX timeout on ring: %d\n", i);
1332         }
1333         nn_warn(nn, "TX watchdog timeout\n");
1334 }
1335 
1336 /* Receive processing
1337  */
1338 static unsigned int
1339 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1340 {
1341         unsigned int fl_bufsz;
1342 
1343         fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1344         fl_bufsz += dp->rx_dma_off;
1345         if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1346                 fl_bufsz += NFP_NET_MAX_PREPEND;
1347         else
1348                 fl_bufsz += dp->rx_offset;
1349         fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1350 
1351         fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1352         fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1353 
1354         return fl_bufsz;
1355 }
1356 
1357 static void
1358 nfp_net_free_frag(void *frag, bool xdp)
1359 {
1360         if (!xdp)
1361                 skb_free_frag(frag);
1362         else
1363                 __free_page(virt_to_page(frag));
1364 }
1365 
1366 /**
1367  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1368  * @dp:         NFP Net data path struct
1369  * @dma_addr:   Pointer to storage for DMA address (output param)
1370  *
1371  * This function will allcate a new page frag, map it for DMA.
1372  *
1373  * Return: allocated page frag or NULL on failure.
1374  */
1375 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1376 {
1377         void *frag;
1378 
1379         if (!dp->xdp_prog) {
1380                 frag = netdev_alloc_frag(dp->fl_bufsz);
1381         } else {
1382                 struct page *page;
1383 
1384                 page = alloc_page(GFP_KERNEL);
1385                 frag = page ? page_address(page) : NULL;
1386         }
1387         if (!frag) {
1388                 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1389                 return NULL;
1390         }
1391 
1392         *dma_addr = nfp_net_dma_map_rx(dp, frag);
1393         if (dma_mapping_error(dp->dev, *dma_addr)) {
1394                 nfp_net_free_frag(frag, dp->xdp_prog);
1395                 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1396                 return NULL;
1397         }
1398 
1399         return frag;
1400 }
1401 
1402 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1403 {
1404         void *frag;
1405 
1406         if (!dp->xdp_prog) {
1407                 frag = napi_alloc_frag(dp->fl_bufsz);
1408                 if (unlikely(!frag))
1409                         return NULL;
1410         } else {
1411                 struct page *page;
1412 
1413                 page = dev_alloc_page();
1414                 if (unlikely(!page))
1415                         return NULL;
1416                 frag = page_address(page);
1417         }
1418 
1419         *dma_addr = nfp_net_dma_map_rx(dp, frag);
1420         if (dma_mapping_error(dp->dev, *dma_addr)) {
1421                 nfp_net_free_frag(frag, dp->xdp_prog);
1422                 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1423                 return NULL;
1424         }
1425 
1426         return frag;
1427 }
1428 
1429 /**
1430  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1431  * @dp:         NFP Net data path struct
1432  * @rx_ring:    RX ring structure
1433  * @frag:       page fragment buffer
1434  * @dma_addr:   DMA address of skb mapping
1435  */
1436 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1437                                 struct nfp_net_rx_ring *rx_ring,
1438                                 void *frag, dma_addr_t dma_addr)
1439 {
1440         unsigned int wr_idx;
1441 
1442         wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1443 
1444         nfp_net_dma_sync_dev_rx(dp, dma_addr);
1445 
1446         /* Stash SKB and DMA address away */
1447         rx_ring->rxbufs[wr_idx].frag = frag;
1448         rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1449 
1450         /* Fill freelist descriptor */
1451         rx_ring->rxds[wr_idx].fld.reserved = 0;
1452         rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1453         nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1454                               dma_addr + dp->rx_dma_off);
1455 
1456         rx_ring->wr_p++;
1457         if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1458                 /* Update write pointer of the freelist queue. Make
1459                  * sure all writes are flushed before telling the hardware.
1460                  */
1461                 wmb();
1462                 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1463         }
1464 }
1465 
1466 /**
1467  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1468  * @rx_ring:    RX ring structure
1469  *
1470  * Assumes that the device is stopped, must be idempotent.
1471  */
1472 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1473 {
1474         unsigned int wr_idx, last_idx;
1475 
1476         /* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1477          * kept at cnt - 1 FL bufs.
1478          */
1479         if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1480                 return;
1481 
1482         /* Move the empty entry to the end of the list */
1483         wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1484         last_idx = rx_ring->cnt - 1;
1485         rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1486         rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1487         rx_ring->rxbufs[last_idx].dma_addr = 0;
1488         rx_ring->rxbufs[last_idx].frag = NULL;
1489 
1490         memset(rx_ring->rxds, 0, rx_ring->size);
1491         rx_ring->wr_p = 0;
1492         rx_ring->rd_p = 0;
1493 }
1494 
1495 /**
1496  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1497  * @dp:         NFP Net data path struct
1498  * @rx_ring:    RX ring to remove buffers from
1499  *
1500  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1501  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1502  * to restore required ring geometry.
1503  */
1504 static void
1505 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1506                           struct nfp_net_rx_ring *rx_ring)
1507 {
1508         unsigned int i;
1509 
1510         for (i = 0; i < rx_ring->cnt - 1; i++) {
1511                 /* NULL skb can only happen when initial filling of the ring
1512                  * fails to allocate enough buffers and calls here to free
1513                  * already allocated ones.
1514                  */
1515                 if (!rx_ring->rxbufs[i].frag)
1516                         continue;
1517 
1518                 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1519                 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1520                 rx_ring->rxbufs[i].dma_addr = 0;
1521                 rx_ring->rxbufs[i].frag = NULL;
1522         }
1523 }
1524 
1525 /**
1526  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1527  * @dp:         NFP Net data path struct
1528  * @rx_ring:    RX ring to remove buffers from
1529  */
1530 static int
1531 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1532                            struct nfp_net_rx_ring *rx_ring)
1533 {
1534         struct nfp_net_rx_buf *rxbufs;
1535         unsigned int i;
1536 
1537         rxbufs = rx_ring->rxbufs;
1538 
1539         for (i = 0; i < rx_ring->cnt - 1; i++) {
1540                 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1541                 if (!rxbufs[i].frag) {
1542                         nfp_net_rx_ring_bufs_free(dp, rx_ring);
1543                         return -ENOMEM;
1544                 }
1545         }
1546 
1547         return 0;
1548 }
1549 
1550 /**
1551  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1552  * @dp:      NFP Net data path struct
1553  * @rx_ring: RX ring to fill
1554  */
1555 static void
1556 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1557                               struct nfp_net_rx_ring *rx_ring)
1558 {
1559         unsigned int i;
1560 
1561         for (i = 0; i < rx_ring->cnt - 1; i++)
1562                 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1563                                     rx_ring->rxbufs[i].dma_addr);
1564 }
1565 
1566 /**
1567  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1568  * @flags: RX descriptor flags field in CPU byte order
1569  */
1570 static int nfp_net_rx_csum_has_errors(u16 flags)
1571 {
1572         u16 csum_all_checked, csum_all_ok;
1573 
1574         csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1575         csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1576 
1577         return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1578 }
1579 
1580 /**
1581  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1582  * @dp:  NFP Net data path struct
1583  * @r_vec: per-ring structure
1584  * @rxd: Pointer to RX descriptor
1585  * @meta: Parsed metadata prepend
1586  * @skb: Pointer to SKB
1587  */
1588 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1589                             struct nfp_net_r_vector *r_vec,
1590                             struct nfp_net_rx_desc *rxd,
1591                             struct nfp_meta_parsed *meta, struct sk_buff *skb)
1592 {
1593         skb_checksum_none_assert(skb);
1594 
1595         if (!(dp->netdev->features & NETIF_F_RXCSUM))
1596                 return;
1597 
1598         if (meta->csum_type) {
1599                 skb->ip_summed = meta->csum_type;
1600                 skb->csum = meta->csum;
1601                 u64_stats_update_begin(&r_vec->rx_sync);
1602                 r_vec->hw_csum_rx_complete++;
1603                 u64_stats_update_end(&r_vec->rx_sync);
1604                 return;
1605         }
1606 
1607         if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1608                 u64_stats_update_begin(&r_vec->rx_sync);
1609                 r_vec->hw_csum_rx_error++;
1610                 u64_stats_update_end(&r_vec->rx_sync);
1611                 return;
1612         }
1613 
1614         /* Assume that the firmware will never report inner CSUM_OK unless outer
1615          * L4 headers were successfully parsed. FW will always report zero UDP
1616          * checksum as CSUM_OK.
1617          */
1618         if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1619             rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1620                 __skb_incr_checksum_unnecessary(skb);
1621                 u64_stats_update_begin(&r_vec->rx_sync);
1622                 r_vec->hw_csum_rx_ok++;
1623                 u64_stats_update_end(&r_vec->rx_sync);
1624         }
1625 
1626         if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1627             rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1628                 __skb_incr_checksum_unnecessary(skb);
1629                 u64_stats_update_begin(&r_vec->rx_sync);
1630                 r_vec->hw_csum_rx_inner_ok++;
1631                 u64_stats_update_end(&r_vec->rx_sync);
1632         }
1633 }
1634 
1635 static void
1636 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1637                  unsigned int type, __be32 *hash)
1638 {
1639         if (!(netdev->features & NETIF_F_RXHASH))
1640                 return;
1641 
1642         switch (type) {
1643         case NFP_NET_RSS_IPV4:
1644         case NFP_NET_RSS_IPV6:
1645         case NFP_NET_RSS_IPV6_EX:
1646                 meta->hash_type = PKT_HASH_TYPE_L3;
1647                 break;
1648         default:
1649                 meta->hash_type = PKT_HASH_TYPE_L4;
1650                 break;
1651         }
1652 
1653         meta->hash = get_unaligned_be32(hash);
1654 }
1655 
1656 static void
1657 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1658                       void *data, struct nfp_net_rx_desc *rxd)
1659 {
1660         struct nfp_net_rx_hash *rx_hash = data;
1661 
1662         if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1663                 return;
1664 
1665         nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1666                          &rx_hash->hash);
1667 }
1668 
1669 static void *
1670 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1671                    void *data, int meta_len)
1672 {
1673         u32 meta_info;
1674 
1675         meta_info = get_unaligned_be32(data);
1676         data += 4;
1677 
1678         while (meta_info) {
1679                 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1680                 case NFP_NET_META_HASH:
1681                         meta_info >>= NFP_NET_META_FIELD_SIZE;
1682                         nfp_net_set_hash(netdev, meta,
1683                                          meta_info & NFP_NET_META_FIELD_MASK,
1684                                          (__be32 *)data);
1685                         data += 4;
1686                         break;
1687                 case NFP_NET_META_MARK:
1688                         meta->mark = get_unaligned_be32(data);
1689                         data += 4;
1690                         break;
1691                 case NFP_NET_META_PORTID:
1692                         meta->portid = get_unaligned_be32(data);
1693                         data += 4;
1694                         break;
1695                 case NFP_NET_META_CSUM:
1696                         meta->csum_type = CHECKSUM_COMPLETE;
1697                         meta->csum =
1698                                 (__force __wsum)__get_unaligned_cpu32(data);
1699                         data += 4;
1700                         break;
1701                 default:
1702                         return NULL;
1703                 }
1704 
1705                 meta_info >>= NFP_NET_META_FIELD_SIZE;
1706         }
1707 
1708         return data;
1709 }
1710 
1711 static void
1712 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1713                 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1714                 struct sk_buff *skb)
1715 {
1716         u64_stats_update_begin(&r_vec->rx_sync);
1717         r_vec->rx_drops++;
1718         /* If we have both skb and rxbuf the replacement buffer allocation
1719          * must have failed, count this as an alloc failure.
1720          */
1721         if (skb && rxbuf)
1722                 r_vec->rx_replace_buf_alloc_fail++;
1723         u64_stats_update_end(&r_vec->rx_sync);
1724 
1725         /* skb is build based on the frag, free_skb() would free the frag
1726          * so to be able to reuse it we need an extra ref.
1727          */
1728         if (skb && rxbuf && skb->head == rxbuf->frag)
1729                 page_ref_inc(virt_to_head_page(rxbuf->frag));
1730         if (rxbuf)
1731                 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1732         if (skb)
1733                 dev_kfree_skb_any(skb);
1734 }
1735 
1736 static bool
1737 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1738                    struct nfp_net_tx_ring *tx_ring,
1739                    struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1740                    unsigned int pkt_len, bool *completed)
1741 {
1742         struct nfp_net_tx_buf *txbuf;
1743         struct nfp_net_tx_desc *txd;
1744         int wr_idx;
1745 
1746         if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1747                 if (!*completed) {
1748                         nfp_net_xdp_complete(tx_ring);
1749                         *completed = true;
1750                 }
1751 
1752                 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1753                         nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1754                                         NULL);
1755                         return false;
1756                 }
1757         }
1758 
1759         wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1760 
1761         /* Stash the soft descriptor of the head then initialize it */
1762         txbuf = &tx_ring->txbufs[wr_idx];
1763 
1764         nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1765 
1766         txbuf->frag = rxbuf->frag;
1767         txbuf->dma_addr = rxbuf->dma_addr;
1768         txbuf->fidx = -1;
1769         txbuf->pkt_cnt = 1;
1770         txbuf->real_len = pkt_len;
1771 
1772         dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1773                                    pkt_len, DMA_BIDIRECTIONAL);
1774 
1775         /* Build TX descriptor */
1776         txd = &tx_ring->txds[wr_idx];
1777         txd->offset_eop = PCIE_DESC_TX_EOP;
1778         txd->dma_len = cpu_to_le16(pkt_len);
1779         nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1780         txd->data_len = cpu_to_le16(pkt_len);
1781 
1782         txd->flags = 0;
1783         txd->mss = 0;
1784         txd->lso_hdrlen = 0;
1785 
1786         tx_ring->wr_p++;
1787         tx_ring->wr_ptr_add++;
1788         return true;
1789 }
1790 
1791 /**
1792  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1793  * @rx_ring:   RX ring to receive from
1794  * @budget:    NAPI budget
1795  *
1796  * Note, this function is separated out from the napi poll function to
1797  * more cleanly separate packet receive code from other bookkeeping
1798  * functions performed in the napi poll function.
1799  *
1800  * Return: Number of packets received.
1801  */
1802 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1803 {
1804         struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1805         struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1806         struct nfp_net_tx_ring *tx_ring;
1807         struct bpf_prog *xdp_prog;
1808         bool xdp_tx_cmpl = false;
1809         unsigned int true_bufsz;
1810         struct sk_buff *skb;
1811         int pkts_polled = 0;
1812         struct xdp_buff xdp;
1813         int idx;
1814 
1815         rcu_read_lock();
1816         xdp_prog = READ_ONCE(dp->xdp_prog);
1817         true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1818         xdp.rxq = &rx_ring->xdp_rxq;
1819         tx_ring = r_vec->xdp_ring;
1820 
1821         while (pkts_polled < budget) {
1822                 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1823                 struct nfp_net_rx_buf *rxbuf;
1824                 struct nfp_net_rx_desc *rxd;
1825                 struct nfp_meta_parsed meta;
1826                 bool redir_egress = false;
1827                 struct net_device *netdev;
1828                 dma_addr_t new_dma_addr;
1829                 u32 meta_len_xdp = 0;
1830                 void *new_frag;
1831 
1832                 idx = D_IDX(rx_ring, rx_ring->rd_p);
1833 
1834                 rxd = &rx_ring->rxds[idx];
1835                 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1836                         break;
1837 
1838                 /* Memory barrier to ensure that we won't do other reads
1839                  * before the DD bit.
1840                  */
1841                 dma_rmb();
1842 
1843                 memset(&meta, 0, sizeof(meta));
1844 
1845                 rx_ring->rd_p++;
1846                 pkts_polled++;
1847 
1848                 rxbuf = &rx_ring->rxbufs[idx];
1849                 /*         < meta_len >
1850                  *  <-- [rx_offset] -->
1851                  *  ---------------------------------------------------------
1852                  * | [XX] |  metadata  |             packet           | XXXX |
1853                  *  ---------------------------------------------------------
1854                  *         <---------------- data_len --------------->
1855                  *
1856                  * The rx_offset is fixed for all packets, the meta_len can vary
1857                  * on a packet by packet basis. If rx_offset is set to zero
1858                  * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1859                  * buffer and is immediately followed by the packet (no [XX]).
1860                  */
1861                 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1862                 data_len = le16_to_cpu(rxd->rxd.data_len);
1863                 pkt_len = data_len - meta_len;
1864 
1865                 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1866                 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1867                         pkt_off += meta_len;
1868                 else
1869                         pkt_off += dp->rx_offset;
1870                 meta_off = pkt_off - meta_len;
1871 
1872                 /* Stats update */
1873                 u64_stats_update_begin(&r_vec->rx_sync);
1874                 r_vec->rx_pkts++;
1875                 r_vec->rx_bytes += pkt_len;
1876                 u64_stats_update_end(&r_vec->rx_sync);
1877 
1878                 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1879                              (dp->rx_offset && meta_len > dp->rx_offset))) {
1880                         nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1881                                    meta_len);
1882                         nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1883                         continue;
1884                 }
1885 
1886                 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1887                                         data_len);
1888 
1889                 if (!dp->chained_metadata_format) {
1890                         nfp_net_set_hash_desc(dp->netdev, &meta,
1891                                               rxbuf->frag + meta_off, rxd);
1892                 } else if (meta_len) {
1893                         void *end;
1894 
1895                         end = nfp_net_parse_meta(dp->netdev, &meta,
1896                                                  rxbuf->frag + meta_off,
1897                                                  meta_len);
1898                         if (unlikely(end != rxbuf->frag + pkt_off)) {
1899                                 nn_dp_warn(dp, "invalid RX packet metadata\n");
1900                                 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1901                                                 NULL);
1902                                 continue;
1903                         }
1904                 }
1905 
1906                 if (xdp_prog && !meta.portid) {
1907                         void *orig_data = rxbuf->frag + pkt_off;
1908                         unsigned int dma_off;
1909                         int act;
1910 
1911                         xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1912                         xdp.data = orig_data;
1913                         xdp.data_meta = orig_data;
1914                         xdp.data_end = orig_data + pkt_len;
1915 
1916                         act = bpf_prog_run_xdp(xdp_prog, &xdp);
1917 
1918                         pkt_len = xdp.data_end - xdp.data;
1919                         pkt_off += xdp.data - orig_data;
1920 
1921                         switch (act) {
1922                         case XDP_PASS:
1923                                 meta_len_xdp = xdp.data - xdp.data_meta;
1924                                 break;
1925                         case XDP_TX:
1926                                 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1927                                 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1928                                                                  tx_ring, rxbuf,
1929                                                                  dma_off,
1930                                                                  pkt_len,
1931                                                                  &xdp_tx_cmpl)))
1932                                         trace_xdp_exception(dp->netdev,
1933                                                             xdp_prog, act);
1934                                 continue;
1935                         default:
1936                                 bpf_warn_invalid_xdp_action(act);
1937                                 /* fall through */
1938                         case XDP_ABORTED:
1939                                 trace_xdp_exception(dp->netdev, xdp_prog, act);
1940                                 /* fall through */
1941                         case XDP_DROP:
1942                                 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1943                                                     rxbuf->dma_addr);
1944                                 continue;
1945                         }
1946                 }
1947 
1948                 if (likely(!meta.portid)) {
1949                         netdev = dp->netdev;
1950                 } else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1951                         struct nfp_net *nn = netdev_priv(dp->netdev);
1952 
1953                         nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1954                                             pkt_len);
1955                         nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1956                                             rxbuf->dma_addr);
1957                         continue;
1958                 } else {
1959                         struct nfp_net *nn;
1960 
1961                         nn = netdev_priv(dp->netdev);
1962                         netdev = nfp_app_dev_get(nn->app, meta.portid,
1963                                                  &redir_egress);
1964                         if (unlikely(!netdev)) {
1965                                 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1966                                                 NULL);
1967                                 continue;
1968                         }
1969 
1970                         if (nfp_netdev_is_nfp_repr(netdev))
1971                                 nfp_repr_inc_rx_stats(netdev, pkt_len);
1972                 }
1973 
1974                 skb = build_skb(rxbuf->frag, true_bufsz);
1975                 if (unlikely(!skb)) {
1976                         nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1977                         continue;
1978                 }
1979                 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1980                 if (unlikely(!new_frag)) {
1981                         nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1982                         continue;
1983                 }
1984 
1985                 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1986 
1987                 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1988 
1989                 skb_reserve(skb, pkt_off);
1990                 skb_put(skb, pkt_len);
1991 
1992                 skb->mark = meta.mark;
1993                 skb_set_hash(skb, meta.hash, meta.hash_type);
1994 
1995                 skb_record_rx_queue(skb, rx_ring->idx);
1996                 skb->protocol = eth_type_trans(skb, netdev);
1997 
1998                 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1999 
2000 #ifdef CONFIG_TLS_DEVICE
2001                 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
2002                         skb->decrypted = true;
2003                         u64_stats_update_begin(&r_vec->rx_sync);
2004                         r_vec->hw_tls_rx++;
2005                         u64_stats_update_end(&r_vec->rx_sync);
2006                 }
2007 #endif
2008 
2009                 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
2010                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2011                                                le16_to_cpu(rxd->rxd.vlan));
2012                 if (meta_len_xdp)
2013                         skb_metadata_set(skb, meta_len_xdp);
2014 
2015                 if (likely(!redir_egress)) {
2016                         napi_gro_receive(&rx_ring->r_vec->napi, skb);
2017                 } else {
2018                         skb->dev = netdev;
2019                         skb_reset_network_header(skb);
2020                         __skb_push(skb, ETH_HLEN);
2021                         dev_queue_xmit(skb);
2022                 }
2023         }
2024 
2025         if (xdp_prog) {
2026                 if (tx_ring->wr_ptr_add)
2027                         nfp_net_tx_xmit_more_flush(tx_ring);
2028                 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2029                          !xdp_tx_cmpl)
2030                         if (!nfp_net_xdp_complete(tx_ring))
2031                                 pkts_polled = budget;
2032         }
2033         rcu_read_unlock();
2034 
2035         return pkts_polled;
2036 }
2037 
2038 /**
2039  * nfp_net_poll() - napi poll function
2040  * @napi:    NAPI structure
2041  * @budget:  NAPI budget
2042  *
2043  * Return: number of packets polled.
2044  */
2045 static int nfp_net_poll(struct napi_struct *napi, int budget)
2046 {
2047         struct nfp_net_r_vector *r_vec =
2048                 container_of(napi, struct nfp_net_r_vector, napi);
2049         unsigned int pkts_polled = 0;
2050 
2051         if (r_vec->tx_ring)
2052                 nfp_net_tx_complete(r_vec->tx_ring, budget);
2053         if (r_vec->rx_ring)
2054                 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2055 
2056         if (pkts_polled < budget)
2057                 if (napi_complete_done(napi, pkts_polled))
2058                         nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2059 
2060         return pkts_polled;
2061 }
2062 
2063 /* Control device data path
2064  */
2065 
2066 static bool
2067 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2068                 struct sk_buff *skb, bool old)
2069 {
2070         unsigned int real_len = skb->len, meta_len = 0;
2071         struct nfp_net_tx_ring *tx_ring;
2072         struct nfp_net_tx_buf *txbuf;
2073         struct nfp_net_tx_desc *txd;
2074         struct nfp_net_dp *dp;
2075         dma_addr_t dma_addr;
2076         int wr_idx;
2077 
2078         dp = &r_vec->nfp_net->dp;
2079         tx_ring = r_vec->tx_ring;
2080 
2081         if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2082                 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2083                 goto err_free;
2084         }
2085 
2086         if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2087                 u64_stats_update_begin(&r_vec->tx_sync);
2088                 r_vec->tx_busy++;
2089                 u64_stats_update_end(&r_vec->tx_sync);
2090                 if (!old)
2091                         __skb_queue_tail(&r_vec->queue, skb);
2092                 else
2093                         __skb_queue_head(&r_vec->queue, skb);
2094                 return true;
2095         }
2096 
2097         if (nfp_app_ctrl_has_meta(nn->app)) {
2098                 if (unlikely(skb_headroom(skb) < 8)) {
2099                         nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2100                         goto err_free;
2101                 }
2102                 meta_len = 8;
2103                 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2104                 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2105         }
2106 
2107         /* Start with the head skbuf */
2108         dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2109                                   DMA_TO_DEVICE);
2110         if (dma_mapping_error(dp->dev, dma_addr))
2111                 goto err_dma_warn;
2112 
2113         wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2114 
2115         /* Stash the soft descriptor of the head then initialize it */
2116         txbuf = &tx_ring->txbufs[wr_idx];
2117         txbuf->skb = skb;
2118         txbuf->dma_addr = dma_addr;
2119         txbuf->fidx = -1;
2120         txbuf->pkt_cnt = 1;
2121         txbuf->real_len = real_len;
2122 
2123         /* Build TX descriptor */
2124         txd = &tx_ring->txds[wr_idx];
2125         txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2126         txd->dma_len = cpu_to_le16(skb_headlen(skb));
2127         nfp_desc_set_dma_addr(txd, dma_addr);
2128         txd->data_len = cpu_to_le16(skb->len);
2129 
2130         txd->flags = 0;
2131         txd->mss = 0;
2132         txd->lso_hdrlen = 0;
2133 
2134         tx_ring->wr_p++;
2135         tx_ring->wr_ptr_add++;
2136         nfp_net_tx_xmit_more_flush(tx_ring);
2137 
2138         return false;
2139 
2140 err_dma_warn:
2141         nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2142 err_free:
2143         u64_stats_update_begin(&r_vec->tx_sync);
2144         r_vec->tx_errors++;
2145         u64_stats_update_end(&r_vec->tx_sync);
2146         dev_kfree_skb_any(skb);
2147         return false;
2148 }
2149 
2150 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2151 {
2152         struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2153 
2154         return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2155 }
2156 
2157 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2158 {
2159         struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2160         bool ret;
2161 
2162         spin_lock_bh(&r_vec->lock);
2163         ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2164         spin_unlock_bh(&r_vec->lock);
2165 
2166         return ret;
2167 }
2168 
2169 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2170 {
2171         struct sk_buff *skb;
2172 
2173         while ((skb = __skb_dequeue(&r_vec->queue)))
2174                 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2175                         return;
2176 }
2177 
2178 static bool
2179 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2180 {
2181         u32 meta_type, meta_tag;
2182 
2183         if (!nfp_app_ctrl_has_meta(nn->app))
2184                 return !meta_len;
2185 
2186         if (meta_len != 8)
2187                 return false;
2188 
2189         meta_type = get_unaligned_be32(data);
2190         meta_tag = get_unaligned_be32(data + 4);
2191 
2192         return (meta_type == NFP_NET_META_PORTID &&
2193                 meta_tag == NFP_META_PORT_ID_CTRL);
2194 }
2195 
2196 static bool
2197 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2198                 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2199 {
2200         unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2201         struct nfp_net_rx_buf *rxbuf;
2202         struct nfp_net_rx_desc *rxd;
2203         dma_addr_t new_dma_addr;
2204         struct sk_buff *skb;
2205         void *new_frag;
2206         int idx;
2207 
2208         idx = D_IDX(rx_ring, rx_ring->rd_p);
2209 
2210         rxd = &rx_ring->rxds[idx];
2211         if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2212                 return false;
2213 
2214         /* Memory barrier to ensure that we won't do other reads
2215          * before the DD bit.
2216          */
2217         dma_rmb();
2218 
2219         rx_ring->rd_p++;
2220 
2221         rxbuf = &rx_ring->rxbufs[idx];
2222         meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2223         data_len = le16_to_cpu(rxd->rxd.data_len);
2224         pkt_len = data_len - meta_len;
2225 
2226         pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2227         if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2228                 pkt_off += meta_len;
2229         else
2230                 pkt_off += dp->rx_offset;
2231         meta_off = pkt_off - meta_len;
2232 
2233         /* Stats update */
2234         u64_stats_update_begin(&r_vec->rx_sync);
2235         r_vec->rx_pkts++;
2236         r_vec->rx_bytes += pkt_len;
2237         u64_stats_update_end(&r_vec->rx_sync);
2238 
2239         nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
2240 
2241         if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2242                 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2243                            meta_len);
2244                 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2245                 return true;
2246         }
2247 
2248         skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2249         if (unlikely(!skb)) {
2250                 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2251                 return true;
2252         }
2253         new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2254         if (unlikely(!new_frag)) {
2255                 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2256                 return true;
2257         }
2258 
2259         nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2260 
2261         nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2262 
2263         skb_reserve(skb, pkt_off);
2264         skb_put(skb, pkt_len);
2265 
2266         nfp_app_ctrl_rx(nn->app, skb);
2267 
2268         return true;
2269 }
2270 
2271 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2272 {
2273         struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2274         struct nfp_net *nn = r_vec->nfp_net;
2275         struct nfp_net_dp *dp = &nn->dp;
2276         unsigned int budget = 512;
2277 
2278         while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2279                 continue;
2280 
2281         return budget;
2282 }
2283 
2284 static void nfp_ctrl_poll(unsigned long arg)
2285 {
2286         struct nfp_net_r_vector *r_vec = (void *)arg;
2287 
2288         spin_lock(&r_vec->lock);
2289         nfp_net_tx_complete(r_vec->tx_ring, 0);
2290         __nfp_ctrl_tx_queued(r_vec);
2291         spin_unlock(&r_vec->lock);
2292 
2293         if (nfp_ctrl_rx(r_vec)) {
2294                 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2295         } else {
2296                 tasklet_schedule(&r_vec->tasklet);
2297                 nn_dp_warn(&r_vec->nfp_net->dp,
2298                            "control message budget exceeded!\n");
2299         }
2300 }
2301 
2302 /* Setup and Configuration
2303  */
2304 
2305 /**
2306  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2307  * @nn:         NFP Network structure
2308  */
2309 static void nfp_net_vecs_init(struct nfp_net *nn)
2310 {
2311         struct nfp_net_r_vector *r_vec;
2312         int r;
2313 
2314         nn->lsc_handler = nfp_net_irq_lsc;
2315         nn->exn_handler = nfp_net_irq_exn;
2316 
2317         for (r = 0; r < nn->max_r_vecs; r++) {
2318                 struct msix_entry *entry;
2319 
2320                 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2321 
2322                 r_vec = &nn->r_vecs[r];
2323                 r_vec->nfp_net = nn;
2324                 r_vec->irq_entry = entry->entry;
2325                 r_vec->irq_vector = entry->vector;
2326 
2327                 if (nn->dp.netdev) {
2328                         r_vec->handler = nfp_net_irq_rxtx;
2329                 } else {
2330                         r_vec->handler = nfp_ctrl_irq_rxtx;
2331 
2332                         __skb_queue_head_init(&r_vec->queue);
2333                         spin_lock_init(&r_vec->lock);
2334                         tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2335                                      (unsigned long)r_vec);
2336                         tasklet_disable(&r_vec->tasklet);
2337                 }
2338 
2339                 cpumask_set_cpu(r, &r_vec->affinity_mask);
2340         }
2341 }
2342 
2343 /**
2344  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2345  * @tx_ring:   TX ring to free
2346  */
2347 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2348 {
2349         struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2350         struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2351 
2352         kvfree(tx_ring->txbufs);
2353 
2354         if (tx_ring->txds)
2355                 dma_free_coherent(dp->dev, tx_ring->size,
2356                                   tx_ring->txds, tx_ring->dma);
2357 
2358         tx_ring->cnt = 0;
2359         tx_ring->txbufs = NULL;
2360         tx_ring->txds = NULL;
2361         tx_ring->dma = 0;
2362         tx_ring->size = 0;
2363 }
2364 
2365 /**
2366  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2367  * @dp:        NFP Net data path struct
2368  * @tx_ring:   TX Ring structure to allocate
2369  *
2370  * Return: 0 on success, negative errno otherwise.
2371  */
2372 static int
2373 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2374 {
2375         struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2376 
2377         tx_ring->cnt = dp->txd_cnt;
2378 
2379         tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2380         tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2381                                            &tx_ring->dma,
2382                                            GFP_KERNEL | __GFP_NOWARN);
2383         if (!tx_ring->txds) {
2384                 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2385                             tx_ring->cnt);
2386                 goto err_alloc;
2387         }
2388 
2389         tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2390                                    GFP_KERNEL);
2391         if (!tx_ring->txbufs)
2392                 goto err_alloc;
2393 
2394         if (!tx_ring->is_xdp && dp->netdev)
2395                 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2396                                     tx_ring->idx);
2397 
2398         return 0;
2399 
2400 err_alloc:
2401         nfp_net_tx_ring_free(tx_ring);
2402         return -ENOMEM;
2403 }
2404 
2405 static void
2406 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2407                           struct nfp_net_tx_ring *tx_ring)
2408 {
2409         unsigned int i;
2410 
2411         if (!tx_ring->is_xdp)
2412                 return;
2413 
2414         for (i = 0; i < tx_ring->cnt; i++) {
2415                 if (!tx_ring->txbufs[i].frag)
2416                         return;
2417 
2418                 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2419                 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2420         }
2421 }
2422 
2423 static int
2424 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2425                            struct nfp_net_tx_ring *tx_ring)
2426 {
2427         struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2428         unsigned int i;
2429 
2430         if (!tx_ring->is_xdp)
2431                 return 0;
2432 
2433         for (i = 0; i < tx_ring->cnt; i++) {
2434                 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2435                 if (!txbufs[i].frag) {
2436                         nfp_net_tx_ring_bufs_free(dp, tx_ring);
2437                         return -ENOMEM;
2438                 }
2439         }
2440 
2441         return 0;
2442 }
2443 
2444 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2445 {
2446         unsigned int r;
2447 
2448         dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2449                                GFP_KERNEL);
2450         if (!dp->tx_rings)
2451                 return -ENOMEM;
2452 
2453         for (r = 0; r < dp->num_tx_rings; r++) {
2454                 int bias = 0;
2455 
2456                 if (r >= dp->num_stack_tx_rings)
2457                         bias = dp->num_stack_tx_rings;
2458 
2459                 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2460                                      r, bias);
2461 
2462                 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2463                         goto err_free_prev;
2464 
2465                 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2466                         goto err_free_ring;
2467         }
2468 
2469         return 0;
2470 
2471 err_free_prev:
2472         while (r--) {
2473                 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2474 err_free_ring:
2475                 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2476         }
2477         kfree(dp->tx_rings);
2478         return -ENOMEM;
2479 }
2480 
2481 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2482 {
2483         unsigned int r;
2484 
2485         for (r = 0; r < dp->num_tx_rings; r++) {
2486                 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2487                 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2488         }
2489 
2490         kfree(dp->tx_rings);
2491 }
2492 
2493 /**
2494  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2495  * @rx_ring:  RX ring to free
2496  */
2497 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2498 {
2499         struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2500         struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2501 
2502         if (dp->netdev)
2503                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2504         kvfree(rx_ring->rxbufs);
2505 
2506         if (rx_ring->rxds)
2507                 dma_free_coherent(dp->dev, rx_ring->size,
2508                                   rx_ring->rxds, rx_ring->dma);
2509 
2510         rx_ring->cnt = 0;
2511         rx_ring->rxbufs = NULL;
2512         rx_ring->rxds = NULL;
2513         rx_ring->dma = 0;
2514         rx_ring->size = 0;
2515 }
2516 
2517 /**
2518  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2519  * @dp:       NFP Net data path struct
2520  * @rx_ring:  RX ring to allocate
2521  *
2522  * Return: 0 on success, negative errno otherwise.
2523  */
2524 static int
2525 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2526 {
2527         int err;
2528 
2529         if (dp->netdev) {
2530                 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2531                                        rx_ring->idx);
2532                 if (err < 0)
2533                         return err;
2534         }
2535 
2536         rx_ring->cnt = dp->rxd_cnt;
2537         rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2538         rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2539                                            &rx_ring->dma,
2540                                            GFP_KERNEL | __GFP_NOWARN);
2541         if (!rx_ring->rxds) {
2542                 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2543                             rx_ring->cnt);
2544                 goto err_alloc;
2545         }
2546 
2547         rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2548                                    GFP_KERNEL);
2549         if (!rx_ring->rxbufs)
2550                 goto err_alloc;
2551 
2552         return 0;
2553 
2554 err_alloc:
2555         nfp_net_rx_ring_free(rx_ring);
2556         return -ENOMEM;
2557 }
2558 
2559 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2560 {
2561         unsigned int r;
2562 
2563         dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2564                                GFP_KERNEL);
2565         if (!dp->rx_rings)
2566                 return -ENOMEM;
2567 
2568         for (r = 0; r < dp->num_rx_rings; r++) {
2569                 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2570 
2571                 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2572                         goto err_free_prev;
2573 
2574                 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2575                         goto err_free_ring;
2576         }
2577 
2578         return 0;
2579 
2580 err_free_prev:
2581         while (r--) {
2582                 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2583 err_free_ring:
2584                 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2585         }
2586         kfree(dp->rx_rings);
2587         return -ENOMEM;
2588 }
2589 
2590 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2591 {
2592         unsigned int r;
2593 
2594         for (r = 0; r < dp->num_rx_rings; r++) {
2595                 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2596                 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2597         }
2598 
2599         kfree(dp->rx_rings);
2600 }
2601 
2602 static void
2603 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2604                             struct nfp_net_r_vector *r_vec, int idx)
2605 {
2606         r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2607         r_vec->tx_ring =
2608                 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2609 
2610         r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2611                 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2612 }
2613 
2614 static int
2615 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2616                        int idx)
2617 {
2618         int err;
2619 
2620         /* Setup NAPI */
2621         if (nn->dp.netdev)
2622                 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2623                                nfp_net_poll, NAPI_POLL_WEIGHT);
2624         else
2625                 tasklet_enable(&r_vec->tasklet);
2626 
2627         snprintf(r_vec->name, sizeof(r_vec->name),
2628                  "%s-rxtx-%d", nfp_net_name(nn), idx);
2629         err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2630                           r_vec);
2631         if (err) {
2632                 if (nn->dp.netdev)
2633                         netif_napi_del(&r_vec->napi);
2634                 else
2635                         tasklet_disable(&r_vec->tasklet);
2636 
2637                 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2638                 return err;
2639         }
2640         disable_irq(r_vec->irq_vector);
2641 
2642         irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2643 
2644         nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2645                r_vec->irq_entry);
2646 
2647         return 0;
2648 }
2649 
2650 static void
2651 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2652 {
2653         irq_set_affinity_hint(r_vec->irq_vector, NULL);
2654         if (nn->dp.netdev)
2655                 netif_napi_del(&r_vec->napi);
2656         else
2657                 tasklet_disable(&r_vec->tasklet);
2658 
2659         free_irq(r_vec->irq_vector, r_vec);
2660 }
2661 
2662 /**
2663  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2664  * @nn:      NFP Net device to reconfigure
2665  */
2666 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2667 {
2668         int i;
2669 
2670         for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2671                 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2672                           get_unaligned_le32(nn->rss_itbl + i));
2673 }
2674 
2675 /**
2676  * nfp_net_rss_write_key() - Write RSS hash key to device
2677  * @nn:      NFP Net device to reconfigure
2678  */
2679 void nfp_net_rss_write_key(struct nfp_net *nn)
2680 {
2681         int i;
2682 
2683         for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2684                 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2685                           get_unaligned_le32(nn->rss_key + i));
2686 }
2687 
2688 /**
2689  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2690  * @nn:      NFP Net device to reconfigure
2691  */
2692 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2693 {
2694         u8 i;
2695         u32 factor;
2696         u32 value;
2697 
2698         /* Compute factor used to convert coalesce '_usecs' parameters to
2699          * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2700          * count.
2701          */
2702         factor = nn->tlv_caps.me_freq_mhz / 16;
2703 
2704         /* copy RX interrupt coalesce parameters */
2705         value = (nn->rx_coalesce_max_frames << 16) |
2706                 (factor * nn->rx_coalesce_usecs);
2707         for (i = 0; i < nn->dp.num_rx_rings; i++)
2708                 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2709 
2710         /* copy TX interrupt coalesce parameters */
2711         value = (nn->tx_coalesce_max_frames << 16) |
2712                 (factor * nn->tx_coalesce_usecs);
2713         for (i = 0; i < nn->dp.num_tx_rings; i++)
2714                 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2715 }
2716 
2717 /**
2718  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2719  * @nn:      NFP Net device to reconfigure
2720  * @addr:    MAC address to write
2721  *
2722  * Writes the MAC address from the netdev to the device control BAR.  Does not
2723  * perform the required reconfig.  We do a bit of byte swapping dance because
2724  * firmware is LE.
2725  */
2726 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2727 {
2728         nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2729         nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2730 }
2731 
2732 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2733 {
2734         nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2735         nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2736         nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2737 
2738         nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2739         nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2740         nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2741 }
2742 
2743 /**
2744  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2745  * @nn:      NFP Net device to reconfigure
2746  *
2747  * Warning: must be fully idempotent.
2748  */
2749 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2750 {
2751         u32 new_ctrl, update;
2752         unsigned int r;
2753         int err;
2754 
2755         new_ctrl = nn->dp.ctrl;
2756         new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2757         update = NFP_NET_CFG_UPDATE_GEN;
2758         update |= NFP_NET_CFG_UPDATE_MSIX;
2759         update |= NFP_NET_CFG_UPDATE_RING;
2760 
2761         if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2762                 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2763 
2764         nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2765         nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2766 
2767         nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2768         err = nfp_net_reconfig(nn, update);
2769         if (err)
2770                 nn_err(nn, "Could not disable device: %d\n", err);
2771 
2772         for (r = 0; r < nn->dp.num_rx_rings; r++)
2773                 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2774         for (r = 0; r < nn->dp.num_tx_rings; r++)
2775                 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2776         for (r = 0; r < nn->dp.num_r_vecs; r++)
2777                 nfp_net_vec_clear_ring_data(nn, r);
2778 
2779         nn->dp.ctrl = new_ctrl;
2780 }
2781 
2782 static void
2783 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2784                              struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2785 {
2786         /* Write the DMA address, size and MSI-X info to the device */
2787         nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2788         nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2789         nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2790 }
2791 
2792 static void
2793 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2794                              struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2795 {
2796         nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2797         nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2798         nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2799 }
2800 
2801 /**
2802  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2803  * @nn:      NFP Net device to reconfigure
2804  */
2805 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2806 {
2807         u32 bufsz, new_ctrl, update = 0;
2808         unsigned int r;
2809         int err;
2810 
2811         new_ctrl = nn->dp.ctrl;
2812 
2813         if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2814                 nfp_net_rss_write_key(nn);
2815                 nfp_net_rss_write_itbl(nn);
2816                 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2817                 update |= NFP_NET_CFG_UPDATE_RSS;
2818         }
2819 
2820         if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2821                 nfp_net_coalesce_write_cfg(nn);
2822                 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2823         }
2824 
2825         for (r = 0; r < nn->dp.num_tx_rings; r++)
2826                 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2827         for (r = 0; r < nn->dp.num_rx_rings; r++)
2828                 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2829 
2830         nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2831                   0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2832 
2833         nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2834                   0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2835 
2836         if (nn->dp.netdev)
2837                 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2838 
2839         nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2840 
2841         bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2842         nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2843 
2844         /* Enable device */
2845         new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2846         update |= NFP_NET_CFG_UPDATE_GEN;
2847         update |= NFP_NET_CFG_UPDATE_MSIX;
2848         update |= NFP_NET_CFG_UPDATE_RING;
2849         if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2850                 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2851 
2852         nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2853         err = nfp_net_reconfig(nn, update);
2854         if (err) {
2855                 nfp_net_clear_config_and_disable(nn);
2856                 return err;
2857         }
2858 
2859         nn->dp.ctrl = new_ctrl;
2860 
2861         for (r = 0; r < nn->dp.num_rx_rings; r++)
2862                 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2863 
2864         /* Since reconfiguration requests while NFP is down are ignored we
2865          * have to wipe the entire VXLAN configuration and reinitialize it.
2866          */
2867         if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2868                 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2869                 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2870                 udp_tunnel_get_rx_info(nn->dp.netdev);
2871         }
2872 
2873         return 0;
2874 }
2875 
2876 /**
2877  * nfp_net_close_stack() - Quiesce the stack (part of close)
2878  * @nn:      NFP Net device to reconfigure
2879  */
2880 static void nfp_net_close_stack(struct nfp_net *nn)
2881 {
2882         unsigned int r;
2883 
2884         disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2885         netif_carrier_off(nn->dp.netdev);
2886         nn->link_up = false;
2887 
2888         for (r = 0; r < nn->dp.num_r_vecs; r++) {
2889                 disable_irq(nn->r_vecs[r].irq_vector);
2890                 napi_disable(&nn->r_vecs[r].napi);
2891         }
2892 
2893         netif_tx_disable(nn->dp.netdev);
2894 }
2895 
2896 /**
2897  * nfp_net_close_free_all() - Free all runtime resources
2898  * @nn:      NFP Net device to reconfigure
2899  */
2900 static void nfp_net_close_free_all(struct nfp_net *nn)
2901 {
2902         unsigned int r;
2903 
2904         nfp_net_tx_rings_free(&nn->dp);
2905         nfp_net_rx_rings_free(&nn->dp);
2906 
2907         for (r = 0; r < nn->dp.num_r_vecs; r++)
2908                 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2909 
2910         nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2911         nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2912 }
2913 
2914 /**
2915  * nfp_net_netdev_close() - Called when the device is downed
2916  * @netdev:      netdev structure
2917  */
2918 static int nfp_net_netdev_close(struct net_device *netdev)
2919 {
2920         struct nfp_net *nn = netdev_priv(netdev);
2921 
2922         /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2923          */
2924         nfp_net_close_stack(nn);
2925 
2926         /* Step 2: Tell NFP
2927          */
2928         nfp_net_clear_config_and_disable(nn);
2929         nfp_port_configure(netdev, false);
2930 
2931         /* Step 3: Free resources
2932          */
2933         nfp_net_close_free_all(nn);
2934 
2935         nn_dbg(nn, "%s down", netdev->name);
2936         return 0;
2937 }
2938 
2939 void nfp_ctrl_close(struct nfp_net *nn)
2940 {
2941         int r;
2942 
2943         rtnl_lock();
2944 
2945         for (r = 0; r < nn->dp.num_r_vecs; r++) {
2946                 disable_irq(nn->r_vecs[r].irq_vector);
2947                 tasklet_disable(&nn->r_vecs[r].tasklet);
2948         }
2949 
2950         nfp_net_clear_config_and_disable(nn);
2951 
2952         nfp_net_close_free_all(nn);
2953 
2954         rtnl_unlock();
2955 }
2956 
2957 /**
2958  * nfp_net_open_stack() - Start the device from stack's perspective
2959  * @nn:      NFP Net device to reconfigure
2960  */
2961 static void nfp_net_open_stack(struct nfp_net *nn)
2962 {
2963         unsigned int r;
2964 
2965         for (r = 0; r < nn->dp.num_r_vecs; r++) {
2966                 napi_enable(&nn->r_vecs[r].napi);
2967                 enable_irq(nn->r_vecs[r].irq_vector);
2968         }
2969 
2970         netif_tx_wake_all_queues(nn->dp.netdev);
2971 
2972         enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2973         nfp_net_read_link_status(nn);
2974 }
2975 
2976 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2977 {
2978         int err, r;
2979 
2980         err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2981                                       nn->exn_name, sizeof(nn->exn_name),
2982                                       NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2983         if (err)
2984                 return err;
2985         err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2986                                       nn->lsc_name, sizeof(nn->lsc_name),
2987                                       NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2988         if (err)
2989                 goto err_free_exn;
2990         disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2991 
2992         for (r = 0; r < nn->dp.num_r_vecs; r++) {
2993                 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2994                 if (err)
2995                         goto err_cleanup_vec_p;
2996         }
2997 
2998         err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2999         if (err)
3000                 goto err_cleanup_vec;
3001 
3002         err = nfp_net_tx_rings_prepare(nn, &nn->dp);
3003         if (err)
3004                 goto err_free_rx_rings;
3005 
3006         for (r = 0; r < nn->max_r_vecs; r++)
3007                 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3008 
3009         return 0;
3010 
3011 err_free_rx_rings:
3012         nfp_net_rx_rings_free(&nn->dp);
3013 err_cleanup_vec:
3014         r = nn->dp.num_r_vecs;
3015 err_cleanup_vec_p:
3016         while (r--)
3017                 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3018         nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
3019 err_free_exn:
3020         nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
3021         return err;
3022 }
3023 
3024 static int nfp_net_netdev_open(struct net_device *netdev)
3025 {
3026         struct nfp_net *nn = netdev_priv(netdev);
3027         int err;
3028 
3029         /* Step 1: Allocate resources for rings and the like
3030          * - Request interrupts
3031          * - Allocate RX and TX ring resources
3032          * - Setup initial RSS table
3033          */
3034         err = nfp_net_open_alloc_all(nn);
3035         if (err)
3036                 return err;
3037 
3038         err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3039         if (err)
3040                 goto err_free_all;
3041 
3042         err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3043         if (err)
3044                 goto err_free_all;
3045 
3046         /* Step 2: Configure the NFP
3047          * - Ifup the physical interface if it exists
3048          * - Enable rings from 0 to tx_rings/rx_rings - 1.
3049          * - Write MAC address (in case it changed)
3050          * - Set the MTU
3051          * - Set the Freelist buffer size
3052          * - Enable the FW
3053          */
3054         err = nfp_port_configure(netdev, true);
3055         if (err)
3056                 goto err_free_all;
3057 
3058         err = nfp_net_set_config_and_enable(nn);
3059         if (err)
3060                 goto err_port_disable;
3061 
3062         /* Step 3: Enable for kernel
3063          * - put some freelist descriptors on each RX ring
3064          * - enable NAPI on each ring
3065          * - enable all TX queues
3066          * - set link state
3067          */
3068         nfp_net_open_stack(nn);
3069 
3070         return 0;
3071 
3072 err_port_disable:
3073         nfp_port_configure(netdev, false);
3074 err_free_all:
3075         nfp_net_close_free_all(nn);
3076         return err;
3077 }
3078 
3079 int nfp_ctrl_open(struct nfp_net *nn)
3080 {
3081         int err, r;
3082 
3083         /* ring dumping depends on vNICs being opened/closed under rtnl */
3084         rtnl_lock();
3085 
3086         err = nfp_net_open_alloc_all(nn);
3087         if (err)
3088                 goto err_unlock;
3089 
3090         err = nfp_net_set_config_and_enable(nn);
3091         if (err)
3092                 goto err_free_all;
3093 
3094         for (r = 0; r < nn->dp.num_r_vecs; r++)
3095                 enable_irq(nn->r_vecs[r].irq_vector);
3096 
3097         rtnl_unlock();
3098 
3099         return 0;
3100 
3101 err_free_all:
3102         nfp_net_close_free_all(nn);
3103 err_unlock:
3104         rtnl_unlock();
3105         return err;
3106 }
3107 
3108 static void nfp_net_set_rx_mode(struct net_device *netdev)
3109 {
3110         struct nfp_net *nn = netdev_priv(netdev);
3111         u32 new_ctrl;
3112 
3113         new_ctrl = nn->dp.ctrl;
3114 
3115         if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3116                 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3117         else
3118                 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3119 
3120         if (netdev->flags & IFF_PROMISC) {
3121                 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3122                         new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3123                 else
3124                         nn_warn(nn, "FW does not support promiscuous mode\n");
3125         } else {
3126                 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3127         }
3128 
3129         if (new_ctrl == nn->dp.ctrl)
3130                 return;
3131 
3132         nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3133         nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3134 
3135         nn->dp.ctrl = new_ctrl;
3136 }
3137 
3138 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3139 {
3140         int i;
3141 
3142         for (i = 0; i < sizeof(nn->rss_itbl); i++)
3143                 nn->rss_itbl[i] =
3144                         ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3145 }
3146 
3147 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3148 {
3149         struct nfp_net_dp new_dp = *dp;
3150 
3151         *dp = nn->dp;
3152         nn->dp = new_dp;
3153 
3154         nn->dp.netdev->mtu = new_dp.mtu;
3155 
3156         if (!netif_is_rxfh_configured(nn->dp.netdev))
3157                 nfp_net_rss_init_itbl(nn);
3158 }
3159 
3160 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3161 {
3162         unsigned int r;
3163         int err;
3164 
3165         nfp_net_dp_swap(nn, dp);
3166 
3167         for (r = 0; r < nn->max_r_vecs; r++)
3168                 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3169 
3170         err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3171         if (err)
3172                 return err;
3173 
3174         if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3175                 err = netif_set_real_num_tx_queues(nn->dp.netdev,
3176                                                    nn->dp.num_stack_tx_rings);
3177                 if (err)
3178                         return err;
3179         }
3180 
3181         return nfp_net_set_config_and_enable(nn);
3182 }
3183 
3184 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3185 {
3186         struct nfp_net_dp *new;
3187 
3188         new = kmalloc(sizeof(*new), GFP_KERNEL);
3189         if (!new)
3190                 return NULL;
3191 
3192         *new = nn->dp;
3193 
3194         /* Clear things which need to be recomputed */
3195         new->fl_bufsz = 0;
3196         new->tx_rings = NULL;
3197         new->rx_rings = NULL;
3198         new->num_r_vecs = 0;
3199         new->num_stack_tx_rings = 0;
3200 
3201         return new;
3202 }
3203 
3204 static int
3205 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3206                      struct netlink_ext_ack *extack)
3207 {
3208         /* XDP-enabled tests */
3209         if (!dp->xdp_prog)
3210                 return 0;
3211         if (dp->fl_bufsz > PAGE_SIZE) {
3212                 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3213                 return -EINVAL;
3214         }
3215         if (dp->num_tx_rings > nn->max_tx_rings) {
3216                 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3217                 return -EINVAL;
3218         }
3219 
3220         return 0;
3221 }
3222 
3223 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3224                           struct netlink_ext_ack *extack)
3225 {
3226         int r, err;
3227 
3228         dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3229 
3230         dp->num_stack_tx_rings = dp->num_tx_rings;
3231         if (dp->xdp_prog)
3232                 dp->num_stack_tx_rings -= dp->num_rx_rings;
3233 
3234         dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3235 
3236         err = nfp_net_check_config(nn, dp, extack);
3237         if (err)
3238                 goto exit_free_dp;
3239 
3240         if (!netif_running(dp->netdev)) {
3241                 nfp_net_dp_swap(nn, dp);
3242                 err = 0;
3243                 goto exit_free_dp;
3244         }
3245 
3246         /* Prepare new rings */
3247         for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3248                 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3249                 if (err) {
3250                         dp->num_r_vecs = r;
3251                         goto err_cleanup_vecs;
3252                 }
3253         }
3254 
3255         err = nfp_net_rx_rings_prepare(nn, dp);
3256         if (err)
3257                 goto err_cleanup_vecs;
3258 
3259         err = nfp_net_tx_rings_prepare(nn, dp);
3260         if (err)
3261                 goto err_free_rx;
3262 
3263         /* Stop device, swap in new rings, try to start the firmware */
3264         nfp_net_close_stack(nn);
3265         nfp_net_clear_config_and_disable(nn);
3266 
3267         err = nfp_net_dp_swap_enable(nn, dp);
3268         if (err) {
3269                 int err2;
3270 
3271                 nfp_net_clear_config_and_disable(nn);
3272 
3273                 /* Try with old configuration and old rings */
3274                 err2 = nfp_net_dp_swap_enable(nn, dp);
3275                 if (err2)
3276                         nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3277                                err, err2);
3278         }
3279         for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3280                 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3281 
3282         nfp_net_rx_rings_free(dp);
3283         nfp_net_tx_rings_free(dp);
3284 
3285         nfp_net_open_stack(nn);
3286 exit_free_dp:
3287         kfree(dp);
3288 
3289         return err;
3290 
3291 err_free_rx:
3292         nfp_net_rx_rings_free(dp);
3293 err_cleanup_vecs:
3294         for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3295                 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3296         kfree(dp);
3297         return err;
3298 }
3299 
3300 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3301 {
3302         struct nfp_net *nn = netdev_priv(netdev);
3303         struct nfp_net_dp *dp;
3304         int err;
3305 
3306         err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3307         if (err)
3308                 return err;
3309 
3310         dp = nfp_net_clone_dp(nn);
3311         if (!dp)
3312                 return -ENOMEM;
3313 
3314         dp->mtu = new_mtu;
3315 
3316         return nfp_net_ring_reconfig(nn, dp, NULL);
3317 }
3318 
3319 static int
3320 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3321 {
3322         const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3323         struct nfp_net *nn = netdev_priv(netdev);
3324         int err;
3325 
3326         /* Priority tagged packets with vlan id 0 are processed by the
3327          * NFP as untagged packets
3328          */
3329         if (!vid)
3330                 return 0;
3331 
3332         err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3333         if (err)
3334                 return err;
3335 
3336         nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3337         nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3338                   ETH_P_8021Q);
3339 
3340         return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3341 }
3342 
3343 static int
3344 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3345 {
3346         const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3347         struct nfp_net *nn = netdev_priv(netdev);
3348         int err;
3349 
3350         /* Priority tagged packets with vlan id 0 are processed by the
3351          * NFP as untagged packets
3352          */
3353         if (!vid)
3354                 return 0;
3355 
3356         err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3357         if (err)
3358                 return err;
3359 
3360         nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3361         nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3362                   ETH_P_8021Q);
3363 
3364         return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3365 }
3366 
3367 static void nfp_net_stat64(struct net_device *netdev,
3368                            struct rtnl_link_stats64 *stats)
3369 {
3370         struct nfp_net *nn = netdev_priv(netdev);
3371         int r;
3372 
3373         /* Collect software stats */
3374         for (r = 0; r < nn->max_r_vecs; r++) {
3375                 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3376                 u64 data[3];
3377                 unsigned int start;
3378 
3379                 do {
3380                         start = u64_stats_fetch_begin(&r_vec->rx_sync);
3381                         data[0] = r_vec->rx_pkts;
3382                         data[1] = r_vec->rx_bytes;
3383                         data[2] = r_vec->rx_drops;
3384                 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3385                 stats->rx_packets += data[0];
3386                 stats->rx_bytes += data[1];
3387                 stats->rx_dropped += data[2];
3388 
3389                 do {
3390                         start = u64_stats_fetch_begin(&r_vec->tx_sync);
3391                         data[0] = r_vec->tx_pkts;
3392                         data[1] = r_vec->tx_bytes;
3393                         data[2] = r_vec->tx_errors;
3394                 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3395                 stats->tx_packets += data[0];
3396                 stats->tx_bytes += data[1];
3397                 stats->tx_errors += data[2];
3398         }
3399 
3400         /* Add in device stats */
3401         stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3402         stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3403         stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3404 
3405         stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3406         stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3407 }
3408 
3409 static int nfp_net_set_features(struct net_device *netdev,
3410                                 netdev_features_t features)
3411 {
3412         netdev_features_t changed = netdev->features ^ features;
3413         struct nfp_net *nn = netdev_priv(netdev);
3414         u32 new_ctrl;
3415         int err;
3416 
3417         /* Assume this is not called with features we have not advertised */
3418 
3419         new_ctrl = nn->dp.ctrl;
3420 
3421         if (changed & NETIF_F_RXCSUM) {
3422                 if (features & NETIF_F_RXCSUM)
3423                         new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3424                 else
3425                         new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3426         }
3427 
3428         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3429                 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3430                         new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3431                 else
3432                         new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3433         }
3434 
3435         if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3436                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3437                         new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3438                                               NFP_NET_CFG_CTRL_LSO;
3439                 else
3440                         new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3441         }
3442 
3443         if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3444                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3445                         new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3446                 else
3447                         new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3448         }
3449 
3450         if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3451                 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3452                         new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3453                 else
3454                         new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3455         }
3456 
3457         if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3458                 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3459                         new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3460                 else
3461                         new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3462         }
3463 
3464         if (changed & NETIF_F_SG) {
3465                 if (features & NETIF_F_SG)
3466                         new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3467                 else
3468                         new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3469         }
3470 
3471         err = nfp_port_set_features(netdev, features);
3472         if (err)
3473                 return err;
3474 
3475         nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3476                netdev->features, features, changed);
3477 
3478         if (new_ctrl == nn->dp.ctrl)
3479                 return 0;
3480 
3481         nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3482         nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3483         err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3484         if (err)
3485                 return err;
3486 
3487         nn->dp.ctrl = new_ctrl;
3488 
3489         return 0;
3490 }
3491 
3492 static netdev_features_t
3493 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3494                        netdev_features_t features)
3495 {
3496         u8 l4_hdr;
3497 
3498         /* We can't do TSO over double tagged packets (802.1AD) */
3499         features &= vlan_features_check(skb, features);
3500 
3501         if (!skb->encapsulation)
3502                 return features;
3503 
3504         /* Ensure that inner L4 header offset fits into TX descriptor field */
3505         if (skb_is_gso(skb)) {
3506                 u32 hdrlen;
3507 
3508                 hdrlen = skb_inner_transport_header(skb) - skb->data +
3509                         inner_tcp_hdrlen(skb);
3510 
3511                 /* Assume worst case scenario of having longest possible
3512                  * metadata prepend - 8B
3513                  */
3514                 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3515                         features &= ~NETIF_F_GSO_MASK;
3516         }
3517 
3518         /* VXLAN/GRE check */
3519         switch (vlan_get_protocol(skb)) {
3520         case htons(ETH_P_IP):
3521                 l4_hdr = ip_hdr(skb)->protocol;
3522                 break;
3523         case htons(ETH_P_IPV6):
3524                 l4_hdr = ipv6_hdr(skb)->nexthdr;
3525                 break;
3526         default:
3527                 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3528         }
3529 
3530         if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3531             skb->inner_protocol != htons(ETH_P_TEB) ||
3532             (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3533             (l4_hdr == IPPROTO_UDP &&
3534              (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3535               sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3536                 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3537 
3538         return features;
3539 }
3540 
3541 static int
3542 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3543 {
3544         struct nfp_net *nn = netdev_priv(netdev);
3545         int n;
3546 
3547         /* If port is defined, devlink_port is registered and devlink core
3548          * is taking care of name formatting.
3549          */
3550         if (nn->port)
3551                 return -EOPNOTSUPP;
3552 
3553         if (nn->dp.is_vf || nn->vnic_no_name)
3554                 return -EOPNOTSUPP;
3555 
3556         n = snprintf(name, len, "n%d", nn->id);
3557         if (n >= len)
3558                 return -EINVAL;
3559 
3560         return 0;
3561 }
3562 
3563 /**
3564  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3565  * @nn:   NFP Net device to reconfigure
3566  * @idx:  Index into the port table where new port should be written
3567  * @port: UDP port to configure (pass zero to remove VXLAN port)
3568  */
3569 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3570 {
3571         int i;
3572 
3573         nn->vxlan_ports[idx] = port;
3574 
3575         if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3576                 return;
3577 
3578         BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3579         for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3580                 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3581                           be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3582                           be16_to_cpu(nn->vxlan_ports[i]));
3583 
3584         nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3585 }
3586 
3587 /**
3588  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3589  * @nn:   NFP Network structure
3590  * @port: UDP port to look for
3591  *
3592  * Return: if the port is already in the table -- it's position;
3593  *         if the port is not in the table -- free position to use;
3594  *         if the table is full -- -ENOSPC.
3595  */
3596 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3597 {
3598         int i, free_idx = -ENOSPC;
3599 
3600         for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3601                 if (nn->vxlan_ports[i] == port)
3602                         return i;
3603                 if (!nn->vxlan_usecnt[i])
3604                         free_idx = i;
3605         }
3606 
3607         return free_idx;
3608 }
3609 
3610 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3611                                    struct udp_tunnel_info *ti)
3612 {
3613         struct nfp_net *nn = netdev_priv(netdev);
3614         int idx;
3615 
3616         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3617                 return;
3618 
3619         idx = nfp_net_find_vxlan_idx(nn, ti->port);
3620         if (idx == -ENOSPC)
3621                 return;
3622 
3623         if (!nn->vxlan_usecnt[idx]++)
3624                 nfp_net_set_vxlan_port(nn, idx, ti->port);
3625 }
3626 
3627 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3628                                    struct udp_tunnel_info *ti)
3629 {
3630         struct nfp_net *nn = netdev_priv(netdev);
3631         int idx;
3632 
3633         if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3634                 return;
3635 
3636         idx = nfp_net_find_vxlan_idx(nn, ti->port);
3637         if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3638                 return;
3639 
3640         if (!--nn->vxlan_usecnt[idx])
3641                 nfp_net_set_vxlan_port(nn, idx, 0);
3642 }
3643 
3644 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3645 {
3646         struct bpf_prog *prog = bpf->prog;
3647         struct nfp_net_dp *dp;
3648         int err;
3649 
3650         if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3651                 return -EBUSY;
3652 
3653         if (!prog == !nn->dp.xdp_prog) {
3654                 WRITE_ONCE(nn->dp.xdp_prog, prog);
3655                 xdp_attachment_setup(&nn->xdp, bpf);
3656                 return 0;
3657         }
3658 
3659         dp = nfp_net_clone_dp(nn);
3660         if (!dp)
3661                 return -ENOMEM;
3662 
3663         dp->xdp_prog = prog;
3664         dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3665         dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3666         dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3667 
3668         /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3669         err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3670         if (err)
3671                 return err;
3672 
3673         xdp_attachment_setup(&nn->xdp, bpf);
3674         return 0;
3675 }
3676 
3677 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3678 {
3679         int err;
3680 
3681         if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3682                 return -EBUSY;
3683 
3684         err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3685         if (err)
3686                 return err;
3687 
3688         xdp_attachment_setup(&nn->xdp_hw, bpf);
3689         return 0;
3690 }
3691 
3692 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3693 {
3694         struct nfp_net *nn = netdev_priv(netdev);
3695 
3696         switch (xdp->command) {
3697         case XDP_SETUP_PROG:
3698                 return nfp_net_xdp_setup_drv(nn, xdp);
3699         case XDP_SETUP_PROG_HW:
3700                 return nfp_net_xdp_setup_hw(nn, xdp);
3701         case XDP_QUERY_PROG:
3702                 return xdp_attachment_query(&nn->xdp, xdp);
3703         case XDP_QUERY_PROG_HW:
3704                 return xdp_attachment_query(&nn->xdp_hw, xdp);
3705         default:
3706                 return nfp_app_bpf(nn->app, nn, xdp);
3707         }
3708 }
3709 
3710 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3711 {
3712         struct nfp_net *nn = netdev_priv(netdev);
3713         struct sockaddr *saddr = addr;
3714         int err;
3715 
3716         err = eth_prepare_mac_addr_change(netdev, addr);
3717         if (err)
3718                 return err;
3719 
3720         nfp_net_write_mac_addr(nn, saddr->sa_data);
3721 
3722         err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3723         if (err)
3724                 return err;
3725 
3726         eth_commit_mac_addr_change(netdev, addr);
3727 
3728         return 0;
3729 }
3730 
3731 const struct net_device_ops nfp_net_netdev_ops = {
3732         .ndo_init               = nfp_app_ndo_init,
3733         .ndo_uninit             = nfp_app_ndo_uninit,
3734         .ndo_open               = nfp_net_netdev_open,
3735         .ndo_stop               = nfp_net_netdev_close,
3736         .ndo_start_xmit         = nfp_net_tx,
3737         .ndo_get_stats64        = nfp_net_stat64,
3738         .ndo_vlan_rx_add_vid    = nfp_net_vlan_rx_add_vid,
3739         .ndo_vlan_rx_kill_vid   = nfp_net_vlan_rx_kill_vid,
3740         .ndo_set_vf_mac         = nfp_app_set_vf_mac,
3741         .ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3742         .ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3743         .ndo_set_vf_trust       = nfp_app_set_vf_trust,
3744         .ndo_get_vf_config      = nfp_app_get_vf_config,
3745         .ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3746         .ndo_setup_tc           = nfp_port_setup_tc,
3747         .ndo_tx_timeout         = nfp_net_tx_timeout,
3748         .ndo_set_rx_mode        = nfp_net_set_rx_mode,
3749         .ndo_change_mtu         = nfp_net_change_mtu,
3750         .ndo_set_mac_address    = nfp_net_set_mac_address,
3751         .ndo_set_features       = nfp_net_set_features,
3752         .ndo_features_check     = nfp_net_features_check,
3753         .ndo_get_phys_port_name = nfp_net_get_phys_port_name,
3754         .ndo_udp_tunnel_add     = nfp_net_add_vxlan_port,
3755         .ndo_udp_tunnel_del     = nfp_net_del_vxlan_port,
3756         .ndo_bpf                = nfp_net_xdp,
3757         .ndo_get_devlink_port   = nfp_devlink_get_devlink_port,
3758 };
3759 
3760 /**
3761  * nfp_net_info() - Print general info about the NIC
3762  * @nn:      NFP Net device to reconfigure
3763  */
3764 void nfp_net_info(struct nfp_net *nn)
3765 {
3766         nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3767                 nn->dp.is_vf ? "VF " : "",
3768                 nn->dp.num_tx_rings, nn->max_tx_rings,
3769                 nn->dp.num_rx_rings, nn->max_rx_rings);
3770         nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3771                 nn->fw_ver.resv, nn->fw_ver.class,
3772                 nn->fw_ver.major, nn->fw_ver.minor,
3773                 nn->max_mtu);
3774         nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3775                 nn->cap,
3776                 nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3777                 nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3778                 nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3779                 nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3780                 nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3781                 nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3782                 nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3783                 nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3784                 nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3785                 nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3786                 nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3787                 nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3788                 nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3789                 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3790                 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3791                 nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3792                 nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3793                 nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "    : "",
3794                 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3795                                                       "RXCSUM_COMPLETE " : "",
3796                 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3797                 nfp_app_extra_cap(nn->app, nn));
3798 }
3799 
3800 /**
3801  * nfp_net_alloc() - Allocate netdev and related structure
3802  * @pdev:         PCI device
3803  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3804  * @needs_netdev: Whether to allocate a netdev for this vNIC
3805  * @max_tx_rings: Maximum number of TX rings supported by device
3806  * @max_rx_rings: Maximum number of RX rings supported by device
3807  *
3808  * This function allocates a netdev device and fills in the initial
3809  * part of the @struct nfp_net structure.  In case of control device
3810  * nfp_net structure is allocated without the netdev.
3811  *
3812  * Return: NFP Net device structure, or ERR_PTR on error.
3813  */
3814 struct nfp_net *
3815 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3816               unsigned int max_tx_rings, unsigned int max_rx_rings)
3817 {
3818         struct nfp_net *nn;
3819         int err;
3820 
3821         if (needs_netdev) {
3822                 struct net_device *netdev;
3823 
3824                 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3825                                             max_tx_rings, max_rx_rings);
3826                 if (!netdev)
3827                         return ERR_PTR(-ENOMEM);
3828 
3829                 SET_NETDEV_DEV(netdev, &pdev->dev);
3830                 nn = netdev_priv(netdev);
3831                 nn->dp.netdev = netdev;
3832         } else {
3833                 nn = vzalloc(sizeof(*nn));
3834                 if (!nn)
3835                         return ERR_PTR(-ENOMEM);
3836         }
3837 
3838         nn->dp.dev = &pdev->dev;
3839         nn->dp.ctrl_bar = ctrl_bar;
3840         nn->pdev = pdev;
3841 
3842         nn->max_tx_rings = max_tx_rings;
3843         nn->max_rx_rings = max_rx_rings;
3844 
3845         nn->dp.num_tx_rings = min_t(unsigned int,
3846                                     max_tx_rings, num_online_cpus());
3847         nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3848                                  netif_get_num_default_rss_queues());
3849 
3850         nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3851         nn->dp.num_r_vecs = min_t(unsigned int,
3852                                   nn->dp.num_r_vecs, num_online_cpus());
3853 
3854         nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3855         nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3856 
3857         sema_init(&nn->bar_lock, 1);
3858 
3859         spin_lock_init(&nn->reconfig_lock);
3860         spin_lock_init(&nn->link_status_lock);
3861 
3862         timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3863 
3864         err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3865                                      &nn->tlv_caps);
3866         if (err)
3867                 goto err_free_nn;
3868 
3869         err = nfp_ccm_mbox_alloc(nn);
3870         if (err)
3871                 goto err_free_nn;
3872 
3873         return nn;
3874 
3875 err_free_nn:
3876         if (nn->dp.netdev)
3877                 free_netdev(nn->dp.netdev);
3878         else
3879                 vfree(nn);
3880         return ERR_PTR(err);
3881 }
3882 
3883 /**
3884  * nfp_net_free() - Undo what @nfp_net_alloc() did
3885  * @nn:      NFP Net device to reconfigure
3886  */
3887 void nfp_net_free(struct nfp_net *nn)
3888 {
3889         WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3890         nfp_ccm_mbox_free(nn);
3891 
3892         if (nn->dp.netdev)
3893                 free_netdev(nn->dp.netdev);
3894         else
3895                 vfree(nn);
3896 }
3897 
3898 /**
3899  * nfp_net_rss_key_sz() - Get current size of the RSS key
3900  * @nn:         NFP Net device instance
3901  *
3902  * Return: size of the RSS key for currently selected hash function.
3903  */
3904 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3905 {
3906         switch (nn->rss_hfunc) {
3907         case ETH_RSS_HASH_TOP:
3908                 return NFP_NET_CFG_RSS_KEY_SZ;
3909         case ETH_RSS_HASH_XOR:
3910                 return 0;
3911         case ETH_RSS_HASH_CRC32:
3912                 return 4;
3913         }
3914 
3915         nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3916         return 0;
3917 }
3918 
3919 /**
3920  * nfp_net_rss_init() - Set the initial RSS parameters
3921  * @nn:      NFP Net device to reconfigure
3922  */
3923 static void nfp_net_rss_init(struct nfp_net *nn)
3924 {
3925         unsigned long func_bit, rss_cap_hfunc;
3926         u32 reg;
3927 
3928         /* Read the RSS function capability and select first supported func */
3929         reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3930         rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3931         if (!rss_cap_hfunc)
3932                 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3933                                           NFP_NET_CFG_RSS_TOEPLITZ);
3934 
3935         func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3936         if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3937                 dev_warn(nn->dp.dev,
3938                          "Bad RSS config, defaulting to Toeplitz hash\n");
3939                 func_bit = ETH_RSS_HASH_TOP_BIT;
3940         }
3941         nn->rss_hfunc = 1 << func_bit;
3942 
3943         netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3944 
3945         nfp_net_rss_init_itbl(nn);
3946 
3947         /* Enable IPv4/IPv6 TCP by default */
3948         nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3949                       NFP_NET_CFG_RSS_IPV6_TCP |
3950                       FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3951                       NFP_NET_CFG_RSS_MASK;
3952 }
3953 
3954 /**
3955  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3956  * @nn:      NFP Net device to reconfigure
3957  */
3958 static void nfp_net_irqmod_init(struct nfp_net *nn)
3959 {
3960         nn->rx_coalesce_usecs      = 50;
3961         nn->rx_coalesce_max_frames = 64;
3962         nn->tx_coalesce_usecs      = 50;
3963         nn->tx_coalesce_max_frames = 64;
3964 }
3965 
3966 static void nfp_net_netdev_init(struct nfp_net *nn)
3967 {
3968         struct net_device *netdev = nn->dp.netdev;
3969 
3970         nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3971 
3972         netdev->mtu = nn->dp.mtu;
3973 
3974         /* Advertise/enable offloads based on capabilities
3975          *
3976          * Note: netdev->features show the currently enabled features
3977          * and netdev->hw_features advertises which features are
3978          * supported.  By default we enable most features.
3979          */
3980         if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3981                 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3982 
3983         netdev->hw_features = NETIF_F_HIGHDMA;
3984         if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3985                 netdev->hw_features |= NETIF_F_RXCSUM;
3986                 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3987         }
3988         if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3989                 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3990                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3991         }
3992         if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3993                 netdev->hw_features |= NETIF_F_SG;
3994                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3995         }
3996         if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3997             nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3998                 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3999                 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
4000                                          NFP_NET_CFG_CTRL_LSO;
4001         }
4002         if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
4003                 netdev->hw_features |= NETIF_F_RXHASH;
4004         if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
4005                 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4006                         netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
4007                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
4008         }
4009         if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
4010                 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
4011                         netdev->hw_features |= NETIF_F_GSO_GRE;
4012                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
4013         }
4014         if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
4015                 netdev->hw_enc_features = netdev->hw_features;
4016 
4017         netdev->vlan_features = netdev->hw_features;
4018 
4019         if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
4020                 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4021                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
4022         }
4023         if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
4024                 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4025                         nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
4026                 } else {
4027                         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4028                         nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
4029                 }
4030         }
4031         if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
4032                 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4033                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
4034         }
4035 
4036         netdev->features = netdev->hw_features;
4037 
4038         if (nfp_app_has_tc(nn->app) && nn->port)
4039                 netdev->hw_features |= NETIF_F_HW_TC;
4040 
4041         /* Advertise but disable TSO by default. */
4042         netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
4043         nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
4044 
4045         /* Finalise the netdev setup */
4046         netdev->netdev_ops = &nfp_net_netdev_ops;
4047         netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4048 
4049         /* MTU range: 68 - hw-specific max */
4050         netdev->min_mtu = ETH_MIN_MTU;
4051         netdev->max_mtu = nn->max_mtu;
4052 
4053         netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
4054 
4055         netif_carrier_off(netdev);
4056 
4057         nfp_net_set_ethtool_ops(netdev);
4058 }
4059 
4060 static int nfp_net_read_caps(struct nfp_net *nn)
4061 {
4062         /* Get some of the read-only fields from the BAR */
4063         nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
4064         nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
4065 
4066         /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4067          * we allow use of non-chained metadata if RSS(v1) is the only
4068          * advertised capability requiring metadata.
4069          */
4070         nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4071                                          !nn->dp.netdev ||
4072                                          !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4073                                          nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4074         /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4075          * it has the same meaning as RSSv2.
4076          */
4077         if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4078                 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4079 
4080         /* Determine RX packet/metadata boundary offset */
4081         if (nn->fw_ver.major >= 2) {
4082                 u32 reg;
4083 
4084                 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4085                 if (reg > NFP_NET_MAX_PREPEND) {
4086                         nn_err(nn, "Invalid rx offset: %d\n", reg);
4087                         return -EINVAL;
4088                 }
4089                 nn->dp.rx_offset = reg;
4090         } else {
4091                 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4092         }
4093 
4094         /* For control vNICs mask out the capabilities app doesn't want. */
4095         if (!nn->dp.netdev)
4096                 nn->cap &= nn->app->type->ctrl_cap_mask;
4097 
4098         return 0;
4099 }
4100 
4101 /**
4102  * nfp_net_init() - Initialise/finalise the nfp_net structure
4103  * @nn:         NFP Net device structure
4104  *
4105  * Return: 0 on success or negative errno on error.
4106  */
4107 int nfp_net_init(struct nfp_net *nn)
4108 {
4109         int err;
4110 
4111         nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4112 
4113         err = nfp_net_read_caps(nn);
4114         if (err)
4115                 return err;
4116 
4117         /* Set default MTU and Freelist buffer size */
4118         if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4119                 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu);
4120         } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4121                 nn->dp.mtu = nn->max_mtu;
4122         } else {
4123                 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4124         }
4125         nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4126 
4127         if (nfp_app_ctrl_uses_data_vnics(nn->app))
4128                 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4129 
4130         if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4131                 nfp_net_rss_init(nn);
4132                 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4133                                          NFP_NET_CFG_CTRL_RSS;
4134         }
4135 
4136         /* Allow L2 Broadcast and Multicast through by default, if supported */
4137         if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4138                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4139 
4140         /* Allow IRQ moderation, if supported */
4141         if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4142                 nfp_net_irqmod_init(nn);
4143                 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4144         }
4145 
4146         /* Stash the re-configuration queue away.  First odd queue in TX Bar */
4147         nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4148 
4149         /* Make sure the FW knows the netdev is supposed to be disabled here */
4150         nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4151         nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4152         nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4153         err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4154                                    NFP_NET_CFG_UPDATE_GEN);
4155         if (err)
4156                 return err;
4157 
4158         if (nn->dp.netdev) {
4159                 nfp_net_netdev_init(nn);
4160 
4161                 err = nfp_ccm_mbox_init(nn);
4162                 if (err)
4163                         return err;
4164 
4165                 err = nfp_net_tls_init(nn);
4166                 if (err)
4167                         goto err_clean_mbox;
4168         }
4169 
4170         nfp_net_vecs_init(nn);
4171 
4172         if (!nn->dp.netdev)
4173                 return 0;
4174         return register_netdev(nn->dp.netdev);
4175 
4176 err_clean_mbox:
4177         nfp_ccm_mbox_clean(nn);
4178         return err;
4179 }
4180 
4181 /**
4182  * nfp_net_clean() - Undo what nfp_net_init() did.
4183  * @nn:         NFP Net device structure
4184  */
4185 void nfp_net_clean(struct nfp_net *nn)
4186 {
4187         if (!nn->dp.netdev)
4188                 return;
4189 
4190         unregister_netdev(nn->dp.netdev);
4191         nfp_ccm_mbox_clean(nn);
4192         nfp_net_reconfig_wait_posted(nn);
4193 }

/* [<][>][^][v][top][bottom][index][help] */