root/drivers/net/ethernet/realtek/8139cp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cp_set_rxbufsize
  2. cp_rx_skb
  3. cp_rx_err_acct
  4. cp_rx_csum_ok
  5. cp_rx_poll
  6. cp_interrupt
  7. cp_poll_controller
  8. cp_tx
  9. cp_tx_vlan_tag
  10. unwind_tx_frag_mapping
  11. cp_start_xmit
  12. __cp_set_rx_mode
  13. cp_set_rx_mode
  14. __cp_get_stats
  15. cp_get_stats
  16. cp_stop_hw
  17. cp_reset_hw
  18. cp_start_hw
  19. cp_enable_irq
  20. cp_init_hw
  21. cp_refill_rx
  22. cp_init_rings_index
  23. cp_init_rings
  24. cp_alloc_rings
  25. cp_clean_rings
  26. cp_free_rings
  27. cp_open
  28. cp_close
  29. cp_tx_timeout
  30. cp_change_mtu
  31. mdio_read
  32. mdio_write
  33. netdev_set_wol
  34. netdev_get_wol
  35. cp_get_drvinfo
  36. cp_get_ringparam
  37. cp_get_regs_len
  38. cp_get_sset_count
  39. cp_get_link_ksettings
  40. cp_set_link_ksettings
  41. cp_nway_reset
  42. cp_get_msglevel
  43. cp_set_msglevel
  44. cp_set_features
  45. cp_get_regs
  46. cp_get_wol
  47. cp_set_wol
  48. cp_get_strings
  49. cp_get_ethtool_stats
  50. cp_ioctl
  51. cp_set_mac_address
  52. eeprom_cmd_start
  53. eeprom_cmd
  54. eeprom_cmd_end
  55. eeprom_extend_cmd
  56. read_eeprom
  57. write_eeprom
  58. cp_get_eeprom_len
  59. cp_get_eeprom
  60. cp_set_eeprom
  61. cp_set_d3_state
  62. cp_features_check
  63. cp_init_one
  64. cp_remove_one
  65. cp_suspend
  66. cp_resume

   1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
   2 /*
   3         Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
   4 
   5         Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
   6         Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
   7         Copyright 2001 Manfred Spraul                               [natsemi.c]
   8         Copyright 1999-2001 by Donald Becker.                       [natsemi.c]
   9         Written 1997-2001 by Donald Becker.                         [8139too.c]
  10         Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
  11 
  12         This software may be used and distributed according to the terms of
  13         the GNU General Public License (GPL), incorporated herein by reference.
  14         Drivers based on or derived from this code fall under the GPL and must
  15         retain the authorship, copyright and license notice.  This file is not
  16         a complete program and may only be used when the entire operating
  17         system is licensed under the GPL.
  18 
  19         See the file COPYING in this distribution for more information.
  20 
  21         Contributors:
  22 
  23                 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
  24                 PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
  25                 LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
  26 
  27         TODO:
  28         * Test Tx checksumming thoroughly
  29 
  30         Low priority TODO:
  31         * Complete reset on PciErr
  32         * Consider Rx interrupt mitigation using TimerIntr
  33         * Investigate using skb->priority with h/w VLAN priority
  34         * Investigate using High Priority Tx Queue with skb->priority
  35         * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
  36         * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
  37         * Implement Tx software interrupt mitigation via
  38           Tx descriptor bit
  39         * The real minimum of CP_MIN_MTU is 4 bytes.  However,
  40           for this to be supported, one must(?) turn on packet padding.
  41         * Support external MII transceivers (patch available)
  42 
  43         NOTES:
  44         * TX checksumming is considered experimental.  It is off by
  45           default, use ethtool to turn it on.
  46 
  47  */
  48 
  49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  50 
  51 #define DRV_NAME                "8139cp"
  52 #define DRV_VERSION             "1.3"
  53 #define DRV_RELDATE             "Mar 22, 2004"
  54 
  55 
  56 #include <linux/module.h>
  57 #include <linux/moduleparam.h>
  58 #include <linux/kernel.h>
  59 #include <linux/compiler.h>
  60 #include <linux/netdevice.h>
  61 #include <linux/etherdevice.h>
  62 #include <linux/init.h>
  63 #include <linux/interrupt.h>
  64 #include <linux/pci.h>
  65 #include <linux/dma-mapping.h>
  66 #include <linux/delay.h>
  67 #include <linux/ethtool.h>
  68 #include <linux/gfp.h>
  69 #include <linux/mii.h>
  70 #include <linux/if_vlan.h>
  71 #include <linux/crc32.h>
  72 #include <linux/in.h>
  73 #include <linux/ip.h>
  74 #include <linux/tcp.h>
  75 #include <linux/udp.h>
  76 #include <linux/cache.h>
  77 #include <asm/io.h>
  78 #include <asm/irq.h>
  79 #include <linux/uaccess.h>
  80 
  81 /* These identify the driver base version and may not be removed. */
  82 static char version[] =
  83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
  84 
  85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
  87 MODULE_VERSION(DRV_VERSION);
  88 MODULE_LICENSE("GPL");
  89 
  90 static int debug = -1;
  91 module_param(debug, int, 0);
  92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
  93 
  94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
  96 static int multicast_filter_limit = 32;
  97 module_param(multicast_filter_limit, int, 0);
  98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
  99 
 100 #define CP_DEF_MSG_ENABLE       (NETIF_MSG_DRV          | \
 101                                  NETIF_MSG_PROBE        | \
 102                                  NETIF_MSG_LINK)
 103 #define CP_NUM_STATS            14      /* struct cp_dma_stats, plus one */
 104 #define CP_STATS_SIZE           64      /* size in bytes of DMA stats block */
 105 #define CP_REGS_SIZE            (0xff + 1)
 106 #define CP_REGS_VER             1               /* version 1 */
 107 #define CP_RX_RING_SIZE         64
 108 #define CP_TX_RING_SIZE         64
 109 #define CP_RING_BYTES           \
 110                 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +   \
 111                  (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +   \
 112                  CP_STATS_SIZE)
 113 #define NEXT_TX(N)              (((N) + 1) & (CP_TX_RING_SIZE - 1))
 114 #define NEXT_RX(N)              (((N) + 1) & (CP_RX_RING_SIZE - 1))
 115 #define TX_BUFFS_AVAIL(CP)                                      \
 116         (((CP)->tx_tail <= (CP)->tx_head) ?                     \
 117           (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :       \
 118           (CP)->tx_tail - (CP)->tx_head - 1)
 119 
 120 #define PKT_BUF_SZ              1536    /* Size of each temporary Rx buffer.*/
 121 #define CP_INTERNAL_PHY         32
 122 
 123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
 124 #define RX_FIFO_THRESH          5       /* Rx buffer level before first PCI xfer.  */
 125 #define RX_DMA_BURST            4       /* Maximum PCI burst, '4' is 256 */
 126 #define TX_DMA_BURST            6       /* Maximum PCI burst, '6' is 1024 */
 127 #define TX_EARLY_THRESH         256     /* Early Tx threshold, in bytes */
 128 
 129 /* Time in jiffies before concluding the transmitter is hung. */
 130 #define TX_TIMEOUT              (6*HZ)
 131 
 132 /* hardware minimum and maximum for a single frame's data payload */
 133 #define CP_MIN_MTU              60      /* TODO: allow lower, but pad */
 134 #define CP_MAX_MTU              4096
 135 
 136 enum {
 137         /* NIC register offsets */
 138         MAC0            = 0x00, /* Ethernet hardware address. */
 139         MAR0            = 0x08, /* Multicast filter. */
 140         StatsAddr       = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
 141         TxRingAddr      = 0x20, /* 64-bit start addr of Tx ring */
 142         HiTxRingAddr    = 0x28, /* 64-bit start addr of high priority Tx ring */
 143         Cmd             = 0x37, /* Command register */
 144         IntrMask        = 0x3C, /* Interrupt mask */
 145         IntrStatus      = 0x3E, /* Interrupt status */
 146         TxConfig        = 0x40, /* Tx configuration */
 147         ChipVersion     = 0x43, /* 8-bit chip version, inside TxConfig */
 148         RxConfig        = 0x44, /* Rx configuration */
 149         RxMissed        = 0x4C, /* 24 bits valid, write clears */
 150         Cfg9346         = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
 151         Config1         = 0x52, /* Config1 */
 152         Config3         = 0x59, /* Config3 */
 153         Config4         = 0x5A, /* Config4 */
 154         MultiIntr       = 0x5C, /* Multiple interrupt select */
 155         BasicModeCtrl   = 0x62, /* MII BMCR */
 156         BasicModeStatus = 0x64, /* MII BMSR */
 157         NWayAdvert      = 0x66, /* MII ADVERTISE */
 158         NWayLPAR        = 0x68, /* MII LPA */
 159         NWayExpansion   = 0x6A, /* MII Expansion */
 160         TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
 161         Config5         = 0xD8, /* Config5 */
 162         TxPoll          = 0xD9, /* Tell chip to check Tx descriptors for work */
 163         RxMaxSize       = 0xDA, /* Max size of an Rx packet (8169 only) */
 164         CpCmd           = 0xE0, /* C+ Command register (C+ mode only) */
 165         IntrMitigate    = 0xE2, /* rx/tx interrupt mitigation control */
 166         RxRingAddr      = 0xE4, /* 64-bit start addr of Rx ring */
 167         TxThresh        = 0xEC, /* Early Tx threshold */
 168         OldRxBufAddr    = 0x30, /* DMA address of Rx ring buffer (C mode) */
 169         OldTSD0         = 0x10, /* DMA address of first Tx desc (C mode) */
 170 
 171         /* Tx and Rx status descriptors */
 172         DescOwn         = (1 << 31), /* Descriptor is owned by NIC */
 173         RingEnd         = (1 << 30), /* End of descriptor ring */
 174         FirstFrag       = (1 << 29), /* First segment of a packet */
 175         LastFrag        = (1 << 28), /* Final segment of a packet */
 176         LargeSend       = (1 << 27), /* TCP Large Send Offload (TSO) */
 177         MSSShift        = 16,        /* MSS value position */
 178         MSSMask         = 0x7ff,     /* MSS value: 11 bits */
 179         TxError         = (1 << 23), /* Tx error summary */
 180         RxError         = (1 << 20), /* Rx error summary */
 181         IPCS            = (1 << 18), /* Calculate IP checksum */
 182         UDPCS           = (1 << 17), /* Calculate UDP/IP checksum */
 183         TCPCS           = (1 << 16), /* Calculate TCP/IP checksum */
 184         TxVlanTag       = (1 << 17), /* Add VLAN tag */
 185         RxVlanTagged    = (1 << 16), /* Rx VLAN tag available */
 186         IPFail          = (1 << 15), /* IP checksum failed */
 187         UDPFail         = (1 << 14), /* UDP/IP checksum failed */
 188         TCPFail         = (1 << 13), /* TCP/IP checksum failed */
 189         NormalTxPoll    = (1 << 6),  /* One or more normal Tx packets to send */
 190         PID1            = (1 << 17), /* 2 protocol id bits:  0==non-IP, */
 191         PID0            = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
 192         RxProtoTCP      = 1,
 193         RxProtoUDP      = 2,
 194         RxProtoIP       = 3,
 195         TxFIFOUnder     = (1 << 25), /* Tx FIFO underrun */
 196         TxOWC           = (1 << 22), /* Tx Out-of-window collision */
 197         TxLinkFail      = (1 << 21), /* Link failed during Tx of packet */
 198         TxMaxCol        = (1 << 20), /* Tx aborted due to excessive collisions */
 199         TxColCntShift   = 16,        /* Shift, to get 4-bit Tx collision cnt */
 200         TxColCntMask    = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
 201         RxErrFrame      = (1 << 27), /* Rx frame alignment error */
 202         RxMcast         = (1 << 26), /* Rx multicast packet rcv'd */
 203         RxErrCRC        = (1 << 18), /* Rx CRC error */
 204         RxErrRunt       = (1 << 19), /* Rx error, packet < 64 bytes */
 205         RxErrLong       = (1 << 21), /* Rx error, packet > 4096 bytes */
 206         RxErrFIFO       = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
 207 
 208         /* StatsAddr register */
 209         DumpStats       = (1 << 3),  /* Begin stats dump */
 210 
 211         /* RxConfig register */
 212         RxCfgFIFOShift  = 13,        /* Shift, to get Rx FIFO thresh value */
 213         RxCfgDMAShift   = 8,         /* Shift, to get Rx Max DMA value */
 214         AcceptErr       = 0x20,      /* Accept packets with CRC errors */
 215         AcceptRunt      = 0x10,      /* Accept runt (<64 bytes) packets */
 216         AcceptBroadcast = 0x08,      /* Accept broadcast packets */
 217         AcceptMulticast = 0x04,      /* Accept multicast packets */
 218         AcceptMyPhys    = 0x02,      /* Accept pkts with our MAC as dest */
 219         AcceptAllPhys   = 0x01,      /* Accept all pkts w/ physical dest */
 220 
 221         /* IntrMask / IntrStatus registers */
 222         PciErr          = (1 << 15), /* System error on the PCI bus */
 223         TimerIntr       = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
 224         LenChg          = (1 << 13), /* Cable length change */
 225         SWInt           = (1 << 8),  /* Software-requested interrupt */
 226         TxEmpty         = (1 << 7),  /* No Tx descriptors available */
 227         RxFIFOOvr       = (1 << 6),  /* Rx FIFO Overflow */
 228         LinkChg         = (1 << 5),  /* Packet underrun, or link change */
 229         RxEmpty         = (1 << 4),  /* No Rx descriptors available */
 230         TxErr           = (1 << 3),  /* Tx error */
 231         TxOK            = (1 << 2),  /* Tx packet sent */
 232         RxErr           = (1 << 1),  /* Rx error */
 233         RxOK            = (1 << 0),  /* Rx packet received */
 234         IntrResvd       = (1 << 10), /* reserved, according to RealTek engineers,
 235                                         but hardware likes to raise it */
 236 
 237         IntrAll         = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
 238                           RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
 239                           RxErr | RxOK | IntrResvd,
 240 
 241         /* C mode command register */
 242         CmdReset        = (1 << 4),  /* Enable to reset; self-clearing */
 243         RxOn            = (1 << 3),  /* Rx mode enable */
 244         TxOn            = (1 << 2),  /* Tx mode enable */
 245 
 246         /* C+ mode command register */
 247         RxVlanOn        = (1 << 6),  /* Rx VLAN de-tagging enable */
 248         RxChkSum        = (1 << 5),  /* Rx checksum offload enable */
 249         PCIDAC          = (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
 250         PCIMulRW        = (1 << 3),  /* Enable PCI read/write multiple */
 251         CpRxOn          = (1 << 1),  /* Rx mode enable */
 252         CpTxOn          = (1 << 0),  /* Tx mode enable */
 253 
 254         /* Cfg9436 EEPROM control register */
 255         Cfg9346_Lock    = 0x00,      /* Lock ConfigX/MII register access */
 256         Cfg9346_Unlock  = 0xC0,      /* Unlock ConfigX/MII register access */
 257 
 258         /* TxConfig register */
 259         IFG             = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
 260         TxDMAShift      = 8,         /* DMA burst value (0-7) is shift this many bits */
 261 
 262         /* Early Tx Threshold register */
 263         TxThreshMask    = 0x3f,      /* Mask bits 5-0 */
 264         TxThreshMax     = 2048,      /* Max early Tx threshold */
 265 
 266         /* Config1 register */
 267         DriverLoaded    = (1 << 5),  /* Software marker, driver is loaded */
 268         LWACT           = (1 << 4),  /* LWAKE active mode */
 269         PMEnable        = (1 << 0),  /* Enable various PM features of chip */
 270 
 271         /* Config3 register */
 272         PARMEnable      = (1 << 6),  /* Enable auto-loading of PHY parms */
 273         MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
 274         LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
 275 
 276         /* Config4 register */
 277         LWPTN           = (1 << 1),  /* LWAKE Pattern */
 278         LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
 279 
 280         /* Config5 register */
 281         BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
 282         MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
 283         UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
 284         LANWake         = (1 << 1),  /* Enable LANWake signal */
 285         PMEStatus       = (1 << 0),  /* PME status can be reset by PCI RST# */
 286 
 287         cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
 288         cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
 289         cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
 290 };
 291 
 292 static const unsigned int cp_rx_config =
 293           (RX_FIFO_THRESH << RxCfgFIFOShift) |
 294           (RX_DMA_BURST << RxCfgDMAShift);
 295 
 296 struct cp_desc {
 297         __le32          opts1;
 298         __le32          opts2;
 299         __le64          addr;
 300 };
 301 
 302 struct cp_dma_stats {
 303         __le64                  tx_ok;
 304         __le64                  rx_ok;
 305         __le64                  tx_err;
 306         __le32                  rx_err;
 307         __le16                  rx_fifo;
 308         __le16                  frame_align;
 309         __le32                  tx_ok_1col;
 310         __le32                  tx_ok_mcol;
 311         __le64                  rx_ok_phys;
 312         __le64                  rx_ok_bcast;
 313         __le32                  rx_ok_mcast;
 314         __le16                  tx_abort;
 315         __le16                  tx_underrun;
 316 } __packed;
 317 
 318 struct cp_extra_stats {
 319         unsigned long           rx_frags;
 320 };
 321 
 322 struct cp_private {
 323         void                    __iomem *regs;
 324         struct net_device       *dev;
 325         spinlock_t              lock;
 326         u32                     msg_enable;
 327 
 328         struct napi_struct      napi;
 329 
 330         struct pci_dev          *pdev;
 331         u32                     rx_config;
 332         u16                     cpcmd;
 333 
 334         struct cp_extra_stats   cp_stats;
 335 
 336         unsigned                rx_head         ____cacheline_aligned;
 337         unsigned                rx_tail;
 338         struct cp_desc          *rx_ring;
 339         struct sk_buff          *rx_skb[CP_RX_RING_SIZE];
 340 
 341         unsigned                tx_head         ____cacheline_aligned;
 342         unsigned                tx_tail;
 343         struct cp_desc          *tx_ring;
 344         struct sk_buff          *tx_skb[CP_TX_RING_SIZE];
 345         u32                     tx_opts[CP_TX_RING_SIZE];
 346 
 347         unsigned                rx_buf_sz;
 348         unsigned                wol_enabled : 1; /* Is Wake-on-LAN enabled? */
 349 
 350         dma_addr_t              ring_dma;
 351 
 352         struct mii_if_info      mii_if;
 353 };
 354 
 355 #define cpr8(reg)       readb(cp->regs + (reg))
 356 #define cpr16(reg)      readw(cp->regs + (reg))
 357 #define cpr32(reg)      readl(cp->regs + (reg))
 358 #define cpw8(reg,val)   writeb((val), cp->regs + (reg))
 359 #define cpw16(reg,val)  writew((val), cp->regs + (reg))
 360 #define cpw32(reg,val)  writel((val), cp->regs + (reg))
 361 #define cpw8_f(reg,val) do {                    \
 362         writeb((val), cp->regs + (reg));        \
 363         readb(cp->regs + (reg));                \
 364         } while (0)
 365 #define cpw16_f(reg,val) do {                   \
 366         writew((val), cp->regs + (reg));        \
 367         readw(cp->regs + (reg));                \
 368         } while (0)
 369 #define cpw32_f(reg,val) do {                   \
 370         writel((val), cp->regs + (reg));        \
 371         readl(cp->regs + (reg));                \
 372         } while (0)
 373 
 374 
 375 static void __cp_set_rx_mode (struct net_device *dev);
 376 static void cp_tx (struct cp_private *cp);
 377 static void cp_clean_rings (struct cp_private *cp);
 378 #ifdef CONFIG_NET_POLL_CONTROLLER
 379 static void cp_poll_controller(struct net_device *dev);
 380 #endif
 381 static int cp_get_eeprom_len(struct net_device *dev);
 382 static int cp_get_eeprom(struct net_device *dev,
 383                          struct ethtool_eeprom *eeprom, u8 *data);
 384 static int cp_set_eeprom(struct net_device *dev,
 385                          struct ethtool_eeprom *eeprom, u8 *data);
 386 
 387 static struct {
 388         const char str[ETH_GSTRING_LEN];
 389 } ethtool_stats_keys[] = {
 390         { "tx_ok" },
 391         { "rx_ok" },
 392         { "tx_err" },
 393         { "rx_err" },
 394         { "rx_fifo" },
 395         { "frame_align" },
 396         { "tx_ok_1col" },
 397         { "tx_ok_mcol" },
 398         { "rx_ok_phys" },
 399         { "rx_ok_bcast" },
 400         { "rx_ok_mcast" },
 401         { "tx_abort" },
 402         { "tx_underrun" },
 403         { "rx_frags" },
 404 };
 405 
 406 
 407 static inline void cp_set_rxbufsize (struct cp_private *cp)
 408 {
 409         unsigned int mtu = cp->dev->mtu;
 410 
 411         if (mtu > ETH_DATA_LEN)
 412                 /* MTU + ethernet header + FCS + optional VLAN tag */
 413                 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
 414         else
 415                 cp->rx_buf_sz = PKT_BUF_SZ;
 416 }
 417 
 418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
 419                               struct cp_desc *desc)
 420 {
 421         u32 opts2 = le32_to_cpu(desc->opts2);
 422 
 423         skb->protocol = eth_type_trans (skb, cp->dev);
 424 
 425         cp->dev->stats.rx_packets++;
 426         cp->dev->stats.rx_bytes += skb->len;
 427 
 428         if (opts2 & RxVlanTagged)
 429                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
 430 
 431         napi_gro_receive(&cp->napi, skb);
 432 }
 433 
 434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
 435                             u32 status, u32 len)
 436 {
 437         netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
 438                   rx_tail, status, len);
 439         cp->dev->stats.rx_errors++;
 440         if (status & RxErrFrame)
 441                 cp->dev->stats.rx_frame_errors++;
 442         if (status & RxErrCRC)
 443                 cp->dev->stats.rx_crc_errors++;
 444         if ((status & RxErrRunt) || (status & RxErrLong))
 445                 cp->dev->stats.rx_length_errors++;
 446         if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
 447                 cp->dev->stats.rx_length_errors++;
 448         if (status & RxErrFIFO)
 449                 cp->dev->stats.rx_fifo_errors++;
 450 }
 451 
 452 static inline unsigned int cp_rx_csum_ok (u32 status)
 453 {
 454         unsigned int protocol = (status >> 16) & 0x3;
 455 
 456         if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
 457             ((protocol == RxProtoUDP) && !(status & UDPFail)))
 458                 return 1;
 459         else
 460                 return 0;
 461 }
 462 
 463 static int cp_rx_poll(struct napi_struct *napi, int budget)
 464 {
 465         struct cp_private *cp = container_of(napi, struct cp_private, napi);
 466         struct net_device *dev = cp->dev;
 467         unsigned int rx_tail = cp->rx_tail;
 468         int rx = 0;
 469 
 470         cpw16(IntrStatus, cp_rx_intr_mask);
 471 
 472         while (rx < budget) {
 473                 u32 status, len;
 474                 dma_addr_t mapping, new_mapping;
 475                 struct sk_buff *skb, *new_skb;
 476                 struct cp_desc *desc;
 477                 const unsigned buflen = cp->rx_buf_sz;
 478 
 479                 skb = cp->rx_skb[rx_tail];
 480                 BUG_ON(!skb);
 481 
 482                 desc = &cp->rx_ring[rx_tail];
 483                 status = le32_to_cpu(desc->opts1);
 484                 if (status & DescOwn)
 485                         break;
 486 
 487                 len = (status & 0x1fff) - 4;
 488                 mapping = le64_to_cpu(desc->addr);
 489 
 490                 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
 491                         /* we don't support incoming fragmented frames.
 492                          * instead, we attempt to ensure that the
 493                          * pre-allocated RX skbs are properly sized such
 494                          * that RX fragments are never encountered
 495                          */
 496                         cp_rx_err_acct(cp, rx_tail, status, len);
 497                         dev->stats.rx_dropped++;
 498                         cp->cp_stats.rx_frags++;
 499                         goto rx_next;
 500                 }
 501 
 502                 if (status & (RxError | RxErrFIFO)) {
 503                         cp_rx_err_acct(cp, rx_tail, status, len);
 504                         goto rx_next;
 505                 }
 506 
 507                 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
 508                           rx_tail, status, len);
 509 
 510                 new_skb = napi_alloc_skb(napi, buflen);
 511                 if (!new_skb) {
 512                         dev->stats.rx_dropped++;
 513                         goto rx_next;
 514                 }
 515 
 516                 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
 517                                          PCI_DMA_FROMDEVICE);
 518                 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
 519                         dev->stats.rx_dropped++;
 520                         kfree_skb(new_skb);
 521                         goto rx_next;
 522                 }
 523 
 524                 dma_unmap_single(&cp->pdev->dev, mapping,
 525                                  buflen, PCI_DMA_FROMDEVICE);
 526 
 527                 /* Handle checksum offloading for incoming packets. */
 528                 if (cp_rx_csum_ok(status))
 529                         skb->ip_summed = CHECKSUM_UNNECESSARY;
 530                 else
 531                         skb_checksum_none_assert(skb);
 532 
 533                 skb_put(skb, len);
 534 
 535                 cp->rx_skb[rx_tail] = new_skb;
 536 
 537                 cp_rx_skb(cp, skb, desc);
 538                 rx++;
 539                 mapping = new_mapping;
 540 
 541 rx_next:
 542                 cp->rx_ring[rx_tail].opts2 = 0;
 543                 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
 544                 if (rx_tail == (CP_RX_RING_SIZE - 1))
 545                         desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
 546                                                   cp->rx_buf_sz);
 547                 else
 548                         desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
 549                 rx_tail = NEXT_RX(rx_tail);
 550         }
 551 
 552         cp->rx_tail = rx_tail;
 553 
 554         /* if we did not reach work limit, then we're done with
 555          * this round of polling
 556          */
 557         if (rx < budget && napi_complete_done(napi, rx)) {
 558                 unsigned long flags;
 559 
 560                 spin_lock_irqsave(&cp->lock, flags);
 561                 cpw16_f(IntrMask, cp_intr_mask);
 562                 spin_unlock_irqrestore(&cp->lock, flags);
 563         }
 564 
 565         return rx;
 566 }
 567 
 568 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
 569 {
 570         struct net_device *dev = dev_instance;
 571         struct cp_private *cp;
 572         int handled = 0;
 573         u16 status;
 574         u16 mask;
 575 
 576         if (unlikely(dev == NULL))
 577                 return IRQ_NONE;
 578         cp = netdev_priv(dev);
 579 
 580         spin_lock(&cp->lock);
 581 
 582         mask = cpr16(IntrMask);
 583         if (!mask)
 584                 goto out_unlock;
 585 
 586         status = cpr16(IntrStatus);
 587         if (!status || (status == 0xFFFF))
 588                 goto out_unlock;
 589 
 590         handled = 1;
 591 
 592         netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
 593                   status, cpr8(Cmd), cpr16(CpCmd));
 594 
 595         cpw16(IntrStatus, status & ~cp_rx_intr_mask);
 596 
 597         /* close possible race's with dev_close */
 598         if (unlikely(!netif_running(dev))) {
 599                 cpw16(IntrMask, 0);
 600                 goto out_unlock;
 601         }
 602 
 603         if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
 604                 if (napi_schedule_prep(&cp->napi)) {
 605                         cpw16_f(IntrMask, cp_norx_intr_mask);
 606                         __napi_schedule(&cp->napi);
 607                 }
 608 
 609         if (status & (TxOK | TxErr | TxEmpty | SWInt))
 610                 cp_tx(cp);
 611         if (status & LinkChg)
 612                 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
 613 
 614 
 615         if (status & PciErr) {
 616                 u16 pci_status;
 617 
 618                 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
 619                 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
 620                 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
 621                            status, pci_status);
 622 
 623                 /* TODO: reset hardware */
 624         }
 625 
 626 out_unlock:
 627         spin_unlock(&cp->lock);
 628 
 629         return IRQ_RETVAL(handled);
 630 }
 631 
 632 #ifdef CONFIG_NET_POLL_CONTROLLER
 633 /*
 634  * Polling receive - used by netconsole and other diagnostic tools
 635  * to allow network i/o with interrupts disabled.
 636  */
 637 static void cp_poll_controller(struct net_device *dev)
 638 {
 639         struct cp_private *cp = netdev_priv(dev);
 640         const int irq = cp->pdev->irq;
 641 
 642         disable_irq(irq);
 643         cp_interrupt(irq, dev);
 644         enable_irq(irq);
 645 }
 646 #endif
 647 
 648 static void cp_tx (struct cp_private *cp)
 649 {
 650         unsigned tx_head = cp->tx_head;
 651         unsigned tx_tail = cp->tx_tail;
 652         unsigned bytes_compl = 0, pkts_compl = 0;
 653 
 654         while (tx_tail != tx_head) {
 655                 struct cp_desc *txd = cp->tx_ring + tx_tail;
 656                 struct sk_buff *skb;
 657                 u32 status;
 658 
 659                 rmb();
 660                 status = le32_to_cpu(txd->opts1);
 661                 if (status & DescOwn)
 662                         break;
 663 
 664                 skb = cp->tx_skb[tx_tail];
 665                 BUG_ON(!skb);
 666 
 667                 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 668                                  cp->tx_opts[tx_tail] & 0xffff,
 669                                  PCI_DMA_TODEVICE);
 670 
 671                 if (status & LastFrag) {
 672                         if (status & (TxError | TxFIFOUnder)) {
 673                                 netif_dbg(cp, tx_err, cp->dev,
 674                                           "tx err, status 0x%x\n", status);
 675                                 cp->dev->stats.tx_errors++;
 676                                 if (status & TxOWC)
 677                                         cp->dev->stats.tx_window_errors++;
 678                                 if (status & TxMaxCol)
 679                                         cp->dev->stats.tx_aborted_errors++;
 680                                 if (status & TxLinkFail)
 681                                         cp->dev->stats.tx_carrier_errors++;
 682                                 if (status & TxFIFOUnder)
 683                                         cp->dev->stats.tx_fifo_errors++;
 684                         } else {
 685                                 cp->dev->stats.collisions +=
 686                                         ((status >> TxColCntShift) & TxColCntMask);
 687                                 cp->dev->stats.tx_packets++;
 688                                 cp->dev->stats.tx_bytes += skb->len;
 689                                 netif_dbg(cp, tx_done, cp->dev,
 690                                           "tx done, slot %d\n", tx_tail);
 691                         }
 692                         bytes_compl += skb->len;
 693                         pkts_compl++;
 694                         dev_consume_skb_irq(skb);
 695                 }
 696 
 697                 cp->tx_skb[tx_tail] = NULL;
 698 
 699                 tx_tail = NEXT_TX(tx_tail);
 700         }
 701 
 702         cp->tx_tail = tx_tail;
 703 
 704         netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
 705         if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
 706                 netif_wake_queue(cp->dev);
 707 }
 708 
 709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
 710 {
 711         return skb_vlan_tag_present(skb) ?
 712                 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
 713 }
 714 
 715 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
 716                                    int first, int entry_last)
 717 {
 718         int frag, index;
 719         struct cp_desc *txd;
 720         skb_frag_t *this_frag;
 721         for (frag = 0; frag+first < entry_last; frag++) {
 722                 index = first+frag;
 723                 cp->tx_skb[index] = NULL;
 724                 txd = &cp->tx_ring[index];
 725                 this_frag = &skb_shinfo(skb)->frags[frag];
 726                 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
 727                                  skb_frag_size(this_frag), PCI_DMA_TODEVICE);
 728         }
 729 }
 730 
 731 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
 732                                         struct net_device *dev)
 733 {
 734         struct cp_private *cp = netdev_priv(dev);
 735         unsigned entry;
 736         u32 eor, opts1;
 737         unsigned long intr_flags;
 738         __le32 opts2;
 739         int mss = 0;
 740 
 741         spin_lock_irqsave(&cp->lock, intr_flags);
 742 
 743         /* This is a hard error, log it. */
 744         if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
 745                 netif_stop_queue(dev);
 746                 spin_unlock_irqrestore(&cp->lock, intr_flags);
 747                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
 748                 return NETDEV_TX_BUSY;
 749         }
 750 
 751         entry = cp->tx_head;
 752         eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 753         mss = skb_shinfo(skb)->gso_size;
 754 
 755         if (mss > MSSMask) {
 756                 netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
 757                                  mss);
 758                 goto out_dma_error;
 759         }
 760 
 761         opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
 762         opts1 = DescOwn;
 763         if (mss)
 764                 opts1 |= LargeSend | (mss << MSSShift);
 765         else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 766                 const struct iphdr *ip = ip_hdr(skb);
 767                 if (ip->protocol == IPPROTO_TCP)
 768                         opts1 |= IPCS | TCPCS;
 769                 else if (ip->protocol == IPPROTO_UDP)
 770                         opts1 |= IPCS | UDPCS;
 771                 else {
 772                         WARN_ONCE(1,
 773                                   "Net bug: asked to checksum invalid Legacy IP packet\n");
 774                         goto out_dma_error;
 775                 }
 776         }
 777 
 778         if (skb_shinfo(skb)->nr_frags == 0) {
 779                 struct cp_desc *txd = &cp->tx_ring[entry];
 780                 u32 len;
 781                 dma_addr_t mapping;
 782 
 783                 len = skb->len;
 784                 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
 785                 if (dma_mapping_error(&cp->pdev->dev, mapping))
 786                         goto out_dma_error;
 787 
 788                 txd->opts2 = opts2;
 789                 txd->addr = cpu_to_le64(mapping);
 790                 wmb();
 791 
 792                 opts1 |= eor | len | FirstFrag | LastFrag;
 793 
 794                 txd->opts1 = cpu_to_le32(opts1);
 795                 wmb();
 796 
 797                 cp->tx_skb[entry] = skb;
 798                 cp->tx_opts[entry] = opts1;
 799                 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
 800                           entry, skb->len);
 801         } else {
 802                 struct cp_desc *txd;
 803                 u32 first_len, first_eor, ctrl;
 804                 dma_addr_t first_mapping;
 805                 int frag, first_entry = entry;
 806 
 807                 /* We must give this initial chunk to the device last.
 808                  * Otherwise we could race with the device.
 809                  */
 810                 first_eor = eor;
 811                 first_len = skb_headlen(skb);
 812                 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
 813                                                first_len, PCI_DMA_TODEVICE);
 814                 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
 815                         goto out_dma_error;
 816 
 817                 cp->tx_skb[entry] = skb;
 818 
 819                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
 820                         const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
 821                         u32 len;
 822                         dma_addr_t mapping;
 823 
 824                         entry = NEXT_TX(entry);
 825 
 826                         len = skb_frag_size(this_frag);
 827                         mapping = dma_map_single(&cp->pdev->dev,
 828                                                  skb_frag_address(this_frag),
 829                                                  len, PCI_DMA_TODEVICE);
 830                         if (dma_mapping_error(&cp->pdev->dev, mapping)) {
 831                                 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
 832                                 goto out_dma_error;
 833                         }
 834 
 835                         eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
 836 
 837                         ctrl = opts1 | eor | len;
 838 
 839                         if (frag == skb_shinfo(skb)->nr_frags - 1)
 840                                 ctrl |= LastFrag;
 841 
 842                         txd = &cp->tx_ring[entry];
 843                         txd->opts2 = opts2;
 844                         txd->addr = cpu_to_le64(mapping);
 845                         wmb();
 846 
 847                         txd->opts1 = cpu_to_le32(ctrl);
 848                         wmb();
 849 
 850                         cp->tx_opts[entry] = ctrl;
 851                         cp->tx_skb[entry] = skb;
 852                 }
 853 
 854                 txd = &cp->tx_ring[first_entry];
 855                 txd->opts2 = opts2;
 856                 txd->addr = cpu_to_le64(first_mapping);
 857                 wmb();
 858 
 859                 ctrl = opts1 | first_eor | first_len | FirstFrag;
 860                 txd->opts1 = cpu_to_le32(ctrl);
 861                 wmb();
 862 
 863                 cp->tx_opts[first_entry] = ctrl;
 864                 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
 865                           first_entry, entry, skb->len);
 866         }
 867         cp->tx_head = NEXT_TX(entry);
 868 
 869         netdev_sent_queue(dev, skb->len);
 870         if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
 871                 netif_stop_queue(dev);
 872 
 873 out_unlock:
 874         spin_unlock_irqrestore(&cp->lock, intr_flags);
 875 
 876         cpw8(TxPoll, NormalTxPoll);
 877 
 878         return NETDEV_TX_OK;
 879 out_dma_error:
 880         dev_kfree_skb_any(skb);
 881         cp->dev->stats.tx_dropped++;
 882         goto out_unlock;
 883 }
 884 
 885 /* Set or clear the multicast filter for this adaptor.
 886    This routine is not state sensitive and need not be SMP locked. */
 887 
 888 static void __cp_set_rx_mode (struct net_device *dev)
 889 {
 890         struct cp_private *cp = netdev_priv(dev);
 891         u32 mc_filter[2];       /* Multicast hash filter */
 892         int rx_mode;
 893 
 894         /* Note: do not reorder, GCC is clever about common statements. */
 895         if (dev->flags & IFF_PROMISC) {
 896                 /* Unconditionally log net taps. */
 897                 rx_mode =
 898                     AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
 899                     AcceptAllPhys;
 900                 mc_filter[1] = mc_filter[0] = 0xffffffff;
 901         } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
 902                    (dev->flags & IFF_ALLMULTI)) {
 903                 /* Too many to filter perfectly -- accept all multicasts. */
 904                 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
 905                 mc_filter[1] = mc_filter[0] = 0xffffffff;
 906         } else {
 907                 struct netdev_hw_addr *ha;
 908                 rx_mode = AcceptBroadcast | AcceptMyPhys;
 909                 mc_filter[1] = mc_filter[0] = 0;
 910                 netdev_for_each_mc_addr(ha, dev) {
 911                         int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
 912 
 913                         mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
 914                         rx_mode |= AcceptMulticast;
 915                 }
 916         }
 917 
 918         /* We can safely update without stopping the chip. */
 919         cp->rx_config = cp_rx_config | rx_mode;
 920         cpw32_f(RxConfig, cp->rx_config);
 921 
 922         cpw32_f (MAR0 + 0, mc_filter[0]);
 923         cpw32_f (MAR0 + 4, mc_filter[1]);
 924 }
 925 
 926 static void cp_set_rx_mode (struct net_device *dev)
 927 {
 928         unsigned long flags;
 929         struct cp_private *cp = netdev_priv(dev);
 930 
 931         spin_lock_irqsave (&cp->lock, flags);
 932         __cp_set_rx_mode(dev);
 933         spin_unlock_irqrestore (&cp->lock, flags);
 934 }
 935 
 936 static void __cp_get_stats(struct cp_private *cp)
 937 {
 938         /* only lower 24 bits valid; write any value to clear */
 939         cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
 940         cpw32 (RxMissed, 0);
 941 }
 942 
 943 static struct net_device_stats *cp_get_stats(struct net_device *dev)
 944 {
 945         struct cp_private *cp = netdev_priv(dev);
 946         unsigned long flags;
 947 
 948         /* The chip only need report frame silently dropped. */
 949         spin_lock_irqsave(&cp->lock, flags);
 950         if (netif_running(dev) && netif_device_present(dev))
 951                 __cp_get_stats(cp);
 952         spin_unlock_irqrestore(&cp->lock, flags);
 953 
 954         return &dev->stats;
 955 }
 956 
 957 static void cp_stop_hw (struct cp_private *cp)
 958 {
 959         cpw16(IntrStatus, ~(cpr16(IntrStatus)));
 960         cpw16_f(IntrMask, 0);
 961         cpw8(Cmd, 0);
 962         cpw16_f(CpCmd, 0);
 963         cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
 964 
 965         cp->rx_tail = 0;
 966         cp->tx_head = cp->tx_tail = 0;
 967 
 968         netdev_reset_queue(cp->dev);
 969 }
 970 
 971 static void cp_reset_hw (struct cp_private *cp)
 972 {
 973         unsigned work = 1000;
 974 
 975         cpw8(Cmd, CmdReset);
 976 
 977         while (work--) {
 978                 if (!(cpr8(Cmd) & CmdReset))
 979                         return;
 980 
 981                 schedule_timeout_uninterruptible(10);
 982         }
 983 
 984         netdev_err(cp->dev, "hardware reset timeout\n");
 985 }
 986 
 987 static inline void cp_start_hw (struct cp_private *cp)
 988 {
 989         dma_addr_t ring_dma;
 990 
 991         cpw16(CpCmd, cp->cpcmd);
 992 
 993         /*
 994          * These (at least TxRingAddr) need to be configured after the
 995          * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
 996          * (C+ Command Register) recommends that these and more be configured
 997          * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
 998          * it's been observed that the TxRingAddr is actually reset to garbage
 999          * when C+ mode Tx is enabled in CpCmd.
1000          */
1001         cpw32_f(HiTxRingAddr, 0);
1002         cpw32_f(HiTxRingAddr + 4, 0);
1003 
1004         ring_dma = cp->ring_dma;
1005         cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006         cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007 
1008         ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009         cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010         cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011 
1012         /*
1013          * Strictly speaking, the datasheet says this should be enabled
1014          * *before* setting the descriptor addresses. But what, then, would
1015          * prevent it from doing DMA to random unconfigured addresses?
1016          * This variant appears to work fine.
1017          */
1018         cpw8(Cmd, RxOn | TxOn);
1019 
1020         netdev_reset_queue(cp->dev);
1021 }
1022 
1023 static void cp_enable_irq(struct cp_private *cp)
1024 {
1025         cpw16_f(IntrMask, cp_intr_mask);
1026 }
1027 
1028 static void cp_init_hw (struct cp_private *cp)
1029 {
1030         struct net_device *dev = cp->dev;
1031 
1032         cp_reset_hw(cp);
1033 
1034         cpw8_f (Cfg9346, Cfg9346_Unlock);
1035 
1036         /* Restore our idea of the MAC address. */
1037         cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038         cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039 
1040         cp_start_hw(cp);
1041         cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1042 
1043         __cp_set_rx_mode(dev);
1044         cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045 
1046         cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047         /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048         cpw8(Config3, PARMEnable);
1049         cp->wol_enabled = 0;
1050 
1051         cpw8(Config5, cpr8(Config5) & PMEStatus);
1052 
1053         cpw16(MultiIntr, 0);
1054 
1055         cpw8_f(Cfg9346, Cfg9346_Lock);
1056 }
1057 
1058 static int cp_refill_rx(struct cp_private *cp)
1059 {
1060         struct net_device *dev = cp->dev;
1061         unsigned i;
1062 
1063         for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064                 struct sk_buff *skb;
1065                 dma_addr_t mapping;
1066 
1067                 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068                 if (!skb)
1069                         goto err_out;
1070 
1071                 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072                                          cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1073                 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074                         kfree_skb(skb);
1075                         goto err_out;
1076                 }
1077                 cp->rx_skb[i] = skb;
1078 
1079                 cp->rx_ring[i].opts2 = 0;
1080                 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081                 if (i == (CP_RX_RING_SIZE - 1))
1082                         cp->rx_ring[i].opts1 =
1083                                 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084                 else
1085                         cp->rx_ring[i].opts1 =
1086                                 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087         }
1088 
1089         return 0;
1090 
1091 err_out:
1092         cp_clean_rings(cp);
1093         return -ENOMEM;
1094 }
1095 
1096 static void cp_init_rings_index (struct cp_private *cp)
1097 {
1098         cp->rx_tail = 0;
1099         cp->tx_head = cp->tx_tail = 0;
1100 }
1101 
1102 static int cp_init_rings (struct cp_private *cp)
1103 {
1104         memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105         cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106         memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107 
1108         cp_init_rings_index(cp);
1109 
1110         return cp_refill_rx (cp);
1111 }
1112 
1113 static int cp_alloc_rings (struct cp_private *cp)
1114 {
1115         struct device *d = &cp->pdev->dev;
1116         void *mem;
1117         int rc;
1118 
1119         mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120         if (!mem)
1121                 return -ENOMEM;
1122 
1123         cp->rx_ring = mem;
1124         cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125 
1126         rc = cp_init_rings(cp);
1127         if (rc < 0)
1128                 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129 
1130         return rc;
1131 }
1132 
1133 static void cp_clean_rings (struct cp_private *cp)
1134 {
1135         struct cp_desc *desc;
1136         unsigned i;
1137 
1138         for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139                 if (cp->rx_skb[i]) {
1140                         desc = cp->rx_ring + i;
1141                         dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142                                          cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1143                         dev_kfree_skb_any(cp->rx_skb[i]);
1144                 }
1145         }
1146 
1147         for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148                 if (cp->tx_skb[i]) {
1149                         struct sk_buff *skb = cp->tx_skb[i];
1150 
1151                         desc = cp->tx_ring + i;
1152                         dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153                                          le32_to_cpu(desc->opts1) & 0xffff,
1154                                          PCI_DMA_TODEVICE);
1155                         if (le32_to_cpu(desc->opts1) & LastFrag)
1156                                 dev_kfree_skb_any(skb);
1157                         cp->dev->stats.tx_dropped++;
1158                 }
1159         }
1160         netdev_reset_queue(cp->dev);
1161 
1162         memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163         memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164         memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165 
1166         memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167         memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168 }
1169 
1170 static void cp_free_rings (struct cp_private *cp)
1171 {
1172         cp_clean_rings(cp);
1173         dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174                           cp->ring_dma);
1175         cp->rx_ring = NULL;
1176         cp->tx_ring = NULL;
1177 }
1178 
1179 static int cp_open (struct net_device *dev)
1180 {
1181         struct cp_private *cp = netdev_priv(dev);
1182         const int irq = cp->pdev->irq;
1183         int rc;
1184 
1185         netif_dbg(cp, ifup, dev, "enabling interface\n");
1186 
1187         rc = cp_alloc_rings(cp);
1188         if (rc)
1189                 return rc;
1190 
1191         napi_enable(&cp->napi);
1192 
1193         cp_init_hw(cp);
1194 
1195         rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196         if (rc)
1197                 goto err_out_hw;
1198 
1199         cp_enable_irq(cp);
1200 
1201         netif_carrier_off(dev);
1202         mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203         netif_start_queue(dev);
1204 
1205         return 0;
1206 
1207 err_out_hw:
1208         napi_disable(&cp->napi);
1209         cp_stop_hw(cp);
1210         cp_free_rings(cp);
1211         return rc;
1212 }
1213 
1214 static int cp_close (struct net_device *dev)
1215 {
1216         struct cp_private *cp = netdev_priv(dev);
1217         unsigned long flags;
1218 
1219         napi_disable(&cp->napi);
1220 
1221         netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222 
1223         spin_lock_irqsave(&cp->lock, flags);
1224 
1225         netif_stop_queue(dev);
1226         netif_carrier_off(dev);
1227 
1228         cp_stop_hw(cp);
1229 
1230         spin_unlock_irqrestore(&cp->lock, flags);
1231 
1232         free_irq(cp->pdev->irq, dev);
1233 
1234         cp_free_rings(cp);
1235         return 0;
1236 }
1237 
1238 static void cp_tx_timeout(struct net_device *dev)
1239 {
1240         struct cp_private *cp = netdev_priv(dev);
1241         unsigned long flags;
1242         int rc, i;
1243 
1244         netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245                     cpr8(Cmd), cpr16(CpCmd),
1246                     cpr16(IntrStatus), cpr16(IntrMask));
1247 
1248         spin_lock_irqsave(&cp->lock, flags);
1249 
1250         netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251                   cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252         for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253                 netif_dbg(cp, tx_err, cp->dev,
1254                           "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255                           i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256                           cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257                           le64_to_cpu(cp->tx_ring[i].addr),
1258                           cp->tx_skb[i]);
1259         }
1260 
1261         cp_stop_hw(cp);
1262         cp_clean_rings(cp);
1263         rc = cp_init_rings(cp);
1264         cp_start_hw(cp);
1265         __cp_set_rx_mode(dev);
1266         cpw16_f(IntrMask, cp_norx_intr_mask);
1267 
1268         netif_wake_queue(dev);
1269         napi_schedule_irqoff(&cp->napi);
1270 
1271         spin_unlock_irqrestore(&cp->lock, flags);
1272 }
1273 
1274 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275 {
1276         struct cp_private *cp = netdev_priv(dev);
1277 
1278         /* if network interface not up, no need for complexity */
1279         if (!netif_running(dev)) {
1280                 dev->mtu = new_mtu;
1281                 cp_set_rxbufsize(cp);   /* set new rx buf size */
1282                 return 0;
1283         }
1284 
1285         /* network IS up, close it, reset MTU, and come up again. */
1286         cp_close(dev);
1287         dev->mtu = new_mtu;
1288         cp_set_rxbufsize(cp);
1289         return cp_open(dev);
1290 }
1291 
1292 static const char mii_2_8139_map[8] = {
1293         BasicModeCtrl,
1294         BasicModeStatus,
1295         0,
1296         0,
1297         NWayAdvert,
1298         NWayLPAR,
1299         NWayExpansion,
1300         0
1301 };
1302 
1303 static int mdio_read(struct net_device *dev, int phy_id, int location)
1304 {
1305         struct cp_private *cp = netdev_priv(dev);
1306 
1307         return location < 8 && mii_2_8139_map[location] ?
1308                readw(cp->regs + mii_2_8139_map[location]) : 0;
1309 }
1310 
1311 
1312 static void mdio_write(struct net_device *dev, int phy_id, int location,
1313                        int value)
1314 {
1315         struct cp_private *cp = netdev_priv(dev);
1316 
1317         if (location == 0) {
1318                 cpw8(Cfg9346, Cfg9346_Unlock);
1319                 cpw16(BasicModeCtrl, value);
1320                 cpw8(Cfg9346, Cfg9346_Lock);
1321         } else if (location < 8 && mii_2_8139_map[location])
1322                 cpw16(mii_2_8139_map[location], value);
1323 }
1324 
1325 /* Set the ethtool Wake-on-LAN settings */
1326 static int netdev_set_wol (struct cp_private *cp,
1327                            const struct ethtool_wolinfo *wol)
1328 {
1329         u8 options;
1330 
1331         options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332         /* If WOL is being disabled, no need for complexity */
1333         if (wol->wolopts) {
1334                 if (wol->wolopts & WAKE_PHY)    options |= LinkUp;
1335                 if (wol->wolopts & WAKE_MAGIC)  options |= MagicPacket;
1336         }
1337 
1338         cpw8 (Cfg9346, Cfg9346_Unlock);
1339         cpw8 (Config3, options);
1340         cpw8 (Cfg9346, Cfg9346_Lock);
1341 
1342         options = 0; /* Paranoia setting */
1343         options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344         /* If WOL is being disabled, no need for complexity */
1345         if (wol->wolopts) {
1346                 if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1347                 if (wol->wolopts & WAKE_BCAST)  options |= BWF;
1348                 if (wol->wolopts & WAKE_MCAST)  options |= MWF;
1349         }
1350 
1351         cpw8 (Config5, options);
1352 
1353         cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354 
1355         return 0;
1356 }
1357 
1358 /* Get the ethtool Wake-on-LAN settings */
1359 static void netdev_get_wol (struct cp_private *cp,
1360                      struct ethtool_wolinfo *wol)
1361 {
1362         u8 options;
1363 
1364         wol->wolopts   = 0; /* Start from scratch */
1365         wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1366                          WAKE_MCAST | WAKE_UCAST;
1367         /* We don't need to go on if WOL is disabled */
1368         if (!cp->wol_enabled) return;
1369 
1370         options        = cpr8 (Config3);
1371         if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1372         if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1373 
1374         options        = 0; /* Paranoia setting */
1375         options        = cpr8 (Config5);
1376         if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1377         if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1378         if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1379 }
1380 
1381 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382 {
1383         struct cp_private *cp = netdev_priv(dev);
1384 
1385         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1386         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1387         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388 }
1389 
1390 static void cp_get_ringparam(struct net_device *dev,
1391                                 struct ethtool_ringparam *ring)
1392 {
1393         ring->rx_max_pending = CP_RX_RING_SIZE;
1394         ring->tx_max_pending = CP_TX_RING_SIZE;
1395         ring->rx_pending = CP_RX_RING_SIZE;
1396         ring->tx_pending = CP_TX_RING_SIZE;
1397 }
1398 
1399 static int cp_get_regs_len(struct net_device *dev)
1400 {
1401         return CP_REGS_SIZE;
1402 }
1403 
1404 static int cp_get_sset_count (struct net_device *dev, int sset)
1405 {
1406         switch (sset) {
1407         case ETH_SS_STATS:
1408                 return CP_NUM_STATS;
1409         default:
1410                 return -EOPNOTSUPP;
1411         }
1412 }
1413 
1414 static int cp_get_link_ksettings(struct net_device *dev,
1415                                  struct ethtool_link_ksettings *cmd)
1416 {
1417         struct cp_private *cp = netdev_priv(dev);
1418         unsigned long flags;
1419 
1420         spin_lock_irqsave(&cp->lock, flags);
1421         mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1422         spin_unlock_irqrestore(&cp->lock, flags);
1423 
1424         return 0;
1425 }
1426 
1427 static int cp_set_link_ksettings(struct net_device *dev,
1428                                  const struct ethtool_link_ksettings *cmd)
1429 {
1430         struct cp_private *cp = netdev_priv(dev);
1431         int rc;
1432         unsigned long flags;
1433 
1434         spin_lock_irqsave(&cp->lock, flags);
1435         rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1436         spin_unlock_irqrestore(&cp->lock, flags);
1437 
1438         return rc;
1439 }
1440 
1441 static int cp_nway_reset(struct net_device *dev)
1442 {
1443         struct cp_private *cp = netdev_priv(dev);
1444         return mii_nway_restart(&cp->mii_if);
1445 }
1446 
1447 static u32 cp_get_msglevel(struct net_device *dev)
1448 {
1449         struct cp_private *cp = netdev_priv(dev);
1450         return cp->msg_enable;
1451 }
1452 
1453 static void cp_set_msglevel(struct net_device *dev, u32 value)
1454 {
1455         struct cp_private *cp = netdev_priv(dev);
1456         cp->msg_enable = value;
1457 }
1458 
1459 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1460 {
1461         struct cp_private *cp = netdev_priv(dev);
1462         unsigned long flags;
1463 
1464         if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1465                 return 0;
1466 
1467         spin_lock_irqsave(&cp->lock, flags);
1468 
1469         if (features & NETIF_F_RXCSUM)
1470                 cp->cpcmd |= RxChkSum;
1471         else
1472                 cp->cpcmd &= ~RxChkSum;
1473 
1474         if (features & NETIF_F_HW_VLAN_CTAG_RX)
1475                 cp->cpcmd |= RxVlanOn;
1476         else
1477                 cp->cpcmd &= ~RxVlanOn;
1478 
1479         cpw16_f(CpCmd, cp->cpcmd);
1480         spin_unlock_irqrestore(&cp->lock, flags);
1481 
1482         return 0;
1483 }
1484 
1485 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1486                         void *p)
1487 {
1488         struct cp_private *cp = netdev_priv(dev);
1489         unsigned long flags;
1490 
1491         if (regs->len < CP_REGS_SIZE)
1492                 return /* -EINVAL */;
1493 
1494         regs->version = CP_REGS_VER;
1495 
1496         spin_lock_irqsave(&cp->lock, flags);
1497         memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1498         spin_unlock_irqrestore(&cp->lock, flags);
1499 }
1500 
1501 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1502 {
1503         struct cp_private *cp = netdev_priv(dev);
1504         unsigned long flags;
1505 
1506         spin_lock_irqsave (&cp->lock, flags);
1507         netdev_get_wol (cp, wol);
1508         spin_unlock_irqrestore (&cp->lock, flags);
1509 }
1510 
1511 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513         struct cp_private *cp = netdev_priv(dev);
1514         unsigned long flags;
1515         int rc;
1516 
1517         spin_lock_irqsave (&cp->lock, flags);
1518         rc = netdev_set_wol (cp, wol);
1519         spin_unlock_irqrestore (&cp->lock, flags);
1520 
1521         return rc;
1522 }
1523 
1524 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1525 {
1526         switch (stringset) {
1527         case ETH_SS_STATS:
1528                 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1529                 break;
1530         default:
1531                 BUG();
1532                 break;
1533         }
1534 }
1535 
1536 static void cp_get_ethtool_stats (struct net_device *dev,
1537                                   struct ethtool_stats *estats, u64 *tmp_stats)
1538 {
1539         struct cp_private *cp = netdev_priv(dev);
1540         struct cp_dma_stats *nic_stats;
1541         dma_addr_t dma;
1542         int i;
1543 
1544         nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1545                                        &dma, GFP_KERNEL);
1546         if (!nic_stats)
1547                 return;
1548 
1549         /* begin NIC statistics dump */
1550         cpw32(StatsAddr + 4, (u64)dma >> 32);
1551         cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1552         cpr32(StatsAddr);
1553 
1554         for (i = 0; i < 1000; i++) {
1555                 if ((cpr32(StatsAddr) & DumpStats) == 0)
1556                         break;
1557                 udelay(10);
1558         }
1559         cpw32(StatsAddr, 0);
1560         cpw32(StatsAddr + 4, 0);
1561         cpr32(StatsAddr);
1562 
1563         i = 0;
1564         tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1565         tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1566         tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1567         tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1568         tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1569         tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1570         tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1571         tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1572         tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1573         tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1574         tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1575         tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1576         tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1577         tmp_stats[i++] = cp->cp_stats.rx_frags;
1578         BUG_ON(i != CP_NUM_STATS);
1579 
1580         dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1581 }
1582 
1583 static const struct ethtool_ops cp_ethtool_ops = {
1584         .get_drvinfo            = cp_get_drvinfo,
1585         .get_regs_len           = cp_get_regs_len,
1586         .get_sset_count         = cp_get_sset_count,
1587         .nway_reset             = cp_nway_reset,
1588         .get_link               = ethtool_op_get_link,
1589         .get_msglevel           = cp_get_msglevel,
1590         .set_msglevel           = cp_set_msglevel,
1591         .get_regs               = cp_get_regs,
1592         .get_wol                = cp_get_wol,
1593         .set_wol                = cp_set_wol,
1594         .get_strings            = cp_get_strings,
1595         .get_ethtool_stats      = cp_get_ethtool_stats,
1596         .get_eeprom_len         = cp_get_eeprom_len,
1597         .get_eeprom             = cp_get_eeprom,
1598         .set_eeprom             = cp_set_eeprom,
1599         .get_ringparam          = cp_get_ringparam,
1600         .get_link_ksettings     = cp_get_link_ksettings,
1601         .set_link_ksettings     = cp_set_link_ksettings,
1602 };
1603 
1604 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1605 {
1606         struct cp_private *cp = netdev_priv(dev);
1607         int rc;
1608         unsigned long flags;
1609 
1610         if (!netif_running(dev))
1611                 return -EINVAL;
1612 
1613         spin_lock_irqsave(&cp->lock, flags);
1614         rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1615         spin_unlock_irqrestore(&cp->lock, flags);
1616         return rc;
1617 }
1618 
1619 static int cp_set_mac_address(struct net_device *dev, void *p)
1620 {
1621         struct cp_private *cp = netdev_priv(dev);
1622         struct sockaddr *addr = p;
1623 
1624         if (!is_valid_ether_addr(addr->sa_data))
1625                 return -EADDRNOTAVAIL;
1626 
1627         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1628 
1629         spin_lock_irq(&cp->lock);
1630 
1631         cpw8_f(Cfg9346, Cfg9346_Unlock);
1632         cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1633         cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1634         cpw8_f(Cfg9346, Cfg9346_Lock);
1635 
1636         spin_unlock_irq(&cp->lock);
1637 
1638         return 0;
1639 }
1640 
1641 /* Serial EEPROM section. */
1642 
1643 /*  EEPROM_Ctrl bits. */
1644 #define EE_SHIFT_CLK    0x04    /* EEPROM shift clock. */
1645 #define EE_CS                   0x08    /* EEPROM chip select. */
1646 #define EE_DATA_WRITE   0x02    /* EEPROM chip data in. */
1647 #define EE_WRITE_0              0x00
1648 #define EE_WRITE_1              0x02
1649 #define EE_DATA_READ    0x01    /* EEPROM chip data out. */
1650 #define EE_ENB                  (0x80 | EE_CS)
1651 
1652 /* Delay between EEPROM clock transitions.
1653    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1654  */
1655 
1656 #define eeprom_delay()  readb(ee_addr)
1657 
1658 /* The EEPROM commands include the alway-set leading bit. */
1659 #define EE_EXTEND_CMD   (4)
1660 #define EE_WRITE_CMD    (5)
1661 #define EE_READ_CMD             (6)
1662 #define EE_ERASE_CMD    (7)
1663 
1664 #define EE_EWDS_ADDR    (0)
1665 #define EE_WRAL_ADDR    (1)
1666 #define EE_ERAL_ADDR    (2)
1667 #define EE_EWEN_ADDR    (3)
1668 
1669 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1670 
1671 static void eeprom_cmd_start(void __iomem *ee_addr)
1672 {
1673         writeb (EE_ENB & ~EE_CS, ee_addr);
1674         writeb (EE_ENB, ee_addr);
1675         eeprom_delay ();
1676 }
1677 
1678 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1679 {
1680         int i;
1681 
1682         /* Shift the command bits out. */
1683         for (i = cmd_len - 1; i >= 0; i--) {
1684                 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1685                 writeb (EE_ENB | dataval, ee_addr);
1686                 eeprom_delay ();
1687                 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1688                 eeprom_delay ();
1689         }
1690         writeb (EE_ENB, ee_addr);
1691         eeprom_delay ();
1692 }
1693 
1694 static void eeprom_cmd_end(void __iomem *ee_addr)
1695 {
1696         writeb(0, ee_addr);
1697         eeprom_delay ();
1698 }
1699 
1700 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1701                               int addr_len)
1702 {
1703         int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1704 
1705         eeprom_cmd_start(ee_addr);
1706         eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1707         eeprom_cmd_end(ee_addr);
1708 }
1709 
1710 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1711 {
1712         int i;
1713         u16 retval = 0;
1714         void __iomem *ee_addr = ioaddr + Cfg9346;
1715         int read_cmd = location | (EE_READ_CMD << addr_len);
1716 
1717         eeprom_cmd_start(ee_addr);
1718         eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1719 
1720         for (i = 16; i > 0; i--) {
1721                 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1722                 eeprom_delay ();
1723                 retval =
1724                     (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1725                                      0);
1726                 writeb (EE_ENB, ee_addr);
1727                 eeprom_delay ();
1728         }
1729 
1730         eeprom_cmd_end(ee_addr);
1731 
1732         return retval;
1733 }
1734 
1735 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1736                          int addr_len)
1737 {
1738         int i;
1739         void __iomem *ee_addr = ioaddr + Cfg9346;
1740         int write_cmd = location | (EE_WRITE_CMD << addr_len);
1741 
1742         eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1743 
1744         eeprom_cmd_start(ee_addr);
1745         eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1746         eeprom_cmd(ee_addr, val, 16);
1747         eeprom_cmd_end(ee_addr);
1748 
1749         eeprom_cmd_start(ee_addr);
1750         for (i = 0; i < 20000; i++)
1751                 if (readb(ee_addr) & EE_DATA_READ)
1752                         break;
1753         eeprom_cmd_end(ee_addr);
1754 
1755         eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1756 }
1757 
1758 static int cp_get_eeprom_len(struct net_device *dev)
1759 {
1760         struct cp_private *cp = netdev_priv(dev);
1761         int size;
1762 
1763         spin_lock_irq(&cp->lock);
1764         size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1765         spin_unlock_irq(&cp->lock);
1766 
1767         return size;
1768 }
1769 
1770 static int cp_get_eeprom(struct net_device *dev,
1771                          struct ethtool_eeprom *eeprom, u8 *data)
1772 {
1773         struct cp_private *cp = netdev_priv(dev);
1774         unsigned int addr_len;
1775         u16 val;
1776         u32 offset = eeprom->offset >> 1;
1777         u32 len = eeprom->len;
1778         u32 i = 0;
1779 
1780         eeprom->magic = CP_EEPROM_MAGIC;
1781 
1782         spin_lock_irq(&cp->lock);
1783 
1784         addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1785 
1786         if (eeprom->offset & 1) {
1787                 val = read_eeprom(cp->regs, offset, addr_len);
1788                 data[i++] = (u8)(val >> 8);
1789                 offset++;
1790         }
1791 
1792         while (i < len - 1) {
1793                 val = read_eeprom(cp->regs, offset, addr_len);
1794                 data[i++] = (u8)val;
1795                 data[i++] = (u8)(val >> 8);
1796                 offset++;
1797         }
1798 
1799         if (i < len) {
1800                 val = read_eeprom(cp->regs, offset, addr_len);
1801                 data[i] = (u8)val;
1802         }
1803 
1804         spin_unlock_irq(&cp->lock);
1805         return 0;
1806 }
1807 
1808 static int cp_set_eeprom(struct net_device *dev,
1809                          struct ethtool_eeprom *eeprom, u8 *data)
1810 {
1811         struct cp_private *cp = netdev_priv(dev);
1812         unsigned int addr_len;
1813         u16 val;
1814         u32 offset = eeprom->offset >> 1;
1815         u32 len = eeprom->len;
1816         u32 i = 0;
1817 
1818         if (eeprom->magic != CP_EEPROM_MAGIC)
1819                 return -EINVAL;
1820 
1821         spin_lock_irq(&cp->lock);
1822 
1823         addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1824 
1825         if (eeprom->offset & 1) {
1826                 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1827                 val |= (u16)data[i++] << 8;
1828                 write_eeprom(cp->regs, offset, val, addr_len);
1829                 offset++;
1830         }
1831 
1832         while (i < len - 1) {
1833                 val = (u16)data[i++];
1834                 val |= (u16)data[i++] << 8;
1835                 write_eeprom(cp->regs, offset, val, addr_len);
1836                 offset++;
1837         }
1838 
1839         if (i < len) {
1840                 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1841                 val |= (u16)data[i];
1842                 write_eeprom(cp->regs, offset, val, addr_len);
1843         }
1844 
1845         spin_unlock_irq(&cp->lock);
1846         return 0;
1847 }
1848 
1849 /* Put the board into D3cold state and wait for WakeUp signal */
1850 static void cp_set_d3_state (struct cp_private *cp)
1851 {
1852         pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1853         pci_set_power_state (cp->pdev, PCI_D3hot);
1854 }
1855 
1856 static netdev_features_t cp_features_check(struct sk_buff *skb,
1857                                            struct net_device *dev,
1858                                            netdev_features_t features)
1859 {
1860         if (skb_shinfo(skb)->gso_size > MSSMask)
1861                 features &= ~NETIF_F_TSO;
1862 
1863         return vlan_features_check(skb, features);
1864 }
1865 static const struct net_device_ops cp_netdev_ops = {
1866         .ndo_open               = cp_open,
1867         .ndo_stop               = cp_close,
1868         .ndo_validate_addr      = eth_validate_addr,
1869         .ndo_set_mac_address    = cp_set_mac_address,
1870         .ndo_set_rx_mode        = cp_set_rx_mode,
1871         .ndo_get_stats          = cp_get_stats,
1872         .ndo_do_ioctl           = cp_ioctl,
1873         .ndo_start_xmit         = cp_start_xmit,
1874         .ndo_tx_timeout         = cp_tx_timeout,
1875         .ndo_set_features       = cp_set_features,
1876         .ndo_change_mtu         = cp_change_mtu,
1877         .ndo_features_check     = cp_features_check,
1878 
1879 #ifdef CONFIG_NET_POLL_CONTROLLER
1880         .ndo_poll_controller    = cp_poll_controller,
1881 #endif
1882 };
1883 
1884 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1885 {
1886         struct net_device *dev;
1887         struct cp_private *cp;
1888         int rc;
1889         void __iomem *regs;
1890         resource_size_t pciaddr;
1891         unsigned int addr_len, i, pci_using_dac;
1892 
1893         pr_info_once("%s", version);
1894 
1895         if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1896             pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1897                 dev_info(&pdev->dev,
1898                          "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1899                          pdev->vendor, pdev->device, pdev->revision);
1900                 return -ENODEV;
1901         }
1902 
1903         dev = alloc_etherdev(sizeof(struct cp_private));
1904         if (!dev)
1905                 return -ENOMEM;
1906         SET_NETDEV_DEV(dev, &pdev->dev);
1907 
1908         cp = netdev_priv(dev);
1909         cp->pdev = pdev;
1910         cp->dev = dev;
1911         cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1912         spin_lock_init (&cp->lock);
1913         cp->mii_if.dev = dev;
1914         cp->mii_if.mdio_read = mdio_read;
1915         cp->mii_if.mdio_write = mdio_write;
1916         cp->mii_if.phy_id = CP_INTERNAL_PHY;
1917         cp->mii_if.phy_id_mask = 0x1f;
1918         cp->mii_if.reg_num_mask = 0x1f;
1919         cp_set_rxbufsize(cp);
1920 
1921         rc = pci_enable_device(pdev);
1922         if (rc)
1923                 goto err_out_free;
1924 
1925         rc = pci_set_mwi(pdev);
1926         if (rc)
1927                 goto err_out_disable;
1928 
1929         rc = pci_request_regions(pdev, DRV_NAME);
1930         if (rc)
1931                 goto err_out_mwi;
1932 
1933         pciaddr = pci_resource_start(pdev, 1);
1934         if (!pciaddr) {
1935                 rc = -EIO;
1936                 dev_err(&pdev->dev, "no MMIO resource\n");
1937                 goto err_out_res;
1938         }
1939         if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1940                 rc = -EIO;
1941                 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1942                        (unsigned long long)pci_resource_len(pdev, 1));
1943                 goto err_out_res;
1944         }
1945 
1946         /* Configure DMA attributes. */
1947         if ((sizeof(dma_addr_t) > 4) &&
1948             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1949             !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1950                 pci_using_dac = 1;
1951         } else {
1952                 pci_using_dac = 0;
1953 
1954                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1955                 if (rc) {
1956                         dev_err(&pdev->dev,
1957                                 "No usable DMA configuration, aborting\n");
1958                         goto err_out_res;
1959                 }
1960                 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1961                 if (rc) {
1962                         dev_err(&pdev->dev,
1963                                 "No usable consistent DMA configuration, aborting\n");
1964                         goto err_out_res;
1965                 }
1966         }
1967 
1968         cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1969                     PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1970 
1971         dev->features |= NETIF_F_RXCSUM;
1972         dev->hw_features |= NETIF_F_RXCSUM;
1973 
1974         regs = ioremap(pciaddr, CP_REGS_SIZE);
1975         if (!regs) {
1976                 rc = -EIO;
1977                 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1978                         (unsigned long long)pci_resource_len(pdev, 1),
1979                        (unsigned long long)pciaddr);
1980                 goto err_out_res;
1981         }
1982         cp->regs = regs;
1983 
1984         cp_stop_hw(cp);
1985 
1986         /* read MAC address from EEPROM */
1987         addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1988         for (i = 0; i < 3; i++)
1989                 ((__le16 *) (dev->dev_addr))[i] =
1990                     cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1991 
1992         dev->netdev_ops = &cp_netdev_ops;
1993         netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1994         dev->ethtool_ops = &cp_ethtool_ops;
1995         dev->watchdog_timeo = TX_TIMEOUT;
1996 
1997         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1998                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1999 
2000         if (pci_using_dac)
2001                 dev->features |= NETIF_F_HIGHDMA;
2002 
2003         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2004                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2005         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2006                 NETIF_F_HIGHDMA;
2007 
2008         /* MTU range: 60 - 4096 */
2009         dev->min_mtu = CP_MIN_MTU;
2010         dev->max_mtu = CP_MAX_MTU;
2011 
2012         rc = register_netdev(dev);
2013         if (rc)
2014                 goto err_out_iomap;
2015 
2016         netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2017                     regs, dev->dev_addr, pdev->irq);
2018 
2019         pci_set_drvdata(pdev, dev);
2020 
2021         /* enable busmastering and memory-write-invalidate */
2022         pci_set_master(pdev);
2023 
2024         if (cp->wol_enabled)
2025                 cp_set_d3_state (cp);
2026 
2027         return 0;
2028 
2029 err_out_iomap:
2030         iounmap(regs);
2031 err_out_res:
2032         pci_release_regions(pdev);
2033 err_out_mwi:
2034         pci_clear_mwi(pdev);
2035 err_out_disable:
2036         pci_disable_device(pdev);
2037 err_out_free:
2038         free_netdev(dev);
2039         return rc;
2040 }
2041 
2042 static void cp_remove_one (struct pci_dev *pdev)
2043 {
2044         struct net_device *dev = pci_get_drvdata(pdev);
2045         struct cp_private *cp = netdev_priv(dev);
2046 
2047         unregister_netdev(dev);
2048         iounmap(cp->regs);
2049         if (cp->wol_enabled)
2050                 pci_set_power_state (pdev, PCI_D0);
2051         pci_release_regions(pdev);
2052         pci_clear_mwi(pdev);
2053         pci_disable_device(pdev);
2054         free_netdev(dev);
2055 }
2056 
2057 #ifdef CONFIG_PM
2058 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2059 {
2060         struct net_device *dev = pci_get_drvdata(pdev);
2061         struct cp_private *cp = netdev_priv(dev);
2062         unsigned long flags;
2063 
2064         if (!netif_running(dev))
2065                 return 0;
2066 
2067         netif_device_detach (dev);
2068         netif_stop_queue (dev);
2069 
2070         spin_lock_irqsave (&cp->lock, flags);
2071 
2072         /* Disable Rx and Tx */
2073         cpw16 (IntrMask, 0);
2074         cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2075 
2076         spin_unlock_irqrestore (&cp->lock, flags);
2077 
2078         pci_save_state(pdev);
2079         pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2080         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2081 
2082         return 0;
2083 }
2084 
2085 static int cp_resume (struct pci_dev *pdev)
2086 {
2087         struct net_device *dev = pci_get_drvdata (pdev);
2088         struct cp_private *cp = netdev_priv(dev);
2089         unsigned long flags;
2090 
2091         if (!netif_running(dev))
2092                 return 0;
2093 
2094         netif_device_attach (dev);
2095 
2096         pci_set_power_state(pdev, PCI_D0);
2097         pci_restore_state(pdev);
2098         pci_enable_wake(pdev, PCI_D0, 0);
2099 
2100         /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2101         cp_init_rings_index (cp);
2102         cp_init_hw (cp);
2103         cp_enable_irq(cp);
2104         netif_start_queue (dev);
2105 
2106         spin_lock_irqsave (&cp->lock, flags);
2107 
2108         mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2109 
2110         spin_unlock_irqrestore (&cp->lock, flags);
2111 
2112         return 0;
2113 }
2114 #endif /* CONFIG_PM */
2115 
2116 static const struct pci_device_id cp_pci_tbl[] = {
2117         { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2118         { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2119         { },
2120 };
2121 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2122 
2123 static struct pci_driver cp_driver = {
2124         .name         = DRV_NAME,
2125         .id_table     = cp_pci_tbl,
2126         .probe        = cp_init_one,
2127         .remove       = cp_remove_one,
2128 #ifdef CONFIG_PM
2129         .resume       = cp_resume,
2130         .suspend      = cp_suspend,
2131 #endif
2132 };
2133 
2134 module_pci_driver(cp_driver);

/* [<][>][^][v][top][bottom][index][help] */