This source file includes following definitions.
- fza_alloc_skb_irq
- fza_alloc_skb
- fza_skb_align
- fza_reads
- fza_writes
- fza_moves
- fza_zeros
- fza_regs_dump
- fza_do_reset
- fza_do_shutdown
- fza_reset
- fza_cmd_send
- fza_init_send
- fza_rx_init
- fza_set_rx_mode
- fza_do_xmit
- fza_do_recv_smt
- fza_tx
- fza_rx_err
- fza_rx
- fza_tx_smt
- fza_uns
- fza_tx_flush
- fza_interrupt
- fza_reset_timer
- fza_set_mac_address
- fza_start_xmit
- fza_open
- fza_close
- fza_get_stats
- fza_probe
- fza_remove
- fza_init
- fza_exit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 #define FZA_RING_TX_MODE 0
23
24
25 #define FZA_RING_RX_SIZE 256
26
27
28
29
30 #include <linux/delay.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37 #include <linux/ioport.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/module.h>
41 #include <linux/netdevice.h>
42 #include <linux/fddidevice.h>
43 #include <linux/sched.h>
44 #include <linux/skbuff.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/tc.h>
48 #include <linux/timer.h>
49 #include <linux/types.h>
50 #include <linux/wait.h>
51
52 #include <asm/barrier.h>
53
54 #include "defza.h"
55
56 #define DRV_NAME "defza"
57 #define DRV_VERSION "v.1.1.4"
58 #define DRV_RELDATE "Oct 6 2018"
59
60 static const char version[] =
61 DRV_NAME ": " DRV_VERSION " " DRV_RELDATE " Maciej W. Rozycki\n";
62
63 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
64 MODULE_DESCRIPTION("DEC FDDIcontroller 700 (DEFZA-xx) driver");
65 MODULE_LICENSE("GPL");
66
67 static int loopback;
68 module_param(loopback, int, 0644);
69
70
71 static u8 hw_addr_purger[8] = { 0x09, 0x00, 0x2b, 0x02, 0x01, 0x05 };
72
73 static u8 hw_addr_beacon[8] = { 0x01, 0x80, 0xc2, 0x00, 0x01, 0x00 };
74
75
76
77
78 #define readw_o readw_relaxed
79 #define readl_o readl_relaxed
80
81 #define writew_o writew_relaxed
82 #define writel_o writel_relaxed
83
84
85
86
87 #define readw_u readw_relaxed
88 #define readl_u readl_relaxed
89 #define readq_u readq_relaxed
90
91 #define writew_u writew_relaxed
92 #define writel_u writel_relaxed
93 #define writeq_u writeq_relaxed
94
95 static inline struct sk_buff *fza_alloc_skb_irq(struct net_device *dev,
96 unsigned int length)
97 {
98 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
99 }
100
101 static inline struct sk_buff *fza_alloc_skb(struct net_device *dev,
102 unsigned int length)
103 {
104 return __netdev_alloc_skb(dev, length, GFP_KERNEL);
105 }
106
107 static inline void fza_skb_align(struct sk_buff *skb, unsigned int v)
108 {
109 unsigned long x, y;
110
111 x = (unsigned long)skb->data;
112 y = ALIGN(x, v);
113
114 skb_reserve(skb, y - x);
115 }
116
117 static inline void fza_reads(const void __iomem *from, void *to,
118 unsigned long size)
119 {
120 if (sizeof(unsigned long) == 8) {
121 const u64 __iomem *src = from;
122 const u32 __iomem *src_trail;
123 u64 *dst = to;
124 u32 *dst_trail;
125
126 for (size = (size + 3) / 4; size > 1; size -= 2)
127 *dst++ = readq_u(src++);
128 if (size) {
129 src_trail = (u32 __iomem *)src;
130 dst_trail = (u32 *)dst;
131 *dst_trail = readl_u(src_trail);
132 }
133 } else {
134 const u32 __iomem *src = from;
135 u32 *dst = to;
136
137 for (size = (size + 3) / 4; size; size--)
138 *dst++ = readl_u(src++);
139 }
140 }
141
142 static inline void fza_writes(const void *from, void __iomem *to,
143 unsigned long size)
144 {
145 if (sizeof(unsigned long) == 8) {
146 const u64 *src = from;
147 const u32 *src_trail;
148 u64 __iomem *dst = to;
149 u32 __iomem *dst_trail;
150
151 for (size = (size + 3) / 4; size > 1; size -= 2)
152 writeq_u(*src++, dst++);
153 if (size) {
154 src_trail = (u32 *)src;
155 dst_trail = (u32 __iomem *)dst;
156 writel_u(*src_trail, dst_trail);
157 }
158 } else {
159 const u32 *src = from;
160 u32 __iomem *dst = to;
161
162 for (size = (size + 3) / 4; size; size--)
163 writel_u(*src++, dst++);
164 }
165 }
166
167 static inline void fza_moves(const void __iomem *from, void __iomem *to,
168 unsigned long size)
169 {
170 if (sizeof(unsigned long) == 8) {
171 const u64 __iomem *src = from;
172 const u32 __iomem *src_trail;
173 u64 __iomem *dst = to;
174 u32 __iomem *dst_trail;
175
176 for (size = (size + 3) / 4; size > 1; size -= 2)
177 writeq_u(readq_u(src++), dst++);
178 if (size) {
179 src_trail = (u32 __iomem *)src;
180 dst_trail = (u32 __iomem *)dst;
181 writel_u(readl_u(src_trail), dst_trail);
182 }
183 } else {
184 const u32 __iomem *src = from;
185 u32 __iomem *dst = to;
186
187 for (size = (size + 3) / 4; size; size--)
188 writel_u(readl_u(src++), dst++);
189 }
190 }
191
192 static inline void fza_zeros(void __iomem *to, unsigned long size)
193 {
194 if (sizeof(unsigned long) == 8) {
195 u64 __iomem *dst = to;
196 u32 __iomem *dst_trail;
197
198 for (size = (size + 3) / 4; size > 1; size -= 2)
199 writeq_u(0, dst++);
200 if (size) {
201 dst_trail = (u32 __iomem *)dst;
202 writel_u(0, dst_trail);
203 }
204 } else {
205 u32 __iomem *dst = to;
206
207 for (size = (size + 3) / 4; size; size--)
208 writel_u(0, dst++);
209 }
210 }
211
212 static inline void fza_regs_dump(struct fza_private *fp)
213 {
214 pr_debug("%s: iomem registers:\n", fp->name);
215 pr_debug(" reset: 0x%04x\n", readw_o(&fp->regs->reset));
216 pr_debug(" interrupt event: 0x%04x\n", readw_u(&fp->regs->int_event));
217 pr_debug(" status: 0x%04x\n", readw_u(&fp->regs->status));
218 pr_debug(" interrupt mask: 0x%04x\n", readw_u(&fp->regs->int_mask));
219 pr_debug(" control A: 0x%04x\n", readw_u(&fp->regs->control_a));
220 pr_debug(" control B: 0x%04x\n", readw_u(&fp->regs->control_b));
221 }
222
223 static inline void fza_do_reset(struct fza_private *fp)
224 {
225
226 writew_o(FZA_RESET_INIT, &fp->regs->reset);
227 readw_o(&fp->regs->reset);
228 readw_o(&fp->regs->reset);
229 writew_o(FZA_RESET_CLR, &fp->regs->reset);
230
231
232 writew_o(fp->int_mask, &fp->regs->int_mask);
233 readw_o(&fp->regs->int_mask);
234 }
235
236 static inline void fza_do_shutdown(struct fza_private *fp)
237 {
238
239 writew_o(FZA_CONTROL_B_IDLE, &fp->regs->control_b);
240
241
242 writew_o(FZA_RESET_INIT, &fp->regs->reset);
243 readw_o(&fp->regs->reset);
244 writew_o(FZA_RESET_CLR, &fp->regs->reset);
245 readw_o(&fp->regs->reset);
246 }
247
248 static int fza_reset(struct fza_private *fp)
249 {
250 unsigned long flags;
251 uint status, state;
252 long t;
253
254 pr_info("%s: resetting the board...\n", fp->name);
255
256 spin_lock_irqsave(&fp->lock, flags);
257 fp->state_chg_flag = 0;
258 fza_do_reset(fp);
259 spin_unlock_irqrestore(&fp->lock, flags);
260
261
262
263
264
265 t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
266 45 * HZ);
267 status = readw_u(&fp->regs->status);
268 state = FZA_STATUS_GET_STATE(status);
269 if (fp->state_chg_flag == 0) {
270 pr_err("%s: RESET timed out!, state %x\n", fp->name, state);
271 return -EIO;
272 }
273 if (state != FZA_STATE_UNINITIALIZED) {
274 pr_err("%s: RESET failed!, state %x, failure ID %x\n",
275 fp->name, state, FZA_STATUS_GET_TEST(status));
276 return -EIO;
277 }
278 pr_info("%s: OK\n", fp->name);
279 pr_debug("%s: RESET: %lums elapsed\n", fp->name,
280 (45 * HZ - t) * 1000 / HZ);
281
282 return 0;
283 }
284
285 static struct fza_ring_cmd __iomem *fza_cmd_send(struct net_device *dev,
286 int command)
287 {
288 struct fza_private *fp = netdev_priv(dev);
289 struct fza_ring_cmd __iomem *ring = fp->ring_cmd + fp->ring_cmd_index;
290 unsigned int old_mask, new_mask;
291 union fza_cmd_buf __iomem *buf;
292 struct netdev_hw_addr *ha;
293 int i;
294
295 old_mask = fp->int_mask;
296 new_mask = old_mask & ~FZA_MASK_STATE_CHG;
297 writew_u(new_mask, &fp->regs->int_mask);
298 readw_o(&fp->regs->int_mask);
299 fp->int_mask = new_mask;
300
301 buf = fp->mmio + readl_u(&ring->buffer);
302
303 if ((readl_u(&ring->cmd_own) & FZA_RING_OWN_MASK) !=
304 FZA_RING_OWN_HOST) {
305 pr_warn("%s: command buffer full, command: %u!\n", fp->name,
306 command);
307 return NULL;
308 }
309
310 switch (command) {
311 case FZA_RING_CMD_INIT:
312 writel_u(FZA_RING_TX_MODE, &buf->init.tx_mode);
313 writel_u(FZA_RING_RX_SIZE, &buf->init.hst_rx_size);
314 fza_zeros(&buf->init.counters, sizeof(buf->init.counters));
315 break;
316
317 case FZA_RING_CMD_MODCAM:
318 i = 0;
319 fza_writes(&hw_addr_purger, &buf->cam.hw_addr[i++],
320 sizeof(*buf->cam.hw_addr));
321 fza_writes(&hw_addr_beacon, &buf->cam.hw_addr[i++],
322 sizeof(*buf->cam.hw_addr));
323 netdev_for_each_mc_addr(ha, dev) {
324 if (i >= FZA_CMD_CAM_SIZE)
325 break;
326 fza_writes(ha->addr, &buf->cam.hw_addr[i++],
327 sizeof(*buf->cam.hw_addr));
328 }
329 while (i < FZA_CMD_CAM_SIZE)
330 fza_zeros(&buf->cam.hw_addr[i++],
331 sizeof(*buf->cam.hw_addr));
332 break;
333
334 case FZA_RING_CMD_PARAM:
335 writel_u(loopback, &buf->param.loop_mode);
336 writel_u(fp->t_max, &buf->param.t_max);
337 writel_u(fp->t_req, &buf->param.t_req);
338 writel_u(fp->tvx, &buf->param.tvx);
339 writel_u(fp->lem_threshold, &buf->param.lem_threshold);
340 fza_writes(&fp->station_id, &buf->param.station_id,
341 sizeof(buf->param.station_id));
342
343 writel_u(fp->rtoken_timeout / 12500,
344 &buf->param.rtoken_timeout);
345 writel_u(fp->ring_purger, &buf->param.ring_purger);
346 break;
347
348 case FZA_RING_CMD_MODPROM:
349 if (dev->flags & IFF_PROMISC) {
350 writel_u(1, &buf->modprom.llc_prom);
351 writel_u(1, &buf->modprom.smt_prom);
352 } else {
353 writel_u(0, &buf->modprom.llc_prom);
354 writel_u(0, &buf->modprom.smt_prom);
355 }
356 if (dev->flags & IFF_ALLMULTI ||
357 netdev_mc_count(dev) > FZA_CMD_CAM_SIZE - 2)
358 writel_u(1, &buf->modprom.llc_multi);
359 else
360 writel_u(0, &buf->modprom.llc_multi);
361 writel_u(1, &buf->modprom.llc_bcast);
362 break;
363 }
364
365
366 writel_u(FZA_RING_OWN_FZA | command, &ring->cmd_own);
367 writew_o(FZA_CONTROL_A_CMD_POLL, &fp->regs->control_a);
368
369 fp->ring_cmd_index = (fp->ring_cmd_index + 1) % FZA_RING_CMD_SIZE;
370
371 fp->int_mask = old_mask;
372 writew_u(fp->int_mask, &fp->regs->int_mask);
373
374 return ring;
375 }
376
377 static int fza_init_send(struct net_device *dev,
378 struct fza_cmd_init *__iomem *init)
379 {
380 struct fza_private *fp = netdev_priv(dev);
381 struct fza_ring_cmd __iomem *ring;
382 unsigned long flags;
383 u32 stat;
384 long t;
385
386 spin_lock_irqsave(&fp->lock, flags);
387 fp->cmd_done_flag = 0;
388 ring = fza_cmd_send(dev, FZA_RING_CMD_INIT);
389 spin_unlock_irqrestore(&fp->lock, flags);
390 if (!ring)
391
392
393
394 return -ENOBUFS;
395
396
397 t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
398 if (fp->cmd_done_flag == 0) {
399 pr_err("%s: INIT command timed out!, state %x\n", fp->name,
400 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
401 return -EIO;
402 }
403 stat = readl_u(&ring->stat);
404 if (stat != FZA_RING_STAT_SUCCESS) {
405 pr_err("%s: INIT command failed!, status %02x, state %x\n",
406 fp->name, stat,
407 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
408 return -EIO;
409 }
410 pr_debug("%s: INIT: %lums elapsed\n", fp->name,
411 (3 * HZ - t) * 1000 / HZ);
412
413 if (init)
414 *init = fp->mmio + readl_u(&ring->buffer);
415 return 0;
416 }
417
418 static void fza_rx_init(struct fza_private *fp)
419 {
420 int i;
421
422
423 for (i = 0; i < FZA_RING_RX_SIZE; i++) {
424 writel_o(0, &fp->ring_hst_rx[i].rmc);
425 writel_o((fp->rx_dma[i] + 0x1000) >> 9,
426 &fp->ring_hst_rx[i].buffer1);
427 writel_o(fp->rx_dma[i] >> 9 | FZA_RING_OWN_FZA,
428 &fp->ring_hst_rx[i].buf0_own);
429 }
430 }
431
432 static void fza_set_rx_mode(struct net_device *dev)
433 {
434 fza_cmd_send(dev, FZA_RING_CMD_MODCAM);
435 fza_cmd_send(dev, FZA_RING_CMD_MODPROM);
436 }
437
438 union fza_buffer_txp {
439 struct fza_buffer_tx *data_ptr;
440 struct fza_buffer_tx __iomem *mmio_ptr;
441 };
442
443 static int fza_do_xmit(union fza_buffer_txp ub, int len,
444 struct net_device *dev, int smt)
445 {
446 struct fza_private *fp = netdev_priv(dev);
447 struct fza_buffer_tx __iomem *rmc_tx_ptr;
448 int i, first, frag_len, left_len;
449 u32 own, rmc;
450
451 if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
452 fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
453 FZA_TX_BUFFER_SIZE) < len)
454 return 1;
455
456 first = fp->ring_rmc_tx_index;
457
458 left_len = len;
459 frag_len = FZA_TX_BUFFER_SIZE;
460
461 own = FZA_RING_TX_OWN_HOST;
462
463 rmc = FZA_RING_TX_SOP | FZA_RING_TX_VBC | len;
464 do {
465 i = fp->ring_rmc_tx_index;
466 rmc_tx_ptr = &fp->buffer_tx[i];
467
468 if (left_len < FZA_TX_BUFFER_SIZE)
469 frag_len = left_len;
470 left_len -= frag_len;
471
472
473
474
475 frag_len = (frag_len + 3) & ~3;
476 if (smt)
477 fza_moves(ub.mmio_ptr, rmc_tx_ptr, frag_len);
478 else
479 fza_writes(ub.data_ptr, rmc_tx_ptr, frag_len);
480
481 if (left_len == 0)
482 rmc |= FZA_RING_TX_EOP;
483
484 writel_o(rmc, &fp->ring_rmc_tx[i].rmc);
485 writel_o(own, &fp->ring_rmc_tx[i].own);
486
487 ub.data_ptr++;
488 fp->ring_rmc_tx_index = (fp->ring_rmc_tx_index + 1) %
489 fp->ring_rmc_tx_size;
490
491
492 own = FZA_RING_TX_OWN_RMC;
493 rmc = 0;
494 } while (left_len > 0);
495
496 if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
497 fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
498 FZA_TX_BUFFER_SIZE) < dev->mtu + dev->hard_header_len) {
499 netif_stop_queue(dev);
500 pr_debug("%s: queue stopped\n", fp->name);
501 }
502
503 writel_o(FZA_RING_TX_OWN_RMC, &fp->ring_rmc_tx[first].own);
504
505
506 writew_o(FZA_CONTROL_A_TX_POLL, &fp->regs->control_a);
507
508 return 0;
509 }
510
511 static int fza_do_recv_smt(struct fza_buffer_tx *data_ptr, int len,
512 u32 rmc, struct net_device *dev)
513 {
514 struct fza_private *fp = netdev_priv(dev);
515 struct fza_buffer_tx __iomem *smt_rx_ptr;
516 u32 own;
517 int i;
518
519 i = fp->ring_smt_rx_index;
520 own = readl_o(&fp->ring_smt_rx[i].own);
521 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
522 return 1;
523
524 smt_rx_ptr = fp->mmio + readl_u(&fp->ring_smt_rx[i].buffer);
525
526
527 fza_writes(data_ptr, smt_rx_ptr, (len + 3) & ~3);
528
529 writel_o(rmc, &fp->ring_smt_rx[i].rmc);
530 writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_rx[i].own);
531
532 fp->ring_smt_rx_index =
533 (fp->ring_smt_rx_index + 1) % fp->ring_smt_rx_size;
534
535
536 writew_o(FZA_CONTROL_A_SMT_RX_POLL, &fp->regs->control_a);
537
538 return 0;
539 }
540
541 static void fza_tx(struct net_device *dev)
542 {
543 struct fza_private *fp = netdev_priv(dev);
544 u32 own, rmc;
545 int i;
546
547 while (1) {
548 i = fp->ring_rmc_txd_index;
549 if (i == fp->ring_rmc_tx_index)
550 break;
551 own = readl_o(&fp->ring_rmc_tx[i].own);
552 if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC)
553 break;
554
555 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
556
557 if ((rmc & FZA_RING_TX_SOP) != 0) {
558 if ((rmc & FZA_RING_TX_DCC_MASK) ==
559 FZA_RING_TX_DCC_SUCCESS) {
560 int pkt_len = (rmc & FZA_RING_PBC_MASK) - 3;
561
562
563 fp->stats.tx_packets++;
564 fp->stats.tx_bytes += pkt_len;
565 } else {
566 fp->stats.tx_errors++;
567 switch (rmc & FZA_RING_TX_DCC_MASK) {
568 case FZA_RING_TX_DCC_DTP_SOP:
569 case FZA_RING_TX_DCC_DTP:
570 case FZA_RING_TX_DCC_ABORT:
571 fp->stats.tx_aborted_errors++;
572 break;
573 case FZA_RING_TX_DCC_UNDRRUN:
574 fp->stats.tx_fifo_errors++;
575 break;
576 case FZA_RING_TX_DCC_PARITY:
577 default:
578 break;
579 }
580 }
581 }
582
583 fp->ring_rmc_txd_index = (fp->ring_rmc_txd_index + 1) %
584 fp->ring_rmc_tx_size;
585 }
586
587 if (((((fp->ring_rmc_txd_index - 1 + fp->ring_rmc_tx_size) -
588 fp->ring_rmc_tx_index) % fp->ring_rmc_tx_size) *
589 FZA_TX_BUFFER_SIZE) >= dev->mtu + dev->hard_header_len) {
590 if (fp->queue_active) {
591 netif_wake_queue(dev);
592 pr_debug("%s: queue woken\n", fp->name);
593 }
594 }
595 }
596
597 static inline int fza_rx_err(struct fza_private *fp,
598 const u32 rmc, const u8 fc)
599 {
600 int len, min_len, max_len;
601
602 len = rmc & FZA_RING_PBC_MASK;
603
604 if (unlikely((rmc & FZA_RING_RX_BAD) != 0)) {
605 fp->stats.rx_errors++;
606
607
608 if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
609 FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
610 (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
611 FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_ALIAS)) {
612 if (len >= 8190)
613 fp->stats.rx_length_errors++;
614 return 1;
615 }
616 if ((rmc & (FZA_RING_RX_CRC | FZA_RING_RX_RRR_MASK |
617 FZA_RING_RX_DA_MASK | FZA_RING_RX_SA_MASK)) ==
618 (FZA_RING_RX_CRC | FZA_RING_RX_RRR_DADDR |
619 FZA_RING_RX_DA_CAM | FZA_RING_RX_SA_CAM)) {
620
621 writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
622 readw_o(&fp->regs->control_a);
623 return 1;
624 }
625
626
627 switch (rmc & FZA_RING_RX_RRR_MASK) {
628 case FZA_RING_RX_RRR_OK:
629 if ((rmc & FZA_RING_RX_CRC) != 0)
630 fp->stats.rx_crc_errors++;
631 else if ((rmc & FZA_RING_RX_FSC_MASK) == 0 ||
632 (rmc & FZA_RING_RX_FSB_ERR) != 0)
633 fp->stats.rx_frame_errors++;
634 return 1;
635 case FZA_RING_RX_RRR_SADDR:
636 case FZA_RING_RX_RRR_DADDR:
637 case FZA_RING_RX_RRR_ABORT:
638
639 writew_o(FZA_CONTROL_A_HALT, &fp->regs->control_a);
640 readw_o(&fp->regs->control_a);
641 return 1;
642 case FZA_RING_RX_RRR_LENGTH:
643 fp->stats.rx_frame_errors++;
644 return 1;
645 default:
646 return 1;
647 }
648 }
649
650
651 switch (fc & FDDI_FC_K_FORMAT_MASK) {
652 case FDDI_FC_K_FORMAT_MANAGEMENT:
653 if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_ASYNC)
654 min_len = 37;
655 else
656 min_len = 17;
657 break;
658 case FDDI_FC_K_FORMAT_LLC:
659 min_len = 20;
660 break;
661 default:
662 min_len = 17;
663 break;
664 }
665 max_len = 4495;
666 if (len < min_len || len > max_len) {
667 fp->stats.rx_errors++;
668 fp->stats.rx_length_errors++;
669 return 1;
670 }
671
672 return 0;
673 }
674
675 static void fza_rx(struct net_device *dev)
676 {
677 struct fza_private *fp = netdev_priv(dev);
678 struct sk_buff *skb, *newskb;
679 struct fza_fddihdr *frame;
680 dma_addr_t dma, newdma;
681 u32 own, rmc, buf;
682 int i, len;
683 u8 fc;
684
685 while (1) {
686 i = fp->ring_hst_rx_index;
687 own = readl_o(&fp->ring_hst_rx[i].buf0_own);
688 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
689 break;
690
691 rmc = readl_u(&fp->ring_hst_rx[i].rmc);
692 skb = fp->rx_skbuff[i];
693 dma = fp->rx_dma[i];
694
695
696
697
698 dma_rmb();
699 len = (rmc & FZA_RING_PBC_MASK) + 3;
700 frame = (struct fza_fddihdr *)skb->data;
701
702
703 dma_sync_single_for_cpu(fp->bdev,
704 dma +
705 ((u8 *)&frame->hdr.fc - (u8 *)frame),
706 sizeof(frame->hdr.fc),
707 DMA_FROM_DEVICE);
708 fc = frame->hdr.fc;
709
710 if (fza_rx_err(fp, rmc, fc))
711 goto err_rx;
712
713
714 newskb = fza_alloc_skb_irq(dev, FZA_RX_BUFFER_SIZE + 511);
715 if (newskb) {
716 fza_skb_align(newskb, 512);
717 newdma = dma_map_single(fp->bdev, newskb->data,
718 FZA_RX_BUFFER_SIZE,
719 DMA_FROM_DEVICE);
720 if (dma_mapping_error(fp->bdev, newdma)) {
721 dev_kfree_skb_irq(newskb);
722 newskb = NULL;
723 }
724 }
725 if (newskb) {
726 int pkt_len = len - 7;
727 int is_multi;
728 int rx_stat;
729
730 dma_unmap_single(fp->bdev, dma, FZA_RX_BUFFER_SIZE,
731 DMA_FROM_DEVICE);
732
733
734 if ((fc & (FDDI_FC_K_CLASS_MASK |
735 FDDI_FC_K_FORMAT_MASK)) ==
736 (FDDI_FC_K_CLASS_ASYNC |
737 FDDI_FC_K_FORMAT_MANAGEMENT) &&
738 (rmc & FZA_RING_RX_DA_MASK) !=
739 FZA_RING_RX_DA_PROM) {
740 if (fza_do_recv_smt((struct fza_buffer_tx *)
741 skb->data, len, rmc,
742 dev)) {
743 writel_o(FZA_CONTROL_A_SMT_RX_OVFL,
744 &fp->regs->control_a);
745 }
746 }
747
748 is_multi = ((frame->hdr.daddr[0] & 0x01) != 0);
749
750 skb_reserve(skb, 3);
751 skb_put(skb, pkt_len);
752 skb->protocol = fddi_type_trans(skb, dev);
753
754 rx_stat = netif_rx(skb);
755 if (rx_stat != NET_RX_DROP) {
756 fp->stats.rx_packets++;
757 fp->stats.rx_bytes += pkt_len;
758 if (is_multi)
759 fp->stats.multicast++;
760 } else {
761 fp->stats.rx_dropped++;
762 }
763
764 skb = newskb;
765 dma = newdma;
766 fp->rx_skbuff[i] = skb;
767 fp->rx_dma[i] = dma;
768 } else {
769 fp->stats.rx_dropped++;
770 pr_notice("%s: memory squeeze, dropping packet\n",
771 fp->name);
772 }
773
774 err_rx:
775 writel_o(0, &fp->ring_hst_rx[i].rmc);
776 buf = (dma + 0x1000) >> 9;
777 writel_o(buf, &fp->ring_hst_rx[i].buffer1);
778 buf = dma >> 9 | FZA_RING_OWN_FZA;
779 writel_o(buf, &fp->ring_hst_rx[i].buf0_own);
780 fp->ring_hst_rx_index =
781 (fp->ring_hst_rx_index + 1) % fp->ring_hst_rx_size;
782 }
783 }
784
785 static void fza_tx_smt(struct net_device *dev)
786 {
787 struct fza_private *fp = netdev_priv(dev);
788 struct fza_buffer_tx __iomem *smt_tx_ptr;
789 int i, len;
790 u32 own;
791
792 while (1) {
793 i = fp->ring_smt_tx_index;
794 own = readl_o(&fp->ring_smt_tx[i].own);
795 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
796 break;
797
798 smt_tx_ptr = fp->mmio + readl_u(&fp->ring_smt_tx[i].buffer);
799 len = readl_u(&fp->ring_smt_tx[i].rmc) & FZA_RING_PBC_MASK;
800
801 if (!netif_queue_stopped(dev)) {
802 if (dev_nit_active(dev)) {
803 struct fza_buffer_tx *skb_data_ptr;
804 struct sk_buff *skb;
805
806
807
808
809 skb = fza_alloc_skb_irq(dev, (len + 3) & ~3);
810 if (!skb)
811 goto err_no_skb;
812
813 skb_data_ptr = (struct fza_buffer_tx *)
814 skb->data;
815
816 fza_reads(smt_tx_ptr, skb_data_ptr,
817 (len + 3) & ~3);
818 skb->dev = dev;
819 skb_reserve(skb, 3);
820 skb_put(skb, len - 3);
821 skb_reset_network_header(skb);
822
823 dev_queue_xmit_nit(skb, dev);
824
825 dev_kfree_skb_irq(skb);
826
827 err_no_skb:
828 ;
829 }
830
831
832 fza_do_xmit((union fza_buffer_txp)
833 { .mmio_ptr = smt_tx_ptr },
834 len, dev, 1);
835 }
836
837 writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
838 fp->ring_smt_tx_index =
839 (fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
840 }
841 }
842
843 static void fza_uns(struct net_device *dev)
844 {
845 struct fza_private *fp = netdev_priv(dev);
846 u32 own;
847 int i;
848
849 while (1) {
850 i = fp->ring_uns_index;
851 own = readl_o(&fp->ring_uns[i].own);
852 if ((own & FZA_RING_OWN_MASK) == FZA_RING_OWN_FZA)
853 break;
854
855 if (readl_u(&fp->ring_uns[i].id) == FZA_RING_UNS_RX_OVER) {
856 fp->stats.rx_errors++;
857 fp->stats.rx_over_errors++;
858 }
859
860 writel_o(FZA_RING_OWN_FZA, &fp->ring_uns[i].own);
861 fp->ring_uns_index =
862 (fp->ring_uns_index + 1) % FZA_RING_UNS_SIZE;
863 }
864 }
865
866 static void fza_tx_flush(struct net_device *dev)
867 {
868 struct fza_private *fp = netdev_priv(dev);
869 u32 own;
870 int i;
871
872
873 i = fp->ring_smt_tx_index;
874 do {
875 writel_o(FZA_RING_OWN_FZA, &fp->ring_smt_tx[i].own);
876 fp->ring_smt_tx_index =
877 (fp->ring_smt_tx_index + 1) % fp->ring_smt_tx_size;
878
879 } while (i != fp->ring_smt_tx_index);
880
881
882 i = fp->ring_rmc_tx_index;
883 do {
884 own = readl_o(&fp->ring_rmc_tx[i].own);
885 if ((own & FZA_RING_OWN_MASK) == FZA_RING_TX_OWN_RMC) {
886 u32 rmc = readl_u(&fp->ring_rmc_tx[i].rmc);
887
888 writel_u(rmc | FZA_RING_TX_DTP,
889 &fp->ring_rmc_tx[i].rmc);
890 }
891 fp->ring_rmc_tx_index =
892 (fp->ring_rmc_tx_index + 1) % fp->ring_rmc_tx_size;
893
894 } while (i != fp->ring_rmc_tx_index);
895
896
897 writew_o(FZA_CONTROL_A_FLUSH_DONE, &fp->regs->control_a);
898 }
899
900 static irqreturn_t fza_interrupt(int irq, void *dev_id)
901 {
902 struct net_device *dev = dev_id;
903 struct fza_private *fp = netdev_priv(dev);
904 uint int_event;
905
906
907 int_event = readw_o(&fp->regs->int_event) & fp->int_mask;
908 if (int_event == 0)
909 return IRQ_NONE;
910
911
912 writew_u(int_event, &fp->regs->int_event);
913
914
915
916
917 if ((int_event & FZA_EVENT_CMD_DONE) != 0) {
918 fp->irq_count_cmd_done++;
919
920 spin_lock(&fp->lock);
921 fp->cmd_done_flag = 1;
922 wake_up(&fp->cmd_done_wait);
923 spin_unlock(&fp->lock);
924 }
925
926
927 if ((int_event & FZA_EVENT_TX_DONE) != 0) {
928 fp->irq_count_tx_done++;
929 fza_tx(dev);
930 }
931
932
933 if ((int_event & FZA_EVENT_RX_POLL) != 0) {
934 fp->irq_count_rx_poll++;
935 fza_rx(dev);
936 }
937
938
939 if ((int_event & FZA_EVENT_SMT_TX_POLL) != 0) {
940 fp->irq_count_smt_tx_poll++;
941 fza_tx_smt(dev);
942 }
943
944
945 if ((int_event & FZA_EVENT_FLUSH_TX) != 0) {
946 fp->irq_count_flush_tx++;
947 fza_tx_flush(dev);
948 }
949
950
951 if ((int_event & FZA_EVENT_LINK_ST_CHG) != 0) {
952 uint status;
953
954 fp->irq_count_link_st_chg++;
955 status = readw_u(&fp->regs->status);
956 if (FZA_STATUS_GET_LINK(status) == FZA_LINK_ON) {
957 netif_carrier_on(dev);
958 pr_info("%s: link available\n", fp->name);
959 } else {
960 netif_carrier_off(dev);
961 pr_info("%s: link unavailable\n", fp->name);
962 }
963 }
964
965
966 if ((int_event & FZA_EVENT_UNS_POLL) != 0) {
967 fp->irq_count_uns_poll++;
968 fza_uns(dev);
969 }
970
971
972 if ((int_event & FZA_EVENT_STATE_CHG) != 0) {
973 uint status, state;
974
975 fp->irq_count_state_chg++;
976
977 status = readw_u(&fp->regs->status);
978 state = FZA_STATUS_GET_STATE(status);
979 pr_debug("%s: state change: %x\n", fp->name, state);
980 switch (state) {
981 case FZA_STATE_RESET:
982 break;
983
984 case FZA_STATE_UNINITIALIZED:
985 netif_carrier_off(dev);
986 del_timer_sync(&fp->reset_timer);
987 fp->ring_cmd_index = 0;
988 fp->ring_uns_index = 0;
989 fp->ring_rmc_tx_index = 0;
990 fp->ring_rmc_txd_index = 0;
991 fp->ring_hst_rx_index = 0;
992 fp->ring_smt_tx_index = 0;
993 fp->ring_smt_rx_index = 0;
994 if (fp->state > state) {
995 pr_info("%s: OK\n", fp->name);
996 fza_cmd_send(dev, FZA_RING_CMD_INIT);
997 }
998 break;
999
1000 case FZA_STATE_INITIALIZED:
1001 if (fp->state > state) {
1002 fza_set_rx_mode(dev);
1003 fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1004 }
1005 break;
1006
1007 case FZA_STATE_RUNNING:
1008 case FZA_STATE_MAINTENANCE:
1009 fp->state = state;
1010 fza_rx_init(fp);
1011 fp->queue_active = 1;
1012 netif_wake_queue(dev);
1013 pr_debug("%s: queue woken\n", fp->name);
1014 break;
1015
1016 case FZA_STATE_HALTED:
1017 fp->queue_active = 0;
1018 netif_stop_queue(dev);
1019 pr_debug("%s: queue stopped\n", fp->name);
1020 del_timer_sync(&fp->reset_timer);
1021 pr_warn("%s: halted, reason: %x\n", fp->name,
1022 FZA_STATUS_GET_HALT(status));
1023 fza_regs_dump(fp);
1024 pr_info("%s: resetting the board...\n", fp->name);
1025 fza_do_reset(fp);
1026 fp->timer_state = 0;
1027 fp->reset_timer.expires = jiffies + 45 * HZ;
1028 add_timer(&fp->reset_timer);
1029 break;
1030
1031 default:
1032 pr_warn("%s: undefined state: %x\n", fp->name, state);
1033 break;
1034 }
1035
1036 spin_lock(&fp->lock);
1037 fp->state_chg_flag = 1;
1038 wake_up(&fp->state_chg_wait);
1039 spin_unlock(&fp->lock);
1040 }
1041
1042 return IRQ_HANDLED;
1043 }
1044
1045 static void fza_reset_timer(struct timer_list *t)
1046 {
1047 struct fza_private *fp = from_timer(fp, t, reset_timer);
1048
1049 if (!fp->timer_state) {
1050 pr_err("%s: RESET timed out!\n", fp->name);
1051 pr_info("%s: trying harder...\n", fp->name);
1052
1053
1054 writew_o(FZA_RESET_INIT, &fp->regs->reset);
1055 readw_o(&fp->regs->reset);
1056
1057 fp->timer_state = 1;
1058 fp->reset_timer.expires = jiffies + HZ;
1059 } else {
1060
1061 writew_u(FZA_RESET_CLR, &fp->regs->reset);
1062
1063
1064 writew_o(fp->int_mask, &fp->regs->int_mask);
1065 readw_o(&fp->regs->int_mask);
1066
1067 fp->timer_state = 0;
1068 fp->reset_timer.expires = jiffies + 45 * HZ;
1069 }
1070 add_timer(&fp->reset_timer);
1071 }
1072
1073 static int fza_set_mac_address(struct net_device *dev, void *addr)
1074 {
1075 return -EOPNOTSUPP;
1076 }
1077
1078 static netdev_tx_t fza_start_xmit(struct sk_buff *skb, struct net_device *dev)
1079 {
1080 struct fza_private *fp = netdev_priv(dev);
1081 unsigned int old_mask, new_mask;
1082 int ret;
1083 u8 fc;
1084
1085 skb_push(skb, 3);
1086
1087
1088 fc = skb->data[3];
1089 skb->data[0] = 0;
1090 skb->data[1] = 0;
1091 skb->data[2] = FZA_PRH2_NORMAL;
1092 if ((fc & FDDI_FC_K_CLASS_MASK) == FDDI_FC_K_CLASS_SYNC)
1093 skb->data[0] |= FZA_PRH0_FRAME_SYNC;
1094 switch (fc & FDDI_FC_K_FORMAT_MASK) {
1095 case FDDI_FC_K_FORMAT_MANAGEMENT:
1096 if ((fc & FDDI_FC_K_CONTROL_MASK) == 0) {
1097
1098 skb->data[0] |= FZA_PRH0_TKN_TYPE_IMM;
1099 skb->data[1] |= FZA_PRH1_TKN_SEND_NONE;
1100 } else {
1101
1102 skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1103 skb->data[1] |= FZA_PRH1_TKN_SEND_UNR;
1104 }
1105 skb->data[1] |= FZA_PRH1_CRC_NORMAL;
1106 break;
1107 case FDDI_FC_K_FORMAT_LLC:
1108 case FDDI_FC_K_FORMAT_FUTURE:
1109 skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1110 skb->data[1] |= FZA_PRH1_CRC_NORMAL | FZA_PRH1_TKN_SEND_UNR;
1111 break;
1112 case FDDI_FC_K_FORMAT_IMPLEMENTOR:
1113 skb->data[0] |= FZA_PRH0_TKN_TYPE_UNR;
1114 skb->data[1] |= FZA_PRH1_TKN_SEND_ORIG;
1115 break;
1116 }
1117
1118
1119
1120
1121
1122 old_mask = fp->int_mask;
1123 new_mask = old_mask & ~FZA_MASK_SMT_TX_POLL;
1124 writew_u(new_mask, &fp->regs->int_mask);
1125 readw_o(&fp->regs->int_mask);
1126 fp->int_mask = new_mask;
1127 ret = fza_do_xmit((union fza_buffer_txp)
1128 { .data_ptr = (struct fza_buffer_tx *)skb->data },
1129 skb->len, dev, 0);
1130 fp->int_mask = old_mask;
1131 writew_u(fp->int_mask, &fp->regs->int_mask);
1132
1133 if (ret) {
1134
1135
1136
1137 netif_stop_queue(dev);
1138 pr_debug("%s: queue stopped\n", fp->name);
1139 fp->stats.tx_dropped++;
1140 }
1141
1142 dev_kfree_skb(skb);
1143
1144 return ret;
1145 }
1146
1147 static int fza_open(struct net_device *dev)
1148 {
1149 struct fza_private *fp = netdev_priv(dev);
1150 struct fza_ring_cmd __iomem *ring;
1151 struct sk_buff *skb;
1152 unsigned long flags;
1153 dma_addr_t dma;
1154 int ret, i;
1155 u32 stat;
1156 long t;
1157
1158 for (i = 0; i < FZA_RING_RX_SIZE; i++) {
1159
1160 skb = fza_alloc_skb(dev, FZA_RX_BUFFER_SIZE + 511);
1161 if (skb) {
1162 fza_skb_align(skb, 512);
1163 dma = dma_map_single(fp->bdev, skb->data,
1164 FZA_RX_BUFFER_SIZE,
1165 DMA_FROM_DEVICE);
1166 if (dma_mapping_error(fp->bdev, dma)) {
1167 dev_kfree_skb(skb);
1168 skb = NULL;
1169 }
1170 }
1171 if (!skb) {
1172 for (--i; i >= 0; i--) {
1173 dma_unmap_single(fp->bdev, fp->rx_dma[i],
1174 FZA_RX_BUFFER_SIZE,
1175 DMA_FROM_DEVICE);
1176 dev_kfree_skb(fp->rx_skbuff[i]);
1177 fp->rx_dma[i] = 0;
1178 fp->rx_skbuff[i] = NULL;
1179 }
1180 return -ENOMEM;
1181 }
1182 fp->rx_skbuff[i] = skb;
1183 fp->rx_dma[i] = dma;
1184 }
1185
1186 ret = fza_init_send(dev, NULL);
1187 if (ret != 0)
1188 return ret;
1189
1190
1191 fza_set_rx_mode(dev);
1192
1193 spin_lock_irqsave(&fp->lock, flags);
1194 fp->cmd_done_flag = 0;
1195 ring = fza_cmd_send(dev, FZA_RING_CMD_PARAM);
1196 spin_unlock_irqrestore(&fp->lock, flags);
1197 if (!ring)
1198 return -ENOBUFS;
1199
1200 t = wait_event_timeout(fp->cmd_done_wait, fp->cmd_done_flag, 3 * HZ);
1201 if (fp->cmd_done_flag == 0) {
1202 pr_err("%s: PARAM command timed out!, state %x\n", fp->name,
1203 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1204 return -EIO;
1205 }
1206 stat = readl_u(&ring->stat);
1207 if (stat != FZA_RING_STAT_SUCCESS) {
1208 pr_err("%s: PARAM command failed!, status %02x, state %x\n",
1209 fp->name, stat,
1210 FZA_STATUS_GET_STATE(readw_u(&fp->regs->status)));
1211 return -EIO;
1212 }
1213 pr_debug("%s: PARAM: %lums elapsed\n", fp->name,
1214 (3 * HZ - t) * 1000 / HZ);
1215
1216 return 0;
1217 }
1218
1219 static int fza_close(struct net_device *dev)
1220 {
1221 struct fza_private *fp = netdev_priv(dev);
1222 unsigned long flags;
1223 uint state;
1224 long t;
1225 int i;
1226
1227 netif_stop_queue(dev);
1228 pr_debug("%s: queue stopped\n", fp->name);
1229
1230 del_timer_sync(&fp->reset_timer);
1231 spin_lock_irqsave(&fp->lock, flags);
1232 fp->state = FZA_STATE_UNINITIALIZED;
1233 fp->state_chg_flag = 0;
1234
1235 writew_o(FZA_CONTROL_A_SHUT, &fp->regs->control_a);
1236 readw_o(&fp->regs->control_a);
1237 spin_unlock_irqrestore(&fp->lock, flags);
1238
1239
1240 t = wait_event_timeout(fp->state_chg_wait, fp->state_chg_flag,
1241 15 * HZ);
1242 state = FZA_STATUS_GET_STATE(readw_o(&fp->regs->status));
1243 if (fp->state_chg_flag == 0) {
1244 pr_err("%s: SHUT timed out!, state %x\n", fp->name, state);
1245 return -EIO;
1246 }
1247 if (state != FZA_STATE_UNINITIALIZED) {
1248 pr_err("%s: SHUT failed!, state %x\n", fp->name, state);
1249 return -EIO;
1250 }
1251 pr_debug("%s: SHUT: %lums elapsed\n", fp->name,
1252 (15 * HZ - t) * 1000 / HZ);
1253
1254 for (i = 0; i < FZA_RING_RX_SIZE; i++)
1255 if (fp->rx_skbuff[i]) {
1256 dma_unmap_single(fp->bdev, fp->rx_dma[i],
1257 FZA_RX_BUFFER_SIZE, DMA_FROM_DEVICE);
1258 dev_kfree_skb(fp->rx_skbuff[i]);
1259 fp->rx_dma[i] = 0;
1260 fp->rx_skbuff[i] = NULL;
1261 }
1262
1263 return 0;
1264 }
1265
1266 static struct net_device_stats *fza_get_stats(struct net_device *dev)
1267 {
1268 struct fza_private *fp = netdev_priv(dev);
1269
1270 return &fp->stats;
1271 }
1272
1273 static int fza_probe(struct device *bdev)
1274 {
1275 static const struct net_device_ops netdev_ops = {
1276 .ndo_open = fza_open,
1277 .ndo_stop = fza_close,
1278 .ndo_start_xmit = fza_start_xmit,
1279 .ndo_set_rx_mode = fza_set_rx_mode,
1280 .ndo_set_mac_address = fza_set_mac_address,
1281 .ndo_get_stats = fza_get_stats,
1282 };
1283 static int version_printed;
1284 char rom_rev[4], fw_rev[4], rmc_rev[4];
1285 struct tc_dev *tdev = to_tc_dev(bdev);
1286 struct fza_cmd_init __iomem *init;
1287 resource_size_t start, len;
1288 struct net_device *dev;
1289 struct fza_private *fp;
1290 uint smt_ver, pmd_type;
1291 void __iomem *mmio;
1292 uint hw_addr[2];
1293 int ret, i;
1294
1295 if (!version_printed) {
1296 pr_info("%s", version);
1297 version_printed = 1;
1298 }
1299
1300 dev = alloc_fddidev(sizeof(*fp));
1301 if (!dev)
1302 return -ENOMEM;
1303 SET_NETDEV_DEV(dev, bdev);
1304
1305 fp = netdev_priv(dev);
1306 dev_set_drvdata(bdev, dev);
1307
1308 fp->bdev = bdev;
1309 fp->name = dev_name(bdev);
1310
1311
1312 start = tdev->resource.start;
1313 len = tdev->resource.end - start + 1;
1314 if (!request_mem_region(start, len, dev_name(bdev))) {
1315 pr_err("%s: cannot reserve MMIO region\n", fp->name);
1316 ret = -EBUSY;
1317 goto err_out_kfree;
1318 }
1319
1320
1321 mmio = ioremap_nocache(start, len);
1322 if (!mmio) {
1323 pr_err("%s: cannot map MMIO\n", fp->name);
1324 ret = -ENOMEM;
1325 goto err_out_resource;
1326 }
1327
1328
1329 switch (loopback) {
1330 case FZA_LOOP_NORMAL:
1331 case FZA_LOOP_INTERN:
1332 case FZA_LOOP_EXTERN:
1333 break;
1334 default:
1335 loopback = FZA_LOOP_NORMAL;
1336 }
1337
1338 fp->mmio = mmio;
1339 dev->irq = tdev->interrupt;
1340
1341 pr_info("%s: DEC FDDIcontroller 700 or 700-C at 0x%08llx, irq %d\n",
1342 fp->name, (long long)tdev->resource.start, dev->irq);
1343 pr_debug("%s: mapped at: 0x%p\n", fp->name, mmio);
1344
1345 fp->regs = mmio + FZA_REG_BASE;
1346 fp->ring_cmd = mmio + FZA_RING_CMD;
1347 fp->ring_uns = mmio + FZA_RING_UNS;
1348
1349 init_waitqueue_head(&fp->state_chg_wait);
1350 init_waitqueue_head(&fp->cmd_done_wait);
1351 spin_lock_init(&fp->lock);
1352 fp->int_mask = FZA_MASK_NORMAL;
1353
1354 timer_setup(&fp->reset_timer, fza_reset_timer, 0);
1355
1356
1357 fza_regs_dump(fp);
1358 fza_do_shutdown(fp);
1359
1360 ret = request_irq(dev->irq, fza_interrupt, IRQF_SHARED, fp->name, dev);
1361 if (ret != 0) {
1362 pr_err("%s: unable to get IRQ %d!\n", fp->name, dev->irq);
1363 goto err_out_map;
1364 }
1365
1366
1367 writew_o(FZA_CONTROL_B_DRIVER, &fp->regs->control_b);
1368
1369
1370
1371
1372 fp->ring_rmc_tx_size = FZA_RING_TX_SIZE;
1373
1374 ret = fza_reset(fp);
1375 if (ret != 0)
1376 goto err_out_irq;
1377
1378 ret = fza_init_send(dev, &init);
1379 if (ret != 0)
1380 goto err_out_irq;
1381
1382 fza_reads(&init->hw_addr, &hw_addr, sizeof(hw_addr));
1383 memcpy(dev->dev_addr, &hw_addr, FDDI_K_ALEN);
1384
1385 fza_reads(&init->rom_rev, &rom_rev, sizeof(rom_rev));
1386 fza_reads(&init->fw_rev, &fw_rev, sizeof(fw_rev));
1387 fza_reads(&init->rmc_rev, &rmc_rev, sizeof(rmc_rev));
1388 for (i = 3; i >= 0 && rom_rev[i] == ' '; i--)
1389 rom_rev[i] = 0;
1390 for (i = 3; i >= 0 && fw_rev[i] == ' '; i--)
1391 fw_rev[i] = 0;
1392 for (i = 3; i >= 0 && rmc_rev[i] == ' '; i--)
1393 rmc_rev[i] = 0;
1394
1395 fp->ring_rmc_tx = mmio + readl_u(&init->rmc_tx);
1396 fp->ring_rmc_tx_size = readl_u(&init->rmc_tx_size);
1397 fp->ring_hst_rx = mmio + readl_u(&init->hst_rx);
1398 fp->ring_hst_rx_size = readl_u(&init->hst_rx_size);
1399 fp->ring_smt_tx = mmio + readl_u(&init->smt_tx);
1400 fp->ring_smt_tx_size = readl_u(&init->smt_tx_size);
1401 fp->ring_smt_rx = mmio + readl_u(&init->smt_rx);
1402 fp->ring_smt_rx_size = readl_u(&init->smt_rx_size);
1403
1404 fp->buffer_tx = mmio + FZA_TX_BUFFER_ADDR(readl_u(&init->rmc_tx));
1405
1406 fp->t_max = readl_u(&init->def_t_max);
1407 fp->t_req = readl_u(&init->def_t_req);
1408 fp->tvx = readl_u(&init->def_tvx);
1409 fp->lem_threshold = readl_u(&init->lem_threshold);
1410 fza_reads(&init->def_station_id, &fp->station_id,
1411 sizeof(fp->station_id));
1412 fp->rtoken_timeout = readl_u(&init->rtoken_timeout);
1413 fp->ring_purger = readl_u(&init->ring_purger);
1414
1415 smt_ver = readl_u(&init->smt_ver);
1416 pmd_type = readl_u(&init->pmd_type);
1417
1418 pr_debug("%s: INIT parameters:\n", fp->name);
1419 pr_debug(" tx_mode: %u\n", readl_u(&init->tx_mode));
1420 pr_debug(" hst_rx_size: %u\n", readl_u(&init->hst_rx_size));
1421 pr_debug(" rmc_rev: %.4s\n", rmc_rev);
1422 pr_debug(" rom_rev: %.4s\n", rom_rev);
1423 pr_debug(" fw_rev: %.4s\n", fw_rev);
1424 pr_debug(" mop_type: %u\n", readl_u(&init->mop_type));
1425 pr_debug(" hst_rx: 0x%08x\n", readl_u(&init->hst_rx));
1426 pr_debug(" rmc_tx: 0x%08x\n", readl_u(&init->rmc_tx));
1427 pr_debug(" rmc_tx_size: %u\n", readl_u(&init->rmc_tx_size));
1428 pr_debug(" smt_tx: 0x%08x\n", readl_u(&init->smt_tx));
1429 pr_debug(" smt_tx_size: %u\n", readl_u(&init->smt_tx_size));
1430 pr_debug(" smt_rx: 0x%08x\n", readl_u(&init->smt_rx));
1431 pr_debug(" smt_rx_size: %u\n", readl_u(&init->smt_rx_size));
1432
1433 pr_debug(" hw_addr: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1434 (readl_u(&init->hw_addr[0]) >> 0) & 0xff,
1435 (readl_u(&init->hw_addr[0]) >> 8) & 0xff,
1436 (readl_u(&init->hw_addr[0]) >> 16) & 0xff,
1437 (readl_u(&init->hw_addr[0]) >> 24) & 0xff,
1438 (readl_u(&init->hw_addr[1]) >> 0) & 0xff,
1439 (readl_u(&init->hw_addr[1]) >> 8) & 0xff,
1440 (readl_u(&init->hw_addr[1]) >> 16) & 0xff,
1441 (readl_u(&init->hw_addr[1]) >> 24) & 0xff);
1442 pr_debug(" def_t_req: %u\n", readl_u(&init->def_t_req));
1443 pr_debug(" def_tvx: %u\n", readl_u(&init->def_tvx));
1444 pr_debug(" def_t_max: %u\n", readl_u(&init->def_t_max));
1445 pr_debug(" lem_threshold: %u\n", readl_u(&init->lem_threshold));
1446
1447 pr_debug(" def_station_id: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1448 (readl_u(&init->def_station_id[0]) >> 0) & 0xff,
1449 (readl_u(&init->def_station_id[0]) >> 8) & 0xff,
1450 (readl_u(&init->def_station_id[0]) >> 16) & 0xff,
1451 (readl_u(&init->def_station_id[0]) >> 24) & 0xff,
1452 (readl_u(&init->def_station_id[1]) >> 0) & 0xff,
1453 (readl_u(&init->def_station_id[1]) >> 8) & 0xff,
1454 (readl_u(&init->def_station_id[1]) >> 16) & 0xff,
1455 (readl_u(&init->def_station_id[1]) >> 24) & 0xff);
1456 pr_debug(" pmd_type_alt: %u\n", readl_u(&init->pmd_type_alt));
1457 pr_debug(" smt_ver: %u\n", readl_u(&init->smt_ver));
1458 pr_debug(" rtoken_timeout: %u\n", readl_u(&init->rtoken_timeout));
1459 pr_debug(" ring_purger: %u\n", readl_u(&init->ring_purger));
1460 pr_debug(" smt_ver_max: %u\n", readl_u(&init->smt_ver_max));
1461 pr_debug(" smt_ver_min: %u\n", readl_u(&init->smt_ver_min));
1462 pr_debug(" pmd_type: %u\n", readl_u(&init->pmd_type));
1463
1464 pr_info("%s: model %s, address %pMF\n",
1465 fp->name,
1466 pmd_type == FZA_PMD_TYPE_TW ?
1467 "700-C (DEFZA-CA), ThinWire PMD selected" :
1468 pmd_type == FZA_PMD_TYPE_STP ?
1469 "700-C (DEFZA-CA), STP PMD selected" :
1470 "700 (DEFZA-AA), MMF PMD",
1471 dev->dev_addr);
1472 pr_info("%s: ROM rev. %.4s, firmware rev. %.4s, RMC rev. %.4s, "
1473 "SMT ver. %u\n", fp->name, rom_rev, fw_rev, rmc_rev, smt_ver);
1474
1475
1476
1477
1478 ret = fza_close(dev);
1479 if (ret != 0)
1480 goto err_out_irq;
1481
1482
1483 dev->netdev_ops = &netdev_ops;
1484
1485 ret = register_netdev(dev);
1486 if (ret != 0)
1487 goto err_out_irq;
1488
1489 pr_info("%s: registered as %s\n", fp->name, dev->name);
1490 fp->name = (const char *)dev->name;
1491
1492 get_device(bdev);
1493 return 0;
1494
1495 err_out_irq:
1496 del_timer_sync(&fp->reset_timer);
1497 fza_do_shutdown(fp);
1498 free_irq(dev->irq, dev);
1499
1500 err_out_map:
1501 iounmap(mmio);
1502
1503 err_out_resource:
1504 release_mem_region(start, len);
1505
1506 err_out_kfree:
1507 free_netdev(dev);
1508
1509 pr_err("%s: initialization failure, aborting!\n", fp->name);
1510 return ret;
1511 }
1512
1513 static int fza_remove(struct device *bdev)
1514 {
1515 struct net_device *dev = dev_get_drvdata(bdev);
1516 struct fza_private *fp = netdev_priv(dev);
1517 struct tc_dev *tdev = to_tc_dev(bdev);
1518 resource_size_t start, len;
1519
1520 put_device(bdev);
1521
1522 unregister_netdev(dev);
1523
1524 del_timer_sync(&fp->reset_timer);
1525 fza_do_shutdown(fp);
1526 free_irq(dev->irq, dev);
1527
1528 iounmap(fp->mmio);
1529
1530 start = tdev->resource.start;
1531 len = tdev->resource.end - start + 1;
1532 release_mem_region(start, len);
1533
1534 free_netdev(dev);
1535
1536 return 0;
1537 }
1538
1539 static struct tc_device_id const fza_tc_table[] = {
1540 { "DEC ", "PMAF-AA " },
1541 { }
1542 };
1543 MODULE_DEVICE_TABLE(tc, fza_tc_table);
1544
1545 static struct tc_driver fza_driver = {
1546 .id_table = fza_tc_table,
1547 .driver = {
1548 .name = "defza",
1549 .bus = &tc_bus_type,
1550 .probe = fza_probe,
1551 .remove = fza_remove,
1552 },
1553 };
1554
1555 static int fza_init(void)
1556 {
1557 return tc_register_driver(&fza_driver);
1558 }
1559
1560 static void fza_exit(void)
1561 {
1562 tc_unregister_driver(&fza_driver);
1563 }
1564
1565 module_init(fza_init);
1566 module_exit(fza_exit);