root/drivers/net/fddi/skfp/skfddi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. skfp_init_one
  2. skfp_remove_one
  3. skfp_driver_init
  4. skfp_open
  5. skfp_close
  6. skfp_interrupt
  7. skfp_ctl_get_stats
  8. skfp_ctl_set_multicast_list
  9. skfp_ctl_set_multicast_list_wo_lock
  10. skfp_ctl_set_mac_address
  11. skfp_ioctl
  12. skfp_send_pkt
  13. send_queued_packets
  14. CheckSourceAddress
  15. ResetAdapter
  16. llc_restart_tx
  17. mac_drv_get_space
  18. mac_drv_get_desc_mem
  19. mac_drv_virt2phys
  20. dma_master
  21. dma_complete
  22. mac_drv_tx_complete
  23. dump_data
  24. mac_drv_rx_complete
  25. mac_drv_requeue_rxd
  26. mac_drv_fill_rxd
  27. mac_drv_clear_rxd
  28. mac_drv_rx_init
  29. smt_timer_poll
  30. ring_status_indication
  31. smt_get_time
  32. smt_stat_counter
  33. cfm_state_change
  34. ecm_state_change
  35. rmt_state_change
  36. drv_reset_indication

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * File Name:
   4  *   skfddi.c
   5  *
   6  * Copyright Information:
   7  *   Copyright SysKonnect 1998,1999.
   8  *
   9  * The information in this file is provided "AS IS" without warranty.
  10  *
  11  * Abstract:
  12  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
  13  *   familie.
  14  *
  15  * Maintainers:
  16  *   CG    Christoph Goos (cgoos@syskonnect.de)
  17  *
  18  * Contributors:
  19  *   DM    David S. Miller
  20  *
  21  * Address all question to:
  22  *   linux@syskonnect.de
  23  *
  24  * The technical manual for the adapters is available from SysKonnect's
  25  * web pages: www.syskonnect.com
  26  * Goto "Support" and search Knowledge Base for "manual".
  27  *
  28  * Driver Architecture:
  29  *   The driver architecture is based on the DEC FDDI driver by
  30  *   Lawrence V. Stefani and several ethernet drivers.
  31  *   I also used an existing Windows NT miniport driver.
  32  *   All hardware dependent functions are handled by the SysKonnect
  33  *   Hardware Module.
  34  *   The only headerfiles that are directly related to this source
  35  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
  36  *   The others belong to the SysKonnect FDDI Hardware Module and
  37  *   should better not be changed.
  38  *
  39  * Modification History:
  40  *              Date            Name    Description
  41  *              02-Mar-98       CG      Created.
  42  *
  43  *              10-Mar-99       CG      Support for 2.2.x added.
  44  *              25-Mar-99       CG      Corrected IRQ routing for SMP (APIC)
  45  *              26-Oct-99       CG      Fixed compilation error on 2.2.13
  46  *              12-Nov-99       CG      Source code release
  47  *              22-Nov-99       CG      Included in kernel source.
  48  *              07-May-00       DM      64 bit fixes, new dma interface
  49  *              31-Jul-03       DB      Audit copy_*_user in skfp_ioctl
  50  *                                        Daniele Bellucci <bellucda@tiscali.it>
  51  *              03-Dec-03       SH      Convert to PCI device model
  52  *
  53  * Compilation options (-Dxxx):
  54  *              DRIVERDEBUG     print lots of messages to log file
  55  *              DUMPPACKETS     print received/transmitted packets to logfile
  56  * 
  57  * Tested cpu architectures:
  58  *      - i386
  59  *      - sparc64
  60  */
  61 
  62 /* Version information string - should be updated prior to */
  63 /* each new release!!! */
  64 #define VERSION         "2.07"
  65 
  66 static const char * const boot_msg = 
  67         "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
  68         "  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
  69 
  70 /* Include files */
  71 
  72 #include <linux/capability.h>
  73 #include <linux/module.h>
  74 #include <linux/kernel.h>
  75 #include <linux/errno.h>
  76 #include <linux/ioport.h>
  77 #include <linux/interrupt.h>
  78 #include <linux/pci.h>
  79 #include <linux/netdevice.h>
  80 #include <linux/fddidevice.h>
  81 #include <linux/skbuff.h>
  82 #include <linux/bitops.h>
  83 #include <linux/gfp.h>
  84 
  85 #include <asm/byteorder.h>
  86 #include <asm/io.h>
  87 #include <linux/uaccess.h>
  88 
  89 #include        "h/types.h"
  90 #undef ADDR                     // undo Linux definition
  91 #include        "h/skfbi.h"
  92 #include        "h/fddi.h"
  93 #include        "h/smc.h"
  94 #include        "h/smtstate.h"
  95 
  96 
  97 // Define module-wide (static) routines
  98 static int skfp_driver_init(struct net_device *dev);
  99 static int skfp_open(struct net_device *dev);
 100 static int skfp_close(struct net_device *dev);
 101 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
 102 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
 103 static void skfp_ctl_set_multicast_list(struct net_device *dev);
 104 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
 105 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
 106 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 107 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
 108                                        struct net_device *dev);
 109 static void send_queued_packets(struct s_smc *smc);
 110 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
 111 static void ResetAdapter(struct s_smc *smc);
 112 
 113 
 114 // Functions needed by the hardware module
 115 void *mac_drv_get_space(struct s_smc *smc, u_int size);
 116 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
 117 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
 118 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
 119 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
 120                   int flag);
 121 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
 122 void llc_restart_tx(struct s_smc *smc);
 123 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 124                          int frag_count, int len);
 125 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 126                          int frag_count);
 127 void mac_drv_fill_rxd(struct s_smc *smc);
 128 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
 129                        int frag_count);
 130 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
 131                     int la_len);
 132 void dump_data(unsigned char *Data, int length);
 133 
 134 // External functions from the hardware module
 135 extern u_int mac_drv_check_space(void);
 136 extern int mac_drv_init(struct s_smc *smc);
 137 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
 138                         int len, int frame_status);
 139 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
 140                        int frame_len, int frame_status);
 141 extern void fddi_isr(struct s_smc *smc);
 142 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
 143                         int len, int frame_status);
 144 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
 145 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
 146 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
 147 
 148 static const struct pci_device_id skfddi_pci_tbl[] = {
 149         { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
 150         { }                     /* Terminating entry */
 151 };
 152 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
 153 MODULE_LICENSE("GPL");
 154 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
 155 
 156 // Define module-wide (static) variables
 157 
 158 static int num_boards;  /* total number of adapters configured */
 159 
 160 static const struct net_device_ops skfp_netdev_ops = {
 161         .ndo_open               = skfp_open,
 162         .ndo_stop               = skfp_close,
 163         .ndo_start_xmit         = skfp_send_pkt,
 164         .ndo_get_stats          = skfp_ctl_get_stats,
 165         .ndo_set_rx_mode        = skfp_ctl_set_multicast_list,
 166         .ndo_set_mac_address    = skfp_ctl_set_mac_address,
 167         .ndo_do_ioctl           = skfp_ioctl,
 168 };
 169 
 170 /*
 171  * =================
 172  * = skfp_init_one =
 173  * =================
 174  *   
 175  * Overview:
 176  *   Probes for supported FDDI PCI controllers
 177  *  
 178  * Returns:
 179  *   Condition code
 180  *       
 181  * Arguments:
 182  *   pdev - pointer to PCI device information
 183  *
 184  * Functional Description:
 185  *   This is now called by PCI driver registration process
 186  *   for each board found.
 187  *   
 188  * Return Codes:
 189  *   0           - This device (fddi0, fddi1, etc) configured successfully
 190  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
 191  *                         present for this device name
 192  *
 193  *
 194  * Side Effects:
 195  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 196  *   initialized and the board resources are read and stored in
 197  *   the device structure.
 198  */
 199 static int skfp_init_one(struct pci_dev *pdev,
 200                                 const struct pci_device_id *ent)
 201 {
 202         struct net_device *dev;
 203         struct s_smc *smc;      /* board pointer */
 204         void __iomem *mem;
 205         int err;
 206 
 207         pr_debug("entering skfp_init_one\n");
 208 
 209         if (num_boards == 0) 
 210                 printk("%s\n", boot_msg);
 211 
 212         err = pci_enable_device(pdev);
 213         if (err)
 214                 return err;
 215 
 216         err = pci_request_regions(pdev, "skfddi");
 217         if (err)
 218                 goto err_out1;
 219 
 220         pci_set_master(pdev);
 221 
 222 #ifdef MEM_MAPPED_IO
 223         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
 224                 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
 225                 err = -EIO;
 226                 goto err_out2;
 227         }
 228 
 229         mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
 230 #else
 231         if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
 232                 printk(KERN_ERR "skfp: region is not PIO resource\n");
 233                 err = -EIO;
 234                 goto err_out2;
 235         }
 236 
 237         mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
 238 #endif
 239         if (!mem) {
 240                 printk(KERN_ERR "skfp:  Unable to map register, "
 241                                 "FDDI adapter will be disabled.\n");
 242                 err = -EIO;
 243                 goto err_out2;
 244         }
 245 
 246         dev = alloc_fddidev(sizeof(struct s_smc));
 247         if (!dev) {
 248                 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
 249                                 "FDDI adapter will be disabled.\n");
 250                 err = -ENOMEM;
 251                 goto err_out3;
 252         }
 253 
 254         dev->irq = pdev->irq;
 255         dev->netdev_ops = &skfp_netdev_ops;
 256 
 257         SET_NETDEV_DEV(dev, &pdev->dev);
 258 
 259         /* Initialize board structure with bus-specific info */
 260         smc = netdev_priv(dev);
 261         smc->os.dev = dev;
 262         smc->os.bus_type = SK_BUS_TYPE_PCI;
 263         smc->os.pdev = *pdev;
 264         smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
 265         smc->os.MaxFrameSize = MAX_FRAME_SIZE;
 266         smc->os.dev = dev;
 267         smc->hw.slot = -1;
 268         smc->hw.iop = mem;
 269         smc->os.ResetRequested = FALSE;
 270         skb_queue_head_init(&smc->os.SendSkbQueue);
 271 
 272         dev->base_addr = (unsigned long)mem;
 273 
 274         err = skfp_driver_init(dev);
 275         if (err)
 276                 goto err_out4;
 277 
 278         err = register_netdev(dev);
 279         if (err)
 280                 goto err_out5;
 281 
 282         ++num_boards;
 283         pci_set_drvdata(pdev, dev);
 284 
 285         if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
 286             (pdev->subsystem_device & 0xff00) == 0x5800) 
 287                 printk("%s: SysKonnect FDDI PCI adapter"
 288                        " found (SK-%04X)\n", dev->name, 
 289                        pdev->subsystem_device);
 290         else
 291                 printk("%s: FDDI PCI adapter found\n", dev->name);
 292 
 293         return 0;
 294 err_out5:
 295         if (smc->os.SharedMemAddr) 
 296                 dma_free_coherent(&pdev->dev, smc->os.SharedMemSize,
 297                                   smc->os.SharedMemAddr,
 298                                   smc->os.SharedMemDMA);
 299         dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE,
 300                           smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
 301 err_out4:
 302         free_netdev(dev);
 303 err_out3:
 304 #ifdef MEM_MAPPED_IO
 305         iounmap(mem);
 306 #else
 307         ioport_unmap(mem);
 308 #endif
 309 err_out2:
 310         pci_release_regions(pdev);
 311 err_out1:
 312         pci_disable_device(pdev);
 313         return err;
 314 }
 315 
 316 /*
 317  * Called for each adapter board from pci_unregister_driver
 318  */
 319 static void skfp_remove_one(struct pci_dev *pdev)
 320 {
 321         struct net_device *p = pci_get_drvdata(pdev);
 322         struct s_smc *lp = netdev_priv(p);
 323 
 324         unregister_netdev(p);
 325 
 326         if (lp->os.SharedMemAddr) {
 327                 dma_free_coherent(&pdev->dev,
 328                                   lp->os.SharedMemSize,
 329                                   lp->os.SharedMemAddr,
 330                                   lp->os.SharedMemDMA);
 331                 lp->os.SharedMemAddr = NULL;
 332         }
 333         if (lp->os.LocalRxBuffer) {
 334                 dma_free_coherent(&pdev->dev,
 335                                   MAX_FRAME_SIZE,
 336                                   lp->os.LocalRxBuffer,
 337                                   lp->os.LocalRxBufferDMA);
 338                 lp->os.LocalRxBuffer = NULL;
 339         }
 340 #ifdef MEM_MAPPED_IO
 341         iounmap(lp->hw.iop);
 342 #else
 343         ioport_unmap(lp->hw.iop);
 344 #endif
 345         pci_release_regions(pdev);
 346         free_netdev(p);
 347 
 348         pci_disable_device(pdev);
 349 }
 350 
 351 /*
 352  * ====================
 353  * = skfp_driver_init =
 354  * ====================
 355  *   
 356  * Overview:
 357  *   Initializes remaining adapter board structure information
 358  *   and makes sure adapter is in a safe state prior to skfp_open().
 359  *  
 360  * Returns:
 361  *   Condition code
 362  *       
 363  * Arguments:
 364  *   dev - pointer to device information
 365  *
 366  * Functional Description:
 367  *   This function allocates additional resources such as the host memory
 368  *   blocks needed by the adapter.
 369  *   The adapter is also reset. The OS must call skfp_open() to open 
 370  *   the adapter and bring it on-line.
 371  *
 372  * Return Codes:
 373  *    0 - initialization succeeded
 374  *   -1 - initialization failed
 375  */
 376 static  int skfp_driver_init(struct net_device *dev)
 377 {
 378         struct s_smc *smc = netdev_priv(dev);
 379         skfddi_priv *bp = &smc->os;
 380         int err = -EIO;
 381 
 382         pr_debug("entering skfp_driver_init\n");
 383 
 384         // set the io address in private structures
 385         bp->base_addr = dev->base_addr;
 386 
 387         // Get the interrupt level from the PCI Configuration Table
 388         smc->hw.irq = dev->irq;
 389 
 390         spin_lock_init(&bp->DriverLock);
 391         
 392         // Allocate invalid frame
 393         bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
 394                                                &bp->LocalRxBufferDMA,
 395                                                GFP_ATOMIC);
 396         if (!bp->LocalRxBuffer) {
 397                 printk("could not allocate mem for ");
 398                 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
 399                 goto fail;
 400         }
 401 
 402         // Determine the required size of the 'shared' memory area.
 403         bp->SharedMemSize = mac_drv_check_space();
 404         pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize);
 405         if (bp->SharedMemSize > 0) {
 406                 bp->SharedMemSize += 16;        // for descriptor alignment
 407 
 408                 bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev,
 409                                                        bp->SharedMemSize,
 410                                                        &bp->SharedMemDMA,
 411                                                        GFP_ATOMIC);
 412                 if (!bp->SharedMemAddr) {
 413                         printk("could not allocate mem for ");
 414                         printk("hardware module: %ld byte\n",
 415                                bp->SharedMemSize);
 416                         goto fail;
 417                 }
 418 
 419         } else {
 420                 bp->SharedMemAddr = NULL;
 421         }
 422 
 423         bp->SharedMemHeap = 0;
 424 
 425         card_stop(smc);         // Reset adapter.
 426 
 427         pr_debug("mac_drv_init()..\n");
 428         if (mac_drv_init(smc) != 0) {
 429                 pr_debug("mac_drv_init() failed\n");
 430                 goto fail;
 431         }
 432         read_address(smc, NULL);
 433         pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a);
 434         memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 435 
 436         smt_reset_defaults(smc, 0);
 437 
 438         return 0;
 439 
 440 fail:
 441         if (bp->SharedMemAddr) {
 442                 dma_free_coherent(&bp->pdev.dev,
 443                                   bp->SharedMemSize,
 444                                   bp->SharedMemAddr,
 445                                   bp->SharedMemDMA);
 446                 bp->SharedMemAddr = NULL;
 447         }
 448         if (bp->LocalRxBuffer) {
 449                 dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE,
 450                                   bp->LocalRxBuffer, bp->LocalRxBufferDMA);
 451                 bp->LocalRxBuffer = NULL;
 452         }
 453         return err;
 454 }                               // skfp_driver_init
 455 
 456 
 457 /*
 458  * =============
 459  * = skfp_open =
 460  * =============
 461  *   
 462  * Overview:
 463  *   Opens the adapter
 464  *  
 465  * Returns:
 466  *   Condition code
 467  *       
 468  * Arguments:
 469  *   dev - pointer to device information
 470  *
 471  * Functional Description:
 472  *   This function brings the adapter to an operational state.
 473  *
 474  * Return Codes:
 475  *   0           - Adapter was successfully opened
 476  *   -EAGAIN - Could not register IRQ
 477  */
 478 static int skfp_open(struct net_device *dev)
 479 {
 480         struct s_smc *smc = netdev_priv(dev);
 481         int err;
 482 
 483         pr_debug("entering skfp_open\n");
 484         /* Register IRQ - support shared interrupts by passing device ptr */
 485         err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
 486                           dev->name, dev);
 487         if (err)
 488                 return err;
 489 
 490         /*
 491          * Set current address to factory MAC address
 492          *
 493          * Note: We've already done this step in skfp_driver_init.
 494          *       However, it's possible that a user has set a node
 495          *               address override, then closed and reopened the
 496          *               adapter.  Unless we reset the device address field
 497          *               now, we'll continue to use the existing modified
 498          *               address.
 499          */
 500         read_address(smc, NULL);
 501         memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN);
 502 
 503         init_smt(smc, NULL);
 504         smt_online(smc, 1);
 505         STI_FBI();
 506 
 507         /* Clear local multicast address tables */
 508         mac_clear_multicast(smc);
 509 
 510         /* Disable promiscuous filter settings */
 511         mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 512 
 513         netif_start_queue(dev);
 514         return 0;
 515 }                               // skfp_open
 516 
 517 
 518 /*
 519  * ==============
 520  * = skfp_close =
 521  * ==============
 522  *   
 523  * Overview:
 524  *   Closes the device/module.
 525  *  
 526  * Returns:
 527  *   Condition code
 528  *       
 529  * Arguments:
 530  *   dev - pointer to device information
 531  *
 532  * Functional Description:
 533  *   This routine closes the adapter and brings it to a safe state.
 534  *   The interrupt service routine is deregistered with the OS.
 535  *   The adapter can be opened again with another call to skfp_open().
 536  *
 537  * Return Codes:
 538  *   Always return 0.
 539  *
 540  * Assumptions:
 541  *   No further requests for this adapter are made after this routine is
 542  *   called.  skfp_open() can be called to reset and reinitialize the
 543  *   adapter.
 544  */
 545 static int skfp_close(struct net_device *dev)
 546 {
 547         struct s_smc *smc = netdev_priv(dev);
 548         skfddi_priv *bp = &smc->os;
 549 
 550         CLI_FBI();
 551         smt_reset_defaults(smc, 1);
 552         card_stop(smc);
 553         mac_drv_clear_tx_queue(smc);
 554         mac_drv_clear_rx_queue(smc);
 555 
 556         netif_stop_queue(dev);
 557         /* Deregister (free) IRQ */
 558         free_irq(dev->irq, dev);
 559 
 560         skb_queue_purge(&bp->SendSkbQueue);
 561         bp->QueueSkb = MAX_TX_QUEUE_LEN;
 562 
 563         return 0;
 564 }                               // skfp_close
 565 
 566 
 567 /*
 568  * ==================
 569  * = skfp_interrupt =
 570  * ==================
 571  *   
 572  * Overview:
 573  *   Interrupt processing routine
 574  *  
 575  * Returns:
 576  *   None
 577  *       
 578  * Arguments:
 579  *   irq        - interrupt vector
 580  *   dev_id     - pointer to device information
 581  *
 582  * Functional Description:
 583  *   This routine calls the interrupt processing routine for this adapter.  It
 584  *   disables and reenables adapter interrupts, as appropriate.  We can support
 585  *   shared interrupts since the incoming dev_id pointer provides our device
 586  *   structure context. All the real work is done in the hardware module.
 587  *
 588  * Return Codes:
 589  *   None
 590  *
 591  * Assumptions:
 592  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
 593  *   on Intel-based systems) is done by the operating system outside this
 594  *   routine.
 595  *
 596  *       System interrupts are enabled through this call.
 597  *
 598  * Side Effects:
 599  *   Interrupts are disabled, then reenabled at the adapter.
 600  */
 601 
 602 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
 603 {
 604         struct net_device *dev = dev_id;
 605         struct s_smc *smc;      /* private board structure pointer */
 606         skfddi_priv *bp;
 607 
 608         smc = netdev_priv(dev);
 609         bp = &smc->os;
 610 
 611         // IRQs enabled or disabled ?
 612         if (inpd(ADDR(B0_IMSK)) == 0) {
 613                 // IRQs are disabled: must be shared interrupt
 614                 return IRQ_NONE;
 615         }
 616         // Note: At this point, IRQs are enabled.
 617         if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {    // IRQ?
 618                 // Adapter did not issue an IRQ: must be shared interrupt
 619                 return IRQ_NONE;
 620         }
 621         CLI_FBI();              // Disable IRQs from our adapter.
 622         spin_lock(&bp->DriverLock);
 623 
 624         // Call interrupt handler in hardware module (HWM).
 625         fddi_isr(smc);
 626 
 627         if (smc->os.ResetRequested) {
 628                 ResetAdapter(smc);
 629                 smc->os.ResetRequested = FALSE;
 630         }
 631         spin_unlock(&bp->DriverLock);
 632         STI_FBI();              // Enable IRQs from our adapter.
 633 
 634         return IRQ_HANDLED;
 635 }                               // skfp_interrupt
 636 
 637 
 638 /*
 639  * ======================
 640  * = skfp_ctl_get_stats =
 641  * ======================
 642  *   
 643  * Overview:
 644  *   Get statistics for FDDI adapter
 645  *  
 646  * Returns:
 647  *   Pointer to FDDI statistics structure
 648  *       
 649  * Arguments:
 650  *   dev - pointer to device information
 651  *
 652  * Functional Description:
 653  *   Gets current MIB objects from adapter, then
 654  *   returns FDDI statistics structure as defined
 655  *   in if_fddi.h.
 656  *
 657  *   Note: Since the FDDI statistics structure is
 658  *   still new and the device structure doesn't
 659  *   have an FDDI-specific get statistics handler,
 660  *   we'll return the FDDI statistics structure as
 661  *   a pointer to an Ethernet statistics structure.
 662  *   That way, at least the first part of the statistics
 663  *   structure can be decoded properly.
 664  *   We'll have to pay attention to this routine as the
 665  *   device structure becomes more mature and LAN media
 666  *   independent.
 667  *
 668  */
 669 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
 670 {
 671         struct s_smc *bp = netdev_priv(dev);
 672 
 673         /* Fill the bp->stats structure with driver-maintained counters */
 674 
 675         bp->os.MacStat.port_bs_flag[0] = 0x1234;
 676         bp->os.MacStat.port_bs_flag[1] = 0x5678;
 677 // goos: need to fill out fddi statistic
 678 #if 0
 679         /* Get FDDI SMT MIB objects */
 680 
 681 /* Fill the bp->stats structure with the SMT MIB object values */
 682 
 683         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
 684         bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
 685         bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
 686         bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
 687         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
 688         bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
 689         bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
 690         bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
 691         bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
 692         bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
 693         bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
 694         bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
 695         bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
 696         bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
 697         bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
 698         bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
 699         bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
 700         bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
 701         bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
 702         bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
 703         bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
 704         bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
 705         bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
 706         bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
 707         bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
 708         bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
 709         bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
 710         bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
 711         bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
 712         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
 713         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
 714         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
 715         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
 716         bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
 717         bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
 718         bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
 719         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
 720         bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
 721         bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
 722         bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
 723         bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
 724         bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
 725         bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
 726         bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
 727         bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
 728         bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
 729         bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
 730         bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
 731         bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
 732         bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
 733         bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
 734         bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
 735         bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
 736         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
 737         bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
 738         bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
 739         bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
 740         bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
 741         bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
 742         bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
 743         bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
 744         bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
 745         bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
 746         bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
 747         memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
 748         memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
 749         bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
 750         bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
 751         bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
 752         bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
 753         bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
 754         bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
 755         bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
 756         bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
 757         bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
 758         bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
 759         bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
 760         bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
 761         bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
 762         bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
 763         bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
 764         bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
 765         bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
 766         bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
 767         bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
 768         bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
 769         bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
 770         bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
 771         bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
 772         bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
 773         bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
 774         bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
 775 
 776 
 777         /* Fill the bp->stats structure with the FDDI counter values */
 778 
 779         bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
 780         bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
 781         bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
 782         bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
 783         bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
 784         bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
 785         bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
 786         bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
 787         bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
 788         bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
 789         bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
 790 
 791 #endif
 792         return (struct net_device_stats *)&bp->os.MacStat;
 793 }                               // ctl_get_stat
 794 
 795 
 796 /*
 797  * ==============================
 798  * = skfp_ctl_set_multicast_list =
 799  * ==============================
 800  *   
 801  * Overview:
 802  *   Enable/Disable LLC frame promiscuous mode reception
 803  *   on the adapter and/or update multicast address table.
 804  *  
 805  * Returns:
 806  *   None
 807  *       
 808  * Arguments:
 809  *   dev - pointer to device information
 810  *
 811  * Functional Description:
 812  *   This function acquires the driver lock and only calls
 813  *   skfp_ctl_set_multicast_list_wo_lock then.
 814  *   This routine follows a fairly simple algorithm for setting the
 815  *   adapter filters and CAM:
 816  *
 817  *      if IFF_PROMISC flag is set
 818  *              enable promiscuous mode
 819  *      else
 820  *              disable promiscuous mode
 821  *              if number of multicast addresses <= max. multicast number
 822  *                      add mc addresses to adapter table
 823  *              else
 824  *                      enable promiscuous mode
 825  *              update adapter filters
 826  *
 827  * Assumptions:
 828  *   Multicast addresses are presented in canonical (LSB) format.
 829  *
 830  * Side Effects:
 831  *   On-board adapter filters are updated.
 832  */
 833 static void skfp_ctl_set_multicast_list(struct net_device *dev)
 834 {
 835         struct s_smc *smc = netdev_priv(dev);
 836         skfddi_priv *bp = &smc->os;
 837         unsigned long Flags;
 838 
 839         spin_lock_irqsave(&bp->DriverLock, Flags);
 840         skfp_ctl_set_multicast_list_wo_lock(dev);
 841         spin_unlock_irqrestore(&bp->DriverLock, Flags);
 842 }                               // skfp_ctl_set_multicast_list
 843 
 844 
 845 
 846 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
 847 {
 848         struct s_smc *smc = netdev_priv(dev);
 849         struct netdev_hw_addr *ha;
 850 
 851         /* Enable promiscuous mode, if necessary */
 852         if (dev->flags & IFF_PROMISC) {
 853                 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
 854                 pr_debug("PROMISCUOUS MODE ENABLED\n");
 855         }
 856         /* Else, update multicast address table */
 857         else {
 858                 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
 859                 pr_debug("PROMISCUOUS MODE DISABLED\n");
 860 
 861                 // Reset all MC addresses
 862                 mac_clear_multicast(smc);
 863                 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
 864 
 865                 if (dev->flags & IFF_ALLMULTI) {
 866                         mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 867                         pr_debug("ENABLE ALL MC ADDRESSES\n");
 868                 } else if (!netdev_mc_empty(dev)) {
 869                         if (netdev_mc_count(dev) <= FPMAX_MULTICAST) {
 870                                 /* use exact filtering */
 871 
 872                                 // point to first multicast addr
 873                                 netdev_for_each_mc_addr(ha, dev) {
 874                                         mac_add_multicast(smc,
 875                                                 (struct fddi_addr *)ha->addr,
 876                                                 1);
 877 
 878                                         pr_debug("ENABLE MC ADDRESS: %pMF\n",
 879                                                  ha->addr);
 880                                 }
 881 
 882                         } else {        // more MC addresses than HW supports
 883 
 884                                 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
 885                                 pr_debug("ENABLE ALL MC ADDRESSES\n");
 886                         }
 887                 } else {        // no MC addresses
 888 
 889                         pr_debug("DISABLE ALL MC ADDRESSES\n");
 890                 }
 891 
 892                 /* Update adapter filters */
 893                 mac_update_multicast(smc);
 894         }
 895 }                               // skfp_ctl_set_multicast_list_wo_lock
 896 
 897 
 898 /*
 899  * ===========================
 900  * = skfp_ctl_set_mac_address =
 901  * ===========================
 902  *   
 903  * Overview:
 904  *   set new mac address on adapter and update dev_addr field in device table.
 905  *  
 906  * Returns:
 907  *   None
 908  *       
 909  * Arguments:
 910  *   dev  - pointer to device information
 911  *   addr - pointer to sockaddr structure containing unicast address to set
 912  *
 913  * Assumptions:
 914  *   The address pointed to by addr->sa_data is a valid unicast
 915  *   address and is presented in canonical (LSB) format.
 916  */
 917 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
 918 {
 919         struct s_smc *smc = netdev_priv(dev);
 920         struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
 921         skfddi_priv *bp = &smc->os;
 922         unsigned long Flags;
 923 
 924 
 925         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
 926         spin_lock_irqsave(&bp->DriverLock, Flags);
 927         ResetAdapter(smc);
 928         spin_unlock_irqrestore(&bp->DriverLock, Flags);
 929 
 930         return 0;               /* always return zero */
 931 }                               // skfp_ctl_set_mac_address
 932 
 933 
 934 /*
 935  * ==============
 936  * = skfp_ioctl =
 937  * ==============
 938  *   
 939  * Overview:
 940  *
 941  * Perform IOCTL call functions here. Some are privileged operations and the
 942  * effective uid is checked in those cases.
 943  *  
 944  * Returns:
 945  *   status value
 946  *   0 - success
 947  *   other - failure
 948  *       
 949  * Arguments:
 950  *   dev  - pointer to device information
 951  *   rq - pointer to ioctl request structure
 952  *   cmd - ?
 953  *
 954  */
 955 
 956 
 957 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 958 {
 959         struct s_smc *smc = netdev_priv(dev);
 960         skfddi_priv *lp = &smc->os;
 961         struct s_skfp_ioctl ioc;
 962         int status = 0;
 963 
 964         if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
 965                 return -EFAULT;
 966 
 967         switch (ioc.cmd) {
 968         case SKFP_GET_STATS:    /* Get the driver statistics */
 969                 ioc.len = sizeof(lp->MacStat);
 970                 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
 971                                 ? -EFAULT : 0;
 972                 break;
 973         case SKFP_CLR_STATS:    /* Zero out the driver statistics */
 974                 if (!capable(CAP_NET_ADMIN)) {
 975                         status = -EPERM;
 976                 } else {
 977                         memset(&lp->MacStat, 0, sizeof(lp->MacStat));
 978                 }
 979                 break;
 980         default:
 981                 printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd);
 982                 status = -EOPNOTSUPP;
 983 
 984         }                       // switch
 985 
 986         return status;
 987 }                               // skfp_ioctl
 988 
 989 
 990 /*
 991  * =====================
 992  * = skfp_send_pkt     =
 993  * =====================
 994  *   
 995  * Overview:
 996  *   Queues a packet for transmission and try to transmit it.
 997  *  
 998  * Returns:
 999  *   Condition code
1000  *       
1001  * Arguments:
1002  *   skb - pointer to sk_buff to queue for transmission
1003  *   dev - pointer to device information
1004  *
1005  * Functional Description:
1006  *   Here we assume that an incoming skb transmit request
1007  *   is contained in a single physically contiguous buffer
1008  *   in which the virtual address of the start of packet
1009  *   (skb->data) can be converted to a physical address
1010  *   by using pci_map_single().
1011  *
1012  *   We have an internal queue for packets we can not send 
1013  *   immediately. Packets in this queue can be given to the 
1014  *   adapter if transmit buffers are freed.
1015  *
1016  *   We can't free the skb until after it's been DMA'd
1017  *   out by the adapter, so we'll keep it in the driver and
1018  *   return it in mac_drv_tx_complete.
1019  *
1020  * Return Codes:
1021  *   0 - driver has queued and/or sent packet
1022  *       1 - caller should requeue the sk_buff for later transmission
1023  *
1024  * Assumptions:
1025  *   The entire packet is stored in one physically
1026  *   contiguous buffer which is not cached and whose
1027  *   32-bit physical address can be determined.
1028  *
1029  *   It's vital that this routine is NOT reentered for the
1030  *   same board and that the OS is not in another section of
1031  *   code (eg. skfp_interrupt) for the same board on a
1032  *   different thread.
1033  *
1034  * Side Effects:
1035  *   None
1036  */
1037 static netdev_tx_t skfp_send_pkt(struct sk_buff *skb,
1038                                        struct net_device *dev)
1039 {
1040         struct s_smc *smc = netdev_priv(dev);
1041         skfddi_priv *bp = &smc->os;
1042 
1043         pr_debug("skfp_send_pkt\n");
1044 
1045         /*
1046          * Verify that incoming transmit request is OK
1047          *
1048          * Note: The packet size check is consistent with other
1049          *               Linux device drivers, although the correct packet
1050          *               size should be verified before calling the
1051          *               transmit routine.
1052          */
1053 
1054         if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1055                 bp->MacStat.gen.tx_errors++;    /* bump error counter */
1056                 // dequeue packets from xmt queue and send them
1057                 netif_start_queue(dev);
1058                 dev_kfree_skb(skb);
1059                 return NETDEV_TX_OK;    /* return "success" */
1060         }
1061         if (bp->QueueSkb == 0) {        // return with tbusy set: queue full
1062 
1063                 netif_stop_queue(dev);
1064                 return NETDEV_TX_BUSY;
1065         }
1066         bp->QueueSkb--;
1067         skb_queue_tail(&bp->SendSkbQueue, skb);
1068         send_queued_packets(netdev_priv(dev));
1069         if (bp->QueueSkb == 0) {
1070                 netif_stop_queue(dev);
1071         }
1072         return NETDEV_TX_OK;
1073 
1074 }                               // skfp_send_pkt
1075 
1076 
1077 /*
1078  * =======================
1079  * = send_queued_packets =
1080  * =======================
1081  *   
1082  * Overview:
1083  *   Send packets from the driver queue as long as there are some and
1084  *   transmit resources are available.
1085  *  
1086  * Returns:
1087  *   None
1088  *       
1089  * Arguments:
1090  *   smc - pointer to smc (adapter) structure
1091  *
1092  * Functional Description:
1093  *   Take a packet from queue if there is any. If not, then we are done.
1094  *   Check if there are resources to send the packet. If not, requeue it
1095  *   and exit. 
1096  *   Set packet descriptor flags and give packet to adapter.
1097  *   Check if any send resources can be freed (we do not use the
1098  *   transmit complete interrupt).
1099  */
1100 static void send_queued_packets(struct s_smc *smc)
1101 {
1102         skfddi_priv *bp = &smc->os;
1103         struct sk_buff *skb;
1104         unsigned char fc;
1105         int queue;
1106         struct s_smt_fp_txd *txd;       // Current TxD.
1107         dma_addr_t dma_address;
1108         unsigned long Flags;
1109 
1110         int frame_status;       // HWM tx frame status.
1111 
1112         pr_debug("send queued packets\n");
1113         for (;;) {
1114                 // send first buffer from queue
1115                 skb = skb_dequeue(&bp->SendSkbQueue);
1116 
1117                 if (!skb) {
1118                         pr_debug("queue empty\n");
1119                         return;
1120                 }               // queue empty !
1121 
1122                 spin_lock_irqsave(&bp->DriverLock, Flags);
1123                 fc = skb->data[0];
1124                 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1125 #ifdef ESS
1126                 // Check if the frame may/must be sent as a synchronous frame.
1127 
1128                 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1129                         // It's an LLC frame.
1130                         if (!smc->ess.sync_bw_available)
1131                                 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1132 
1133                         else {  // Bandwidth is available.
1134 
1135                                 if (smc->mib.fddiESSSynchTxMode) {
1136                                         // Send as sync. frame.
1137                                         fc |= FC_SYNC_BIT;
1138                                 }
1139                         }
1140                 }
1141 #endif                          // ESS
1142                 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1143 
1144                 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1145                         // Unable to send the frame.
1146 
1147                         if ((frame_status & RING_DOWN) != 0) {
1148                                 // Ring is down.
1149                                 pr_debug("Tx attempt while ring down.\n");
1150                         } else if ((frame_status & OUT_OF_TXD) != 0) {
1151                                 pr_debug("%s: out of TXDs.\n", bp->dev->name);
1152                         } else {
1153                                 pr_debug("%s: out of transmit resources",
1154                                         bp->dev->name);
1155                         }
1156 
1157                         // Note: We will retry the operation as soon as
1158                         // transmit resources become available.
1159                         skb_queue_head(&bp->SendSkbQueue, skb);
1160                         spin_unlock_irqrestore(&bp->DriverLock, Flags);
1161                         return; // Packet has been queued.
1162 
1163                 }               // if (unable to send frame)
1164 
1165                 bp->QueueSkb++; // one packet less in local queue
1166 
1167                 // source address in packet ?
1168                 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1169 
1170                 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1171 
1172                 dma_address = pci_map_single(&bp->pdev, skb->data,
1173                                              skb->len, PCI_DMA_TODEVICE);
1174                 if (frame_status & LAN_TX) {
1175                         txd->txd_os.skb = skb;                  // save skb
1176                         txd->txd_os.dma_addr = dma_address;     // save dma mapping
1177                 }
1178                 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1179                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1180 
1181                 if (!(frame_status & LAN_TX)) {         // local only frame
1182                         pci_unmap_single(&bp->pdev, dma_address,
1183                                          skb->len, PCI_DMA_TODEVICE);
1184                         dev_kfree_skb_irq(skb);
1185                 }
1186                 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1187         }                       // for
1188 
1189         return;                 // never reached
1190 
1191 }                               // send_queued_packets
1192 
1193 
1194 /************************
1195  * 
1196  * CheckSourceAddress
1197  *
1198  * Verify if the source address is set. Insert it if necessary.
1199  *
1200  ************************/
1201 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1202 {
1203         unsigned char SRBit;
1204 
1205         if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1206 
1207                 return;
1208         if ((unsigned short) frame[1 + 10] != 0)
1209                 return;
1210         SRBit = frame[1 + 6] & 0x01;
1211         memcpy(&frame[1 + 6], hw_addr, ETH_ALEN);
1212         frame[8] |= SRBit;
1213 }                               // CheckSourceAddress
1214 
1215 
1216 /************************
1217  *
1218  *      ResetAdapter
1219  *
1220  *      Reset the adapter and bring it back to operational mode.
1221  * Args
1222  *      smc - A pointer to the SMT context struct.
1223  * Out
1224  *      Nothing.
1225  *
1226  ************************/
1227 static void ResetAdapter(struct s_smc *smc)
1228 {
1229 
1230         pr_debug("[fddi: ResetAdapter]\n");
1231 
1232         // Stop the adapter.
1233 
1234         card_stop(smc);         // Stop all activity.
1235 
1236         // Clear the transmit and receive descriptor queues.
1237         mac_drv_clear_tx_queue(smc);
1238         mac_drv_clear_rx_queue(smc);
1239 
1240         // Restart the adapter.
1241 
1242         smt_reset_defaults(smc, 1);     // Initialize the SMT module.
1243 
1244         init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1245 
1246         smt_online(smc, 1);     // Insert into the ring again.
1247         STI_FBI();
1248 
1249         // Restore original receive mode (multicasts, promiscuous, etc.).
1250         skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1251 }                               // ResetAdapter
1252 
1253 
1254 //--------------- functions called by hardware module ----------------
1255 
1256 /************************
1257  *
1258  *      llc_restart_tx
1259  *
1260  *      The hardware driver calls this routine when the transmit complete
1261  *      interrupt bits (end of frame) for the synchronous or asynchronous
1262  *      queue is set.
1263  *
1264  * NOTE The hardware driver calls this function also if no packets are queued.
1265  *      The routine must be able to handle this case.
1266  * Args
1267  *      smc - A pointer to the SMT context struct.
1268  * Out
1269  *      Nothing.
1270  *
1271  ************************/
1272 void llc_restart_tx(struct s_smc *smc)
1273 {
1274         skfddi_priv *bp = &smc->os;
1275 
1276         pr_debug("[llc_restart_tx]\n");
1277 
1278         // Try to send queued packets
1279         spin_unlock(&bp->DriverLock);
1280         send_queued_packets(smc);
1281         spin_lock(&bp->DriverLock);
1282         netif_start_queue(bp->dev);// system may send again if it was blocked
1283 
1284 }                               // llc_restart_tx
1285 
1286 
1287 /************************
1288  *
1289  *      mac_drv_get_space
1290  *
1291  *      The hardware module calls this function to allocate the memory
1292  *      for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1293  * Args
1294  *      smc - A pointer to the SMT context struct.
1295  *
1296  *      size - Size of memory in bytes to allocate.
1297  * Out
1298  *      != 0    A pointer to the virtual address of the allocated memory.
1299  *      == 0    Allocation error.
1300  *
1301  ************************/
1302 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1303 {
1304         void *virt;
1305 
1306         pr_debug("mac_drv_get_space (%d bytes), ", size);
1307         virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1308 
1309         if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1310                 printk("Unexpected SMT memory size requested: %d\n", size);
1311                 return NULL;
1312         }
1313         smc->os.SharedMemHeap += size;  // Move heap pointer.
1314 
1315         pr_debug("mac_drv_get_space end\n");
1316         pr_debug("virt addr: %lx\n", (ulong) virt);
1317         pr_debug("bus  addr: %lx\n", (ulong)
1318                (smc->os.SharedMemDMA +
1319                 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1320         return virt;
1321 }                               // mac_drv_get_space
1322 
1323 
1324 /************************
1325  *
1326  *      mac_drv_get_desc_mem
1327  *
1328  *      This function is called by the hardware dependent module.
1329  *      It allocates the memory for the RxD and TxD descriptors.
1330  *
1331  *      This memory must be non-cached, non-movable and non-swappable.
1332  *      This memory should start at a physical page boundary.
1333  * Args
1334  *      smc - A pointer to the SMT context struct.
1335  *
1336  *      size - Size of memory in bytes to allocate.
1337  * Out
1338  *      != 0    A pointer to the virtual address of the allocated memory.
1339  *      == 0    Allocation error.
1340  *
1341  ************************/
1342 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1343 {
1344 
1345         char *virt;
1346 
1347         pr_debug("mac_drv_get_desc_mem\n");
1348 
1349         // Descriptor memory must be aligned on 16-byte boundary.
1350 
1351         virt = mac_drv_get_space(smc, size);
1352 
1353         size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1354         size = size % 16;
1355 
1356         pr_debug("Allocate %u bytes alignment gap ", size);
1357         pr_debug("for descriptor memory.\n");
1358 
1359         if (!mac_drv_get_space(smc, size)) {
1360                 printk("fddi: Unable to align descriptor memory.\n");
1361                 return NULL;
1362         }
1363         return virt + size;
1364 }                               // mac_drv_get_desc_mem
1365 
1366 
1367 /************************
1368  *
1369  *      mac_drv_virt2phys
1370  *
1371  *      Get the physical address of a given virtual address.
1372  * Args
1373  *      smc - A pointer to the SMT context struct.
1374  *
1375  *      virt - A (virtual) pointer into our 'shared' memory area.
1376  * Out
1377  *      Physical address of the given virtual address.
1378  *
1379  ************************/
1380 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1381 {
1382         return smc->os.SharedMemDMA +
1383                 ((char *) virt - (char *)smc->os.SharedMemAddr);
1384 }                               // mac_drv_virt2phys
1385 
1386 
1387 /************************
1388  *
1389  *      dma_master
1390  *
1391  *      The HWM calls this function, when the driver leads through a DMA
1392  *      transfer. If the OS-specific module must prepare the system hardware
1393  *      for the DMA transfer, it should do it in this function.
1394  *
1395  *      The hardware module calls this dma_master if it wants to send an SMT
1396  *      frame.  This means that the virt address passed in here is part of
1397  *      the 'shared' memory area.
1398  * Args
1399  *      smc - A pointer to the SMT context struct.
1400  *
1401  *      virt - The virtual address of the data.
1402  *
1403  *      len - The length in bytes of the data.
1404  *
1405  *      flag - Indicates the transmit direction and the buffer type:
1406  *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1407  *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1408  *              SMT_BUF (0x80)  SMT buffer
1409  *
1410  *      >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1411  * Out
1412  *      Returns the pyhsical address for the DMA transfer.
1413  *
1414  ************************/
1415 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1416 {
1417         return smc->os.SharedMemDMA +
1418                 ((char *) virt - (char *)smc->os.SharedMemAddr);
1419 }                               // dma_master
1420 
1421 
1422 /************************
1423  *
1424  *      dma_complete
1425  *
1426  *      The hardware module calls this routine when it has completed a DMA
1427  *      transfer. If the operating system dependent module has set up the DMA
1428  *      channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1429  *      the DMA channel.
1430  * Args
1431  *      smc - A pointer to the SMT context struct.
1432  *
1433  *      descr - A pointer to a TxD or RxD, respectively.
1434  *
1435  *      flag - Indicates the DMA transfer direction / SMT buffer:
1436  *              DMA_RD  (0x01)  system RAM ==> adapter buffer memory
1437  *              DMA_WR  (0x02)  adapter buffer memory ==> system RAM
1438  *              SMT_BUF (0x80)  SMT buffer (managed by HWM)
1439  * Out
1440  *      Nothing.
1441  *
1442  ************************/
1443 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1444 {
1445         /* For TX buffers, there are two cases.  If it is an SMT transmit
1446          * buffer, there is nothing to do since we use consistent memory
1447          * for the 'shared' memory area.  The other case is for normal
1448          * transmit packets given to us by the networking stack, and in
1449          * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1450          * below.
1451          *
1452          * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1453          * because the hardware module is about to potentially look at
1454          * the contents of the buffer.  If we did not call the PCI DMA
1455          * unmap first, the hardware module could read inconsistent data.
1456          */
1457         if (flag & DMA_WR) {
1458                 skfddi_priv *bp = &smc->os;
1459                 volatile struct s_smt_fp_rxd *r = &descr->r;
1460 
1461                 /* If SKB is NULL, we used the local buffer. */
1462                 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1463                         int MaxFrameSize = bp->MaxFrameSize;
1464 
1465                         pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1466                                          MaxFrameSize, PCI_DMA_FROMDEVICE);
1467                         r->rxd_os.dma_addr = 0;
1468                 }
1469         }
1470 }                               // dma_complete
1471 
1472 
1473 /************************
1474  *
1475  *      mac_drv_tx_complete
1476  *
1477  *      Transmit of a packet is complete. Release the tx staging buffer.
1478  *
1479  * Args
1480  *      smc - A pointer to the SMT context struct.
1481  *
1482  *      txd - A pointer to the last TxD which is used by the frame.
1483  * Out
1484  *      Returns nothing.
1485  *
1486  ************************/
1487 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1488 {
1489         struct sk_buff *skb;
1490 
1491         pr_debug("entering mac_drv_tx_complete\n");
1492         // Check if this TxD points to a skb
1493 
1494         if (!(skb = txd->txd_os.skb)) {
1495                 pr_debug("TXD with no skb assigned.\n");
1496                 return;
1497         }
1498         txd->txd_os.skb = NULL;
1499 
1500         // release the DMA mapping
1501         pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1502                          skb->len, PCI_DMA_TODEVICE);
1503         txd->txd_os.dma_addr = 0;
1504 
1505         smc->os.MacStat.gen.tx_packets++;       // Count transmitted packets.
1506         smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1507 
1508         // free the skb
1509         dev_kfree_skb_irq(skb);
1510 
1511         pr_debug("leaving mac_drv_tx_complete\n");
1512 }                               // mac_drv_tx_complete
1513 
1514 
1515 /************************
1516  *
1517  * dump packets to logfile
1518  *
1519  ************************/
1520 #ifdef DUMPPACKETS
1521 void dump_data(unsigned char *Data, int length)
1522 {
1523         int i, j;
1524         unsigned char s[255], sh[10];
1525         if (length > 64) {
1526                 length = 64;
1527         }
1528         printk(KERN_INFO "---Packet start---\n");
1529         for (i = 0, j = 0; i < length / 8; i++, j += 8)
1530                 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1531                        Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1532                        Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1533         strcpy(s, "");
1534         for (i = 0; i < length % 8; i++) {
1535                 sprintf(sh, "%02x ", Data[j + i]);
1536                 strcat(s, sh);
1537         }
1538         printk(KERN_INFO "%s\n", s);
1539         printk(KERN_INFO "------------------\n");
1540 }                               // dump_data
1541 #else
1542 #define dump_data(data,len)
1543 #endif                          // DUMPPACKETS
1544 
1545 /************************
1546  *
1547  *      mac_drv_rx_complete
1548  *
1549  *      The hardware module calls this function if an LLC frame is received
1550  *      in a receive buffer. Also the SMT, NSA, and directed beacon frames
1551  *      from the network will be passed to the LLC layer by this function
1552  *      if passing is enabled.
1553  *
1554  *      mac_drv_rx_complete forwards the frame to the LLC layer if it should
1555  *      be received. It also fills the RxD ring with new receive buffers if
1556  *      some can be queued.
1557  * Args
1558  *      smc - A pointer to the SMT context struct.
1559  *
1560  *      rxd - A pointer to the first RxD which is used by the receive frame.
1561  *
1562  *      frag_count - Count of RxDs used by the received frame.
1563  *
1564  *      len - Frame length.
1565  * Out
1566  *      Nothing.
1567  *
1568  ************************/
1569 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1570                          int frag_count, int len)
1571 {
1572         skfddi_priv *bp = &smc->os;
1573         struct sk_buff *skb;
1574         unsigned char *virt, *cp;
1575         unsigned short ri;
1576         u_int RifLength;
1577 
1578         pr_debug("entering mac_drv_rx_complete (len=%d)\n", len);
1579         if (frag_count != 1) {  // This is not allowed to happen.
1580 
1581                 printk("fddi: Multi-fragment receive!\n");
1582                 goto RequeueRxd;        // Re-use the given RXD(s).
1583 
1584         }
1585         skb = rxd->rxd_os.skb;
1586         if (!skb) {
1587                 pr_debug("No skb in rxd\n");
1588                 smc->os.MacStat.gen.rx_errors++;
1589                 goto RequeueRxd;
1590         }
1591         virt = skb->data;
1592 
1593         // The DMA mapping was released in dma_complete above.
1594 
1595         dump_data(skb->data, len);
1596 
1597         /*
1598          * FDDI Frame format:
1599          * +-------+-------+-------+------------+--------+------------+
1600          * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1601          * +-------+-------+-------+------------+--------+------------+
1602          *
1603          * FC = Frame Control
1604          * DA = Destination Address
1605          * SA = Source Address
1606          * RIF = Routing Information Field
1607          * LLC = Logical Link Control
1608          */
1609 
1610         // Remove Routing Information Field (RIF), if present.
1611 
1612         if ((virt[1 + 6] & FDDI_RII) == 0)
1613                 RifLength = 0;
1614         else {
1615                 int n;
1616 // goos: RIF removal has still to be tested
1617                 pr_debug("RIF found\n");
1618                 // Get RIF length from Routing Control (RC) field.
1619                 cp = virt + FDDI_MAC_HDR_LEN;   // Point behind MAC header.
1620 
1621                 ri = ntohs(*((__be16 *) cp));
1622                 RifLength = ri & FDDI_RCF_LEN_MASK;
1623                 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1624                         printk("fddi: Invalid RIF.\n");
1625                         goto RequeueRxd;        // Discard the frame.
1626 
1627                 }
1628                 virt[1 + 6] &= ~FDDI_RII;       // Clear RII bit.
1629                 // regions overlap
1630 
1631                 virt = cp + RifLength;
1632                 for (n = FDDI_MAC_HDR_LEN; n; n--)
1633                         *--virt = *--cp;
1634                 // adjust sbd->data pointer
1635                 skb_pull(skb, RifLength);
1636                 len -= RifLength;
1637                 RifLength = 0;
1638         }
1639 
1640         // Count statistics.
1641         smc->os.MacStat.gen.rx_packets++;       // Count indicated receive
1642                                                 // packets.
1643         smc->os.MacStat.gen.rx_bytes+=len;      // Count bytes.
1644 
1645         // virt points to header again
1646         if (virt[1] & 0x01) {   // Check group (multicast) bit.
1647 
1648                 smc->os.MacStat.gen.multicast++;
1649         }
1650 
1651         // deliver frame to system
1652         rxd->rxd_os.skb = NULL;
1653         skb_trim(skb, len);
1654         skb->protocol = fddi_type_trans(skb, bp->dev);
1655 
1656         netif_rx(skb);
1657 
1658         HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1659         return;
1660 
1661       RequeueRxd:
1662         pr_debug("Rx: re-queue RXD.\n");
1663         mac_drv_requeue_rxd(smc, rxd, frag_count);
1664         smc->os.MacStat.gen.rx_errors++;        // Count receive packets
1665                                                 // not indicated.
1666 
1667 }                               // mac_drv_rx_complete
1668 
1669 
1670 /************************
1671  *
1672  *      mac_drv_requeue_rxd
1673  *
1674  *      The hardware module calls this function to request the OS-specific
1675  *      module to queue the receive buffer(s) represented by the pointer
1676  *      to the RxD and the frag_count into the receive queue again. This
1677  *      buffer was filled with an invalid frame or an SMT frame.
1678  * Args
1679  *      smc - A pointer to the SMT context struct.
1680  *
1681  *      rxd - A pointer to the first RxD which is used by the receive frame.
1682  *
1683  *      frag_count - Count of RxDs used by the received frame.
1684  * Out
1685  *      Nothing.
1686  *
1687  ************************/
1688 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1689                          int frag_count)
1690 {
1691         volatile struct s_smt_fp_rxd *next_rxd;
1692         volatile struct s_smt_fp_rxd *src_rxd;
1693         struct sk_buff *skb;
1694         int MaxFrameSize;
1695         unsigned char *v_addr;
1696         dma_addr_t b_addr;
1697 
1698         if (frag_count != 1)    // This is not allowed to happen.
1699 
1700                 printk("fddi: Multi-fragment requeue!\n");
1701 
1702         MaxFrameSize = smc->os.MaxFrameSize;
1703         src_rxd = rxd;
1704         for (; frag_count > 0; frag_count--) {
1705                 next_rxd = src_rxd->rxd_next;
1706                 rxd = HWM_GET_CURR_RXD(smc);
1707 
1708                 skb = src_rxd->rxd_os.skb;
1709                 if (skb == NULL) {      // this should not happen
1710 
1711                         pr_debug("Requeue with no skb in rxd!\n");
1712                         skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1713                         if (skb) {
1714                                 // we got a skb
1715                                 rxd->rxd_os.skb = skb;
1716                                 skb_reserve(skb, 3);
1717                                 skb_put(skb, MaxFrameSize);
1718                                 v_addr = skb->data;
1719                                 b_addr = pci_map_single(&smc->os.pdev,
1720                                                         v_addr,
1721                                                         MaxFrameSize,
1722                                                         PCI_DMA_FROMDEVICE);
1723                                 rxd->rxd_os.dma_addr = b_addr;
1724                         } else {
1725                                 // no skb available, use local buffer
1726                                 pr_debug("Queueing invalid buffer!\n");
1727                                 rxd->rxd_os.skb = NULL;
1728                                 v_addr = smc->os.LocalRxBuffer;
1729                                 b_addr = smc->os.LocalRxBufferDMA;
1730                         }
1731                 } else {
1732                         // we use skb from old rxd
1733                         rxd->rxd_os.skb = skb;
1734                         v_addr = skb->data;
1735                         b_addr = pci_map_single(&smc->os.pdev,
1736                                                 v_addr,
1737                                                 MaxFrameSize,
1738                                                 PCI_DMA_FROMDEVICE);
1739                         rxd->rxd_os.dma_addr = b_addr;
1740                 }
1741                 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1742                             FIRST_FRAG | LAST_FRAG);
1743 
1744                 src_rxd = next_rxd;
1745         }
1746 }                               // mac_drv_requeue_rxd
1747 
1748 
1749 /************************
1750  *
1751  *      mac_drv_fill_rxd
1752  *
1753  *      The hardware module calls this function at initialization time
1754  *      to fill the RxD ring with receive buffers. It is also called by
1755  *      mac_drv_rx_complete if rx_free is large enough to queue some new
1756  *      receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1757  *      receive buffers as long as enough RxDs and receive buffers are
1758  *      available.
1759  * Args
1760  *      smc - A pointer to the SMT context struct.
1761  * Out
1762  *      Nothing.
1763  *
1764  ************************/
1765 void mac_drv_fill_rxd(struct s_smc *smc)
1766 {
1767         int MaxFrameSize;
1768         unsigned char *v_addr;
1769         unsigned long b_addr;
1770         struct sk_buff *skb;
1771         volatile struct s_smt_fp_rxd *rxd;
1772 
1773         pr_debug("entering mac_drv_fill_rxd\n");
1774 
1775         // Walk through the list of free receive buffers, passing receive
1776         // buffers to the HWM as long as RXDs are available.
1777 
1778         MaxFrameSize = smc->os.MaxFrameSize;
1779         // Check if there is any RXD left.
1780         while (HWM_GET_RX_FREE(smc) > 0) {
1781                 pr_debug(".\n");
1782 
1783                 rxd = HWM_GET_CURR_RXD(smc);
1784                 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1785                 if (skb) {
1786                         // we got a skb
1787                         skb_reserve(skb, 3);
1788                         skb_put(skb, MaxFrameSize);
1789                         v_addr = skb->data;
1790                         b_addr = pci_map_single(&smc->os.pdev,
1791                                                 v_addr,
1792                                                 MaxFrameSize,
1793                                                 PCI_DMA_FROMDEVICE);
1794                         rxd->rxd_os.dma_addr = b_addr;
1795                 } else {
1796                         // no skb available, use local buffer
1797                         // System has run out of buffer memory, but we want to
1798                         // keep the receiver running in hope of better times.
1799                         // Multiple descriptors may point to this local buffer,
1800                         // so data in it must be considered invalid.
1801                         pr_debug("Queueing invalid buffer!\n");
1802                         v_addr = smc->os.LocalRxBuffer;
1803                         b_addr = smc->os.LocalRxBufferDMA;
1804                 }
1805 
1806                 rxd->rxd_os.skb = skb;
1807 
1808                 // Pass receive buffer to HWM.
1809                 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1810                             FIRST_FRAG | LAST_FRAG);
1811         }
1812         pr_debug("leaving mac_drv_fill_rxd\n");
1813 }                               // mac_drv_fill_rxd
1814 
1815 
1816 /************************
1817  *
1818  *      mac_drv_clear_rxd
1819  *
1820  *      The hardware module calls this function to release unused
1821  *      receive buffers.
1822  * Args
1823  *      smc - A pointer to the SMT context struct.
1824  *
1825  *      rxd - A pointer to the first RxD which is used by the receive buffer.
1826  *
1827  *      frag_count - Count of RxDs used by the receive buffer.
1828  * Out
1829  *      Nothing.
1830  *
1831  ************************/
1832 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1833                        int frag_count)
1834 {
1835 
1836         struct sk_buff *skb;
1837 
1838         pr_debug("entering mac_drv_clear_rxd\n");
1839 
1840         if (frag_count != 1)    // This is not allowed to happen.
1841 
1842                 printk("fddi: Multi-fragment clear!\n");
1843 
1844         for (; frag_count > 0; frag_count--) {
1845                 skb = rxd->rxd_os.skb;
1846                 if (skb != NULL) {
1847                         skfddi_priv *bp = &smc->os;
1848                         int MaxFrameSize = bp->MaxFrameSize;
1849 
1850                         pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1851                                          MaxFrameSize, PCI_DMA_FROMDEVICE);
1852 
1853                         dev_kfree_skb(skb);
1854                         rxd->rxd_os.skb = NULL;
1855                 }
1856                 rxd = rxd->rxd_next;    // Next RXD.
1857 
1858         }
1859 }                               // mac_drv_clear_rxd
1860 
1861 
1862 /************************
1863  *
1864  *      mac_drv_rx_init
1865  *
1866  *      The hardware module calls this routine when an SMT or NSA frame of the
1867  *      local SMT should be delivered to the LLC layer.
1868  *
1869  *      It is necessary to have this function, because there is no other way to
1870  *      copy the contents of SMT MBufs into receive buffers.
1871  *
1872  *      mac_drv_rx_init allocates the required target memory for this frame,
1873  *      and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1874  * Args
1875  *      smc - A pointer to the SMT context struct.
1876  *
1877  *      len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1878  *
1879  *      fc - The Frame Control field of the received frame.
1880  *
1881  *      look_ahead - A pointer to the lookahead data buffer (may be NULL).
1882  *
1883  *      la_len - The length of the lookahead data stored in the lookahead
1884  *      buffer (may be zero).
1885  * Out
1886  *      Always returns zero (0).
1887  *
1888  ************************/
1889 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1890                     char *look_ahead, int la_len)
1891 {
1892         struct sk_buff *skb;
1893 
1894         pr_debug("entering mac_drv_rx_init(len=%d)\n", len);
1895 
1896         // "Received" a SMT or NSA frame of the local SMT.
1897 
1898         if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1899                 pr_debug("fddi: Discard invalid local SMT frame\n");
1900                 pr_debug("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1901                        len, la_len, (unsigned long) look_ahead);
1902                 return 0;
1903         }
1904         skb = alloc_skb(len + 3, GFP_ATOMIC);
1905         if (!skb) {
1906                 pr_debug("fddi: Local SMT: skb memory exhausted.\n");
1907                 return 0;
1908         }
1909         skb_reserve(skb, 3);
1910         skb_put(skb, len);
1911         skb_copy_to_linear_data(skb, look_ahead, len);
1912 
1913         // deliver frame to system
1914         skb->protocol = fddi_type_trans(skb, smc->os.dev);
1915         netif_rx(skb);
1916 
1917         return 0;
1918 }                               // mac_drv_rx_init
1919 
1920 
1921 /************************
1922  *
1923  *      smt_timer_poll
1924  *
1925  *      This routine is called periodically by the SMT module to clean up the
1926  *      driver.
1927  *
1928  *      Return any queued frames back to the upper protocol layers if the ring
1929  *      is down.
1930  * Args
1931  *      smc - A pointer to the SMT context struct.
1932  * Out
1933  *      Nothing.
1934  *
1935  ************************/
1936 void smt_timer_poll(struct s_smc *smc)
1937 {
1938 }                               // smt_timer_poll
1939 
1940 
1941 /************************
1942  *
1943  *      ring_status_indication
1944  *
1945  *      This function indicates a change of the ring state.
1946  * Args
1947  *      smc - A pointer to the SMT context struct.
1948  *
1949  *      status - The current ring status.
1950  * Out
1951  *      Nothing.
1952  *
1953  ************************/
1954 void ring_status_indication(struct s_smc *smc, u_long status)
1955 {
1956         pr_debug("ring_status_indication( ");
1957         if (status & RS_RES15)
1958                 pr_debug("RS_RES15 ");
1959         if (status & RS_HARDERROR)
1960                 pr_debug("RS_HARDERROR ");
1961         if (status & RS_SOFTERROR)
1962                 pr_debug("RS_SOFTERROR ");
1963         if (status & RS_BEACON)
1964                 pr_debug("RS_BEACON ");
1965         if (status & RS_PATHTEST)
1966                 pr_debug("RS_PATHTEST ");
1967         if (status & RS_SELFTEST)
1968                 pr_debug("RS_SELFTEST ");
1969         if (status & RS_RES9)
1970                 pr_debug("RS_RES9 ");
1971         if (status & RS_DISCONNECT)
1972                 pr_debug("RS_DISCONNECT ");
1973         if (status & RS_RES7)
1974                 pr_debug("RS_RES7 ");
1975         if (status & RS_DUPADDR)
1976                 pr_debug("RS_DUPADDR ");
1977         if (status & RS_NORINGOP)
1978                 pr_debug("RS_NORINGOP ");
1979         if (status & RS_VERSION)
1980                 pr_debug("RS_VERSION ");
1981         if (status & RS_STUCKBYPASSS)
1982                 pr_debug("RS_STUCKBYPASSS ");
1983         if (status & RS_EVENT)
1984                 pr_debug("RS_EVENT ");
1985         if (status & RS_RINGOPCHANGE)
1986                 pr_debug("RS_RINGOPCHANGE ");
1987         if (status & RS_RES0)
1988                 pr_debug("RS_RES0 ");
1989         pr_debug("]\n");
1990 }                               // ring_status_indication
1991 
1992 
1993 /************************
1994  *
1995  *      smt_get_time
1996  *
1997  *      Gets the current time from the system.
1998  * Args
1999  *      None.
2000  * Out
2001  *      The current time in TICKS_PER_SECOND.
2002  *
2003  *      TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2004  *      defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2005  *      to the time returned by smt_get_time().
2006  *
2007  ************************/
2008 unsigned long smt_get_time(void)
2009 {
2010         return jiffies;
2011 }                               // smt_get_time
2012 
2013 
2014 /************************
2015  *
2016  *      smt_stat_counter
2017  *
2018  *      Status counter update (ring_op, fifo full).
2019  * Args
2020  *      smc - A pointer to the SMT context struct.
2021  *
2022  *      stat -  = 0: A ring operational change occurred.
2023  *              = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2024  * Out
2025  *      Nothing.
2026  *
2027  ************************/
2028 void smt_stat_counter(struct s_smc *smc, int stat)
2029 {
2030 //      BOOLEAN RingIsUp ;
2031 
2032         pr_debug("smt_stat_counter\n");
2033         switch (stat) {
2034         case 0:
2035                 pr_debug("Ring operational change.\n");
2036                 break;
2037         case 1:
2038                 pr_debug("Receive fifo overflow.\n");
2039                 smc->os.MacStat.gen.rx_errors++;
2040                 break;
2041         default:
2042                 pr_debug("Unknown status (%d).\n", stat);
2043                 break;
2044         }
2045 }                               // smt_stat_counter
2046 
2047 
2048 /************************
2049  *
2050  *      cfm_state_change
2051  *
2052  *      Sets CFM state in custom statistics.
2053  * Args
2054  *      smc - A pointer to the SMT context struct.
2055  *
2056  *      c_state - Possible values are:
2057  *
2058  *              EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2059  *              EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2060  * Out
2061  *      Nothing.
2062  *
2063  ************************/
2064 void cfm_state_change(struct s_smc *smc, int c_state)
2065 {
2066 #ifdef DRIVERDEBUG
2067         char *s;
2068 
2069         switch (c_state) {
2070         case SC0_ISOLATED:
2071                 s = "SC0_ISOLATED";
2072                 break;
2073         case SC1_WRAP_A:
2074                 s = "SC1_WRAP_A";
2075                 break;
2076         case SC2_WRAP_B:
2077                 s = "SC2_WRAP_B";
2078                 break;
2079         case SC4_THRU_A:
2080                 s = "SC4_THRU_A";
2081                 break;
2082         case SC5_THRU_B:
2083                 s = "SC5_THRU_B";
2084                 break;
2085         case SC7_WRAP_S:
2086                 s = "SC7_WRAP_S";
2087                 break;
2088         case SC9_C_WRAP_A:
2089                 s = "SC9_C_WRAP_A";
2090                 break;
2091         case SC10_C_WRAP_B:
2092                 s = "SC10_C_WRAP_B";
2093                 break;
2094         case SC11_C_WRAP_S:
2095                 s = "SC11_C_WRAP_S";
2096                 break;
2097         default:
2098                 pr_debug("cfm_state_change: unknown %d\n", c_state);
2099                 return;
2100         }
2101         pr_debug("cfm_state_change: %s\n", s);
2102 #endif                          // DRIVERDEBUG
2103 }                               // cfm_state_change
2104 
2105 
2106 /************************
2107  *
2108  *      ecm_state_change
2109  *
2110  *      Sets ECM state in custom statistics.
2111  * Args
2112  *      smc - A pointer to the SMT context struct.
2113  *
2114  *      e_state - Possible values are:
2115  *
2116  *              SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2117  *              SC5_THRU_B (7), SC7_WRAP_S (8)
2118  * Out
2119  *      Nothing.
2120  *
2121  ************************/
2122 void ecm_state_change(struct s_smc *smc, int e_state)
2123 {
2124 #ifdef DRIVERDEBUG
2125         char *s;
2126 
2127         switch (e_state) {
2128         case EC0_OUT:
2129                 s = "EC0_OUT";
2130                 break;
2131         case EC1_IN:
2132                 s = "EC1_IN";
2133                 break;
2134         case EC2_TRACE:
2135                 s = "EC2_TRACE";
2136                 break;
2137         case EC3_LEAVE:
2138                 s = "EC3_LEAVE";
2139                 break;
2140         case EC4_PATH_TEST:
2141                 s = "EC4_PATH_TEST";
2142                 break;
2143         case EC5_INSERT:
2144                 s = "EC5_INSERT";
2145                 break;
2146         case EC6_CHECK:
2147                 s = "EC6_CHECK";
2148                 break;
2149         case EC7_DEINSERT:
2150                 s = "EC7_DEINSERT";
2151                 break;
2152         default:
2153                 s = "unknown";
2154                 break;
2155         }
2156         pr_debug("ecm_state_change: %s\n", s);
2157 #endif                          //DRIVERDEBUG
2158 }                               // ecm_state_change
2159 
2160 
2161 /************************
2162  *
2163  *      rmt_state_change
2164  *
2165  *      Sets RMT state in custom statistics.
2166  * Args
2167  *      smc - A pointer to the SMT context struct.
2168  *
2169  *      r_state - Possible values are:
2170  *
2171  *              RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2172  *              RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2173  * Out
2174  *      Nothing.
2175  *
2176  ************************/
2177 void rmt_state_change(struct s_smc *smc, int r_state)
2178 {
2179 #ifdef DRIVERDEBUG
2180         char *s;
2181 
2182         switch (r_state) {
2183         case RM0_ISOLATED:
2184                 s = "RM0_ISOLATED";
2185                 break;
2186         case RM1_NON_OP:
2187                 s = "RM1_NON_OP - not operational";
2188                 break;
2189         case RM2_RING_OP:
2190                 s = "RM2_RING_OP - ring operational";
2191                 break;
2192         case RM3_DETECT:
2193                 s = "RM3_DETECT - detect dupl addresses";
2194                 break;
2195         case RM4_NON_OP_DUP:
2196                 s = "RM4_NON_OP_DUP - dupl. addr detected";
2197                 break;
2198         case RM5_RING_OP_DUP:
2199                 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2200                 break;
2201         case RM6_DIRECTED:
2202                 s = "RM6_DIRECTED - sending directed beacons";
2203                 break;
2204         case RM7_TRACE:
2205                 s = "RM7_TRACE - trace initiated";
2206                 break;
2207         default:
2208                 s = "unknown";
2209                 break;
2210         }
2211         pr_debug("[rmt_state_change: %s]\n", s);
2212 #endif                          // DRIVERDEBUG
2213 }                               // rmt_state_change
2214 
2215 
2216 /************************
2217  *
2218  *      drv_reset_indication
2219  *
2220  *      This function is called by the SMT when it has detected a severe
2221  *      hardware problem. The driver should perform a reset on the adapter
2222  *      as soon as possible, but not from within this function.
2223  * Args
2224  *      smc - A pointer to the SMT context struct.
2225  * Out
2226  *      Nothing.
2227  *
2228  ************************/
2229 void drv_reset_indication(struct s_smc *smc)
2230 {
2231         pr_debug("entering drv_reset_indication\n");
2232 
2233         smc->os.ResetRequested = TRUE;  // Set flag.
2234 
2235 }                               // drv_reset_indication
2236 
2237 static struct pci_driver skfddi_pci_driver = {
2238         .name           = "skfddi",
2239         .id_table       = skfddi_pci_tbl,
2240         .probe          = skfp_init_one,
2241         .remove         = skfp_remove_one,
2242 };
2243 
2244 module_pci_driver(skfddi_pci_driver);

/* [<][>][^][v][top][bottom][index][help] */