root/drivers/net/phy/sfp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mod_state_to_str
  2. dev_state_to_str
  3. event_to_str
  4. sm_state_to_str
  5. sff_module_supported
  6. sfp_module_supported
  7. sfp_gpio_get_state
  8. sff_gpio_get_state
  9. sfp_gpio_set_state
  10. sfp_i2c_read
  11. sfp_i2c_write
  12. sfp_i2c_configure
  13. sfp_get_state
  14. sfp_set_state
  15. sfp_read
  16. sfp_write
  17. sfp_check
  18. sfp_hwmon_is_visible
  19. sfp_hwmon_read_sensor
  20. sfp_hwmon_to_rx_power
  21. sfp_hwmon_calibrate
  22. sfp_hwmon_calibrate_temp
  23. sfp_hwmon_calibrate_vcc
  24. sfp_hwmon_calibrate_bias
  25. sfp_hwmon_calibrate_tx_power
  26. sfp_hwmon_read_temp
  27. sfp_hwmon_read_vcc
  28. sfp_hwmon_read_bias
  29. sfp_hwmon_read_tx_power
  30. sfp_hwmon_read_rx_power
  31. sfp_hwmon_temp
  32. sfp_hwmon_vcc
  33. sfp_hwmon_bias
  34. sfp_hwmon_tx_power
  35. sfp_hwmon_rx_power
  36. sfp_hwmon_read
  37. sfp_hwmon_read_string
  38. sfp_hwmon_insert
  39. sfp_hwmon_remove
  40. sfp_hwmon_insert
  41. sfp_hwmon_remove
  42. sfp_module_tx_disable
  43. sfp_module_tx_enable
  44. sfp_module_tx_fault_reset
  45. sfp_sm_set_timer
  46. sfp_sm_next
  47. sfp_sm_ins_next
  48. sfp_sm_phy_detach
  49. sfp_sm_probe_phy
  50. sfp_sm_link_up
  51. sfp_sm_link_down
  52. sfp_sm_link_check_los
  53. sfp_los_event_active
  54. sfp_los_event_inactive
  55. sfp_sm_fault
  56. sfp_sm_mod_init
  57. sfp_sm_mod_hpower
  58. sfp_sm_mod_probe
  59. sfp_sm_mod_remove
  60. sfp_sm_event
  61. sfp_attach
  62. sfp_detach
  63. sfp_start
  64. sfp_stop
  65. sfp_module_info
  66. sfp_module_eeprom
  67. sfp_timeout
  68. sfp_check_state
  69. sfp_irq
  70. sfp_poll
  71. sfp_alloc
  72. sfp_cleanup
  73. sfp_probe
  74. sfp_remove
  75. sfp_shutdown
  76. sfp_init
  77. sfp_exit

   1 // SPDX-License-Identifier: GPL-2.0
   2 #include <linux/acpi.h>
   3 #include <linux/ctype.h>
   4 #include <linux/delay.h>
   5 #include <linux/gpio/consumer.h>
   6 #include <linux/hwmon.h>
   7 #include <linux/i2c.h>
   8 #include <linux/interrupt.h>
   9 #include <linux/jiffies.h>
  10 #include <linux/module.h>
  11 #include <linux/mutex.h>
  12 #include <linux/of.h>
  13 #include <linux/phy.h>
  14 #include <linux/platform_device.h>
  15 #include <linux/rtnetlink.h>
  16 #include <linux/slab.h>
  17 #include <linux/workqueue.h>
  18 
  19 #include "mdio-i2c.h"
  20 #include "sfp.h"
  21 #include "swphy.h"
  22 
  23 enum {
  24         GPIO_MODDEF0,
  25         GPIO_LOS,
  26         GPIO_TX_FAULT,
  27         GPIO_TX_DISABLE,
  28         GPIO_RATE_SELECT,
  29         GPIO_MAX,
  30 
  31         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  32         SFP_F_LOS = BIT(GPIO_LOS),
  33         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  34         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  35         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  36 
  37         SFP_E_INSERT = 0,
  38         SFP_E_REMOVE,
  39         SFP_E_DEV_DOWN,
  40         SFP_E_DEV_UP,
  41         SFP_E_TX_FAULT,
  42         SFP_E_TX_CLEAR,
  43         SFP_E_LOS_HIGH,
  44         SFP_E_LOS_LOW,
  45         SFP_E_TIMEOUT,
  46 
  47         SFP_MOD_EMPTY = 0,
  48         SFP_MOD_PROBE,
  49         SFP_MOD_HPOWER,
  50         SFP_MOD_PRESENT,
  51         SFP_MOD_ERROR,
  52 
  53         SFP_DEV_DOWN = 0,
  54         SFP_DEV_UP,
  55 
  56         SFP_S_DOWN = 0,
  57         SFP_S_INIT,
  58         SFP_S_WAIT_LOS,
  59         SFP_S_LINK_UP,
  60         SFP_S_TX_FAULT,
  61         SFP_S_REINIT,
  62         SFP_S_TX_DISABLE,
  63 };
  64 
  65 static const char  * const mod_state_strings[] = {
  66         [SFP_MOD_EMPTY] = "empty",
  67         [SFP_MOD_PROBE] = "probe",
  68         [SFP_MOD_HPOWER] = "hpower",
  69         [SFP_MOD_PRESENT] = "present",
  70         [SFP_MOD_ERROR] = "error",
  71 };
  72 
  73 static const char *mod_state_to_str(unsigned short mod_state)
  74 {
  75         if (mod_state >= ARRAY_SIZE(mod_state_strings))
  76                 return "Unknown module state";
  77         return mod_state_strings[mod_state];
  78 }
  79 
  80 static const char * const dev_state_strings[] = {
  81         [SFP_DEV_DOWN] = "down",
  82         [SFP_DEV_UP] = "up",
  83 };
  84 
  85 static const char *dev_state_to_str(unsigned short dev_state)
  86 {
  87         if (dev_state >= ARRAY_SIZE(dev_state_strings))
  88                 return "Unknown device state";
  89         return dev_state_strings[dev_state];
  90 }
  91 
  92 static const char * const event_strings[] = {
  93         [SFP_E_INSERT] = "insert",
  94         [SFP_E_REMOVE] = "remove",
  95         [SFP_E_DEV_DOWN] = "dev_down",
  96         [SFP_E_DEV_UP] = "dev_up",
  97         [SFP_E_TX_FAULT] = "tx_fault",
  98         [SFP_E_TX_CLEAR] = "tx_clear",
  99         [SFP_E_LOS_HIGH] = "los_high",
 100         [SFP_E_LOS_LOW] = "los_low",
 101         [SFP_E_TIMEOUT] = "timeout",
 102 };
 103 
 104 static const char *event_to_str(unsigned short event)
 105 {
 106         if (event >= ARRAY_SIZE(event_strings))
 107                 return "Unknown event";
 108         return event_strings[event];
 109 }
 110 
 111 static const char * const sm_state_strings[] = {
 112         [SFP_S_DOWN] = "down",
 113         [SFP_S_INIT] = "init",
 114         [SFP_S_WAIT_LOS] = "wait_los",
 115         [SFP_S_LINK_UP] = "link_up",
 116         [SFP_S_TX_FAULT] = "tx_fault",
 117         [SFP_S_REINIT] = "reinit",
 118         [SFP_S_TX_DISABLE] = "rx_disable",
 119 };
 120 
 121 static const char *sm_state_to_str(unsigned short sm_state)
 122 {
 123         if (sm_state >= ARRAY_SIZE(sm_state_strings))
 124                 return "Unknown state";
 125         return sm_state_strings[sm_state];
 126 }
 127 
 128 static const char *gpio_of_names[] = {
 129         "mod-def0",
 130         "los",
 131         "tx-fault",
 132         "tx-disable",
 133         "rate-select0",
 134 };
 135 
 136 static const enum gpiod_flags gpio_flags[] = {
 137         GPIOD_IN,
 138         GPIOD_IN,
 139         GPIOD_IN,
 140         GPIOD_ASIS,
 141         GPIOD_ASIS,
 142 };
 143 
 144 #define T_INIT_JIFFIES  msecs_to_jiffies(300)
 145 #define T_RESET_US      10
 146 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
 147 
 148 /* SFP module presence detection is poor: the three MOD DEF signals are
 149  * the same length on the PCB, which means it's possible for MOD DEF 0 to
 150  * connect before the I2C bus on MOD DEF 1/2.
 151  *
 152  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
 153  * be deasserted) but makes no mention of the earliest time before we can
 154  * access the I2C EEPROM.  However, Avago modules require 300ms.
 155  */
 156 #define T_PROBE_INIT    msecs_to_jiffies(300)
 157 #define T_HPOWER_LEVEL  msecs_to_jiffies(300)
 158 #define T_PROBE_RETRY   msecs_to_jiffies(100)
 159 
 160 /* SFP modules appear to always have their PHY configured for bus address
 161  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 162  */
 163 #define SFP_PHY_ADDR    22
 164 
 165 /* Give this long for the PHY to reset. */
 166 #define T_PHY_RESET_MS  50
 167 
 168 struct sff_data {
 169         unsigned int gpios;
 170         bool (*module_supported)(const struct sfp_eeprom_id *id);
 171 };
 172 
 173 struct sfp {
 174         struct device *dev;
 175         struct i2c_adapter *i2c;
 176         struct mii_bus *i2c_mii;
 177         struct sfp_bus *sfp_bus;
 178         struct phy_device *mod_phy;
 179         const struct sff_data *type;
 180         u32 max_power_mW;
 181 
 182         unsigned int (*get_state)(struct sfp *);
 183         void (*set_state)(struct sfp *, unsigned int);
 184         int (*read)(struct sfp *, bool, u8, void *, size_t);
 185         int (*write)(struct sfp *, bool, u8, void *, size_t);
 186 
 187         struct gpio_desc *gpio[GPIO_MAX];
 188         int gpio_irq[GPIO_MAX];
 189 
 190         bool attached;
 191         struct mutex st_mutex;                  /* Protects state */
 192         unsigned int state;
 193         struct delayed_work poll;
 194         struct delayed_work timeout;
 195         struct mutex sm_mutex;                  /* Protects state machine */
 196         unsigned char sm_mod_state;
 197         unsigned char sm_dev_state;
 198         unsigned short sm_state;
 199         unsigned int sm_retries;
 200 
 201         struct sfp_eeprom_id id;
 202 #if IS_ENABLED(CONFIG_HWMON)
 203         struct sfp_diag diag;
 204         struct device *hwmon_dev;
 205         char *hwmon_name;
 206 #endif
 207 
 208 };
 209 
 210 static bool sff_module_supported(const struct sfp_eeprom_id *id)
 211 {
 212         return id->base.phys_id == SFP_PHYS_ID_SFF &&
 213                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 214 }
 215 
 216 static const struct sff_data sff_data = {
 217         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 218         .module_supported = sff_module_supported,
 219 };
 220 
 221 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 222 {
 223         return id->base.phys_id == SFP_PHYS_ID_SFP &&
 224                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 225 }
 226 
 227 static const struct sff_data sfp_data = {
 228         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 229                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 230         .module_supported = sfp_module_supported,
 231 };
 232 
 233 static const struct of_device_id sfp_of_match[] = {
 234         { .compatible = "sff,sff", .data = &sff_data, },
 235         { .compatible = "sff,sfp", .data = &sfp_data, },
 236         { },
 237 };
 238 MODULE_DEVICE_TABLE(of, sfp_of_match);
 239 
 240 static unsigned long poll_jiffies;
 241 
 242 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 243 {
 244         unsigned int i, state, v;
 245 
 246         for (i = state = 0; i < GPIO_MAX; i++) {
 247                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 248                         continue;
 249 
 250                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
 251                 if (v)
 252                         state |= BIT(i);
 253         }
 254 
 255         return state;
 256 }
 257 
 258 static unsigned int sff_gpio_get_state(struct sfp *sfp)
 259 {
 260         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 261 }
 262 
 263 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 264 {
 265         if (state & SFP_F_PRESENT) {
 266                 /* If the module is present, drive the signals */
 267                 if (sfp->gpio[GPIO_TX_DISABLE])
 268                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 269                                                state & SFP_F_TX_DISABLE);
 270                 if (state & SFP_F_RATE_SELECT)
 271                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 272                                                state & SFP_F_RATE_SELECT);
 273         } else {
 274                 /* Otherwise, let them float to the pull-ups */
 275                 if (sfp->gpio[GPIO_TX_DISABLE])
 276                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 277                 if (state & SFP_F_RATE_SELECT)
 278                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 279         }
 280 }
 281 
 282 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 283                         size_t len)
 284 {
 285         struct i2c_msg msgs[2];
 286         u8 bus_addr = a2 ? 0x51 : 0x50;
 287         size_t this_len;
 288         int ret;
 289 
 290         msgs[0].addr = bus_addr;
 291         msgs[0].flags = 0;
 292         msgs[0].len = 1;
 293         msgs[0].buf = &dev_addr;
 294         msgs[1].addr = bus_addr;
 295         msgs[1].flags = I2C_M_RD;
 296         msgs[1].len = len;
 297         msgs[1].buf = buf;
 298 
 299         while (len) {
 300                 this_len = len;
 301                 if (this_len > 16)
 302                         this_len = 16;
 303 
 304                 msgs[1].len = this_len;
 305 
 306                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 307                 if (ret < 0)
 308                         return ret;
 309 
 310                 if (ret != ARRAY_SIZE(msgs))
 311                         break;
 312 
 313                 msgs[1].buf += this_len;
 314                 dev_addr += this_len;
 315                 len -= this_len;
 316         }
 317 
 318         return msgs[1].buf - (u8 *)buf;
 319 }
 320 
 321 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 322         size_t len)
 323 {
 324         struct i2c_msg msgs[1];
 325         u8 bus_addr = a2 ? 0x51 : 0x50;
 326         int ret;
 327 
 328         msgs[0].addr = bus_addr;
 329         msgs[0].flags = 0;
 330         msgs[0].len = 1 + len;
 331         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 332         if (!msgs[0].buf)
 333                 return -ENOMEM;
 334 
 335         msgs[0].buf[0] = dev_addr;
 336         memcpy(&msgs[0].buf[1], buf, len);
 337 
 338         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 339 
 340         kfree(msgs[0].buf);
 341 
 342         if (ret < 0)
 343                 return ret;
 344 
 345         return ret == ARRAY_SIZE(msgs) ? len : 0;
 346 }
 347 
 348 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 349 {
 350         struct mii_bus *i2c_mii;
 351         int ret;
 352 
 353         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 354                 return -EINVAL;
 355 
 356         sfp->i2c = i2c;
 357         sfp->read = sfp_i2c_read;
 358         sfp->write = sfp_i2c_write;
 359 
 360         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 361         if (IS_ERR(i2c_mii))
 362                 return PTR_ERR(i2c_mii);
 363 
 364         i2c_mii->name = "SFP I2C Bus";
 365         i2c_mii->phy_mask = ~0;
 366 
 367         ret = mdiobus_register(i2c_mii);
 368         if (ret < 0) {
 369                 mdiobus_free(i2c_mii);
 370                 return ret;
 371         }
 372 
 373         sfp->i2c_mii = i2c_mii;
 374 
 375         return 0;
 376 }
 377 
 378 /* Interface */
 379 static unsigned int sfp_get_state(struct sfp *sfp)
 380 {
 381         return sfp->get_state(sfp);
 382 }
 383 
 384 static void sfp_set_state(struct sfp *sfp, unsigned int state)
 385 {
 386         sfp->set_state(sfp, state);
 387 }
 388 
 389 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 390 {
 391         return sfp->read(sfp, a2, addr, buf, len);
 392 }
 393 
 394 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 395 {
 396         return sfp->write(sfp, a2, addr, buf, len);
 397 }
 398 
 399 static unsigned int sfp_check(void *buf, size_t len)
 400 {
 401         u8 *p, check;
 402 
 403         for (p = buf, check = 0; len; p++, len--)
 404                 check += *p;
 405 
 406         return check;
 407 }
 408 
 409 /* hwmon */
 410 #if IS_ENABLED(CONFIG_HWMON)
 411 static umode_t sfp_hwmon_is_visible(const void *data,
 412                                     enum hwmon_sensor_types type,
 413                                     u32 attr, int channel)
 414 {
 415         const struct sfp *sfp = data;
 416 
 417         switch (type) {
 418         case hwmon_temp:
 419                 switch (attr) {
 420                 case hwmon_temp_min_alarm:
 421                 case hwmon_temp_max_alarm:
 422                 case hwmon_temp_lcrit_alarm:
 423                 case hwmon_temp_crit_alarm:
 424                 case hwmon_temp_min:
 425                 case hwmon_temp_max:
 426                 case hwmon_temp_lcrit:
 427                 case hwmon_temp_crit:
 428                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 429                                 return 0;
 430                         /* fall through */
 431                 case hwmon_temp_input:
 432                 case hwmon_temp_label:
 433                         return 0444;
 434                 default:
 435                         return 0;
 436                 }
 437         case hwmon_in:
 438                 switch (attr) {
 439                 case hwmon_in_min_alarm:
 440                 case hwmon_in_max_alarm:
 441                 case hwmon_in_lcrit_alarm:
 442                 case hwmon_in_crit_alarm:
 443                 case hwmon_in_min:
 444                 case hwmon_in_max:
 445                 case hwmon_in_lcrit:
 446                 case hwmon_in_crit:
 447                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 448                                 return 0;
 449                         /* fall through */
 450                 case hwmon_in_input:
 451                 case hwmon_in_label:
 452                         return 0444;
 453                 default:
 454                         return 0;
 455                 }
 456         case hwmon_curr:
 457                 switch (attr) {
 458                 case hwmon_curr_min_alarm:
 459                 case hwmon_curr_max_alarm:
 460                 case hwmon_curr_lcrit_alarm:
 461                 case hwmon_curr_crit_alarm:
 462                 case hwmon_curr_min:
 463                 case hwmon_curr_max:
 464                 case hwmon_curr_lcrit:
 465                 case hwmon_curr_crit:
 466                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 467                                 return 0;
 468                         /* fall through */
 469                 case hwmon_curr_input:
 470                 case hwmon_curr_label:
 471                         return 0444;
 472                 default:
 473                         return 0;
 474                 }
 475         case hwmon_power:
 476                 /* External calibration of receive power requires
 477                  * floating point arithmetic. Doing that in the kernel
 478                  * is not easy, so just skip it. If the module does
 479                  * not require external calibration, we can however
 480                  * show receiver power, since FP is then not needed.
 481                  */
 482                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 483                     channel == 1)
 484                         return 0;
 485                 switch (attr) {
 486                 case hwmon_power_min_alarm:
 487                 case hwmon_power_max_alarm:
 488                 case hwmon_power_lcrit_alarm:
 489                 case hwmon_power_crit_alarm:
 490                 case hwmon_power_min:
 491                 case hwmon_power_max:
 492                 case hwmon_power_lcrit:
 493                 case hwmon_power_crit:
 494                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 495                                 return 0;
 496                         /* fall through */
 497                 case hwmon_power_input:
 498                 case hwmon_power_label:
 499                         return 0444;
 500                 default:
 501                         return 0;
 502                 }
 503         default:
 504                 return 0;
 505         }
 506 }
 507 
 508 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 509 {
 510         __be16 val;
 511         int err;
 512 
 513         err = sfp_read(sfp, true, reg, &val, sizeof(val));
 514         if (err < 0)
 515                 return err;
 516 
 517         *value = be16_to_cpu(val);
 518 
 519         return 0;
 520 }
 521 
 522 static void sfp_hwmon_to_rx_power(long *value)
 523 {
 524         *value = DIV_ROUND_CLOSEST(*value, 10);
 525 }
 526 
 527 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 528                                 long *value)
 529 {
 530         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 531                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 532 }
 533 
 534 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 535 {
 536         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 537                             be16_to_cpu(sfp->diag.cal_t_offset), value);
 538 
 539         if (*value >= 0x8000)
 540                 *value -= 0x10000;
 541 
 542         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 543 }
 544 
 545 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 546 {
 547         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 548                             be16_to_cpu(sfp->diag.cal_v_offset), value);
 549 
 550         *value = DIV_ROUND_CLOSEST(*value, 10);
 551 }
 552 
 553 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 554 {
 555         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 556                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
 557 
 558         *value = DIV_ROUND_CLOSEST(*value, 500);
 559 }
 560 
 561 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 562 {
 563         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 564                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 565 
 566         *value = DIV_ROUND_CLOSEST(*value, 10);
 567 }
 568 
 569 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 570 {
 571         int err;
 572 
 573         err = sfp_hwmon_read_sensor(sfp, reg, value);
 574         if (err < 0)
 575                 return err;
 576 
 577         sfp_hwmon_calibrate_temp(sfp, value);
 578 
 579         return 0;
 580 }
 581 
 582 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 583 {
 584         int err;
 585 
 586         err = sfp_hwmon_read_sensor(sfp, reg, value);
 587         if (err < 0)
 588                 return err;
 589 
 590         sfp_hwmon_calibrate_vcc(sfp, value);
 591 
 592         return 0;
 593 }
 594 
 595 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 596 {
 597         int err;
 598 
 599         err = sfp_hwmon_read_sensor(sfp, reg, value);
 600         if (err < 0)
 601                 return err;
 602 
 603         sfp_hwmon_calibrate_bias(sfp, value);
 604 
 605         return 0;
 606 }
 607 
 608 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 609 {
 610         int err;
 611 
 612         err = sfp_hwmon_read_sensor(sfp, reg, value);
 613         if (err < 0)
 614                 return err;
 615 
 616         sfp_hwmon_calibrate_tx_power(sfp, value);
 617 
 618         return 0;
 619 }
 620 
 621 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 622 {
 623         int err;
 624 
 625         err = sfp_hwmon_read_sensor(sfp, reg, value);
 626         if (err < 0)
 627                 return err;
 628 
 629         sfp_hwmon_to_rx_power(value);
 630 
 631         return 0;
 632 }
 633 
 634 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 635 {
 636         u8 status;
 637         int err;
 638 
 639         switch (attr) {
 640         case hwmon_temp_input:
 641                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 642 
 643         case hwmon_temp_lcrit:
 644                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
 645                 sfp_hwmon_calibrate_temp(sfp, value);
 646                 return 0;
 647 
 648         case hwmon_temp_min:
 649                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
 650                 sfp_hwmon_calibrate_temp(sfp, value);
 651                 return 0;
 652         case hwmon_temp_max:
 653                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
 654                 sfp_hwmon_calibrate_temp(sfp, value);
 655                 return 0;
 656 
 657         case hwmon_temp_crit:
 658                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
 659                 sfp_hwmon_calibrate_temp(sfp, value);
 660                 return 0;
 661 
 662         case hwmon_temp_lcrit_alarm:
 663                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 664                 if (err < 0)
 665                         return err;
 666 
 667                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
 668                 return 0;
 669 
 670         case hwmon_temp_min_alarm:
 671                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 672                 if (err < 0)
 673                         return err;
 674 
 675                 *value = !!(status & SFP_WARN0_TEMP_LOW);
 676                 return 0;
 677 
 678         case hwmon_temp_max_alarm:
 679                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 680                 if (err < 0)
 681                         return err;
 682 
 683                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
 684                 return 0;
 685 
 686         case hwmon_temp_crit_alarm:
 687                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 688                 if (err < 0)
 689                         return err;
 690 
 691                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
 692                 return 0;
 693         default:
 694                 return -EOPNOTSUPP;
 695         }
 696 
 697         return -EOPNOTSUPP;
 698 }
 699 
 700 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 701 {
 702         u8 status;
 703         int err;
 704 
 705         switch (attr) {
 706         case hwmon_in_input:
 707                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 708 
 709         case hwmon_in_lcrit:
 710                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
 711                 sfp_hwmon_calibrate_vcc(sfp, value);
 712                 return 0;
 713 
 714         case hwmon_in_min:
 715                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
 716                 sfp_hwmon_calibrate_vcc(sfp, value);
 717                 return 0;
 718 
 719         case hwmon_in_max:
 720                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
 721                 sfp_hwmon_calibrate_vcc(sfp, value);
 722                 return 0;
 723 
 724         case hwmon_in_crit:
 725                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
 726                 sfp_hwmon_calibrate_vcc(sfp, value);
 727                 return 0;
 728 
 729         case hwmon_in_lcrit_alarm:
 730                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 731                 if (err < 0)
 732                         return err;
 733 
 734                 *value = !!(status & SFP_ALARM0_VCC_LOW);
 735                 return 0;
 736 
 737         case hwmon_in_min_alarm:
 738                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 739                 if (err < 0)
 740                         return err;
 741 
 742                 *value = !!(status & SFP_WARN0_VCC_LOW);
 743                 return 0;
 744 
 745         case hwmon_in_max_alarm:
 746                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 747                 if (err < 0)
 748                         return err;
 749 
 750                 *value = !!(status & SFP_WARN0_VCC_HIGH);
 751                 return 0;
 752 
 753         case hwmon_in_crit_alarm:
 754                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 755                 if (err < 0)
 756                         return err;
 757 
 758                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
 759                 return 0;
 760         default:
 761                 return -EOPNOTSUPP;
 762         }
 763 
 764         return -EOPNOTSUPP;
 765 }
 766 
 767 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 768 {
 769         u8 status;
 770         int err;
 771 
 772         switch (attr) {
 773         case hwmon_curr_input:
 774                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 775 
 776         case hwmon_curr_lcrit:
 777                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
 778                 sfp_hwmon_calibrate_bias(sfp, value);
 779                 return 0;
 780 
 781         case hwmon_curr_min:
 782                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
 783                 sfp_hwmon_calibrate_bias(sfp, value);
 784                 return 0;
 785 
 786         case hwmon_curr_max:
 787                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
 788                 sfp_hwmon_calibrate_bias(sfp, value);
 789                 return 0;
 790 
 791         case hwmon_curr_crit:
 792                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
 793                 sfp_hwmon_calibrate_bias(sfp, value);
 794                 return 0;
 795 
 796         case hwmon_curr_lcrit_alarm:
 797                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 798                 if (err < 0)
 799                         return err;
 800 
 801                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 802                 return 0;
 803 
 804         case hwmon_curr_min_alarm:
 805                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 806                 if (err < 0)
 807                         return err;
 808 
 809                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 810                 return 0;
 811 
 812         case hwmon_curr_max_alarm:
 813                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 814                 if (err < 0)
 815                         return err;
 816 
 817                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 818                 return 0;
 819 
 820         case hwmon_curr_crit_alarm:
 821                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 822                 if (err < 0)
 823                         return err;
 824 
 825                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 826                 return 0;
 827         default:
 828                 return -EOPNOTSUPP;
 829         }
 830 
 831         return -EOPNOTSUPP;
 832 }
 833 
 834 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 835 {
 836         u8 status;
 837         int err;
 838 
 839         switch (attr) {
 840         case hwmon_power_input:
 841                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 842 
 843         case hwmon_power_lcrit:
 844                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 845                 sfp_hwmon_calibrate_tx_power(sfp, value);
 846                 return 0;
 847 
 848         case hwmon_power_min:
 849                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 850                 sfp_hwmon_calibrate_tx_power(sfp, value);
 851                 return 0;
 852 
 853         case hwmon_power_max:
 854                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 855                 sfp_hwmon_calibrate_tx_power(sfp, value);
 856                 return 0;
 857 
 858         case hwmon_power_crit:
 859                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
 860                 sfp_hwmon_calibrate_tx_power(sfp, value);
 861                 return 0;
 862 
 863         case hwmon_power_lcrit_alarm:
 864                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 865                 if (err < 0)
 866                         return err;
 867 
 868                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
 869                 return 0;
 870 
 871         case hwmon_power_min_alarm:
 872                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 873                 if (err < 0)
 874                         return err;
 875 
 876                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
 877                 return 0;
 878 
 879         case hwmon_power_max_alarm:
 880                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 881                 if (err < 0)
 882                         return err;
 883 
 884                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
 885                 return 0;
 886 
 887         case hwmon_power_crit_alarm:
 888                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 889                 if (err < 0)
 890                         return err;
 891 
 892                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
 893                 return 0;
 894         default:
 895                 return -EOPNOTSUPP;
 896         }
 897 
 898         return -EOPNOTSUPP;
 899 }
 900 
 901 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
 902 {
 903         u8 status;
 904         int err;
 905 
 906         switch (attr) {
 907         case hwmon_power_input:
 908                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
 909 
 910         case hwmon_power_lcrit:
 911                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
 912                 sfp_hwmon_to_rx_power(value);
 913                 return 0;
 914 
 915         case hwmon_power_min:
 916                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
 917                 sfp_hwmon_to_rx_power(value);
 918                 return 0;
 919 
 920         case hwmon_power_max:
 921                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
 922                 sfp_hwmon_to_rx_power(value);
 923                 return 0;
 924 
 925         case hwmon_power_crit:
 926                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
 927                 sfp_hwmon_to_rx_power(value);
 928                 return 0;
 929 
 930         case hwmon_power_lcrit_alarm:
 931                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
 932                 if (err < 0)
 933                         return err;
 934 
 935                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
 936                 return 0;
 937 
 938         case hwmon_power_min_alarm:
 939                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
 940                 if (err < 0)
 941                         return err;
 942 
 943                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
 944                 return 0;
 945 
 946         case hwmon_power_max_alarm:
 947                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
 948                 if (err < 0)
 949                         return err;
 950 
 951                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
 952                 return 0;
 953 
 954         case hwmon_power_crit_alarm:
 955                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
 956                 if (err < 0)
 957                         return err;
 958 
 959                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
 960                 return 0;
 961         default:
 962                 return -EOPNOTSUPP;
 963         }
 964 
 965         return -EOPNOTSUPP;
 966 }
 967 
 968 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
 969                           u32 attr, int channel, long *value)
 970 {
 971         struct sfp *sfp = dev_get_drvdata(dev);
 972 
 973         switch (type) {
 974         case hwmon_temp:
 975                 return sfp_hwmon_temp(sfp, attr, value);
 976         case hwmon_in:
 977                 return sfp_hwmon_vcc(sfp, attr, value);
 978         case hwmon_curr:
 979                 return sfp_hwmon_bias(sfp, attr, value);
 980         case hwmon_power:
 981                 switch (channel) {
 982                 case 0:
 983                         return sfp_hwmon_tx_power(sfp, attr, value);
 984                 case 1:
 985                         return sfp_hwmon_rx_power(sfp, attr, value);
 986                 default:
 987                         return -EOPNOTSUPP;
 988                 }
 989         default:
 990                 return -EOPNOTSUPP;
 991         }
 992 }
 993 
 994 static const char *const sfp_hwmon_power_labels[] = {
 995         "TX_power",
 996         "RX_power",
 997 };
 998 
 999 static int sfp_hwmon_read_string(struct device *dev,
1000                                  enum hwmon_sensor_types type,
1001                                  u32 attr, int channel, const char **str)
1002 {
1003         switch (type) {
1004         case hwmon_curr:
1005                 switch (attr) {
1006                 case hwmon_curr_label:
1007                         *str = "bias";
1008                         return 0;
1009                 default:
1010                         return -EOPNOTSUPP;
1011                 }
1012                 break;
1013         case hwmon_temp:
1014                 switch (attr) {
1015                 case hwmon_temp_label:
1016                         *str = "temperature";
1017                         return 0;
1018                 default:
1019                         return -EOPNOTSUPP;
1020                 }
1021                 break;
1022         case hwmon_in:
1023                 switch (attr) {
1024                 case hwmon_in_label:
1025                         *str = "VCC";
1026                         return 0;
1027                 default:
1028                         return -EOPNOTSUPP;
1029                 }
1030                 break;
1031         case hwmon_power:
1032                 switch (attr) {
1033                 case hwmon_power_label:
1034                         *str = sfp_hwmon_power_labels[channel];
1035                         return 0;
1036                 default:
1037                         return -EOPNOTSUPP;
1038                 }
1039                 break;
1040         default:
1041                 return -EOPNOTSUPP;
1042         }
1043 
1044         return -EOPNOTSUPP;
1045 }
1046 
1047 static const struct hwmon_ops sfp_hwmon_ops = {
1048         .is_visible = sfp_hwmon_is_visible,
1049         .read = sfp_hwmon_read,
1050         .read_string = sfp_hwmon_read_string,
1051 };
1052 
1053 static u32 sfp_hwmon_chip_config[] = {
1054         HWMON_C_REGISTER_TZ,
1055         0,
1056 };
1057 
1058 static const struct hwmon_channel_info sfp_hwmon_chip = {
1059         .type = hwmon_chip,
1060         .config = sfp_hwmon_chip_config,
1061 };
1062 
1063 static u32 sfp_hwmon_temp_config[] = {
1064         HWMON_T_INPUT |
1065         HWMON_T_MAX | HWMON_T_MIN |
1066         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1067         HWMON_T_CRIT | HWMON_T_LCRIT |
1068         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1069         HWMON_T_LABEL,
1070         0,
1071 };
1072 
1073 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1074         .type = hwmon_temp,
1075         .config = sfp_hwmon_temp_config,
1076 };
1077 
1078 static u32 sfp_hwmon_vcc_config[] = {
1079         HWMON_I_INPUT |
1080         HWMON_I_MAX | HWMON_I_MIN |
1081         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1082         HWMON_I_CRIT | HWMON_I_LCRIT |
1083         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1084         HWMON_I_LABEL,
1085         0,
1086 };
1087 
1088 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1089         .type = hwmon_in,
1090         .config = sfp_hwmon_vcc_config,
1091 };
1092 
1093 static u32 sfp_hwmon_bias_config[] = {
1094         HWMON_C_INPUT |
1095         HWMON_C_MAX | HWMON_C_MIN |
1096         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1097         HWMON_C_CRIT | HWMON_C_LCRIT |
1098         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1099         HWMON_C_LABEL,
1100         0,
1101 };
1102 
1103 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1104         .type = hwmon_curr,
1105         .config = sfp_hwmon_bias_config,
1106 };
1107 
1108 static u32 sfp_hwmon_power_config[] = {
1109         /* Transmit power */
1110         HWMON_P_INPUT |
1111         HWMON_P_MAX | HWMON_P_MIN |
1112         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1113         HWMON_P_CRIT | HWMON_P_LCRIT |
1114         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1115         HWMON_P_LABEL,
1116         /* Receive power */
1117         HWMON_P_INPUT |
1118         HWMON_P_MAX | HWMON_P_MIN |
1119         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1120         HWMON_P_CRIT | HWMON_P_LCRIT |
1121         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1122         HWMON_P_LABEL,
1123         0,
1124 };
1125 
1126 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1127         .type = hwmon_power,
1128         .config = sfp_hwmon_power_config,
1129 };
1130 
1131 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1132         &sfp_hwmon_chip,
1133         &sfp_hwmon_vcc_channel_info,
1134         &sfp_hwmon_temp_channel_info,
1135         &sfp_hwmon_bias_channel_info,
1136         &sfp_hwmon_power_channel_info,
1137         NULL,
1138 };
1139 
1140 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1141         .ops = &sfp_hwmon_ops,
1142         .info = sfp_hwmon_info,
1143 };
1144 
1145 static int sfp_hwmon_insert(struct sfp *sfp)
1146 {
1147         int err, i;
1148 
1149         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1150                 return 0;
1151 
1152         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1153                 return 0;
1154 
1155         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1156                 /* This driver in general does not support address
1157                  * change.
1158                  */
1159                 return 0;
1160 
1161         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1162         if (err < 0)
1163                 return err;
1164 
1165         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1166         if (!sfp->hwmon_name)
1167                 return -ENODEV;
1168 
1169         for (i = 0; sfp->hwmon_name[i]; i++)
1170                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1171                         sfp->hwmon_name[i] = '_';
1172 
1173         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1174                                                          sfp->hwmon_name, sfp,
1175                                                          &sfp_hwmon_chip_info,
1176                                                          NULL);
1177 
1178         return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1179 }
1180 
1181 static void sfp_hwmon_remove(struct sfp *sfp)
1182 {
1183         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1184                 hwmon_device_unregister(sfp->hwmon_dev);
1185                 sfp->hwmon_dev = NULL;
1186                 kfree(sfp->hwmon_name);
1187         }
1188 }
1189 #else
1190 static int sfp_hwmon_insert(struct sfp *sfp)
1191 {
1192         return 0;
1193 }
1194 
1195 static void sfp_hwmon_remove(struct sfp *sfp)
1196 {
1197 }
1198 #endif
1199 
1200 /* Helpers */
1201 static void sfp_module_tx_disable(struct sfp *sfp)
1202 {
1203         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1204                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1205         sfp->state |= SFP_F_TX_DISABLE;
1206         sfp_set_state(sfp, sfp->state);
1207 }
1208 
1209 static void sfp_module_tx_enable(struct sfp *sfp)
1210 {
1211         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1212                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1213         sfp->state &= ~SFP_F_TX_DISABLE;
1214         sfp_set_state(sfp, sfp->state);
1215 }
1216 
1217 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1218 {
1219         unsigned int state = sfp->state;
1220 
1221         if (state & SFP_F_TX_DISABLE)
1222                 return;
1223 
1224         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1225 
1226         udelay(T_RESET_US);
1227 
1228         sfp_set_state(sfp, state);
1229 }
1230 
1231 /* SFP state machine */
1232 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1233 {
1234         if (timeout)
1235                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1236                                  timeout);
1237         else
1238                 cancel_delayed_work(&sfp->timeout);
1239 }
1240 
1241 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1242                         unsigned int timeout)
1243 {
1244         sfp->sm_state = state;
1245         sfp_sm_set_timer(sfp, timeout);
1246 }
1247 
1248 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1249                             unsigned int timeout)
1250 {
1251         sfp->sm_mod_state = state;
1252         sfp_sm_set_timer(sfp, timeout);
1253 }
1254 
1255 static void sfp_sm_phy_detach(struct sfp *sfp)
1256 {
1257         phy_stop(sfp->mod_phy);
1258         sfp_remove_phy(sfp->sfp_bus);
1259         phy_device_remove(sfp->mod_phy);
1260         phy_device_free(sfp->mod_phy);
1261         sfp->mod_phy = NULL;
1262 }
1263 
1264 static void sfp_sm_probe_phy(struct sfp *sfp)
1265 {
1266         struct phy_device *phy;
1267         int err;
1268 
1269         msleep(T_PHY_RESET_MS);
1270 
1271         phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1272         if (phy == ERR_PTR(-ENODEV)) {
1273                 dev_info(sfp->dev, "no PHY detected\n");
1274                 return;
1275         }
1276         if (IS_ERR(phy)) {
1277                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1278                 return;
1279         }
1280 
1281         err = sfp_add_phy(sfp->sfp_bus, phy);
1282         if (err) {
1283                 phy_device_remove(phy);
1284                 phy_device_free(phy);
1285                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1286                 return;
1287         }
1288 
1289         sfp->mod_phy = phy;
1290         phy_start(phy);
1291 }
1292 
1293 static void sfp_sm_link_up(struct sfp *sfp)
1294 {
1295         sfp_link_up(sfp->sfp_bus);
1296         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1297 }
1298 
1299 static void sfp_sm_link_down(struct sfp *sfp)
1300 {
1301         sfp_link_down(sfp->sfp_bus);
1302 }
1303 
1304 static void sfp_sm_link_check_los(struct sfp *sfp)
1305 {
1306         unsigned int los = sfp->state & SFP_F_LOS;
1307 
1308         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1309          * are set, we assume that no LOS signal is available.
1310          */
1311         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1312                 los ^= SFP_F_LOS;
1313         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1314                 los = 0;
1315 
1316         if (los)
1317                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1318         else
1319                 sfp_sm_link_up(sfp);
1320 }
1321 
1322 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1323 {
1324         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1325                 event == SFP_E_LOS_LOW) ||
1326                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1327                 event == SFP_E_LOS_HIGH);
1328 }
1329 
1330 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1331 {
1332         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1333                 event == SFP_E_LOS_HIGH) ||
1334                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1335                 event == SFP_E_LOS_LOW);
1336 }
1337 
1338 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1339 {
1340         if (sfp->sm_retries && !--sfp->sm_retries) {
1341                 dev_err(sfp->dev,
1342                         "module persistently indicates fault, disabling\n");
1343                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1344         } else {
1345                 if (warn)
1346                         dev_err(sfp->dev, "module transmit fault indicated\n");
1347 
1348                 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1349         }
1350 }
1351 
1352 static void sfp_sm_mod_init(struct sfp *sfp)
1353 {
1354         sfp_module_tx_enable(sfp);
1355 
1356         /* Wait t_init before indicating that the link is up, provided the
1357          * current state indicates no TX_FAULT.  If TX_FAULT clears before
1358          * this time, that's fine too.
1359          */
1360         sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1361         sfp->sm_retries = 5;
1362 
1363         /* Setting the serdes link mode is guesswork: there's no
1364          * field in the EEPROM which indicates what mode should
1365          * be used.
1366          *
1367          * If it's a gigabit-only fiber module, it probably does
1368          * not have a PHY, so switch to 802.3z negotiation mode.
1369          * Otherwise, switch to SGMII mode (which is required to
1370          * support non-gigabit speeds) and probe for a PHY.
1371          */
1372         if (sfp->id.base.e1000_base_t ||
1373             sfp->id.base.e100_base_lx ||
1374             sfp->id.base.e100_base_fx)
1375                 sfp_sm_probe_phy(sfp);
1376 }
1377 
1378 static int sfp_sm_mod_hpower(struct sfp *sfp)
1379 {
1380         u32 power;
1381         u8 val;
1382         int err;
1383 
1384         power = 1000;
1385         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1386                 power = 1500;
1387         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1388                 power = 2000;
1389 
1390         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1391             (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1392             SFP_DIAGMON_DDM) {
1393                 /* The module appears not to implement bus address 0xa2,
1394                  * or requires an address change sequence, so assume that
1395                  * the module powers up in the indicated power mode.
1396                  */
1397                 if (power > sfp->max_power_mW) {
1398                         dev_err(sfp->dev,
1399                                 "Host does not support %u.%uW modules\n",
1400                                 power / 1000, (power / 100) % 10);
1401                         return -EINVAL;
1402                 }
1403                 return 0;
1404         }
1405 
1406         if (power > sfp->max_power_mW) {
1407                 dev_warn(sfp->dev,
1408                          "Host does not support %u.%uW modules, module left in power mode 1\n",
1409                          power / 1000, (power / 100) % 10);
1410                 return 0;
1411         }
1412 
1413         if (power <= 1000)
1414                 return 0;
1415 
1416         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1417         if (err != sizeof(val)) {
1418                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1419                 err = -EAGAIN;
1420                 goto err;
1421         }
1422 
1423         val |= BIT(0);
1424 
1425         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1426         if (err != sizeof(val)) {
1427                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1428                 err = -EAGAIN;
1429                 goto err;
1430         }
1431 
1432         dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1433                  power / 1000, (power / 100) % 10);
1434         return T_HPOWER_LEVEL;
1435 
1436 err:
1437         return err;
1438 }
1439 
1440 static int sfp_sm_mod_probe(struct sfp *sfp)
1441 {
1442         /* SFP module inserted - read I2C data */
1443         struct sfp_eeprom_id id;
1444         bool cotsworks;
1445         u8 check;
1446         int ret;
1447 
1448         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1449         if (ret < 0) {
1450                 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1451                 return -EAGAIN;
1452         }
1453 
1454         if (ret != sizeof(id)) {
1455                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1456                 return -EAGAIN;
1457         }
1458 
1459         /* Cotsworks do not seem to update the checksums when they
1460          * do the final programming with the final module part number,
1461          * serial number and date code.
1462          */
1463         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1464 
1465         /* Validate the checksum over the base structure */
1466         check = sfp_check(&id.base, sizeof(id.base) - 1);
1467         if (check != id.base.cc_base) {
1468                 if (cotsworks) {
1469                         dev_warn(sfp->dev,
1470                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1471                                  check, id.base.cc_base);
1472                 } else {
1473                         dev_err(sfp->dev,
1474                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1475                                 check, id.base.cc_base);
1476                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1477                                        16, 1, &id, sizeof(id), true);
1478                         return -EINVAL;
1479                 }
1480         }
1481 
1482         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1483         if (check != id.ext.cc_ext) {
1484                 if (cotsworks) {
1485                         dev_warn(sfp->dev,
1486                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1487                                  check, id.ext.cc_ext);
1488                 } else {
1489                         dev_err(sfp->dev,
1490                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1491                                 check, id.ext.cc_ext);
1492                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1493                                        16, 1, &id, sizeof(id), true);
1494                         memset(&id.ext, 0, sizeof(id.ext));
1495                 }
1496         }
1497 
1498         sfp->id = id;
1499 
1500         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1501                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1502                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1503                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1504                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1505                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1506 
1507         /* Check whether we support this module */
1508         if (!sfp->type->module_supported(&sfp->id)) {
1509                 dev_err(sfp->dev,
1510                         "module is not supported - phys id 0x%02x 0x%02x\n",
1511                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1512                 return -EINVAL;
1513         }
1514 
1515         /* If the module requires address swap mode, warn about it */
1516         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1517                 dev_warn(sfp->dev,
1518                          "module address swap to access page 0xA2 is not supported.\n");
1519 
1520         ret = sfp_hwmon_insert(sfp);
1521         if (ret < 0)
1522                 return ret;
1523 
1524         ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1525         if (ret < 0)
1526                 return ret;
1527 
1528         return sfp_sm_mod_hpower(sfp);
1529 }
1530 
1531 static void sfp_sm_mod_remove(struct sfp *sfp)
1532 {
1533         sfp_module_remove(sfp->sfp_bus);
1534 
1535         sfp_hwmon_remove(sfp);
1536 
1537         if (sfp->mod_phy)
1538                 sfp_sm_phy_detach(sfp);
1539 
1540         sfp_module_tx_disable(sfp);
1541 
1542         memset(&sfp->id, 0, sizeof(sfp->id));
1543 
1544         dev_info(sfp->dev, "module removed\n");
1545 }
1546 
1547 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1548 {
1549         mutex_lock(&sfp->sm_mutex);
1550 
1551         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1552                 mod_state_to_str(sfp->sm_mod_state),
1553                 dev_state_to_str(sfp->sm_dev_state),
1554                 sm_state_to_str(sfp->sm_state),
1555                 event_to_str(event));
1556 
1557         /* This state machine tracks the insert/remove state of
1558          * the module, and handles probing the on-board EEPROM.
1559          */
1560         switch (sfp->sm_mod_state) {
1561         default:
1562                 if (event == SFP_E_INSERT && sfp->attached) {
1563                         sfp_module_tx_disable(sfp);
1564                         sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1565                 }
1566                 break;
1567 
1568         case SFP_MOD_PROBE:
1569                 if (event == SFP_E_REMOVE) {
1570                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1571                 } else if (event == SFP_E_TIMEOUT) {
1572                         int val = sfp_sm_mod_probe(sfp);
1573 
1574                         if (val == 0)
1575                                 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1576                         else if (val > 0)
1577                                 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1578                         else if (val != -EAGAIN)
1579                                 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1580                         else
1581                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1582                 }
1583                 break;
1584 
1585         case SFP_MOD_HPOWER:
1586                 if (event == SFP_E_TIMEOUT) {
1587                         sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1588                         break;
1589                 }
1590                 /* fallthrough */
1591         case SFP_MOD_PRESENT:
1592         case SFP_MOD_ERROR:
1593                 if (event == SFP_E_REMOVE) {
1594                         sfp_sm_mod_remove(sfp);
1595                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1596                 }
1597                 break;
1598         }
1599 
1600         /* This state machine tracks the netdev up/down state */
1601         switch (sfp->sm_dev_state) {
1602         default:
1603                 if (event == SFP_E_DEV_UP)
1604                         sfp->sm_dev_state = SFP_DEV_UP;
1605                 break;
1606 
1607         case SFP_DEV_UP:
1608                 if (event == SFP_E_DEV_DOWN) {
1609                         /* If the module has a PHY, avoid raising TX disable
1610                          * as this resets the PHY. Otherwise, raise it to
1611                          * turn the laser off.
1612                          */
1613                         if (!sfp->mod_phy)
1614                                 sfp_module_tx_disable(sfp);
1615                         sfp->sm_dev_state = SFP_DEV_DOWN;
1616                 }
1617                 break;
1618         }
1619 
1620         /* Some events are global */
1621         if (sfp->sm_state != SFP_S_DOWN &&
1622             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1623              sfp->sm_dev_state != SFP_DEV_UP)) {
1624                 if (sfp->sm_state == SFP_S_LINK_UP &&
1625                     sfp->sm_dev_state == SFP_DEV_UP)
1626                         sfp_sm_link_down(sfp);
1627                 if (sfp->mod_phy)
1628                         sfp_sm_phy_detach(sfp);
1629                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1630                 mutex_unlock(&sfp->sm_mutex);
1631                 return;
1632         }
1633 
1634         /* The main state machine */
1635         switch (sfp->sm_state) {
1636         case SFP_S_DOWN:
1637                 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1638                     sfp->sm_dev_state == SFP_DEV_UP)
1639                         sfp_sm_mod_init(sfp);
1640                 break;
1641 
1642         case SFP_S_INIT:
1643                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1644                         sfp_sm_fault(sfp, true);
1645                 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1646                         sfp_sm_link_check_los(sfp);
1647                 break;
1648 
1649         case SFP_S_WAIT_LOS:
1650                 if (event == SFP_E_TX_FAULT)
1651                         sfp_sm_fault(sfp, true);
1652                 else if (sfp_los_event_inactive(sfp, event))
1653                         sfp_sm_link_up(sfp);
1654                 break;
1655 
1656         case SFP_S_LINK_UP:
1657                 if (event == SFP_E_TX_FAULT) {
1658                         sfp_sm_link_down(sfp);
1659                         sfp_sm_fault(sfp, true);
1660                 } else if (sfp_los_event_active(sfp, event)) {
1661                         sfp_sm_link_down(sfp);
1662                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1663                 }
1664                 break;
1665 
1666         case SFP_S_TX_FAULT:
1667                 if (event == SFP_E_TIMEOUT) {
1668                         sfp_module_tx_fault_reset(sfp);
1669                         sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1670                 }
1671                 break;
1672 
1673         case SFP_S_REINIT:
1674                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1675                         sfp_sm_fault(sfp, false);
1676                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1677                         dev_info(sfp->dev, "module transmit fault recovered\n");
1678                         sfp_sm_link_check_los(sfp);
1679                 }
1680                 break;
1681 
1682         case SFP_S_TX_DISABLE:
1683                 break;
1684         }
1685 
1686         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1687                 mod_state_to_str(sfp->sm_mod_state),
1688                 dev_state_to_str(sfp->sm_dev_state),
1689                 sm_state_to_str(sfp->sm_state));
1690 
1691         mutex_unlock(&sfp->sm_mutex);
1692 }
1693 
1694 static void sfp_attach(struct sfp *sfp)
1695 {
1696         sfp->attached = true;
1697         if (sfp->state & SFP_F_PRESENT)
1698                 sfp_sm_event(sfp, SFP_E_INSERT);
1699 }
1700 
1701 static void sfp_detach(struct sfp *sfp)
1702 {
1703         sfp->attached = false;
1704         sfp_sm_event(sfp, SFP_E_REMOVE);
1705 }
1706 
1707 static void sfp_start(struct sfp *sfp)
1708 {
1709         sfp_sm_event(sfp, SFP_E_DEV_UP);
1710 }
1711 
1712 static void sfp_stop(struct sfp *sfp)
1713 {
1714         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1715 }
1716 
1717 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1718 {
1719         /* locking... and check module is present */
1720 
1721         if (sfp->id.ext.sff8472_compliance &&
1722             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1723                 modinfo->type = ETH_MODULE_SFF_8472;
1724                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1725         } else {
1726                 modinfo->type = ETH_MODULE_SFF_8079;
1727                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1728         }
1729         return 0;
1730 }
1731 
1732 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1733                              u8 *data)
1734 {
1735         unsigned int first, last, len;
1736         int ret;
1737 
1738         if (ee->len == 0)
1739                 return -EINVAL;
1740 
1741         first = ee->offset;
1742         last = ee->offset + ee->len;
1743         if (first < ETH_MODULE_SFF_8079_LEN) {
1744                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1745                 len -= first;
1746 
1747                 ret = sfp_read(sfp, false, first, data, len);
1748                 if (ret < 0)
1749                         return ret;
1750 
1751                 first += len;
1752                 data += len;
1753         }
1754         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1755                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1756                 len -= first;
1757                 first -= ETH_MODULE_SFF_8079_LEN;
1758 
1759                 ret = sfp_read(sfp, true, first, data, len);
1760                 if (ret < 0)
1761                         return ret;
1762         }
1763         return 0;
1764 }
1765 
1766 static const struct sfp_socket_ops sfp_module_ops = {
1767         .attach = sfp_attach,
1768         .detach = sfp_detach,
1769         .start = sfp_start,
1770         .stop = sfp_stop,
1771         .module_info = sfp_module_info,
1772         .module_eeprom = sfp_module_eeprom,
1773 };
1774 
1775 static void sfp_timeout(struct work_struct *work)
1776 {
1777         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1778 
1779         rtnl_lock();
1780         sfp_sm_event(sfp, SFP_E_TIMEOUT);
1781         rtnl_unlock();
1782 }
1783 
1784 static void sfp_check_state(struct sfp *sfp)
1785 {
1786         unsigned int state, i, changed;
1787 
1788         mutex_lock(&sfp->st_mutex);
1789         state = sfp_get_state(sfp);
1790         changed = state ^ sfp->state;
1791         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1792 
1793         for (i = 0; i < GPIO_MAX; i++)
1794                 if (changed & BIT(i))
1795                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1796                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1797 
1798         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1799         sfp->state = state;
1800 
1801         rtnl_lock();
1802         if (changed & SFP_F_PRESENT)
1803                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1804                                 SFP_E_INSERT : SFP_E_REMOVE);
1805 
1806         if (changed & SFP_F_TX_FAULT)
1807                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1808                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1809 
1810         if (changed & SFP_F_LOS)
1811                 sfp_sm_event(sfp, state & SFP_F_LOS ?
1812                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1813         rtnl_unlock();
1814         mutex_unlock(&sfp->st_mutex);
1815 }
1816 
1817 static irqreturn_t sfp_irq(int irq, void *data)
1818 {
1819         struct sfp *sfp = data;
1820 
1821         sfp_check_state(sfp);
1822 
1823         return IRQ_HANDLED;
1824 }
1825 
1826 static void sfp_poll(struct work_struct *work)
1827 {
1828         struct sfp *sfp = container_of(work, struct sfp, poll.work);
1829 
1830         sfp_check_state(sfp);
1831         mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1832 }
1833 
1834 static struct sfp *sfp_alloc(struct device *dev)
1835 {
1836         struct sfp *sfp;
1837 
1838         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1839         if (!sfp)
1840                 return ERR_PTR(-ENOMEM);
1841 
1842         sfp->dev = dev;
1843 
1844         mutex_init(&sfp->sm_mutex);
1845         mutex_init(&sfp->st_mutex);
1846         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1847         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1848 
1849         return sfp;
1850 }
1851 
1852 static void sfp_cleanup(void *data)
1853 {
1854         struct sfp *sfp = data;
1855 
1856         cancel_delayed_work_sync(&sfp->poll);
1857         cancel_delayed_work_sync(&sfp->timeout);
1858         if (sfp->i2c_mii) {
1859                 mdiobus_unregister(sfp->i2c_mii);
1860                 mdiobus_free(sfp->i2c_mii);
1861         }
1862         if (sfp->i2c)
1863                 i2c_put_adapter(sfp->i2c);
1864         kfree(sfp);
1865 }
1866 
1867 static int sfp_probe(struct platform_device *pdev)
1868 {
1869         const struct sff_data *sff;
1870         struct i2c_adapter *i2c;
1871         struct sfp *sfp;
1872         bool poll = false;
1873         int err, i;
1874 
1875         sfp = sfp_alloc(&pdev->dev);
1876         if (IS_ERR(sfp))
1877                 return PTR_ERR(sfp);
1878 
1879         platform_set_drvdata(pdev, sfp);
1880 
1881         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1882         if (err < 0)
1883                 return err;
1884 
1885         sff = sfp->type = &sfp_data;
1886 
1887         if (pdev->dev.of_node) {
1888                 struct device_node *node = pdev->dev.of_node;
1889                 const struct of_device_id *id;
1890                 struct device_node *np;
1891 
1892                 id = of_match_node(sfp_of_match, node);
1893                 if (WARN_ON(!id))
1894                         return -EINVAL;
1895 
1896                 sff = sfp->type = id->data;
1897 
1898                 np = of_parse_phandle(node, "i2c-bus", 0);
1899                 if (!np) {
1900                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1901                         return -ENODEV;
1902                 }
1903 
1904                 i2c = of_find_i2c_adapter_by_node(np);
1905                 of_node_put(np);
1906         } else if (has_acpi_companion(&pdev->dev)) {
1907                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1908                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1909                 struct fwnode_reference_args args;
1910                 struct acpi_handle *acpi_handle;
1911                 int ret;
1912 
1913                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1914                 if (ret || !is_acpi_device_node(args.fwnode)) {
1915                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1916                         return -ENODEV;
1917                 }
1918 
1919                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1920                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1921         } else {
1922                 return -EINVAL;
1923         }
1924 
1925         if (!i2c)
1926                 return -EPROBE_DEFER;
1927 
1928         err = sfp_i2c_configure(sfp, i2c);
1929         if (err < 0) {
1930                 i2c_put_adapter(i2c);
1931                 return err;
1932         }
1933 
1934         for (i = 0; i < GPIO_MAX; i++)
1935                 if (sff->gpios & BIT(i)) {
1936                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1937                                            gpio_of_names[i], gpio_flags[i]);
1938                         if (IS_ERR(sfp->gpio[i]))
1939                                 return PTR_ERR(sfp->gpio[i]);
1940                 }
1941 
1942         sfp->get_state = sfp_gpio_get_state;
1943         sfp->set_state = sfp_gpio_set_state;
1944 
1945         /* Modules that have no detect signal are always present */
1946         if (!(sfp->gpio[GPIO_MODDEF0]))
1947                 sfp->get_state = sff_gpio_get_state;
1948 
1949         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1950                                  &sfp->max_power_mW);
1951         if (!sfp->max_power_mW)
1952                 sfp->max_power_mW = 1000;
1953 
1954         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1955                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1956 
1957         /* Get the initial state, and always signal TX disable,
1958          * since the network interface will not be up.
1959          */
1960         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1961 
1962         if (sfp->gpio[GPIO_RATE_SELECT] &&
1963             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1964                 sfp->state |= SFP_F_RATE_SELECT;
1965         sfp_set_state(sfp, sfp->state);
1966         sfp_module_tx_disable(sfp);
1967 
1968         for (i = 0; i < GPIO_MAX; i++) {
1969                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1970                         continue;
1971 
1972                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1973                 if (!sfp->gpio_irq[i]) {
1974                         poll = true;
1975                         continue;
1976                 }
1977 
1978                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1979                                                 NULL, sfp_irq,
1980                                                 IRQF_ONESHOT |
1981                                                 IRQF_TRIGGER_RISING |
1982                                                 IRQF_TRIGGER_FALLING,
1983                                                 dev_name(sfp->dev), sfp);
1984                 if (err) {
1985                         sfp->gpio_irq[i] = 0;
1986                         poll = true;
1987                 }
1988         }
1989 
1990         if (poll)
1991                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1992 
1993         /* We could have an issue in cases no Tx disable pin is available or
1994          * wired as modules using a laser as their light source will continue to
1995          * be active when the fiber is removed. This could be a safety issue and
1996          * we should at least warn the user about that.
1997          */
1998         if (!sfp->gpio[GPIO_TX_DISABLE])
1999                 dev_warn(sfp->dev,
2000                          "No tx_disable pin: SFP modules will always be emitting.\n");
2001 
2002         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2003         if (!sfp->sfp_bus)
2004                 return -ENOMEM;
2005 
2006         return 0;
2007 }
2008 
2009 static int sfp_remove(struct platform_device *pdev)
2010 {
2011         struct sfp *sfp = platform_get_drvdata(pdev);
2012 
2013         sfp_unregister_socket(sfp->sfp_bus);
2014 
2015         return 0;
2016 }
2017 
2018 static void sfp_shutdown(struct platform_device *pdev)
2019 {
2020         struct sfp *sfp = platform_get_drvdata(pdev);
2021         int i;
2022 
2023         for (i = 0; i < GPIO_MAX; i++) {
2024                 if (!sfp->gpio_irq[i])
2025                         continue;
2026 
2027                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2028         }
2029 
2030         cancel_delayed_work_sync(&sfp->poll);
2031         cancel_delayed_work_sync(&sfp->timeout);
2032 }
2033 
2034 static struct platform_driver sfp_driver = {
2035         .probe = sfp_probe,
2036         .remove = sfp_remove,
2037         .shutdown = sfp_shutdown,
2038         .driver = {
2039                 .name = "sfp",
2040                 .of_match_table = sfp_of_match,
2041         },
2042 };
2043 
2044 static int sfp_init(void)
2045 {
2046         poll_jiffies = msecs_to_jiffies(100);
2047 
2048         return platform_driver_register(&sfp_driver);
2049 }
2050 module_init(sfp_init);
2051 
2052 static void sfp_exit(void)
2053 {
2054         platform_driver_unregister(&sfp_driver);
2055 }
2056 module_exit(sfp_exit);
2057 
2058 MODULE_ALIAS("platform:sfp");
2059 MODULE_AUTHOR("Russell King");
2060 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */