root/drivers/net/dsa/lantiq_gswip.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gswip_switch_r
  2. gswip_switch_w
  3. gswip_switch_mask
  4. gswip_switch_r_timeout
  5. gswip_mdio_r
  6. gswip_mdio_w
  7. gswip_mdio_mask
  8. gswip_mii_r
  9. gswip_mii_w
  10. gswip_mii_mask
  11. gswip_mii_mask_cfg
  12. gswip_mii_mask_pcdu
  13. gswip_mdio_poll
  14. gswip_mdio_wr
  15. gswip_mdio_rd
  16. gswip_mdio
  17. gswip_pce_table_entry_read
  18. gswip_pce_table_entry_write
  19. gswip_add_single_port_br
  20. gswip_port_enable
  21. gswip_port_disable
  22. gswip_pce_load_microcode
  23. gswip_port_vlan_filtering
  24. gswip_setup
  25. gswip_get_tag_protocol
  26. gswip_vlan_active_create
  27. gswip_vlan_active_remove
  28. gswip_vlan_add_unaware
  29. gswip_vlan_add_aware
  30. gswip_vlan_remove
  31. gswip_port_bridge_join
  32. gswip_port_bridge_leave
  33. gswip_port_vlan_prepare
  34. gswip_port_vlan_add
  35. gswip_port_vlan_del
  36. gswip_port_fast_age
  37. gswip_port_stp_state_set
  38. gswip_port_fdb
  39. gswip_port_fdb_add
  40. gswip_port_fdb_del
  41. gswip_port_fdb_dump
  42. gswip_phylink_validate
  43. gswip_phylink_mac_config
  44. gswip_phylink_mac_link_down
  45. gswip_phylink_mac_link_up
  46. gswip_get_strings
  47. gswip_bcm_ram_entry_read
  48. gswip_get_ethtool_stats
  49. gswip_get_sset_count
  50. gswip_gphy_fw_load
  51. gswip_gphy_fw_probe
  52. gswip_gphy_fw_remove
  53. gswip_gphy_fw_list
  54. gswip_probe
  55. gswip_remove

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
   4  *
   5  * Copyright (C) 2010 Lantiq Deutschland
   6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
   7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
   8  *
   9  * The VLAN and bridge model the GSWIP hardware uses does not directly
  10  * matches the model DSA uses.
  11  *
  12  * The hardware has 64 possible table entries for bridges with one VLAN
  13  * ID, one flow id and a list of ports for each bridge. All entries which
  14  * match the same flow ID are combined in the mac learning table, they
  15  * act as one global bridge.
  16  * The hardware does not support VLAN filter on the port, but on the
  17  * bridge, this driver converts the DSA model to the hardware.
  18  *
  19  * The CPU gets all the exception frames which do not match any forwarding
  20  * rule and the CPU port is also added to all bridges. This makes it possible
  21  * to handle all the special cases easily in software.
  22  * At the initialization the driver allocates one bridge table entry for
  23  * each switch port which is used when the port is used without an
  24  * explicit bridge. This prevents the frames from being forwarded
  25  * between all LAN ports by default.
  26  */
  27 
  28 #include <linux/clk.h>
  29 #include <linux/etherdevice.h>
  30 #include <linux/firmware.h>
  31 #include <linux/if_bridge.h>
  32 #include <linux/if_vlan.h>
  33 #include <linux/iopoll.h>
  34 #include <linux/mfd/syscon.h>
  35 #include <linux/module.h>
  36 #include <linux/of_mdio.h>
  37 #include <linux/of_net.h>
  38 #include <linux/of_platform.h>
  39 #include <linux/phy.h>
  40 #include <linux/phylink.h>
  41 #include <linux/platform_device.h>
  42 #include <linux/regmap.h>
  43 #include <linux/reset.h>
  44 #include <net/dsa.h>
  45 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
  46 
  47 #include "lantiq_pce.h"
  48 
  49 /* GSWIP MDIO Registers */
  50 #define GSWIP_MDIO_GLOB                 0x00
  51 #define  GSWIP_MDIO_GLOB_ENABLE         BIT(15)
  52 #define GSWIP_MDIO_CTRL                 0x08
  53 #define  GSWIP_MDIO_CTRL_BUSY           BIT(12)
  54 #define  GSWIP_MDIO_CTRL_RD             BIT(11)
  55 #define  GSWIP_MDIO_CTRL_WR             BIT(10)
  56 #define  GSWIP_MDIO_CTRL_PHYAD_MASK     0x1f
  57 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT    5
  58 #define  GSWIP_MDIO_CTRL_REGAD_MASK     0x1f
  59 #define GSWIP_MDIO_READ                 0x09
  60 #define GSWIP_MDIO_WRITE                0x0A
  61 #define GSWIP_MDIO_MDC_CFG0             0x0B
  62 #define GSWIP_MDIO_MDC_CFG1             0x0C
  63 #define GSWIP_MDIO_PHYp(p)              (0x15 - (p))
  64 #define  GSWIP_MDIO_PHY_LINK_MASK       0x6000
  65 #define  GSWIP_MDIO_PHY_LINK_AUTO       0x0000
  66 #define  GSWIP_MDIO_PHY_LINK_DOWN       0x4000
  67 #define  GSWIP_MDIO_PHY_LINK_UP         0x2000
  68 #define  GSWIP_MDIO_PHY_SPEED_MASK      0x1800
  69 #define  GSWIP_MDIO_PHY_SPEED_AUTO      0x1800
  70 #define  GSWIP_MDIO_PHY_SPEED_M10       0x0000
  71 #define  GSWIP_MDIO_PHY_SPEED_M100      0x0800
  72 #define  GSWIP_MDIO_PHY_SPEED_G1        0x1000
  73 #define  GSWIP_MDIO_PHY_FDUP_MASK       0x0600
  74 #define  GSWIP_MDIO_PHY_FDUP_AUTO       0x0000
  75 #define  GSWIP_MDIO_PHY_FDUP_EN         0x0200
  76 #define  GSWIP_MDIO_PHY_FDUP_DIS        0x0600
  77 #define  GSWIP_MDIO_PHY_FCONTX_MASK     0x0180
  78 #define  GSWIP_MDIO_PHY_FCONTX_AUTO     0x0000
  79 #define  GSWIP_MDIO_PHY_FCONTX_EN       0x0100
  80 #define  GSWIP_MDIO_PHY_FCONTX_DIS      0x0180
  81 #define  GSWIP_MDIO_PHY_FCONRX_MASK     0x0060
  82 #define  GSWIP_MDIO_PHY_FCONRX_AUTO     0x0000
  83 #define  GSWIP_MDIO_PHY_FCONRX_EN       0x0020
  84 #define  GSWIP_MDIO_PHY_FCONRX_DIS      0x0060
  85 #define  GSWIP_MDIO_PHY_ADDR_MASK       0x001f
  86 #define  GSWIP_MDIO_PHY_MASK            (GSWIP_MDIO_PHY_ADDR_MASK | \
  87                                          GSWIP_MDIO_PHY_FCONRX_MASK | \
  88                                          GSWIP_MDIO_PHY_FCONTX_MASK | \
  89                                          GSWIP_MDIO_PHY_LINK_MASK | \
  90                                          GSWIP_MDIO_PHY_SPEED_MASK | \
  91                                          GSWIP_MDIO_PHY_FDUP_MASK)
  92 
  93 /* GSWIP MII Registers */
  94 #define GSWIP_MII_CFG0                  0x00
  95 #define GSWIP_MII_CFG1                  0x02
  96 #define GSWIP_MII_CFG5                  0x04
  97 #define  GSWIP_MII_CFG_EN               BIT(14)
  98 #define  GSWIP_MII_CFG_LDCLKDIS         BIT(12)
  99 #define  GSWIP_MII_CFG_MODE_MIIP        0x0
 100 #define  GSWIP_MII_CFG_MODE_MIIM        0x1
 101 #define  GSWIP_MII_CFG_MODE_RMIIP       0x2
 102 #define  GSWIP_MII_CFG_MODE_RMIIM       0x3
 103 #define  GSWIP_MII_CFG_MODE_RGMII       0x4
 104 #define  GSWIP_MII_CFG_MODE_MASK        0xf
 105 #define  GSWIP_MII_CFG_RATE_M2P5        0x00
 106 #define  GSWIP_MII_CFG_RATE_M25 0x10
 107 #define  GSWIP_MII_CFG_RATE_M125        0x20
 108 #define  GSWIP_MII_CFG_RATE_M50 0x30
 109 #define  GSWIP_MII_CFG_RATE_AUTO        0x40
 110 #define  GSWIP_MII_CFG_RATE_MASK        0x70
 111 #define GSWIP_MII_PCDU0                 0x01
 112 #define GSWIP_MII_PCDU1                 0x03
 113 #define GSWIP_MII_PCDU5                 0x05
 114 #define  GSWIP_MII_PCDU_TXDLY_MASK      GENMASK(2, 0)
 115 #define  GSWIP_MII_PCDU_RXDLY_MASK      GENMASK(9, 7)
 116 
 117 /* GSWIP Core Registers */
 118 #define GSWIP_SWRES                     0x000
 119 #define  GSWIP_SWRES_R1                 BIT(1)  /* GSWIP Software reset */
 120 #define  GSWIP_SWRES_R0                 BIT(0)  /* GSWIP Hardware reset */
 121 #define GSWIP_VERSION                   0x013
 122 #define  GSWIP_VERSION_REV_SHIFT        0
 123 #define  GSWIP_VERSION_REV_MASK         GENMASK(7, 0)
 124 #define  GSWIP_VERSION_MOD_SHIFT        8
 125 #define  GSWIP_VERSION_MOD_MASK         GENMASK(15, 8)
 126 #define   GSWIP_VERSION_2_0             0x100
 127 #define   GSWIP_VERSION_2_1             0x021
 128 #define   GSWIP_VERSION_2_2             0x122
 129 #define   GSWIP_VERSION_2_2_ETC         0x022
 130 
 131 #define GSWIP_BM_RAM_VAL(x)             (0x043 - (x))
 132 #define GSWIP_BM_RAM_ADDR               0x044
 133 #define GSWIP_BM_RAM_CTRL               0x045
 134 #define  GSWIP_BM_RAM_CTRL_BAS          BIT(15)
 135 #define  GSWIP_BM_RAM_CTRL_OPMOD        BIT(5)
 136 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK    GENMASK(4, 0)
 137 #define GSWIP_BM_QUEUE_GCTRL            0x04A
 138 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD    BIT(10)
 139 /* buffer management Port Configuration Register */
 140 #define GSWIP_BM_PCFGp(p)               (0x080 + ((p) * 2))
 141 #define  GSWIP_BM_PCFG_CNTEN            BIT(0)  /* RMON Counter Enable */
 142 #define  GSWIP_BM_PCFG_IGCNT            BIT(1)  /* Ingres Special Tag RMON count */
 143 /* buffer management Port Control Register */
 144 #define GSWIP_BM_RMON_CTRLp(p)          (0x81 + ((p) * 2))
 145 #define  GSWIP_BM_CTRL_RMON_RAM1_RES    BIT(0)  /* Software Reset for RMON RAM 1 */
 146 #define  GSWIP_BM_CTRL_RMON_RAM2_RES    BIT(1)  /* Software Reset for RMON RAM 2 */
 147 
 148 /* PCE */
 149 #define GSWIP_PCE_TBL_KEY(x)            (0x447 - (x))
 150 #define GSWIP_PCE_TBL_MASK              0x448
 151 #define GSWIP_PCE_TBL_VAL(x)            (0x44D - (x))
 152 #define GSWIP_PCE_TBL_ADDR              0x44E
 153 #define GSWIP_PCE_TBL_CTRL              0x44F
 154 #define  GSWIP_PCE_TBL_CTRL_BAS         BIT(15)
 155 #define  GSWIP_PCE_TBL_CTRL_TYPE        BIT(13)
 156 #define  GSWIP_PCE_TBL_CTRL_VLD         BIT(12)
 157 #define  GSWIP_PCE_TBL_CTRL_KEYFORM     BIT(11)
 158 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK   GENMASK(10, 7)
 159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK  GENMASK(6, 5)
 160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD  0x00
 161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR  0x20
 162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD  0x40
 163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR  0x60
 164 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK   GENMASK(4, 0)
 165 #define GSWIP_PCE_PMAP1                 0x453   /* Monitoring port map */
 166 #define GSWIP_PCE_PMAP2                 0x454   /* Default Multicast port map */
 167 #define GSWIP_PCE_PMAP3                 0x455   /* Default Unknown Unicast port map */
 168 #define GSWIP_PCE_GCTRL_0               0x456
 169 #define  GSWIP_PCE_GCTRL_0_MTFL         BIT(0)  /* MAC Table Flushing */
 170 #define  GSWIP_PCE_GCTRL_0_MC_VALID     BIT(3)
 171 #define  GSWIP_PCE_GCTRL_0_VLAN         BIT(14) /* VLAN aware Switching */
 172 #define GSWIP_PCE_GCTRL_1               0x457
 173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK    BIT(2)  /* MAC Address table lock */
 174 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD        BIT(3) /* Mac address table lock forwarding mode */
 175 #define GSWIP_PCE_PCTRL_0p(p)           (0x480 + ((p) * 0xA))
 176 #define  GSWIP_PCE_PCTRL_0_TVM          BIT(5)  /* Transparent VLAN mode */
 177 #define  GSWIP_PCE_PCTRL_0_VREP         BIT(6)  /* VLAN Replace Mode */
 178 #define  GSWIP_PCE_PCTRL_0_INGRESS      BIT(11) /* Accept special tag in ingress */
 179 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN        0x0
 180 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX            0x1
 181 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX            0x2
 182 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING      0x3
 183 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING    0x7
 184 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK  GENMASK(2, 0)
 185 #define GSWIP_PCE_VCTRL(p)              (0x485 + ((p) * 0xA))
 186 #define  GSWIP_PCE_VCTRL_UVR            BIT(0)  /* Unknown VLAN Rule */
 187 #define  GSWIP_PCE_VCTRL_VIMR           BIT(3)  /* VLAN Ingress Member violation rule */
 188 #define  GSWIP_PCE_VCTRL_VEMR           BIT(4)  /* VLAN Egress Member violation rule */
 189 #define  GSWIP_PCE_VCTRL_VSR            BIT(5)  /* VLAN Security */
 190 #define  GSWIP_PCE_VCTRL_VID0           BIT(6)  /* Priority Tagged Rule */
 191 #define GSWIP_PCE_DEFPVID(p)            (0x486 + ((p) * 0xA))
 192 
 193 #define GSWIP_MAC_FLEN                  0x8C5
 194 #define GSWIP_MAC_CTRL_2p(p)            (0x905 + ((p) * 0xC))
 195 #define GSWIP_MAC_CTRL_2_MLEN           BIT(3) /* Maximum Untagged Frame Lnegth */
 196 
 197 /* Ethernet Switch Fetch DMA Port Control Register */
 198 #define GSWIP_FDMA_PCTRLp(p)            (0xA80 + ((p) * 0x6))
 199 #define  GSWIP_FDMA_PCTRL_EN            BIT(0)  /* FDMA Port Enable */
 200 #define  GSWIP_FDMA_PCTRL_STEN          BIT(1)  /* Special Tag Insertion Enable */
 201 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK  GENMASK(4, 3)   /* VLAN Modification Control */
 202 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3       /* VLAN Modification Control */
 203 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS   (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 204 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO  (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 205 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID    (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 206 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH  (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 207 
 208 /* Ethernet Switch Store DMA Port Control Register */
 209 #define GSWIP_SDMA_PCTRLp(p)            (0xBC0 + ((p) * 0x6))
 210 #define  GSWIP_SDMA_PCTRL_EN            BIT(0)  /* SDMA Port Enable */
 211 #define  GSWIP_SDMA_PCTRL_FCEN          BIT(1)  /* Flow Control Enable */
 212 #define  GSWIP_SDMA_PCTRL_PAUFWD        BIT(1)  /* Pause Frame Forwarding */
 213 
 214 #define GSWIP_TABLE_ACTIVE_VLAN         0x01
 215 #define GSWIP_TABLE_VLAN_MAPPING        0x02
 216 #define GSWIP_TABLE_MAC_BRIDGE          0x0b
 217 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC  0x01    /* Static not, aging entry */
 218 
 219 #define XRX200_GPHY_FW_ALIGN    (16 * 1024)
 220 
 221 struct gswip_hw_info {
 222         int max_ports;
 223         int cpu_port;
 224 };
 225 
 226 struct xway_gphy_match_data {
 227         char *fe_firmware_name;
 228         char *ge_firmware_name;
 229 };
 230 
 231 struct gswip_gphy_fw {
 232         struct clk *clk_gate;
 233         struct reset_control *reset;
 234         u32 fw_addr_offset;
 235         char *fw_name;
 236 };
 237 
 238 struct gswip_vlan {
 239         struct net_device *bridge;
 240         u16 vid;
 241         u8 fid;
 242 };
 243 
 244 struct gswip_priv {
 245         __iomem void *gswip;
 246         __iomem void *mdio;
 247         __iomem void *mii;
 248         const struct gswip_hw_info *hw_info;
 249         const struct xway_gphy_match_data *gphy_fw_name_cfg;
 250         struct dsa_switch *ds;
 251         struct device *dev;
 252         struct regmap *rcu_regmap;
 253         struct gswip_vlan vlans[64];
 254         int num_gphy_fw;
 255         struct gswip_gphy_fw *gphy_fw;
 256         u32 port_vlan_filter;
 257 };
 258 
 259 struct gswip_pce_table_entry {
 260         u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
 261         u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
 262         u16 key[8];
 263         u16 val[5];
 264         u16 mask;
 265         u8 gmap;
 266         bool type;
 267         bool valid;
 268         bool key_mode;
 269 };
 270 
 271 struct gswip_rmon_cnt_desc {
 272         unsigned int size;
 273         unsigned int offset;
 274         const char *name;
 275 };
 276 
 277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
 278 
 279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
 280         /** Receive Packet Count (only packets that are accepted and not discarded). */
 281         MIB_DESC(1, 0x1F, "RxGoodPkts"),
 282         MIB_DESC(1, 0x23, "RxUnicastPkts"),
 283         MIB_DESC(1, 0x22, "RxMulticastPkts"),
 284         MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
 285         MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
 286         MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
 287         MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
 288         MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
 289         MIB_DESC(1, 0x20, "RxGoodPausePkts"),
 290         MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
 291         MIB_DESC(1, 0x12, "Rx64BytePkts"),
 292         MIB_DESC(1, 0x13, "Rx127BytePkts"),
 293         MIB_DESC(1, 0x14, "Rx255BytePkts"),
 294         MIB_DESC(1, 0x15, "Rx511BytePkts"),
 295         MIB_DESC(1, 0x16, "Rx1023BytePkts"),
 296         /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
 297         MIB_DESC(1, 0x17, "RxMaxBytePkts"),
 298         MIB_DESC(1, 0x18, "RxDroppedPkts"),
 299         MIB_DESC(1, 0x19, "RxFilteredPkts"),
 300         MIB_DESC(2, 0x24, "RxGoodBytes"),
 301         MIB_DESC(2, 0x26, "RxBadBytes"),
 302         MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
 303         MIB_DESC(1, 0x0C, "TxGoodPkts"),
 304         MIB_DESC(1, 0x06, "TxUnicastPkts"),
 305         MIB_DESC(1, 0x07, "TxMulticastPkts"),
 306         MIB_DESC(1, 0x00, "Tx64BytePkts"),
 307         MIB_DESC(1, 0x01, "Tx127BytePkts"),
 308         MIB_DESC(1, 0x02, "Tx255BytePkts"),
 309         MIB_DESC(1, 0x03, "Tx511BytePkts"),
 310         MIB_DESC(1, 0x04, "Tx1023BytePkts"),
 311         /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
 312         MIB_DESC(1, 0x05, "TxMaxBytePkts"),
 313         MIB_DESC(1, 0x08, "TxSingleCollCount"),
 314         MIB_DESC(1, 0x09, "TxMultCollCount"),
 315         MIB_DESC(1, 0x0A, "TxLateCollCount"),
 316         MIB_DESC(1, 0x0B, "TxExcessCollCount"),
 317         MIB_DESC(1, 0x0D, "TxPauseCount"),
 318         MIB_DESC(1, 0x10, "TxDroppedPkts"),
 319         MIB_DESC(2, 0x0E, "TxGoodBytes"),
 320 };
 321 
 322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
 323 {
 324         return __raw_readl(priv->gswip + (offset * 4));
 325 }
 326 
 327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
 328 {
 329         __raw_writel(val, priv->gswip + (offset * 4));
 330 }
 331 
 332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
 333                               u32 offset)
 334 {
 335         u32 val = gswip_switch_r(priv, offset);
 336 
 337         val &= ~(clear);
 338         val |= set;
 339         gswip_switch_w(priv, val, offset);
 340 }
 341 
 342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
 343                                   u32 cleared)
 344 {
 345         u32 val;
 346 
 347         return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
 348                                   (val & cleared) == 0, 20, 50000);
 349 }
 350 
 351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
 352 {
 353         return __raw_readl(priv->mdio + (offset * 4));
 354 }
 355 
 356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
 357 {
 358         __raw_writel(val, priv->mdio + (offset * 4));
 359 }
 360 
 361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
 362                             u32 offset)
 363 {
 364         u32 val = gswip_mdio_r(priv, offset);
 365 
 366         val &= ~(clear);
 367         val |= set;
 368         gswip_mdio_w(priv, val, offset);
 369 }
 370 
 371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
 372 {
 373         return __raw_readl(priv->mii + (offset * 4));
 374 }
 375 
 376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
 377 {
 378         __raw_writel(val, priv->mii + (offset * 4));
 379 }
 380 
 381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
 382                            u32 offset)
 383 {
 384         u32 val = gswip_mii_r(priv, offset);
 385 
 386         val &= ~(clear);
 387         val |= set;
 388         gswip_mii_w(priv, val, offset);
 389 }
 390 
 391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
 392                                int port)
 393 {
 394         switch (port) {
 395         case 0:
 396                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
 397                 break;
 398         case 1:
 399                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
 400                 break;
 401         case 5:
 402                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
 403                 break;
 404         }
 405 }
 406 
 407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
 408                                 int port)
 409 {
 410         switch (port) {
 411         case 0:
 412                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
 413                 break;
 414         case 1:
 415                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
 416                 break;
 417         case 5:
 418                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
 419                 break;
 420         }
 421 }
 422 
 423 static int gswip_mdio_poll(struct gswip_priv *priv)
 424 {
 425         int cnt = 100;
 426 
 427         while (likely(cnt--)) {
 428                 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
 429 
 430                 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
 431                         return 0;
 432                 usleep_range(20, 40);
 433         }
 434 
 435         return -ETIMEDOUT;
 436 }
 437 
 438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
 439 {
 440         struct gswip_priv *priv = bus->priv;
 441         int err;
 442 
 443         err = gswip_mdio_poll(priv);
 444         if (err) {
 445                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 446                 return err;
 447         }
 448 
 449         gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
 450         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
 451                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 452                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 453                 GSWIP_MDIO_CTRL);
 454 
 455         return 0;
 456 }
 457 
 458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
 459 {
 460         struct gswip_priv *priv = bus->priv;
 461         int err;
 462 
 463         err = gswip_mdio_poll(priv);
 464         if (err) {
 465                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 466                 return err;
 467         }
 468 
 469         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
 470                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 471                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 472                 GSWIP_MDIO_CTRL);
 473 
 474         err = gswip_mdio_poll(priv);
 475         if (err) {
 476                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 477                 return err;
 478         }
 479 
 480         return gswip_mdio_r(priv, GSWIP_MDIO_READ);
 481 }
 482 
 483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
 484 {
 485         struct dsa_switch *ds = priv->ds;
 486 
 487         ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
 488         if (!ds->slave_mii_bus)
 489                 return -ENOMEM;
 490 
 491         ds->slave_mii_bus->priv = priv;
 492         ds->slave_mii_bus->read = gswip_mdio_rd;
 493         ds->slave_mii_bus->write = gswip_mdio_wr;
 494         ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
 495         snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
 496                  dev_name(priv->dev));
 497         ds->slave_mii_bus->parent = priv->dev;
 498         ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
 499 
 500         return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
 501 }
 502 
 503 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
 504                                       struct gswip_pce_table_entry *tbl)
 505 {
 506         int i;
 507         int err;
 508         u16 crtl;
 509         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
 510                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
 511 
 512         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 513                                      GSWIP_PCE_TBL_CTRL_BAS);
 514         if (err)
 515                 return err;
 516 
 517         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 518         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 519                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 520                           tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
 521                           GSWIP_PCE_TBL_CTRL);
 522 
 523         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 524                                      GSWIP_PCE_TBL_CTRL_BAS);
 525         if (err)
 526                 return err;
 527 
 528         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 529                 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
 530 
 531         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 532                 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
 533 
 534         tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
 535 
 536         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 537 
 538         tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
 539         tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
 540         tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
 541 
 542         return 0;
 543 }
 544 
 545 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
 546                                        struct gswip_pce_table_entry *tbl)
 547 {
 548         int i;
 549         int err;
 550         u16 crtl;
 551         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
 552                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
 553 
 554         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 555                                      GSWIP_PCE_TBL_CTRL_BAS);
 556         if (err)
 557                 return err;
 558 
 559         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 560         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 561                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 562                           tbl->table | addr_mode,
 563                           GSWIP_PCE_TBL_CTRL);
 564 
 565         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 566                 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
 567 
 568         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 569                 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
 570 
 571         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 572                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 573                           tbl->table | addr_mode,
 574                           GSWIP_PCE_TBL_CTRL);
 575 
 576         gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
 577 
 578         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 579         crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
 580                   GSWIP_PCE_TBL_CTRL_GMAP_MASK);
 581         if (tbl->type)
 582                 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
 583         if (tbl->valid)
 584                 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
 585         crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
 586         crtl |= GSWIP_PCE_TBL_CTRL_BAS;
 587         gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
 588 
 589         return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 590                                       GSWIP_PCE_TBL_CTRL_BAS);
 591 }
 592 
 593 /* Add the LAN port into a bridge with the CPU port by
 594  * default. This prevents automatic forwarding of
 595  * packages between the LAN ports when no explicit
 596  * bridge is configured.
 597  */
 598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
 599 {
 600         struct gswip_pce_table_entry vlan_active = {0,};
 601         struct gswip_pce_table_entry vlan_mapping = {0,};
 602         unsigned int cpu_port = priv->hw_info->cpu_port;
 603         unsigned int max_ports = priv->hw_info->max_ports;
 604         int err;
 605 
 606         if (port >= max_ports) {
 607                 dev_err(priv->dev, "single port for %i supported\n", port);
 608                 return -EIO;
 609         }
 610 
 611         vlan_active.index = port + 1;
 612         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 613         vlan_active.key[0] = 0; /* vid */
 614         vlan_active.val[0] = port + 1 /* fid */;
 615         vlan_active.valid = add;
 616         err = gswip_pce_table_entry_write(priv, &vlan_active);
 617         if (err) {
 618                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
 619                 return err;
 620         }
 621 
 622         if (!add)
 623                 return 0;
 624 
 625         vlan_mapping.index = port + 1;
 626         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 627         vlan_mapping.val[0] = 0 /* vid */;
 628         vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
 629         vlan_mapping.val[2] = 0;
 630         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
 631         if (err) {
 632                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
 633                 return err;
 634         }
 635 
 636         return 0;
 637 }
 638 
 639 static int gswip_port_enable(struct dsa_switch *ds, int port,
 640                              struct phy_device *phydev)
 641 {
 642         struct gswip_priv *priv = ds->priv;
 643         int err;
 644 
 645         if (!dsa_is_user_port(ds, port))
 646                 return 0;
 647 
 648         if (!dsa_is_cpu_port(ds, port)) {
 649                 err = gswip_add_single_port_br(priv, port, true);
 650                 if (err)
 651                         return err;
 652         }
 653 
 654         /* RMON Counter Enable for port */
 655         gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
 656 
 657         /* enable port fetch/store dma & VLAN Modification */
 658         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
 659                                    GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
 660                          GSWIP_FDMA_PCTRLp(port));
 661         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
 662                           GSWIP_SDMA_PCTRLp(port));
 663 
 664         if (!dsa_is_cpu_port(ds, port)) {
 665                 u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
 666                               GSWIP_MDIO_PHY_SPEED_AUTO |
 667                               GSWIP_MDIO_PHY_FDUP_AUTO |
 668                               GSWIP_MDIO_PHY_FCONTX_AUTO |
 669                               GSWIP_MDIO_PHY_FCONRX_AUTO |
 670                               (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
 671 
 672                 gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
 673                 /* Activate MDIO auto polling */
 674                 gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
 675         }
 676 
 677         return 0;
 678 }
 679 
 680 static void gswip_port_disable(struct dsa_switch *ds, int port)
 681 {
 682         struct gswip_priv *priv = ds->priv;
 683 
 684         if (!dsa_is_user_port(ds, port))
 685                 return;
 686 
 687         if (!dsa_is_cpu_port(ds, port)) {
 688                 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
 689                                 GSWIP_MDIO_PHY_LINK_MASK,
 690                                 GSWIP_MDIO_PHYp(port));
 691                 /* Deactivate MDIO auto polling */
 692                 gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
 693         }
 694 
 695         gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
 696                           GSWIP_FDMA_PCTRLp(port));
 697         gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
 698                           GSWIP_SDMA_PCTRLp(port));
 699 }
 700 
 701 static int gswip_pce_load_microcode(struct gswip_priv *priv)
 702 {
 703         int i;
 704         int err;
 705 
 706         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 707                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 708                           GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
 709         gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
 710 
 711         for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
 712                 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
 713                 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
 714                                GSWIP_PCE_TBL_VAL(0));
 715                 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
 716                                GSWIP_PCE_TBL_VAL(1));
 717                 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
 718                                GSWIP_PCE_TBL_VAL(2));
 719                 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
 720                                GSWIP_PCE_TBL_VAL(3));
 721 
 722                 /* start the table access: */
 723                 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
 724                                   GSWIP_PCE_TBL_CTRL);
 725                 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 726                                              GSWIP_PCE_TBL_CTRL_BAS);
 727                 if (err)
 728                         return err;
 729         }
 730 
 731         /* tell the switch that the microcode is loaded */
 732         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
 733                           GSWIP_PCE_GCTRL_0);
 734 
 735         return 0;
 736 }
 737 
 738 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
 739                                      bool vlan_filtering)
 740 {
 741         struct gswip_priv *priv = ds->priv;
 742         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
 743 
 744         /* Do not allow changing the VLAN filtering options while in bridge */
 745         if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
 746                 return -EIO;
 747 
 748         if (vlan_filtering) {
 749                 /* Use port based VLAN tag */
 750                 gswip_switch_mask(priv,
 751                                   GSWIP_PCE_VCTRL_VSR,
 752                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 753                                   GSWIP_PCE_VCTRL_VEMR,
 754                                   GSWIP_PCE_VCTRL(port));
 755                 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
 756                                   GSWIP_PCE_PCTRL_0p(port));
 757         } else {
 758                 /* Use port based VLAN tag */
 759                 gswip_switch_mask(priv,
 760                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 761                                   GSWIP_PCE_VCTRL_VEMR,
 762                                   GSWIP_PCE_VCTRL_VSR,
 763                                   GSWIP_PCE_VCTRL(port));
 764                 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
 765                                   GSWIP_PCE_PCTRL_0p(port));
 766         }
 767 
 768         return 0;
 769 }
 770 
 771 static int gswip_setup(struct dsa_switch *ds)
 772 {
 773         struct gswip_priv *priv = ds->priv;
 774         unsigned int cpu_port = priv->hw_info->cpu_port;
 775         int i;
 776         int err;
 777 
 778         gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
 779         usleep_range(5000, 10000);
 780         gswip_switch_w(priv, 0, GSWIP_SWRES);
 781 
 782         /* disable port fetch/store dma on all ports */
 783         for (i = 0; i < priv->hw_info->max_ports; i++) {
 784                 gswip_port_disable(ds, i);
 785                 gswip_port_vlan_filtering(ds, i, false);
 786         }
 787 
 788         /* enable Switch */
 789         gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
 790 
 791         err = gswip_pce_load_microcode(priv);
 792         if (err) {
 793                 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
 794                 return err;
 795         }
 796 
 797         /* Default unknown Broadcast/Multicast/Unicast port maps */
 798         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
 799         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
 800         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
 801 
 802         /* disable PHY auto polling */
 803         gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
 804         /* Configure the MDIO Clock 2.5 MHz */
 805         gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
 806 
 807         /* Disable the xMII link */
 808         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
 809         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
 810         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
 811 
 812         /* enable special tag insertion on cpu port */
 813         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
 814                           GSWIP_FDMA_PCTRLp(cpu_port));
 815 
 816         /* accept special tag in ingress direction */
 817         gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
 818                           GSWIP_PCE_PCTRL_0p(cpu_port));
 819 
 820         gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
 821                           GSWIP_MAC_CTRL_2p(cpu_port));
 822         gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
 823         gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
 824                           GSWIP_BM_QUEUE_GCTRL);
 825 
 826         /* VLAN aware Switching */
 827         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
 828 
 829         /* Flush MAC Table */
 830         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
 831 
 832         err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
 833                                      GSWIP_PCE_GCTRL_0_MTFL);
 834         if (err) {
 835                 dev_err(priv->dev, "MAC flushing didn't finish\n");
 836                 return err;
 837         }
 838 
 839         gswip_port_enable(ds, cpu_port, NULL);
 840         return 0;
 841 }
 842 
 843 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
 844                                                     int port)
 845 {
 846         return DSA_TAG_PROTO_GSWIP;
 847 }
 848 
 849 static int gswip_vlan_active_create(struct gswip_priv *priv,
 850                                     struct net_device *bridge,
 851                                     int fid, u16 vid)
 852 {
 853         struct gswip_pce_table_entry vlan_active = {0,};
 854         unsigned int max_ports = priv->hw_info->max_ports;
 855         int idx = -1;
 856         int err;
 857         int i;
 858 
 859         /* Look for a free slot */
 860         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 861                 if (!priv->vlans[i].bridge) {
 862                         idx = i;
 863                         break;
 864                 }
 865         }
 866 
 867         if (idx == -1)
 868                 return -ENOSPC;
 869 
 870         if (fid == -1)
 871                 fid = idx;
 872 
 873         vlan_active.index = idx;
 874         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 875         vlan_active.key[0] = vid;
 876         vlan_active.val[0] = fid;
 877         vlan_active.valid = true;
 878 
 879         err = gswip_pce_table_entry_write(priv, &vlan_active);
 880         if (err) {
 881                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
 882                 return err;
 883         }
 884 
 885         priv->vlans[idx].bridge = bridge;
 886         priv->vlans[idx].vid = vid;
 887         priv->vlans[idx].fid = fid;
 888 
 889         return idx;
 890 }
 891 
 892 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
 893 {
 894         struct gswip_pce_table_entry vlan_active = {0,};
 895         int err;
 896 
 897         vlan_active.index = idx;
 898         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 899         vlan_active.valid = false;
 900         err = gswip_pce_table_entry_write(priv, &vlan_active);
 901         if (err)
 902                 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
 903         priv->vlans[idx].bridge = NULL;
 904 
 905         return err;
 906 }
 907 
 908 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
 909                                   struct net_device *bridge, int port)
 910 {
 911         struct gswip_pce_table_entry vlan_mapping = {0,};
 912         unsigned int max_ports = priv->hw_info->max_ports;
 913         unsigned int cpu_port = priv->hw_info->cpu_port;
 914         bool active_vlan_created = false;
 915         int idx = -1;
 916         int i;
 917         int err;
 918 
 919         /* Check if there is already a page for this bridge */
 920         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 921                 if (priv->vlans[i].bridge == bridge) {
 922                         idx = i;
 923                         break;
 924                 }
 925         }
 926 
 927         /* If this bridge is not programmed yet, add a Active VLAN table
 928          * entry in a free slot and prepare the VLAN mapping table entry.
 929          */
 930         if (idx == -1) {
 931                 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
 932                 if (idx < 0)
 933                         return idx;
 934                 active_vlan_created = true;
 935 
 936                 vlan_mapping.index = idx;
 937                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 938                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
 939                 vlan_mapping.val[0] = 0;
 940         } else {
 941                 /* Read the existing VLAN mapping entry from the switch */
 942                 vlan_mapping.index = idx;
 943                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 944                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
 945                 if (err) {
 946                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
 947                                 err);
 948                         return err;
 949                 }
 950         }
 951 
 952         /* Update the VLAN mapping entry and write it to the switch */
 953         vlan_mapping.val[1] |= BIT(cpu_port);
 954         vlan_mapping.val[1] |= BIT(port);
 955         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
 956         if (err) {
 957                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
 958                 /* In case an Active VLAN was creaetd delete it again */
 959                 if (active_vlan_created)
 960                         gswip_vlan_active_remove(priv, idx);
 961                 return err;
 962         }
 963 
 964         gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
 965         return 0;
 966 }
 967 
 968 static int gswip_vlan_add_aware(struct gswip_priv *priv,
 969                                 struct net_device *bridge, int port,
 970                                 u16 vid, bool untagged,
 971                                 bool pvid)
 972 {
 973         struct gswip_pce_table_entry vlan_mapping = {0,};
 974         unsigned int max_ports = priv->hw_info->max_ports;
 975         unsigned int cpu_port = priv->hw_info->cpu_port;
 976         bool active_vlan_created = false;
 977         int idx = -1;
 978         int fid = -1;
 979         int i;
 980         int err;
 981 
 982         /* Check if there is already a page for this bridge */
 983         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 984                 if (priv->vlans[i].bridge == bridge) {
 985                         if (fid != -1 && fid != priv->vlans[i].fid)
 986                                 dev_err(priv->dev, "one bridge with multiple flow ids\n");
 987                         fid = priv->vlans[i].fid;
 988                         if (priv->vlans[i].vid == vid) {
 989                                 idx = i;
 990                                 break;
 991                         }
 992                 }
 993         }
 994 
 995         /* If this bridge is not programmed yet, add a Active VLAN table
 996          * entry in a free slot and prepare the VLAN mapping table entry.
 997          */
 998         if (idx == -1) {
 999                 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1000                 if (idx < 0)
1001                         return idx;
1002                 active_vlan_created = true;
1003 
1004                 vlan_mapping.index = idx;
1005                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1006                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1007                 vlan_mapping.val[0] = vid;
1008         } else {
1009                 /* Read the existing VLAN mapping entry from the switch */
1010                 vlan_mapping.index = idx;
1011                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1012                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1013                 if (err) {
1014                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1015                                 err);
1016                         return err;
1017                 }
1018         }
1019 
1020         vlan_mapping.val[0] = vid;
1021         /* Update the VLAN mapping entry and write it to the switch */
1022         vlan_mapping.val[1] |= BIT(cpu_port);
1023         vlan_mapping.val[2] |= BIT(cpu_port);
1024         vlan_mapping.val[1] |= BIT(port);
1025         if (untagged)
1026                 vlan_mapping.val[2] &= ~BIT(port);
1027         else
1028                 vlan_mapping.val[2] |= BIT(port);
1029         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1030         if (err) {
1031                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1032                 /* In case an Active VLAN was creaetd delete it again */
1033                 if (active_vlan_created)
1034                         gswip_vlan_active_remove(priv, idx);
1035                 return err;
1036         }
1037 
1038         if (pvid)
1039                 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1040 
1041         return 0;
1042 }
1043 
1044 static int gswip_vlan_remove(struct gswip_priv *priv,
1045                              struct net_device *bridge, int port,
1046                              u16 vid, bool pvid, bool vlan_aware)
1047 {
1048         struct gswip_pce_table_entry vlan_mapping = {0,};
1049         unsigned int max_ports = priv->hw_info->max_ports;
1050         unsigned int cpu_port = priv->hw_info->cpu_port;
1051         int idx = -1;
1052         int i;
1053         int err;
1054 
1055         /* Check if there is already a page for this bridge */
1056         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1057                 if (priv->vlans[i].bridge == bridge &&
1058                     (!vlan_aware || priv->vlans[i].vid == vid)) {
1059                         idx = i;
1060                         break;
1061                 }
1062         }
1063 
1064         if (idx == -1) {
1065                 dev_err(priv->dev, "bridge to leave does not exists\n");
1066                 return -ENOENT;
1067         }
1068 
1069         vlan_mapping.index = idx;
1070         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071         err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072         if (err) {
1073                 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1074                 return err;
1075         }
1076 
1077         vlan_mapping.val[1] &= ~BIT(port);
1078         vlan_mapping.val[2] &= ~BIT(port);
1079         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1080         if (err) {
1081                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1082                 return err;
1083         }
1084 
1085         /* In case all ports are removed from the bridge, remove the VLAN */
1086         if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1087                 err = gswip_vlan_active_remove(priv, idx);
1088                 if (err) {
1089                         dev_err(priv->dev, "failed to write active VLAN: %d\n",
1090                                 err);
1091                         return err;
1092                 }
1093         }
1094 
1095         /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1096         if (pvid)
1097                 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1098 
1099         return 0;
1100 }
1101 
1102 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1103                                   struct net_device *bridge)
1104 {
1105         struct gswip_priv *priv = ds->priv;
1106         int err;
1107 
1108         /* When the bridge uses VLAN filtering we have to configure VLAN
1109          * specific bridges. No bridge is configured here.
1110          */
1111         if (!br_vlan_enabled(bridge)) {
1112                 err = gswip_vlan_add_unaware(priv, bridge, port);
1113                 if (err)
1114                         return err;
1115                 priv->port_vlan_filter &= ~BIT(port);
1116         } else {
1117                 priv->port_vlan_filter |= BIT(port);
1118         }
1119         return gswip_add_single_port_br(priv, port, false);
1120 }
1121 
1122 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1123                                     struct net_device *bridge)
1124 {
1125         struct gswip_priv *priv = ds->priv;
1126 
1127         gswip_add_single_port_br(priv, port, true);
1128 
1129         /* When the bridge uses VLAN filtering we have to configure VLAN
1130          * specific bridges. No bridge is configured here.
1131          */
1132         if (!br_vlan_enabled(bridge))
1133                 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1134 }
1135 
1136 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1137                                    const struct switchdev_obj_port_vlan *vlan)
1138 {
1139         struct gswip_priv *priv = ds->priv;
1140         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1141         unsigned int max_ports = priv->hw_info->max_ports;
1142         u16 vid;
1143         int i;
1144         int pos = max_ports;
1145 
1146         /* We only support VLAN filtering on bridges */
1147         if (!dsa_is_cpu_port(ds, port) && !bridge)
1148                 return -EOPNOTSUPP;
1149 
1150         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1151                 int idx = -1;
1152 
1153                 /* Check if there is already a page for this VLAN */
1154                 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1155                         if (priv->vlans[i].bridge == bridge &&
1156                             priv->vlans[i].vid == vid) {
1157                                 idx = i;
1158                                 break;
1159                         }
1160                 }
1161 
1162                 /* If this VLAN is not programmed yet, we have to reserve
1163                  * one entry in the VLAN table. Make sure we start at the
1164                  * next position round.
1165                  */
1166                 if (idx == -1) {
1167                         /* Look for a free slot */
1168                         for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1169                                 if (!priv->vlans[pos].bridge) {
1170                                         idx = pos;
1171                                         pos++;
1172                                         break;
1173                                 }
1174                         }
1175 
1176                         if (idx == -1)
1177                                 return -ENOSPC;
1178                 }
1179         }
1180 
1181         return 0;
1182 }
1183 
1184 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1185                                 const struct switchdev_obj_port_vlan *vlan)
1186 {
1187         struct gswip_priv *priv = ds->priv;
1188         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1189         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1190         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1191         u16 vid;
1192 
1193         /* We have to receive all packets on the CPU port and should not
1194          * do any VLAN filtering here. This is also called with bridge
1195          * NULL and then we do not know for which bridge to configure
1196          * this.
1197          */
1198         if (dsa_is_cpu_port(ds, port))
1199                 return;
1200 
1201         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1202                 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1203 }
1204 
1205 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1206                                const struct switchdev_obj_port_vlan *vlan)
1207 {
1208         struct gswip_priv *priv = ds->priv;
1209         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1210         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1211         u16 vid;
1212         int err;
1213 
1214         /* We have to receive all packets on the CPU port and should not
1215          * do any VLAN filtering here. This is also called with bridge
1216          * NULL and then we do not know for which bridge to configure
1217          * this.
1218          */
1219         if (dsa_is_cpu_port(ds, port))
1220                 return 0;
1221 
1222         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1223                 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1224                 if (err)
1225                         return err;
1226         }
1227 
1228         return 0;
1229 }
1230 
1231 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1232 {
1233         struct gswip_priv *priv = ds->priv;
1234         struct gswip_pce_table_entry mac_bridge = {0,};
1235         int i;
1236         int err;
1237 
1238         for (i = 0; i < 2048; i++) {
1239                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1240                 mac_bridge.index = i;
1241 
1242                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1243                 if (err) {
1244                         dev_err(priv->dev, "failed to read mac bridge: %d\n",
1245                                 err);
1246                         return;
1247                 }
1248 
1249                 if (!mac_bridge.valid)
1250                         continue;
1251 
1252                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1253                         continue;
1254 
1255                 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1256                         continue;
1257 
1258                 mac_bridge.valid = false;
1259                 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1260                 if (err) {
1261                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1262                                 err);
1263                         return;
1264                 }
1265         }
1266 }
1267 
1268 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1269 {
1270         struct gswip_priv *priv = ds->priv;
1271         u32 stp_state;
1272 
1273         switch (state) {
1274         case BR_STATE_DISABLED:
1275                 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1276                                   GSWIP_SDMA_PCTRLp(port));
1277                 return;
1278         case BR_STATE_BLOCKING:
1279         case BR_STATE_LISTENING:
1280                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1281                 break;
1282         case BR_STATE_LEARNING:
1283                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1284                 break;
1285         case BR_STATE_FORWARDING:
1286                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1287                 break;
1288         default:
1289                 dev_err(priv->dev, "invalid STP state: %d\n", state);
1290                 return;
1291         }
1292 
1293         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1294                           GSWIP_SDMA_PCTRLp(port));
1295         gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1296                           GSWIP_PCE_PCTRL_0p(port));
1297 }
1298 
1299 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1300                           const unsigned char *addr, u16 vid, bool add)
1301 {
1302         struct gswip_priv *priv = ds->priv;
1303         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1304         struct gswip_pce_table_entry mac_bridge = {0,};
1305         unsigned int cpu_port = priv->hw_info->cpu_port;
1306         int fid = -1;
1307         int i;
1308         int err;
1309 
1310         if (!bridge)
1311                 return -EINVAL;
1312 
1313         for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1314                 if (priv->vlans[i].bridge == bridge) {
1315                         fid = priv->vlans[i].fid;
1316                         break;
1317                 }
1318         }
1319 
1320         if (fid == -1) {
1321                 dev_err(priv->dev, "Port not part of a bridge\n");
1322                 return -EINVAL;
1323         }
1324 
1325         mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1326         mac_bridge.key_mode = true;
1327         mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1328         mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1329         mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1330         mac_bridge.key[3] = fid;
1331         mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1332         mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1333         mac_bridge.valid = add;
1334 
1335         err = gswip_pce_table_entry_write(priv, &mac_bridge);
1336         if (err)
1337                 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1338 
1339         return err;
1340 }
1341 
1342 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1343                               const unsigned char *addr, u16 vid)
1344 {
1345         return gswip_port_fdb(ds, port, addr, vid, true);
1346 }
1347 
1348 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1349                               const unsigned char *addr, u16 vid)
1350 {
1351         return gswip_port_fdb(ds, port, addr, vid, false);
1352 }
1353 
1354 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1355                                dsa_fdb_dump_cb_t *cb, void *data)
1356 {
1357         struct gswip_priv *priv = ds->priv;
1358         struct gswip_pce_table_entry mac_bridge = {0,};
1359         unsigned char addr[6];
1360         int i;
1361         int err;
1362 
1363         for (i = 0; i < 2048; i++) {
1364                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1365                 mac_bridge.index = i;
1366 
1367                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1368                 if (err) {
1369                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1370                                 err);
1371                         return err;
1372                 }
1373 
1374                 if (!mac_bridge.valid)
1375                         continue;
1376 
1377                 addr[5] = mac_bridge.key[0] & 0xff;
1378                 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1379                 addr[3] = mac_bridge.key[1] & 0xff;
1380                 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1381                 addr[1] = mac_bridge.key[2] & 0xff;
1382                 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1383                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1384                         if (mac_bridge.val[0] & BIT(port))
1385                                 cb(addr, 0, true, data);
1386                 } else {
1387                         if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1388                                 cb(addr, 0, false, data);
1389                 }
1390         }
1391         return 0;
1392 }
1393 
1394 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1395                                    unsigned long *supported,
1396                                    struct phylink_link_state *state)
1397 {
1398         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1399 
1400         switch (port) {
1401         case 0:
1402         case 1:
1403                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1404                     state->interface != PHY_INTERFACE_MODE_MII &&
1405                     state->interface != PHY_INTERFACE_MODE_REVMII &&
1406                     state->interface != PHY_INTERFACE_MODE_RMII)
1407                         goto unsupported;
1408                 break;
1409         case 2:
1410         case 3:
1411         case 4:
1412                 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1413                         goto unsupported;
1414                 break;
1415         case 5:
1416                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1417                     state->interface != PHY_INTERFACE_MODE_INTERNAL)
1418                         goto unsupported;
1419                 break;
1420         default:
1421                 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1422                 dev_err(ds->dev, "Unsupported port: %i\n", port);
1423                 return;
1424         }
1425 
1426         /* Allow all the expected bits */
1427         phylink_set(mask, Autoneg);
1428         phylink_set_port_modes(mask);
1429         phylink_set(mask, Pause);
1430         phylink_set(mask, Asym_Pause);
1431 
1432         /* With the exclusion of MII and Reverse MII, we support Gigabit,
1433          * including Half duplex
1434          */
1435         if (state->interface != PHY_INTERFACE_MODE_MII &&
1436             state->interface != PHY_INTERFACE_MODE_REVMII) {
1437                 phylink_set(mask, 1000baseT_Full);
1438                 phylink_set(mask, 1000baseT_Half);
1439         }
1440 
1441         phylink_set(mask, 10baseT_Half);
1442         phylink_set(mask, 10baseT_Full);
1443         phylink_set(mask, 100baseT_Half);
1444         phylink_set(mask, 100baseT_Full);
1445 
1446         bitmap_and(supported, supported, mask,
1447                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1448         bitmap_and(state->advertising, state->advertising, mask,
1449                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1450         return;
1451 
1452 unsupported:
1453         bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1454         dev_err(ds->dev, "Unsupported interface: %d\n", state->interface);
1455         return;
1456 }
1457 
1458 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1459                                      unsigned int mode,
1460                                      const struct phylink_link_state *state)
1461 {
1462         struct gswip_priv *priv = ds->priv;
1463         u32 miicfg = 0;
1464 
1465         miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1466 
1467         switch (state->interface) {
1468         case PHY_INTERFACE_MODE_MII:
1469         case PHY_INTERFACE_MODE_INTERNAL:
1470                 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1471                 break;
1472         case PHY_INTERFACE_MODE_REVMII:
1473                 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1474                 break;
1475         case PHY_INTERFACE_MODE_RMII:
1476                 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1477                 break;
1478         case PHY_INTERFACE_MODE_RGMII:
1479         case PHY_INTERFACE_MODE_RGMII_ID:
1480         case PHY_INTERFACE_MODE_RGMII_RXID:
1481         case PHY_INTERFACE_MODE_RGMII_TXID:
1482                 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1483                 break;
1484         default:
1485                 dev_err(ds->dev,
1486                         "Unsupported interface: %d\n", state->interface);
1487                 return;
1488         }
1489         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1490 
1491         switch (state->interface) {
1492         case PHY_INTERFACE_MODE_RGMII_ID:
1493                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1494                                           GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1495                 break;
1496         case PHY_INTERFACE_MODE_RGMII_RXID:
1497                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1498                 break;
1499         case PHY_INTERFACE_MODE_RGMII_TXID:
1500                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1501                 break;
1502         default:
1503                 break;
1504         }
1505 }
1506 
1507 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1508                                         unsigned int mode,
1509                                         phy_interface_t interface)
1510 {
1511         struct gswip_priv *priv = ds->priv;
1512 
1513         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1514 }
1515 
1516 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1517                                       unsigned int mode,
1518                                       phy_interface_t interface,
1519                                       struct phy_device *phydev)
1520 {
1521         struct gswip_priv *priv = ds->priv;
1522 
1523         /* Enable the xMII interface only for the external PHY */
1524         if (interface != PHY_INTERFACE_MODE_INTERNAL)
1525                 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1526 }
1527 
1528 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1529                               uint8_t *data)
1530 {
1531         int i;
1532 
1533         if (stringset != ETH_SS_STATS)
1534                 return;
1535 
1536         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1537                 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1538                         ETH_GSTRING_LEN);
1539 }
1540 
1541 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1542                                     u32 index)
1543 {
1544         u32 result;
1545         int err;
1546 
1547         gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1548         gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1549                                 GSWIP_BM_RAM_CTRL_OPMOD,
1550                               table | GSWIP_BM_RAM_CTRL_BAS,
1551                               GSWIP_BM_RAM_CTRL);
1552 
1553         err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1554                                      GSWIP_BM_RAM_CTRL_BAS);
1555         if (err) {
1556                 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1557                         table, index);
1558                 return 0;
1559         }
1560 
1561         result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1562         result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1563 
1564         return result;
1565 }
1566 
1567 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1568                                     uint64_t *data)
1569 {
1570         struct gswip_priv *priv = ds->priv;
1571         const struct gswip_rmon_cnt_desc *rmon_cnt;
1572         int i;
1573         u64 high;
1574 
1575         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1576                 rmon_cnt = &gswip_rmon_cnt[i];
1577 
1578                 data[i] = gswip_bcm_ram_entry_read(priv, port,
1579                                                    rmon_cnt->offset);
1580                 if (rmon_cnt->size == 2) {
1581                         high = gswip_bcm_ram_entry_read(priv, port,
1582                                                         rmon_cnt->offset + 1);
1583                         data[i] |= high << 32;
1584                 }
1585         }
1586 }
1587 
1588 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1589 {
1590         if (sset != ETH_SS_STATS)
1591                 return 0;
1592 
1593         return ARRAY_SIZE(gswip_rmon_cnt);
1594 }
1595 
1596 static const struct dsa_switch_ops gswip_switch_ops = {
1597         .get_tag_protocol       = gswip_get_tag_protocol,
1598         .setup                  = gswip_setup,
1599         .port_enable            = gswip_port_enable,
1600         .port_disable           = gswip_port_disable,
1601         .port_bridge_join       = gswip_port_bridge_join,
1602         .port_bridge_leave      = gswip_port_bridge_leave,
1603         .port_fast_age          = gswip_port_fast_age,
1604         .port_vlan_filtering    = gswip_port_vlan_filtering,
1605         .port_vlan_prepare      = gswip_port_vlan_prepare,
1606         .port_vlan_add          = gswip_port_vlan_add,
1607         .port_vlan_del          = gswip_port_vlan_del,
1608         .port_stp_state_set     = gswip_port_stp_state_set,
1609         .port_fdb_add           = gswip_port_fdb_add,
1610         .port_fdb_del           = gswip_port_fdb_del,
1611         .port_fdb_dump          = gswip_port_fdb_dump,
1612         .phylink_validate       = gswip_phylink_validate,
1613         .phylink_mac_config     = gswip_phylink_mac_config,
1614         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1615         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1616         .get_strings            = gswip_get_strings,
1617         .get_ethtool_stats      = gswip_get_ethtool_stats,
1618         .get_sset_count         = gswip_get_sset_count,
1619 };
1620 
1621 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1622         .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1623         .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1624 };
1625 
1626 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1627         .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1628         .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1629 };
1630 
1631 static const struct xway_gphy_match_data xrx300_gphy_data = {
1632         .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1633         .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1634 };
1635 
1636 static const struct of_device_id xway_gphy_match[] = {
1637         { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1638         { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1639         { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1640         { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1641         { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1642         {},
1643 };
1644 
1645 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1646 {
1647         struct device *dev = priv->dev;
1648         const struct firmware *fw;
1649         void *fw_addr;
1650         dma_addr_t dma_addr;
1651         dma_addr_t dev_addr;
1652         size_t size;
1653         int ret;
1654 
1655         ret = clk_prepare_enable(gphy_fw->clk_gate);
1656         if (ret)
1657                 return ret;
1658 
1659         reset_control_assert(gphy_fw->reset);
1660 
1661         ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1662         if (ret) {
1663                 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1664                         gphy_fw->fw_name, ret);
1665                 return ret;
1666         }
1667 
1668         /* GPHY cores need the firmware code in a persistent and contiguous
1669          * memory area with a 16 kB boundary aligned start address.
1670          */
1671         size = fw->size + XRX200_GPHY_FW_ALIGN;
1672 
1673         fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1674         if (fw_addr) {
1675                 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1676                 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1677                 memcpy(fw_addr, fw->data, fw->size);
1678         } else {
1679                 dev_err(dev, "failed to alloc firmware memory\n");
1680                 release_firmware(fw);
1681                 return -ENOMEM;
1682         }
1683 
1684         release_firmware(fw);
1685 
1686         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1687         if (ret)
1688                 return ret;
1689 
1690         reset_control_deassert(gphy_fw->reset);
1691 
1692         return ret;
1693 }
1694 
1695 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1696                                struct gswip_gphy_fw *gphy_fw,
1697                                struct device_node *gphy_fw_np, int i)
1698 {
1699         struct device *dev = priv->dev;
1700         u32 gphy_mode;
1701         int ret;
1702         char gphyname[10];
1703 
1704         snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1705 
1706         gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1707         if (IS_ERR(gphy_fw->clk_gate)) {
1708                 dev_err(dev, "Failed to lookup gate clock\n");
1709                 return PTR_ERR(gphy_fw->clk_gate);
1710         }
1711 
1712         ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1713         if (ret)
1714                 return ret;
1715 
1716         ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1717         /* Default to GE mode */
1718         if (ret)
1719                 gphy_mode = GPHY_MODE_GE;
1720 
1721         switch (gphy_mode) {
1722         case GPHY_MODE_FE:
1723                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1724                 break;
1725         case GPHY_MODE_GE:
1726                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1727                 break;
1728         default:
1729                 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1730                 return -EINVAL;
1731         }
1732 
1733         gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1734         if (IS_ERR(gphy_fw->reset)) {
1735                 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1736                         dev_err(dev, "Failed to lookup gphy reset\n");
1737                 return PTR_ERR(gphy_fw->reset);
1738         }
1739 
1740         return gswip_gphy_fw_load(priv, gphy_fw);
1741 }
1742 
1743 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1744                                  struct gswip_gphy_fw *gphy_fw)
1745 {
1746         int ret;
1747 
1748         /* check if the device was fully probed */
1749         if (!gphy_fw->fw_name)
1750                 return;
1751 
1752         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1753         if (ret)
1754                 dev_err(priv->dev, "can not reset GPHY FW pointer");
1755 
1756         clk_disable_unprepare(gphy_fw->clk_gate);
1757 
1758         reset_control_put(gphy_fw->reset);
1759 }
1760 
1761 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1762                               struct device_node *gphy_fw_list_np, u32 version)
1763 {
1764         struct device *dev = priv->dev;
1765         struct device_node *gphy_fw_np;
1766         const struct of_device_id *match;
1767         int err;
1768         int i = 0;
1769 
1770         /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1771          * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1772          * needs a different GPHY firmware.
1773          */
1774         if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1775                 switch (version) {
1776                 case GSWIP_VERSION_2_0:
1777                         priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1778                         break;
1779                 case GSWIP_VERSION_2_1:
1780                         priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1781                         break;
1782                 default:
1783                         dev_err(dev, "unknown GSWIP version: 0x%x", version);
1784                         return -ENOENT;
1785                 }
1786         }
1787 
1788         match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1789         if (match && match->data)
1790                 priv->gphy_fw_name_cfg = match->data;
1791 
1792         if (!priv->gphy_fw_name_cfg) {
1793                 dev_err(dev, "GPHY compatible type not supported");
1794                 return -ENOENT;
1795         }
1796 
1797         priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1798         if (!priv->num_gphy_fw)
1799                 return -ENOENT;
1800 
1801         priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1802                                                            "lantiq,rcu");
1803         if (IS_ERR(priv->rcu_regmap))
1804                 return PTR_ERR(priv->rcu_regmap);
1805 
1806         priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1807                                            sizeof(*priv->gphy_fw),
1808                                            GFP_KERNEL | __GFP_ZERO);
1809         if (!priv->gphy_fw)
1810                 return -ENOMEM;
1811 
1812         for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1813                 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1814                                           gphy_fw_np, i);
1815                 if (err)
1816                         goto remove_gphy;
1817                 i++;
1818         }
1819 
1820         return 0;
1821 
1822 remove_gphy:
1823         for (i = 0; i < priv->num_gphy_fw; i++)
1824                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1825         return err;
1826 }
1827 
1828 static int gswip_probe(struct platform_device *pdev)
1829 {
1830         struct gswip_priv *priv;
1831         struct device_node *mdio_np, *gphy_fw_np;
1832         struct device *dev = &pdev->dev;
1833         int err;
1834         int i;
1835         u32 version;
1836 
1837         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1838         if (!priv)
1839                 return -ENOMEM;
1840 
1841         priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1842         if (IS_ERR(priv->gswip))
1843                 return PTR_ERR(priv->gswip);
1844 
1845         priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1846         if (IS_ERR(priv->mdio))
1847                 return PTR_ERR(priv->mdio);
1848 
1849         priv->mii = devm_platform_ioremap_resource(pdev, 2);
1850         if (IS_ERR(priv->mii))
1851                 return PTR_ERR(priv->mii);
1852 
1853         priv->hw_info = of_device_get_match_data(dev);
1854         if (!priv->hw_info)
1855                 return -EINVAL;
1856 
1857         priv->ds = dsa_switch_alloc(dev, priv->hw_info->max_ports);
1858         if (!priv->ds)
1859                 return -ENOMEM;
1860 
1861         priv->ds->priv = priv;
1862         priv->ds->ops = &gswip_switch_ops;
1863         priv->dev = dev;
1864         version = gswip_switch_r(priv, GSWIP_VERSION);
1865 
1866         /* bring up the mdio bus */
1867         gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1868         if (gphy_fw_np) {
1869                 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1870                 of_node_put(gphy_fw_np);
1871                 if (err) {
1872                         dev_err(dev, "gphy fw probe failed\n");
1873                         return err;
1874                 }
1875         }
1876 
1877         /* bring up the mdio bus */
1878         mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1879         if (mdio_np) {
1880                 err = gswip_mdio(priv, mdio_np);
1881                 if (err) {
1882                         dev_err(dev, "mdio probe failed\n");
1883                         goto put_mdio_node;
1884                 }
1885         }
1886 
1887         err = dsa_register_switch(priv->ds);
1888         if (err) {
1889                 dev_err(dev, "dsa switch register failed: %i\n", err);
1890                 goto mdio_bus;
1891         }
1892         if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1893                 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1894                         priv->hw_info->cpu_port);
1895                 err = -EINVAL;
1896                 goto disable_switch;
1897         }
1898 
1899         platform_set_drvdata(pdev, priv);
1900 
1901         dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1902                  (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1903                  (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1904         return 0;
1905 
1906 disable_switch:
1907         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1908         dsa_unregister_switch(priv->ds);
1909 mdio_bus:
1910         if (mdio_np)
1911                 mdiobus_unregister(priv->ds->slave_mii_bus);
1912 put_mdio_node:
1913         of_node_put(mdio_np);
1914         for (i = 0; i < priv->num_gphy_fw; i++)
1915                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1916         return err;
1917 }
1918 
1919 static int gswip_remove(struct platform_device *pdev)
1920 {
1921         struct gswip_priv *priv = platform_get_drvdata(pdev);
1922         int i;
1923 
1924         /* disable the switch */
1925         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1926 
1927         dsa_unregister_switch(priv->ds);
1928 
1929         if (priv->ds->slave_mii_bus) {
1930                 mdiobus_unregister(priv->ds->slave_mii_bus);
1931                 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1932         }
1933 
1934         for (i = 0; i < priv->num_gphy_fw; i++)
1935                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1936 
1937         return 0;
1938 }
1939 
1940 static const struct gswip_hw_info gswip_xrx200 = {
1941         .max_ports = 7,
1942         .cpu_port = 6,
1943 };
1944 
1945 static const struct of_device_id gswip_of_match[] = {
1946         { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1947         {},
1948 };
1949 MODULE_DEVICE_TABLE(of, gswip_of_match);
1950 
1951 static struct platform_driver gswip_driver = {
1952         .probe = gswip_probe,
1953         .remove = gswip_remove,
1954         .driver = {
1955                 .name = "gswip",
1956                 .of_match_table = gswip_of_match,
1957         },
1958 };
1959 
1960 module_platform_driver(gswip_driver);
1961 
1962 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1963 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1964 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1965 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1966 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1967 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1968 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1969 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1970 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */