This source file includes following definitions.
- get_tx_head_mb
- get_tx_tail_mb
- get_tx_head_prio
- hecc_write_lam
- hecc_read_stamp
- hecc_write_mbx
- hecc_read_mbx
- hecc_write
- hecc_read
- hecc_set_bit
- hecc_clear_bit
- hecc_get_bit
- ti_hecc_set_btc
- ti_hecc_transceiver_switch
- ti_hecc_reset
- ti_hecc_start
- ti_hecc_stop
- ti_hecc_do_set_mode
- ti_hecc_get_berr_counter
- ti_hecc_xmit
- rx_offload_to_priv
- ti_hecc_mailbox_read
- ti_hecc_error
- ti_hecc_change_state
- ti_hecc_interrupt
- ti_hecc_open
- ti_hecc_close
- ti_hecc_probe
- ti_hecc_remove
- ti_hecc_suspend
- ti_hecc_resume
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/types.h>
24 #include <linux/interrupt.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/platform_device.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/regulator/consumer.h>
34
35 #include <linux/can/dev.h>
36 #include <linux/can/error.h>
37 #include <linux/can/led.h>
38 #include <linux/can/rx-offload.h>
39
40 #define DRV_NAME "ti_hecc"
41 #define HECC_MODULE_VERSION "0.7"
42 MODULE_VERSION(HECC_MODULE_VERSION);
43 #define DRV_DESC "TI High End CAN Controller Driver " HECC_MODULE_VERSION
44
45
46 #define HECC_MAX_MAILBOXES 32
47 #define MAX_TX_PRIO 0x3F
48
49
50
51
52
53
54
55
56
57
58
59
60 #define HECC_MB_TX_SHIFT 2
61 #define HECC_MAX_TX_MBOX BIT(HECC_MB_TX_SHIFT)
62
63 #define HECC_TX_PRIO_SHIFT (HECC_MB_TX_SHIFT)
64 #define HECC_TX_PRIO_MASK (MAX_TX_PRIO << HECC_MB_TX_SHIFT)
65 #define HECC_TX_MB_MASK (HECC_MAX_TX_MBOX - 1)
66 #define HECC_TX_MASK ((HECC_MAX_TX_MBOX - 1) | HECC_TX_PRIO_MASK)
67
68
69
70
71
72
73
74 #define HECC_MAX_RX_MBOX (HECC_MAX_MAILBOXES - HECC_MAX_TX_MBOX)
75 #define HECC_RX_FIRST_MBOX (HECC_MAX_MAILBOXES - 1)
76 #define HECC_RX_LAST_MBOX (HECC_MAX_TX_MBOX)
77
78
79 #define HECC_CANME 0x0
80 #define HECC_CANMD 0x4
81 #define HECC_CANTRS 0x8
82 #define HECC_CANTRR 0xC
83 #define HECC_CANTA 0x10
84 #define HECC_CANAA 0x14
85 #define HECC_CANRMP 0x18
86 #define HECC_CANRML 0x1C
87 #define HECC_CANRFP 0x20
88 #define HECC_CANGAM 0x24
89 #define HECC_CANMC 0x28
90 #define HECC_CANBTC 0x2C
91 #define HECC_CANES 0x30
92 #define HECC_CANTEC 0x34
93 #define HECC_CANREC 0x38
94 #define HECC_CANGIF0 0x3C
95 #define HECC_CANGIM 0x40
96 #define HECC_CANGIF1 0x44
97 #define HECC_CANMIM 0x48
98 #define HECC_CANMIL 0x4C
99 #define HECC_CANOPC 0x50
100 #define HECC_CANTIOC 0x54
101 #define HECC_CANRIOC 0x58
102 #define HECC_CANLNT 0x5C
103 #define HECC_CANTOC 0x60
104 #define HECC_CANTOS 0x64
105 #define HECC_CANTIOCE 0x68
106 #define HECC_CANRIOCE 0x6C
107
108
109 #define HECC_CANMOTS 0x80
110
111
112 #define HECC_CANMID 0x0
113 #define HECC_CANMCF 0x4
114 #define HECC_CANMDL 0x8
115 #define HECC_CANMDH 0xC
116
117 #define HECC_SET_REG 0xFFFFFFFF
118 #define HECC_CANID_MASK 0x3FF
119 #define HECC_CCE_WAIT_COUNT 100
120
121 #define HECC_CANMC_SCM BIT(13)
122 #define HECC_CANMC_CCR BIT(12)
123 #define HECC_CANMC_PDR BIT(11)
124 #define HECC_CANMC_ABO BIT(7)
125 #define HECC_CANMC_STM BIT(6)
126 #define HECC_CANMC_SRES BIT(5)
127
128 #define HECC_CANTIOC_EN BIT(3)
129 #define HECC_CANRIOC_EN BIT(3)
130
131 #define HECC_CANMID_IDE BIT(31)
132 #define HECC_CANMID_AME BIT(30)
133 #define HECC_CANMID_AAM BIT(29)
134
135 #define HECC_CANES_FE BIT(24)
136 #define HECC_CANES_BE BIT(23)
137 #define HECC_CANES_SA1 BIT(22)
138 #define HECC_CANES_CRCE BIT(21)
139 #define HECC_CANES_SE BIT(20)
140 #define HECC_CANES_ACKE BIT(19)
141 #define HECC_CANES_BO BIT(18)
142 #define HECC_CANES_EP BIT(17)
143 #define HECC_CANES_EW BIT(16)
144 #define HECC_CANES_SMA BIT(5)
145 #define HECC_CANES_CCE BIT(4)
146 #define HECC_CANES_PDA BIT(3)
147
148 #define HECC_CANBTC_SAM BIT(7)
149
150 #define HECC_BUS_ERROR (HECC_CANES_FE | HECC_CANES_BE |\
151 HECC_CANES_CRCE | HECC_CANES_SE |\
152 HECC_CANES_ACKE)
153 #define HECC_CANES_FLAGS (HECC_BUS_ERROR | HECC_CANES_BO |\
154 HECC_CANES_EP | HECC_CANES_EW)
155
156 #define HECC_CANMCF_RTR BIT(4)
157
158 #define HECC_CANGIF_MAIF BIT(17)
159 #define HECC_CANGIF_TCOIF BIT(16)
160 #define HECC_CANGIF_GMIF BIT(15)
161 #define HECC_CANGIF_AAIF BIT(14)
162 #define HECC_CANGIF_WDIF BIT(13)
163 #define HECC_CANGIF_WUIF BIT(12)
164 #define HECC_CANGIF_RMLIF BIT(11)
165 #define HECC_CANGIF_BOIF BIT(10)
166 #define HECC_CANGIF_EPIF BIT(9)
167 #define HECC_CANGIF_WLIF BIT(8)
168 #define HECC_CANGIF_MBOX_MASK 0x1F
169 #define HECC_CANGIM_I1EN BIT(1)
170 #define HECC_CANGIM_I0EN BIT(0)
171 #define HECC_CANGIM_DEF_MASK 0x700
172 #define HECC_CANGIM_SIL BIT(2)
173
174
175 static const struct can_bittiming_const ti_hecc_bittiming_const = {
176 .name = DRV_NAME,
177 .tseg1_min = 1,
178 .tseg1_max = 16,
179 .tseg2_min = 1,
180 .tseg2_max = 8,
181 .sjw_max = 4,
182 .brp_min = 1,
183 .brp_max = 256,
184 .brp_inc = 1,
185 };
186
187 struct ti_hecc_priv {
188 struct can_priv can;
189 struct can_rx_offload offload;
190 struct net_device *ndev;
191 struct clk *clk;
192 void __iomem *base;
193 void __iomem *hecc_ram;
194 void __iomem *mbx;
195 bool use_hecc1int;
196 spinlock_t mbx_lock;
197 u32 tx_head;
198 u32 tx_tail;
199 struct regulator *reg_xceiver;
200 };
201
202 static inline int get_tx_head_mb(struct ti_hecc_priv *priv)
203 {
204 return priv->tx_head & HECC_TX_MB_MASK;
205 }
206
207 static inline int get_tx_tail_mb(struct ti_hecc_priv *priv)
208 {
209 return priv->tx_tail & HECC_TX_MB_MASK;
210 }
211
212 static inline int get_tx_head_prio(struct ti_hecc_priv *priv)
213 {
214 return (priv->tx_head >> HECC_TX_PRIO_SHIFT) & MAX_TX_PRIO;
215 }
216
217 static inline void hecc_write_lam(struct ti_hecc_priv *priv, u32 mbxno, u32 val)
218 {
219 __raw_writel(val, priv->hecc_ram + mbxno * 4);
220 }
221
222 static inline u32 hecc_read_stamp(struct ti_hecc_priv *priv, u32 mbxno)
223 {
224 return __raw_readl(priv->hecc_ram + HECC_CANMOTS + mbxno * 4);
225 }
226
227 static inline void hecc_write_mbx(struct ti_hecc_priv *priv, u32 mbxno,
228 u32 reg, u32 val)
229 {
230 __raw_writel(val, priv->mbx + mbxno * 0x10 + reg);
231 }
232
233 static inline u32 hecc_read_mbx(struct ti_hecc_priv *priv, u32 mbxno, u32 reg)
234 {
235 return __raw_readl(priv->mbx + mbxno * 0x10 + reg);
236 }
237
238 static inline void hecc_write(struct ti_hecc_priv *priv, u32 reg, u32 val)
239 {
240 __raw_writel(val, priv->base + reg);
241 }
242
243 static inline u32 hecc_read(struct ti_hecc_priv *priv, int reg)
244 {
245 return __raw_readl(priv->base + reg);
246 }
247
248 static inline void hecc_set_bit(struct ti_hecc_priv *priv, int reg,
249 u32 bit_mask)
250 {
251 hecc_write(priv, reg, hecc_read(priv, reg) | bit_mask);
252 }
253
254 static inline void hecc_clear_bit(struct ti_hecc_priv *priv, int reg,
255 u32 bit_mask)
256 {
257 hecc_write(priv, reg, hecc_read(priv, reg) & ~bit_mask);
258 }
259
260 static inline u32 hecc_get_bit(struct ti_hecc_priv *priv, int reg, u32 bit_mask)
261 {
262 return (hecc_read(priv, reg) & bit_mask) ? 1 : 0;
263 }
264
265 static int ti_hecc_set_btc(struct ti_hecc_priv *priv)
266 {
267 struct can_bittiming *bit_timing = &priv->can.bittiming;
268 u32 can_btc;
269
270 can_btc = (bit_timing->phase_seg2 - 1) & 0x7;
271 can_btc |= ((bit_timing->phase_seg1 + bit_timing->prop_seg - 1)
272 & 0xF) << 3;
273 if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) {
274 if (bit_timing->brp > 4)
275 can_btc |= HECC_CANBTC_SAM;
276 else
277 netdev_warn(priv->ndev,
278 "WARN: Triple sampling not set due to h/w limitations");
279 }
280 can_btc |= ((bit_timing->sjw - 1) & 0x3) << 8;
281 can_btc |= ((bit_timing->brp - 1) & 0xFF) << 16;
282
283
284
285 hecc_write(priv, HECC_CANBTC, can_btc);
286 netdev_info(priv->ndev, "setting CANBTC=%#x\n", can_btc);
287
288 return 0;
289 }
290
291 static int ti_hecc_transceiver_switch(const struct ti_hecc_priv *priv,
292 int on)
293 {
294 if (!priv->reg_xceiver)
295 return 0;
296
297 if (on)
298 return regulator_enable(priv->reg_xceiver);
299 else
300 return regulator_disable(priv->reg_xceiver);
301 }
302
303 static void ti_hecc_reset(struct net_device *ndev)
304 {
305 u32 cnt;
306 struct ti_hecc_priv *priv = netdev_priv(ndev);
307
308 netdev_dbg(ndev, "resetting hecc ...\n");
309 hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_SRES);
310
311
312 hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_CCR);
313
314
315
316
317
318 cnt = HECC_CCE_WAIT_COUNT;
319 while (!hecc_get_bit(priv, HECC_CANES, HECC_CANES_CCE) && cnt != 0) {
320 --cnt;
321 udelay(10);
322 }
323
324
325
326
327
328 ti_hecc_set_btc(priv);
329
330
331 hecc_write(priv, HECC_CANMC, 0);
332
333
334
335
336
337
338
339
340 cnt = HECC_CCE_WAIT_COUNT;
341 while (hecc_get_bit(priv, HECC_CANES, HECC_CANES_CCE) && cnt != 0) {
342 --cnt;
343 udelay(10);
344 }
345
346
347 hecc_write(priv, HECC_CANTIOC, HECC_CANTIOC_EN);
348 hecc_write(priv, HECC_CANRIOC, HECC_CANRIOC_EN);
349
350
351 hecc_write(priv, HECC_CANTA, HECC_SET_REG);
352 hecc_write(priv, HECC_CANRMP, HECC_SET_REG);
353 hecc_write(priv, HECC_CANGIF0, HECC_SET_REG);
354 hecc_write(priv, HECC_CANGIF1, HECC_SET_REG);
355 hecc_write(priv, HECC_CANME, 0);
356 hecc_write(priv, HECC_CANMD, 0);
357
358
359 hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_SCM);
360 }
361
362 static void ti_hecc_start(struct net_device *ndev)
363 {
364 struct ti_hecc_priv *priv = netdev_priv(ndev);
365 u32 cnt, mbxno, mbx_mask;
366
367
368 ti_hecc_reset(ndev);
369
370 priv->tx_head = HECC_TX_MASK;
371 priv->tx_tail = HECC_TX_MASK;
372
373
374 hecc_write(priv, HECC_CANGAM, HECC_SET_REG);
375
376
377 for (cnt = 0; cnt < HECC_MAX_RX_MBOX; cnt++) {
378 mbxno = HECC_MAX_MAILBOXES - 1 - cnt;
379 mbx_mask = BIT(mbxno);
380 hecc_clear_bit(priv, HECC_CANME, mbx_mask);
381 hecc_write_mbx(priv, mbxno, HECC_CANMID, HECC_CANMID_AME);
382 hecc_write_lam(priv, mbxno, HECC_SET_REG);
383 hecc_set_bit(priv, HECC_CANMD, mbx_mask);
384 hecc_set_bit(priv, HECC_CANME, mbx_mask);
385 hecc_set_bit(priv, HECC_CANMIM, mbx_mask);
386 }
387
388
389 hecc_set_bit(priv, HECC_CANMIM, BIT(HECC_MAX_TX_MBOX) - 1);
390
391
392
393
394
395
396 mbx_mask = ~BIT(HECC_RX_LAST_MBOX);
397 hecc_write(priv, HECC_CANOPC, mbx_mask);
398
399
400 if (priv->use_hecc1int) {
401 hecc_write(priv, HECC_CANMIL, HECC_SET_REG);
402 hecc_write(priv, HECC_CANGIM, HECC_CANGIM_DEF_MASK |
403 HECC_CANGIM_I1EN | HECC_CANGIM_SIL);
404 } else {
405 hecc_write(priv, HECC_CANMIL, 0);
406 hecc_write(priv, HECC_CANGIM,
407 HECC_CANGIM_DEF_MASK | HECC_CANGIM_I0EN);
408 }
409 priv->can.state = CAN_STATE_ERROR_ACTIVE;
410 }
411
412 static void ti_hecc_stop(struct net_device *ndev)
413 {
414 struct ti_hecc_priv *priv = netdev_priv(ndev);
415
416
417 hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_CCR);
418
419
420 hecc_write(priv, HECC_CANGIM, 0);
421 hecc_write(priv, HECC_CANMIM, 0);
422 hecc_write(priv, HECC_CANME, 0);
423 priv->can.state = CAN_STATE_STOPPED;
424 }
425
426 static int ti_hecc_do_set_mode(struct net_device *ndev, enum can_mode mode)
427 {
428 int ret = 0;
429
430 switch (mode) {
431 case CAN_MODE_START:
432 ti_hecc_start(ndev);
433 netif_wake_queue(ndev);
434 break;
435 default:
436 ret = -EOPNOTSUPP;
437 break;
438 }
439
440 return ret;
441 }
442
443 static int ti_hecc_get_berr_counter(const struct net_device *ndev,
444 struct can_berr_counter *bec)
445 {
446 struct ti_hecc_priv *priv = netdev_priv(ndev);
447
448 bec->txerr = hecc_read(priv, HECC_CANTEC);
449 bec->rxerr = hecc_read(priv, HECC_CANREC);
450
451 return 0;
452 }
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475 static netdev_tx_t ti_hecc_xmit(struct sk_buff *skb, struct net_device *ndev)
476 {
477 struct ti_hecc_priv *priv = netdev_priv(ndev);
478 struct can_frame *cf = (struct can_frame *)skb->data;
479 u32 mbxno, mbx_mask, data;
480 unsigned long flags;
481
482 if (can_dropped_invalid_skb(ndev, skb))
483 return NETDEV_TX_OK;
484
485 mbxno = get_tx_head_mb(priv);
486 mbx_mask = BIT(mbxno);
487 spin_lock_irqsave(&priv->mbx_lock, flags);
488 if (unlikely(hecc_read(priv, HECC_CANME) & mbx_mask)) {
489 spin_unlock_irqrestore(&priv->mbx_lock, flags);
490 netif_stop_queue(ndev);
491 netdev_err(priv->ndev,
492 "BUG: TX mbx not ready tx_head=%08X, tx_tail=%08X\n",
493 priv->tx_head, priv->tx_tail);
494 return NETDEV_TX_BUSY;
495 }
496 spin_unlock_irqrestore(&priv->mbx_lock, flags);
497
498
499 data = cf->can_dlc | (get_tx_head_prio(priv) << 8);
500 if (cf->can_id & CAN_RTR_FLAG)
501 data |= HECC_CANMCF_RTR;
502 hecc_write_mbx(priv, mbxno, HECC_CANMCF, data);
503
504 if (cf->can_id & CAN_EFF_FLAG)
505 data = (cf->can_id & CAN_EFF_MASK) | HECC_CANMID_IDE;
506 else
507 data = (cf->can_id & CAN_SFF_MASK) << 18;
508 hecc_write_mbx(priv, mbxno, HECC_CANMID, data);
509 hecc_write_mbx(priv, mbxno, HECC_CANMDL,
510 be32_to_cpu(*(__be32 *)(cf->data)));
511 if (cf->can_dlc > 4)
512 hecc_write_mbx(priv, mbxno, HECC_CANMDH,
513 be32_to_cpu(*(__be32 *)(cf->data + 4)));
514 else
515 *(u32 *)(cf->data + 4) = 0;
516 can_put_echo_skb(skb, ndev, mbxno);
517
518 spin_lock_irqsave(&priv->mbx_lock, flags);
519 --priv->tx_head;
520 if ((hecc_read(priv, HECC_CANME) & BIT(get_tx_head_mb(priv))) ||
521 (priv->tx_head & HECC_TX_MASK) == HECC_TX_MASK) {
522 netif_stop_queue(ndev);
523 }
524 hecc_set_bit(priv, HECC_CANME, mbx_mask);
525 spin_unlock_irqrestore(&priv->mbx_lock, flags);
526
527 hecc_write(priv, HECC_CANTRS, mbx_mask);
528
529 return NETDEV_TX_OK;
530 }
531
532 static inline
533 struct ti_hecc_priv *rx_offload_to_priv(struct can_rx_offload *offload)
534 {
535 return container_of(offload, struct ti_hecc_priv, offload);
536 }
537
538 static unsigned int ti_hecc_mailbox_read(struct can_rx_offload *offload,
539 struct can_frame *cf,
540 u32 *timestamp, unsigned int mbxno)
541 {
542 struct ti_hecc_priv *priv = rx_offload_to_priv(offload);
543 u32 data, mbx_mask;
544 int ret = 1;
545
546 mbx_mask = BIT(mbxno);
547 data = hecc_read_mbx(priv, mbxno, HECC_CANMID);
548 if (data & HECC_CANMID_IDE)
549 cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
550 else
551 cf->can_id = (data >> 18) & CAN_SFF_MASK;
552
553 data = hecc_read_mbx(priv, mbxno, HECC_CANMCF);
554 if (data & HECC_CANMCF_RTR)
555 cf->can_id |= CAN_RTR_FLAG;
556 cf->can_dlc = get_can_dlc(data & 0xF);
557
558 data = hecc_read_mbx(priv, mbxno, HECC_CANMDL);
559 *(__be32 *)(cf->data) = cpu_to_be32(data);
560 if (cf->can_dlc > 4) {
561 data = hecc_read_mbx(priv, mbxno, HECC_CANMDH);
562 *(__be32 *)(cf->data + 4) = cpu_to_be32(data);
563 }
564
565 *timestamp = hecc_read_stamp(priv, mbxno);
566
567
568
569
570
571
572
573
574
575
576
577
578
579 if (unlikely(mbxno == HECC_RX_LAST_MBOX &&
580 hecc_read(priv, HECC_CANRML) & mbx_mask))
581 ret = -ENOBUFS;
582
583 hecc_write(priv, HECC_CANRMP, mbx_mask);
584
585 return ret;
586 }
587
588 static int ti_hecc_error(struct net_device *ndev, int int_status,
589 int err_status)
590 {
591 struct ti_hecc_priv *priv = netdev_priv(ndev);
592 struct can_frame *cf;
593 struct sk_buff *skb;
594 u32 timestamp;
595 int err;
596
597 if (err_status & HECC_BUS_ERROR) {
598
599 skb = alloc_can_err_skb(ndev, &cf);
600 if (!skb) {
601 if (net_ratelimit())
602 netdev_err(priv->ndev,
603 "%s: alloc_can_err_skb() failed\n",
604 __func__);
605 return -ENOMEM;
606 }
607
608 ++priv->can.can_stats.bus_error;
609 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
610 if (err_status & HECC_CANES_FE)
611 cf->data[2] |= CAN_ERR_PROT_FORM;
612 if (err_status & HECC_CANES_BE)
613 cf->data[2] |= CAN_ERR_PROT_BIT;
614 if (err_status & HECC_CANES_SE)
615 cf->data[2] |= CAN_ERR_PROT_STUFF;
616 if (err_status & HECC_CANES_CRCE)
617 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
618 if (err_status & HECC_CANES_ACKE)
619 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
620
621 timestamp = hecc_read(priv, HECC_CANLNT);
622 err = can_rx_offload_queue_sorted(&priv->offload, skb,
623 timestamp);
624 if (err)
625 ndev->stats.rx_fifo_errors++;
626 }
627
628 hecc_write(priv, HECC_CANES, HECC_CANES_FLAGS);
629
630 return 0;
631 }
632
633 static void ti_hecc_change_state(struct net_device *ndev,
634 enum can_state rx_state,
635 enum can_state tx_state)
636 {
637 struct ti_hecc_priv *priv = netdev_priv(ndev);
638 struct can_frame *cf;
639 struct sk_buff *skb;
640 u32 timestamp;
641 int err;
642
643 skb = alloc_can_err_skb(priv->ndev, &cf);
644 if (unlikely(!skb)) {
645 priv->can.state = max(tx_state, rx_state);
646 return;
647 }
648
649 can_change_state(priv->ndev, cf, tx_state, rx_state);
650
651 if (max(tx_state, rx_state) != CAN_STATE_BUS_OFF) {
652 cf->data[6] = hecc_read(priv, HECC_CANTEC);
653 cf->data[7] = hecc_read(priv, HECC_CANREC);
654 }
655
656 timestamp = hecc_read(priv, HECC_CANLNT);
657 err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp);
658 if (err)
659 ndev->stats.rx_fifo_errors++;
660 }
661
662 static irqreturn_t ti_hecc_interrupt(int irq, void *dev_id)
663 {
664 struct net_device *ndev = (struct net_device *)dev_id;
665 struct ti_hecc_priv *priv = netdev_priv(ndev);
666 struct net_device_stats *stats = &ndev->stats;
667 u32 mbxno, mbx_mask, int_status, err_status, stamp;
668 unsigned long flags, rx_pending;
669 u32 handled = 0;
670
671 int_status = hecc_read(priv,
672 priv->use_hecc1int ?
673 HECC_CANGIF1 : HECC_CANGIF0);
674
675 if (!int_status)
676 return IRQ_NONE;
677
678 err_status = hecc_read(priv, HECC_CANES);
679 if (unlikely(err_status & HECC_CANES_FLAGS))
680 ti_hecc_error(ndev, int_status, err_status);
681
682 if (unlikely(int_status & HECC_CANGIM_DEF_MASK)) {
683 enum can_state rx_state, tx_state;
684 u32 rec = hecc_read(priv, HECC_CANREC);
685 u32 tec = hecc_read(priv, HECC_CANTEC);
686
687 if (int_status & HECC_CANGIF_WLIF) {
688 handled |= HECC_CANGIF_WLIF;
689 rx_state = rec >= tec ? CAN_STATE_ERROR_WARNING : 0;
690 tx_state = rec <= tec ? CAN_STATE_ERROR_WARNING : 0;
691 netdev_dbg(priv->ndev, "Error Warning interrupt\n");
692 ti_hecc_change_state(ndev, rx_state, tx_state);
693 }
694
695 if (int_status & HECC_CANGIF_EPIF) {
696 handled |= HECC_CANGIF_EPIF;
697 rx_state = rec >= tec ? CAN_STATE_ERROR_PASSIVE : 0;
698 tx_state = rec <= tec ? CAN_STATE_ERROR_PASSIVE : 0;
699 netdev_dbg(priv->ndev, "Error passive interrupt\n");
700 ti_hecc_change_state(ndev, rx_state, tx_state);
701 }
702
703 if (int_status & HECC_CANGIF_BOIF) {
704 handled |= HECC_CANGIF_BOIF;
705 rx_state = CAN_STATE_BUS_OFF;
706 tx_state = CAN_STATE_BUS_OFF;
707 netdev_dbg(priv->ndev, "Bus off interrupt\n");
708
709
710 hecc_write(priv, HECC_CANGIM, 0);
711 can_bus_off(ndev);
712 ti_hecc_change_state(ndev, rx_state, tx_state);
713 }
714 } else if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE)) {
715 enum can_state new_state, tx_state, rx_state;
716 u32 rec = hecc_read(priv, HECC_CANREC);
717 u32 tec = hecc_read(priv, HECC_CANTEC);
718
719 if (rec >= 128 || tec >= 128)
720 new_state = CAN_STATE_ERROR_PASSIVE;
721 else if (rec >= 96 || tec >= 96)
722 new_state = CAN_STATE_ERROR_WARNING;
723 else
724 new_state = CAN_STATE_ERROR_ACTIVE;
725
726 if (new_state < priv->can.state) {
727 rx_state = rec >= tec ? new_state : 0;
728 tx_state = rec <= tec ? new_state : 0;
729 ti_hecc_change_state(ndev, rx_state, tx_state);
730 }
731 }
732
733 if (int_status & HECC_CANGIF_GMIF) {
734 while (priv->tx_tail - priv->tx_head > 0) {
735 mbxno = get_tx_tail_mb(priv);
736 mbx_mask = BIT(mbxno);
737 if (!(mbx_mask & hecc_read(priv, HECC_CANTA)))
738 break;
739 hecc_write(priv, HECC_CANTA, mbx_mask);
740 spin_lock_irqsave(&priv->mbx_lock, flags);
741 hecc_clear_bit(priv, HECC_CANME, mbx_mask);
742 spin_unlock_irqrestore(&priv->mbx_lock, flags);
743 stamp = hecc_read_stamp(priv, mbxno);
744 stats->tx_bytes +=
745 can_rx_offload_get_echo_skb(&priv->offload,
746 mbxno, stamp);
747 stats->tx_packets++;
748 can_led_event(ndev, CAN_LED_EVENT_TX);
749 --priv->tx_tail;
750 }
751
752
753 if ((priv->tx_head == priv->tx_tail &&
754 ((priv->tx_head & HECC_TX_MASK) != HECC_TX_MASK)) ||
755 (((priv->tx_tail & HECC_TX_MASK) == HECC_TX_MASK) &&
756 ((priv->tx_head & HECC_TX_MASK) == HECC_TX_MASK)))
757 netif_wake_queue(ndev);
758
759
760 while ((rx_pending = hecc_read(priv, HECC_CANRMP))) {
761 can_rx_offload_irq_offload_timestamp(&priv->offload,
762 rx_pending);
763 }
764 }
765
766
767 if (priv->use_hecc1int) {
768 hecc_write(priv, HECC_CANGIF1, handled);
769 int_status = hecc_read(priv, HECC_CANGIF1);
770 } else {
771 hecc_write(priv, HECC_CANGIF0, handled);
772 int_status = hecc_read(priv, HECC_CANGIF0);
773 }
774
775 return IRQ_HANDLED;
776 }
777
778 static int ti_hecc_open(struct net_device *ndev)
779 {
780 struct ti_hecc_priv *priv = netdev_priv(ndev);
781 int err;
782
783 err = request_irq(ndev->irq, ti_hecc_interrupt, IRQF_SHARED,
784 ndev->name, ndev);
785 if (err) {
786 netdev_err(ndev, "error requesting interrupt\n");
787 return err;
788 }
789
790 ti_hecc_transceiver_switch(priv, 1);
791
792
793 err = open_candev(ndev);
794 if (err) {
795 netdev_err(ndev, "open_candev() failed %d\n", err);
796 ti_hecc_transceiver_switch(priv, 0);
797 free_irq(ndev->irq, ndev);
798 return err;
799 }
800
801 can_led_event(ndev, CAN_LED_EVENT_OPEN);
802
803 ti_hecc_start(ndev);
804 can_rx_offload_enable(&priv->offload);
805 netif_start_queue(ndev);
806
807 return 0;
808 }
809
810 static int ti_hecc_close(struct net_device *ndev)
811 {
812 struct ti_hecc_priv *priv = netdev_priv(ndev);
813
814 netif_stop_queue(ndev);
815 can_rx_offload_disable(&priv->offload);
816 ti_hecc_stop(ndev);
817 free_irq(ndev->irq, ndev);
818 close_candev(ndev);
819 ti_hecc_transceiver_switch(priv, 0);
820
821 can_led_event(ndev, CAN_LED_EVENT_STOP);
822
823 return 0;
824 }
825
826 static const struct net_device_ops ti_hecc_netdev_ops = {
827 .ndo_open = ti_hecc_open,
828 .ndo_stop = ti_hecc_close,
829 .ndo_start_xmit = ti_hecc_xmit,
830 .ndo_change_mtu = can_change_mtu,
831 };
832
833 static const struct of_device_id ti_hecc_dt_ids[] = {
834 {
835 .compatible = "ti,am3517-hecc",
836 },
837 { }
838 };
839 MODULE_DEVICE_TABLE(of, ti_hecc_dt_ids);
840
841 static int ti_hecc_probe(struct platform_device *pdev)
842 {
843 struct net_device *ndev = (struct net_device *)0;
844 struct ti_hecc_priv *priv;
845 struct device_node *np = pdev->dev.of_node;
846 struct resource *res, *irq;
847 struct regulator *reg_xceiver;
848 int err = -ENODEV;
849
850 if (!IS_ENABLED(CONFIG_OF) || !np)
851 return -EINVAL;
852
853 reg_xceiver = devm_regulator_get(&pdev->dev, "xceiver");
854 if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
855 return -EPROBE_DEFER;
856 else if (IS_ERR(reg_xceiver))
857 reg_xceiver = NULL;
858
859 ndev = alloc_candev(sizeof(struct ti_hecc_priv), HECC_MAX_TX_MBOX);
860 if (!ndev) {
861 dev_err(&pdev->dev, "alloc_candev failed\n");
862 return -ENOMEM;
863 }
864 priv = netdev_priv(ndev);
865
866
867 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hecc");
868 if (!res) {
869 dev_err(&pdev->dev, "can't get IORESOURCE_MEM hecc\n");
870 return -EINVAL;
871 }
872
873 priv->base = devm_ioremap_resource(&pdev->dev, res);
874 if (IS_ERR(priv->base)) {
875 dev_err(&pdev->dev, "hecc ioremap failed\n");
876 return PTR_ERR(priv->base);
877 }
878
879
880 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hecc-ram");
881 if (!res) {
882 dev_err(&pdev->dev, "can't get IORESOURCE_MEM hecc-ram\n");
883 return -EINVAL;
884 }
885
886 priv->hecc_ram = devm_ioremap_resource(&pdev->dev, res);
887 if (IS_ERR(priv->hecc_ram)) {
888 dev_err(&pdev->dev, "hecc-ram ioremap failed\n");
889 return PTR_ERR(priv->hecc_ram);
890 }
891
892
893 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mbx");
894 if (!res) {
895 dev_err(&pdev->dev, "can't get IORESOURCE_MEM mbx\n");
896 return -EINVAL;
897 }
898
899 priv->mbx = devm_ioremap_resource(&pdev->dev, res);
900 if (IS_ERR(priv->mbx)) {
901 dev_err(&pdev->dev, "mbx ioremap failed\n");
902 return PTR_ERR(priv->mbx);
903 }
904
905 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
906 if (!irq) {
907 dev_err(&pdev->dev, "No irq resource\n");
908 goto probe_exit;
909 }
910
911 priv->ndev = ndev;
912 priv->reg_xceiver = reg_xceiver;
913 priv->use_hecc1int = of_property_read_bool(np, "ti,use-hecc1int");
914
915 priv->can.bittiming_const = &ti_hecc_bittiming_const;
916 priv->can.do_set_mode = ti_hecc_do_set_mode;
917 priv->can.do_get_berr_counter = ti_hecc_get_berr_counter;
918 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
919
920 spin_lock_init(&priv->mbx_lock);
921 ndev->irq = irq->start;
922 ndev->flags |= IFF_ECHO;
923 platform_set_drvdata(pdev, ndev);
924 SET_NETDEV_DEV(ndev, &pdev->dev);
925 ndev->netdev_ops = &ti_hecc_netdev_ops;
926
927 priv->clk = clk_get(&pdev->dev, "hecc_ck");
928 if (IS_ERR(priv->clk)) {
929 dev_err(&pdev->dev, "No clock available\n");
930 err = PTR_ERR(priv->clk);
931 priv->clk = NULL;
932 goto probe_exit_candev;
933 }
934 priv->can.clock.freq = clk_get_rate(priv->clk);
935
936 err = clk_prepare_enable(priv->clk);
937 if (err) {
938 dev_err(&pdev->dev, "clk_prepare_enable() failed\n");
939 goto probe_exit_clk;
940 }
941
942 priv->offload.mailbox_read = ti_hecc_mailbox_read;
943 priv->offload.mb_first = HECC_RX_FIRST_MBOX;
944 priv->offload.mb_last = HECC_RX_LAST_MBOX;
945 err = can_rx_offload_add_timestamp(ndev, &priv->offload);
946 if (err) {
947 dev_err(&pdev->dev, "can_rx_offload_add_timestamp() failed\n");
948 goto probe_exit_clk;
949 }
950
951 err = register_candev(ndev);
952 if (err) {
953 dev_err(&pdev->dev, "register_candev() failed\n");
954 goto probe_exit_offload;
955 }
956
957 devm_can_led_init(ndev);
958
959 dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%u)\n",
960 priv->base, (u32)ndev->irq);
961
962 return 0;
963
964 probe_exit_offload:
965 can_rx_offload_del(&priv->offload);
966 probe_exit_clk:
967 clk_put(priv->clk);
968 probe_exit_candev:
969 free_candev(ndev);
970 probe_exit:
971 return err;
972 }
973
974 static int ti_hecc_remove(struct platform_device *pdev)
975 {
976 struct net_device *ndev = platform_get_drvdata(pdev);
977 struct ti_hecc_priv *priv = netdev_priv(ndev);
978
979 unregister_candev(ndev);
980 clk_disable_unprepare(priv->clk);
981 clk_put(priv->clk);
982 can_rx_offload_del(&priv->offload);
983 free_candev(ndev);
984
985 return 0;
986 }
987
988 #ifdef CONFIG_PM
989 static int ti_hecc_suspend(struct platform_device *pdev, pm_message_t state)
990 {
991 struct net_device *dev = platform_get_drvdata(pdev);
992 struct ti_hecc_priv *priv = netdev_priv(dev);
993
994 if (netif_running(dev)) {
995 netif_stop_queue(dev);
996 netif_device_detach(dev);
997 }
998
999 hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_PDR);
1000 priv->can.state = CAN_STATE_SLEEPING;
1001
1002 clk_disable_unprepare(priv->clk);
1003
1004 return 0;
1005 }
1006
1007 static int ti_hecc_resume(struct platform_device *pdev)
1008 {
1009 struct net_device *dev = platform_get_drvdata(pdev);
1010 struct ti_hecc_priv *priv = netdev_priv(dev);
1011 int err;
1012
1013 err = clk_prepare_enable(priv->clk);
1014 if (err)
1015 return err;
1016
1017 hecc_clear_bit(priv, HECC_CANMC, HECC_CANMC_PDR);
1018 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1019
1020 if (netif_running(dev)) {
1021 netif_device_attach(dev);
1022 netif_start_queue(dev);
1023 }
1024
1025 return 0;
1026 }
1027 #else
1028 #define ti_hecc_suspend NULL
1029 #define ti_hecc_resume NULL
1030 #endif
1031
1032
1033 static struct platform_driver ti_hecc_driver = {
1034 .driver = {
1035 .name = DRV_NAME,
1036 .of_match_table = ti_hecc_dt_ids,
1037 },
1038 .probe = ti_hecc_probe,
1039 .remove = ti_hecc_remove,
1040 .suspend = ti_hecc_suspend,
1041 .resume = ti_hecc_resume,
1042 };
1043
1044 module_platform_driver(ti_hecc_driver);
1045
1046 MODULE_AUTHOR("Anant Gole <anantgole@ti.com>");
1047 MODULE_LICENSE("GPL v2");
1048 MODULE_DESCRIPTION(DRV_DESC);
1049 MODULE_ALIAS("platform:" DRV_NAME);