root/drivers/net/can/usb/ems_usb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ems_usb_read_interrupt_callback
  2. ems_usb_rx_can_msg
  3. ems_usb_rx_err
  4. ems_usb_read_bulk_callback
  5. ems_usb_write_bulk_callback
  6. ems_usb_command_msg
  7. ems_usb_write_mode
  8. ems_usb_control_cmd
  9. ems_usb_start
  10. unlink_all_urbs
  11. ems_usb_open
  12. ems_usb_start_xmit
  13. ems_usb_close
  14. ems_usb_set_mode
  15. ems_usb_set_bittiming
  16. init_params_sja1000
  17. ems_usb_probe
  18. ems_usb_disconnect

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
   4  *
   5  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
   6  */
   7 #include <linux/signal.h>
   8 #include <linux/slab.h>
   9 #include <linux/module.h>
  10 #include <linux/netdevice.h>
  11 #include <linux/usb.h>
  12 
  13 #include <linux/can.h>
  14 #include <linux/can/dev.h>
  15 #include <linux/can/error.h>
  16 
  17 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
  18 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
  19 MODULE_LICENSE("GPL v2");
  20 
  21 /* Control-Values for CPC_Control() Command Subject Selection */
  22 #define CONTR_CAN_MESSAGE 0x04
  23 #define CONTR_CAN_STATE   0x0C
  24 #define CONTR_BUS_ERROR   0x1C
  25 
  26 /* Control Command Actions */
  27 #define CONTR_CONT_OFF 0
  28 #define CONTR_CONT_ON  1
  29 #define CONTR_ONCE     2
  30 
  31 /* Messages from CPC to PC */
  32 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
  33 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
  34 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
  35 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
  36 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
  37 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
  38 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
  39 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
  40 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
  41 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
  42 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
  43 
  44 /* Messages from the PC to the CPC interface  */
  45 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
  46 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
  47 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
  48 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
  49 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
  50 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
  51 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
  52 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
  53 
  54 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
  55 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
  56 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
  57 
  58 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
  59 
  60 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
  61 
  62 /* Overrun types */
  63 #define CPC_OVR_EVENT_CAN       0x01
  64 #define CPC_OVR_EVENT_CANSTATE  0x02
  65 #define CPC_OVR_EVENT_BUSERROR  0x04
  66 
  67 /*
  68  * If the CAN controller lost a message we indicate it with the highest bit
  69  * set in the count field.
  70  */
  71 #define CPC_OVR_HW 0x80
  72 
  73 /* Size of the "struct ems_cpc_msg" without the union */
  74 #define CPC_MSG_HEADER_LEN   11
  75 #define CPC_CAN_MSG_MIN_SIZE 5
  76 
  77 /* Define these values to match your devices */
  78 #define USB_CPCUSB_VENDOR_ID 0x12D6
  79 
  80 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
  81 
  82 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
  83 #define SJA1000_MOD_NORMAL 0x00
  84 #define SJA1000_MOD_RM     0x01
  85 
  86 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
  87 #define SJA1000_ECC_SEG   0x1F
  88 #define SJA1000_ECC_DIR   0x20
  89 #define SJA1000_ECC_ERR   0x06
  90 #define SJA1000_ECC_BIT   0x00
  91 #define SJA1000_ECC_FORM  0x40
  92 #define SJA1000_ECC_STUFF 0x80
  93 #define SJA1000_ECC_MASK  0xc0
  94 
  95 /* Status register content */
  96 #define SJA1000_SR_BS 0x80
  97 #define SJA1000_SR_ES 0x40
  98 
  99 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
 100 
 101 /*
 102  * The device actually uses a 16MHz clock to generate the CAN clock
 103  * but it expects SJA1000 bit settings based on 8MHz (is internally
 104  * converted).
 105  */
 106 #define EMS_USB_ARM7_CLOCK 8000000
 107 
 108 #define CPC_TX_QUEUE_TRIGGER_LOW        25
 109 #define CPC_TX_QUEUE_TRIGGER_HIGH       35
 110 
 111 /*
 112  * CAN-Message representation in a CPC_MSG. Message object type is
 113  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
 114  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
 115  */
 116 struct cpc_can_msg {
 117         __le32 id;
 118         u8 length;
 119         u8 msg[8];
 120 };
 121 
 122 /* Representation of the CAN parameters for the SJA1000 controller */
 123 struct cpc_sja1000_params {
 124         u8 mode;
 125         u8 acc_code0;
 126         u8 acc_code1;
 127         u8 acc_code2;
 128         u8 acc_code3;
 129         u8 acc_mask0;
 130         u8 acc_mask1;
 131         u8 acc_mask2;
 132         u8 acc_mask3;
 133         u8 btr0;
 134         u8 btr1;
 135         u8 outp_contr;
 136 };
 137 
 138 /* CAN params message representation */
 139 struct cpc_can_params {
 140         u8 cc_type;
 141 
 142         /* Will support M16C CAN controller in the future */
 143         union {
 144                 struct cpc_sja1000_params sja1000;
 145         } cc_params;
 146 };
 147 
 148 /* Structure for confirmed message handling */
 149 struct cpc_confirm {
 150         u8 error; /* error code */
 151 };
 152 
 153 /* Structure for overrun conditions */
 154 struct cpc_overrun {
 155         u8 event;
 156         u8 count;
 157 };
 158 
 159 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
 160 struct cpc_sja1000_can_error {
 161         u8 ecc;
 162         u8 rxerr;
 163         u8 txerr;
 164 };
 165 
 166 /* structure for CAN error conditions */
 167 struct cpc_can_error {
 168         u8 ecode;
 169 
 170         struct {
 171                 u8 cc_type;
 172 
 173                 /* Other controllers may also provide error code capture regs */
 174                 union {
 175                         struct cpc_sja1000_can_error sja1000;
 176                 } regs;
 177         } cc;
 178 };
 179 
 180 /*
 181  * Structure containing RX/TX error counter. This structure is used to request
 182  * the values of the CAN controllers TX and RX error counter.
 183  */
 184 struct cpc_can_err_counter {
 185         u8 rx;
 186         u8 tx;
 187 };
 188 
 189 /* Main message type used between library and application */
 190 struct __packed ems_cpc_msg {
 191         u8 type;        /* type of message */
 192         u8 length;      /* length of data within union 'msg' */
 193         u8 msgid;       /* confirmation handle */
 194         __le32 ts_sec;  /* timestamp in seconds */
 195         __le32 ts_nsec; /* timestamp in nano seconds */
 196 
 197         union {
 198                 u8 generic[64];
 199                 struct cpc_can_msg can_msg;
 200                 struct cpc_can_params can_params;
 201                 struct cpc_confirm confirmation;
 202                 struct cpc_overrun overrun;
 203                 struct cpc_can_error error;
 204                 struct cpc_can_err_counter err_counter;
 205                 u8 can_state;
 206         } msg;
 207 };
 208 
 209 /*
 210  * Table of devices that work with this driver
 211  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
 212  */
 213 static struct usb_device_id ems_usb_table[] = {
 214         {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
 215         {} /* Terminating entry */
 216 };
 217 
 218 MODULE_DEVICE_TABLE(usb, ems_usb_table);
 219 
 220 #define RX_BUFFER_SIZE      64
 221 #define CPC_HEADER_SIZE     4
 222 #define INTR_IN_BUFFER_SIZE 4
 223 
 224 #define MAX_RX_URBS 10
 225 #define MAX_TX_URBS 10
 226 
 227 struct ems_usb;
 228 
 229 struct ems_tx_urb_context {
 230         struct ems_usb *dev;
 231 
 232         u32 echo_index;
 233         u8 dlc;
 234 };
 235 
 236 struct ems_usb {
 237         struct can_priv can; /* must be the first member */
 238 
 239         struct sk_buff *echo_skb[MAX_TX_URBS];
 240 
 241         struct usb_device *udev;
 242         struct net_device *netdev;
 243 
 244         atomic_t active_tx_urbs;
 245         struct usb_anchor tx_submitted;
 246         struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
 247 
 248         struct usb_anchor rx_submitted;
 249 
 250         struct urb *intr_urb;
 251 
 252         u8 *tx_msg_buffer;
 253 
 254         u8 *intr_in_buffer;
 255         unsigned int free_slots; /* remember number of available slots */
 256 
 257         struct ems_cpc_msg active_params; /* active controller parameters */
 258 };
 259 
 260 static void ems_usb_read_interrupt_callback(struct urb *urb)
 261 {
 262         struct ems_usb *dev = urb->context;
 263         struct net_device *netdev = dev->netdev;
 264         int err;
 265 
 266         if (!netif_device_present(netdev))
 267                 return;
 268 
 269         switch (urb->status) {
 270         case 0:
 271                 dev->free_slots = dev->intr_in_buffer[1];
 272                 if (dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH &&
 273                     netif_queue_stopped(netdev))
 274                         netif_wake_queue(netdev);
 275                 break;
 276 
 277         case -ECONNRESET: /* unlink */
 278         case -ENOENT:
 279         case -EPIPE:
 280         case -EPROTO:
 281         case -ESHUTDOWN:
 282                 return;
 283 
 284         default:
 285                 netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
 286                 break;
 287         }
 288 
 289         err = usb_submit_urb(urb, GFP_ATOMIC);
 290 
 291         if (err == -ENODEV)
 292                 netif_device_detach(netdev);
 293         else if (err)
 294                 netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
 295 }
 296 
 297 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
 298 {
 299         struct can_frame *cf;
 300         struct sk_buff *skb;
 301         int i;
 302         struct net_device_stats *stats = &dev->netdev->stats;
 303 
 304         skb = alloc_can_skb(dev->netdev, &cf);
 305         if (skb == NULL)
 306                 return;
 307 
 308         cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
 309         cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
 310 
 311         if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
 312             msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
 313                 cf->can_id |= CAN_EFF_FLAG;
 314 
 315         if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
 316             msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
 317                 cf->can_id |= CAN_RTR_FLAG;
 318         } else {
 319                 for (i = 0; i < cf->can_dlc; i++)
 320                         cf->data[i] = msg->msg.can_msg.msg[i];
 321         }
 322 
 323         stats->rx_packets++;
 324         stats->rx_bytes += cf->can_dlc;
 325         netif_rx(skb);
 326 }
 327 
 328 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
 329 {
 330         struct can_frame *cf;
 331         struct sk_buff *skb;
 332         struct net_device_stats *stats = &dev->netdev->stats;
 333 
 334         skb = alloc_can_err_skb(dev->netdev, &cf);
 335         if (skb == NULL)
 336                 return;
 337 
 338         if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
 339                 u8 state = msg->msg.can_state;
 340 
 341                 if (state & SJA1000_SR_BS) {
 342                         dev->can.state = CAN_STATE_BUS_OFF;
 343                         cf->can_id |= CAN_ERR_BUSOFF;
 344 
 345                         dev->can.can_stats.bus_off++;
 346                         can_bus_off(dev->netdev);
 347                 } else if (state & SJA1000_SR_ES) {
 348                         dev->can.state = CAN_STATE_ERROR_WARNING;
 349                         dev->can.can_stats.error_warning++;
 350                 } else {
 351                         dev->can.state = CAN_STATE_ERROR_ACTIVE;
 352                         dev->can.can_stats.error_passive++;
 353                 }
 354         } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
 355                 u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
 356                 u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
 357                 u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
 358 
 359                 /* bus error interrupt */
 360                 dev->can.can_stats.bus_error++;
 361                 stats->rx_errors++;
 362 
 363                 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 364 
 365                 switch (ecc & SJA1000_ECC_MASK) {
 366                 case SJA1000_ECC_BIT:
 367                         cf->data[2] |= CAN_ERR_PROT_BIT;
 368                         break;
 369                 case SJA1000_ECC_FORM:
 370                         cf->data[2] |= CAN_ERR_PROT_FORM;
 371                         break;
 372                 case SJA1000_ECC_STUFF:
 373                         cf->data[2] |= CAN_ERR_PROT_STUFF;
 374                         break;
 375                 default:
 376                         cf->data[3] = ecc & SJA1000_ECC_SEG;
 377                         break;
 378                 }
 379 
 380                 /* Error occurred during transmission? */
 381                 if ((ecc & SJA1000_ECC_DIR) == 0)
 382                         cf->data[2] |= CAN_ERR_PROT_TX;
 383 
 384                 if (dev->can.state == CAN_STATE_ERROR_WARNING ||
 385                     dev->can.state == CAN_STATE_ERROR_PASSIVE) {
 386                         cf->can_id |= CAN_ERR_CRTL;
 387                         cf->data[1] = (txerr > rxerr) ?
 388                             CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
 389                 }
 390         } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
 391                 cf->can_id |= CAN_ERR_CRTL;
 392                 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 393 
 394                 stats->rx_over_errors++;
 395                 stats->rx_errors++;
 396         }
 397 
 398         stats->rx_packets++;
 399         stats->rx_bytes += cf->can_dlc;
 400         netif_rx(skb);
 401 }
 402 
 403 /*
 404  * callback for bulk IN urb
 405  */
 406 static void ems_usb_read_bulk_callback(struct urb *urb)
 407 {
 408         struct ems_usb *dev = urb->context;
 409         struct net_device *netdev;
 410         int retval;
 411 
 412         netdev = dev->netdev;
 413 
 414         if (!netif_device_present(netdev))
 415                 return;
 416 
 417         switch (urb->status) {
 418         case 0: /* success */
 419                 break;
 420 
 421         case -ENOENT:
 422                 return;
 423 
 424         default:
 425                 netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
 426                 goto resubmit_urb;
 427         }
 428 
 429         if (urb->actual_length > CPC_HEADER_SIZE) {
 430                 struct ems_cpc_msg *msg;
 431                 u8 *ibuf = urb->transfer_buffer;
 432                 u8 msg_count, start;
 433 
 434                 msg_count = ibuf[0] & ~0x80;
 435 
 436                 start = CPC_HEADER_SIZE;
 437 
 438                 while (msg_count) {
 439                         msg = (struct ems_cpc_msg *)&ibuf[start];
 440 
 441                         switch (msg->type) {
 442                         case CPC_MSG_TYPE_CAN_STATE:
 443                                 /* Process CAN state changes */
 444                                 ems_usb_rx_err(dev, msg);
 445                                 break;
 446 
 447                         case CPC_MSG_TYPE_CAN_FRAME:
 448                         case CPC_MSG_TYPE_EXT_CAN_FRAME:
 449                         case CPC_MSG_TYPE_RTR_FRAME:
 450                         case CPC_MSG_TYPE_EXT_RTR_FRAME:
 451                                 ems_usb_rx_can_msg(dev, msg);
 452                                 break;
 453 
 454                         case CPC_MSG_TYPE_CAN_FRAME_ERROR:
 455                                 /* Process errorframe */
 456                                 ems_usb_rx_err(dev, msg);
 457                                 break;
 458 
 459                         case CPC_MSG_TYPE_OVERRUN:
 460                                 /* Message lost while receiving */
 461                                 ems_usb_rx_err(dev, msg);
 462                                 break;
 463                         }
 464 
 465                         start += CPC_MSG_HEADER_LEN + msg->length;
 466                         msg_count--;
 467 
 468                         if (start > urb->transfer_buffer_length) {
 469                                 netdev_err(netdev, "format error\n");
 470                                 break;
 471                         }
 472                 }
 473         }
 474 
 475 resubmit_urb:
 476         usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
 477                           urb->transfer_buffer, RX_BUFFER_SIZE,
 478                           ems_usb_read_bulk_callback, dev);
 479 
 480         retval = usb_submit_urb(urb, GFP_ATOMIC);
 481 
 482         if (retval == -ENODEV)
 483                 netif_device_detach(netdev);
 484         else if (retval)
 485                 netdev_err(netdev,
 486                            "failed resubmitting read bulk urb: %d\n", retval);
 487 }
 488 
 489 /*
 490  * callback for bulk IN urb
 491  */
 492 static void ems_usb_write_bulk_callback(struct urb *urb)
 493 {
 494         struct ems_tx_urb_context *context = urb->context;
 495         struct ems_usb *dev;
 496         struct net_device *netdev;
 497 
 498         BUG_ON(!context);
 499 
 500         dev = context->dev;
 501         netdev = dev->netdev;
 502 
 503         /* free up our allocated buffer */
 504         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
 505                           urb->transfer_buffer, urb->transfer_dma);
 506 
 507         atomic_dec(&dev->active_tx_urbs);
 508 
 509         if (!netif_device_present(netdev))
 510                 return;
 511 
 512         if (urb->status)
 513                 netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
 514 
 515         netif_trans_update(netdev);
 516 
 517         /* transmission complete interrupt */
 518         netdev->stats.tx_packets++;
 519         netdev->stats.tx_bytes += context->dlc;
 520 
 521         can_get_echo_skb(netdev, context->echo_index);
 522 
 523         /* Release context */
 524         context->echo_index = MAX_TX_URBS;
 525 
 526 }
 527 
 528 /*
 529  * Send the given CPC command synchronously
 530  */
 531 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
 532 {
 533         int actual_length;
 534 
 535         /* Copy payload */
 536         memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
 537                msg->length + CPC_MSG_HEADER_LEN);
 538 
 539         /* Clear header */
 540         memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
 541 
 542         return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
 543                             &dev->tx_msg_buffer[0],
 544                             msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
 545                             &actual_length, 1000);
 546 }
 547 
 548 /*
 549  * Change CAN controllers' mode register
 550  */
 551 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
 552 {
 553         dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
 554 
 555         return ems_usb_command_msg(dev, &dev->active_params);
 556 }
 557 
 558 /*
 559  * Send a CPC_Control command to change behaviour when interface receives a CAN
 560  * message, bus error or CAN state changed notifications.
 561  */
 562 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
 563 {
 564         struct ems_cpc_msg cmd;
 565 
 566         cmd.type = CPC_CMD_TYPE_CONTROL;
 567         cmd.length = CPC_MSG_HEADER_LEN + 1;
 568 
 569         cmd.msgid = 0;
 570 
 571         cmd.msg.generic[0] = val;
 572 
 573         return ems_usb_command_msg(dev, &cmd);
 574 }
 575 
 576 /*
 577  * Start interface
 578  */
 579 static int ems_usb_start(struct ems_usb *dev)
 580 {
 581         struct net_device *netdev = dev->netdev;
 582         int err, i;
 583 
 584         dev->intr_in_buffer[0] = 0;
 585         dev->free_slots = 50; /* initial size */
 586 
 587         for (i = 0; i < MAX_RX_URBS; i++) {
 588                 struct urb *urb = NULL;
 589                 u8 *buf = NULL;
 590 
 591                 /* create a URB, and a buffer for it */
 592                 urb = usb_alloc_urb(0, GFP_KERNEL);
 593                 if (!urb) {
 594                         err = -ENOMEM;
 595                         break;
 596                 }
 597 
 598                 buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
 599                                          &urb->transfer_dma);
 600                 if (!buf) {
 601                         netdev_err(netdev, "No memory left for USB buffer\n");
 602                         usb_free_urb(urb);
 603                         err = -ENOMEM;
 604                         break;
 605                 }
 606 
 607                 usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
 608                                   buf, RX_BUFFER_SIZE,
 609                                   ems_usb_read_bulk_callback, dev);
 610                 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 611                 usb_anchor_urb(urb, &dev->rx_submitted);
 612 
 613                 err = usb_submit_urb(urb, GFP_KERNEL);
 614                 if (err) {
 615                         usb_unanchor_urb(urb);
 616                         usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
 617                                           urb->transfer_dma);
 618                         usb_free_urb(urb);
 619                         break;
 620                 }
 621 
 622                 /* Drop reference, USB core will take care of freeing it */
 623                 usb_free_urb(urb);
 624         }
 625 
 626         /* Did we submit any URBs */
 627         if (i == 0) {
 628                 netdev_warn(netdev, "couldn't setup read URBs\n");
 629                 return err;
 630         }
 631 
 632         /* Warn if we've couldn't transmit all the URBs */
 633         if (i < MAX_RX_URBS)
 634                 netdev_warn(netdev, "rx performance may be slow\n");
 635 
 636         /* Setup and start interrupt URB */
 637         usb_fill_int_urb(dev->intr_urb, dev->udev,
 638                          usb_rcvintpipe(dev->udev, 1),
 639                          dev->intr_in_buffer,
 640                          INTR_IN_BUFFER_SIZE,
 641                          ems_usb_read_interrupt_callback, dev, 1);
 642 
 643         err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
 644         if (err) {
 645                 netdev_warn(netdev, "intr URB submit failed: %d\n", err);
 646 
 647                 return err;
 648         }
 649 
 650         /* CPC-USB will transfer received message to host */
 651         err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
 652         if (err)
 653                 goto failed;
 654 
 655         /* CPC-USB will transfer CAN state changes to host */
 656         err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
 657         if (err)
 658                 goto failed;
 659 
 660         /* CPC-USB will transfer bus errors to host */
 661         err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
 662         if (err)
 663                 goto failed;
 664 
 665         err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
 666         if (err)
 667                 goto failed;
 668 
 669         dev->can.state = CAN_STATE_ERROR_ACTIVE;
 670 
 671         return 0;
 672 
 673 failed:
 674         netdev_warn(netdev, "couldn't submit control: %d\n", err);
 675 
 676         return err;
 677 }
 678 
 679 static void unlink_all_urbs(struct ems_usb *dev)
 680 {
 681         int i;
 682 
 683         usb_unlink_urb(dev->intr_urb);
 684 
 685         usb_kill_anchored_urbs(&dev->rx_submitted);
 686 
 687         usb_kill_anchored_urbs(&dev->tx_submitted);
 688         atomic_set(&dev->active_tx_urbs, 0);
 689 
 690         for (i = 0; i < MAX_TX_URBS; i++)
 691                 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
 692 }
 693 
 694 static int ems_usb_open(struct net_device *netdev)
 695 {
 696         struct ems_usb *dev = netdev_priv(netdev);
 697         int err;
 698 
 699         err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
 700         if (err)
 701                 return err;
 702 
 703         /* common open */
 704         err = open_candev(netdev);
 705         if (err)
 706                 return err;
 707 
 708         /* finally start device */
 709         err = ems_usb_start(dev);
 710         if (err) {
 711                 if (err == -ENODEV)
 712                         netif_device_detach(dev->netdev);
 713 
 714                 netdev_warn(netdev, "couldn't start device: %d\n", err);
 715 
 716                 close_candev(netdev);
 717 
 718                 return err;
 719         }
 720 
 721 
 722         netif_start_queue(netdev);
 723 
 724         return 0;
 725 }
 726 
 727 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
 728 {
 729         struct ems_usb *dev = netdev_priv(netdev);
 730         struct ems_tx_urb_context *context = NULL;
 731         struct net_device_stats *stats = &netdev->stats;
 732         struct can_frame *cf = (struct can_frame *)skb->data;
 733         struct ems_cpc_msg *msg;
 734         struct urb *urb;
 735         u8 *buf;
 736         int i, err;
 737         size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
 738                         + sizeof(struct cpc_can_msg);
 739 
 740         if (can_dropped_invalid_skb(netdev, skb))
 741                 return NETDEV_TX_OK;
 742 
 743         /* create a URB, and a buffer for it, and copy the data to the URB */
 744         urb = usb_alloc_urb(0, GFP_ATOMIC);
 745         if (!urb)
 746                 goto nomem;
 747 
 748         buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
 749         if (!buf) {
 750                 netdev_err(netdev, "No memory left for USB buffer\n");
 751                 usb_free_urb(urb);
 752                 goto nomem;
 753         }
 754 
 755         msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
 756 
 757         msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
 758         msg->msg.can_msg.length = cf->can_dlc;
 759 
 760         if (cf->can_id & CAN_RTR_FLAG) {
 761                 msg->type = cf->can_id & CAN_EFF_FLAG ?
 762                         CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
 763 
 764                 msg->length = CPC_CAN_MSG_MIN_SIZE;
 765         } else {
 766                 msg->type = cf->can_id & CAN_EFF_FLAG ?
 767                         CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
 768 
 769                 for (i = 0; i < cf->can_dlc; i++)
 770                         msg->msg.can_msg.msg[i] = cf->data[i];
 771 
 772                 msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
 773         }
 774 
 775         for (i = 0; i < MAX_TX_URBS; i++) {
 776                 if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
 777                         context = &dev->tx_contexts[i];
 778                         break;
 779                 }
 780         }
 781 
 782         /*
 783          * May never happen! When this happens we'd more URBs in flight as
 784          * allowed (MAX_TX_URBS).
 785          */
 786         if (!context) {
 787                 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
 788                 usb_free_urb(urb);
 789 
 790                 netdev_warn(netdev, "couldn't find free context\n");
 791 
 792                 return NETDEV_TX_BUSY;
 793         }
 794 
 795         context->dev = dev;
 796         context->echo_index = i;
 797         context->dlc = cf->can_dlc;
 798 
 799         usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
 800                           size, ems_usb_write_bulk_callback, context);
 801         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 802         usb_anchor_urb(urb, &dev->tx_submitted);
 803 
 804         can_put_echo_skb(skb, netdev, context->echo_index);
 805 
 806         atomic_inc(&dev->active_tx_urbs);
 807 
 808         err = usb_submit_urb(urb, GFP_ATOMIC);
 809         if (unlikely(err)) {
 810                 can_free_echo_skb(netdev, context->echo_index);
 811 
 812                 usb_unanchor_urb(urb);
 813                 usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
 814                 dev_kfree_skb(skb);
 815 
 816                 atomic_dec(&dev->active_tx_urbs);
 817 
 818                 if (err == -ENODEV) {
 819                         netif_device_detach(netdev);
 820                 } else {
 821                         netdev_warn(netdev, "failed tx_urb %d\n", err);
 822 
 823                         stats->tx_dropped++;
 824                 }
 825         } else {
 826                 netif_trans_update(netdev);
 827 
 828                 /* Slow down tx path */
 829                 if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
 830                     dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
 831                         netif_stop_queue(netdev);
 832                 }
 833         }
 834 
 835         /*
 836          * Release our reference to this URB, the USB core will eventually free
 837          * it entirely.
 838          */
 839         usb_free_urb(urb);
 840 
 841         return NETDEV_TX_OK;
 842 
 843 nomem:
 844         dev_kfree_skb(skb);
 845         stats->tx_dropped++;
 846 
 847         return NETDEV_TX_OK;
 848 }
 849 
 850 static int ems_usb_close(struct net_device *netdev)
 851 {
 852         struct ems_usb *dev = netdev_priv(netdev);
 853 
 854         /* Stop polling */
 855         unlink_all_urbs(dev);
 856 
 857         netif_stop_queue(netdev);
 858 
 859         /* Set CAN controller to reset mode */
 860         if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
 861                 netdev_warn(netdev, "couldn't stop device");
 862 
 863         close_candev(netdev);
 864 
 865         return 0;
 866 }
 867 
 868 static const struct net_device_ops ems_usb_netdev_ops = {
 869         .ndo_open = ems_usb_open,
 870         .ndo_stop = ems_usb_close,
 871         .ndo_start_xmit = ems_usb_start_xmit,
 872         .ndo_change_mtu = can_change_mtu,
 873 };
 874 
 875 static const struct can_bittiming_const ems_usb_bittiming_const = {
 876         .name = "ems_usb",
 877         .tseg1_min = 1,
 878         .tseg1_max = 16,
 879         .tseg2_min = 1,
 880         .tseg2_max = 8,
 881         .sjw_max = 4,
 882         .brp_min = 1,
 883         .brp_max = 64,
 884         .brp_inc = 1,
 885 };
 886 
 887 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
 888 {
 889         struct ems_usb *dev = netdev_priv(netdev);
 890 
 891         switch (mode) {
 892         case CAN_MODE_START:
 893                 if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
 894                         netdev_warn(netdev, "couldn't start device");
 895 
 896                 if (netif_queue_stopped(netdev))
 897                         netif_wake_queue(netdev);
 898                 break;
 899 
 900         default:
 901                 return -EOPNOTSUPP;
 902         }
 903 
 904         return 0;
 905 }
 906 
 907 static int ems_usb_set_bittiming(struct net_device *netdev)
 908 {
 909         struct ems_usb *dev = netdev_priv(netdev);
 910         struct can_bittiming *bt = &dev->can.bittiming;
 911         u8 btr0, btr1;
 912 
 913         btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
 914         btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
 915                 (((bt->phase_seg2 - 1) & 0x7) << 4);
 916         if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
 917                 btr1 |= 0x80;
 918 
 919         netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
 920 
 921         dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
 922         dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
 923 
 924         return ems_usb_command_msg(dev, &dev->active_params);
 925 }
 926 
 927 static void init_params_sja1000(struct ems_cpc_msg *msg)
 928 {
 929         struct cpc_sja1000_params *sja1000 =
 930                 &msg->msg.can_params.cc_params.sja1000;
 931 
 932         msg->type = CPC_CMD_TYPE_CAN_PARAMS;
 933         msg->length = sizeof(struct cpc_can_params);
 934         msg->msgid = 0;
 935 
 936         msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
 937 
 938         /* Acceptance filter open */
 939         sja1000->acc_code0 = 0x00;
 940         sja1000->acc_code1 = 0x00;
 941         sja1000->acc_code2 = 0x00;
 942         sja1000->acc_code3 = 0x00;
 943 
 944         /* Acceptance filter open */
 945         sja1000->acc_mask0 = 0xFF;
 946         sja1000->acc_mask1 = 0xFF;
 947         sja1000->acc_mask2 = 0xFF;
 948         sja1000->acc_mask3 = 0xFF;
 949 
 950         sja1000->btr0 = 0;
 951         sja1000->btr1 = 0;
 952 
 953         sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
 954         sja1000->mode = SJA1000_MOD_RM;
 955 }
 956 
 957 /*
 958  * probe function for new CPC-USB devices
 959  */
 960 static int ems_usb_probe(struct usb_interface *intf,
 961                          const struct usb_device_id *id)
 962 {
 963         struct net_device *netdev;
 964         struct ems_usb *dev;
 965         int i, err = -ENOMEM;
 966 
 967         netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
 968         if (!netdev) {
 969                 dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
 970                 return -ENOMEM;
 971         }
 972 
 973         dev = netdev_priv(netdev);
 974 
 975         dev->udev = interface_to_usbdev(intf);
 976         dev->netdev = netdev;
 977 
 978         dev->can.state = CAN_STATE_STOPPED;
 979         dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
 980         dev->can.bittiming_const = &ems_usb_bittiming_const;
 981         dev->can.do_set_bittiming = ems_usb_set_bittiming;
 982         dev->can.do_set_mode = ems_usb_set_mode;
 983         dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
 984 
 985         netdev->netdev_ops = &ems_usb_netdev_ops;
 986 
 987         netdev->flags |= IFF_ECHO; /* we support local echo */
 988 
 989         init_usb_anchor(&dev->rx_submitted);
 990 
 991         init_usb_anchor(&dev->tx_submitted);
 992         atomic_set(&dev->active_tx_urbs, 0);
 993 
 994         for (i = 0; i < MAX_TX_URBS; i++)
 995                 dev->tx_contexts[i].echo_index = MAX_TX_URBS;
 996 
 997         dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
 998         if (!dev->intr_urb)
 999                 goto cleanup_candev;
1000 
1001         dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1002         if (!dev->intr_in_buffer)
1003                 goto cleanup_intr_urb;
1004 
1005         dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1006                                      sizeof(struct ems_cpc_msg), GFP_KERNEL);
1007         if (!dev->tx_msg_buffer)
1008                 goto cleanup_intr_in_buffer;
1009 
1010         usb_set_intfdata(intf, dev);
1011 
1012         SET_NETDEV_DEV(netdev, &intf->dev);
1013 
1014         init_params_sja1000(&dev->active_params);
1015 
1016         err = ems_usb_command_msg(dev, &dev->active_params);
1017         if (err) {
1018                 netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1019                 goto cleanup_tx_msg_buffer;
1020         }
1021 
1022         err = register_candev(netdev);
1023         if (err) {
1024                 netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1025                 goto cleanup_tx_msg_buffer;
1026         }
1027 
1028         return 0;
1029 
1030 cleanup_tx_msg_buffer:
1031         kfree(dev->tx_msg_buffer);
1032 
1033 cleanup_intr_in_buffer:
1034         kfree(dev->intr_in_buffer);
1035 
1036 cleanup_intr_urb:
1037         usb_free_urb(dev->intr_urb);
1038 
1039 cleanup_candev:
1040         free_candev(netdev);
1041 
1042         return err;
1043 }
1044 
1045 /*
1046  * called by the usb core when the device is removed from the system
1047  */
1048 static void ems_usb_disconnect(struct usb_interface *intf)
1049 {
1050         struct ems_usb *dev = usb_get_intfdata(intf);
1051 
1052         usb_set_intfdata(intf, NULL);
1053 
1054         if (dev) {
1055                 unregister_netdev(dev->netdev);
1056                 free_candev(dev->netdev);
1057 
1058                 unlink_all_urbs(dev);
1059 
1060                 usb_free_urb(dev->intr_urb);
1061 
1062                 kfree(dev->intr_in_buffer);
1063                 kfree(dev->tx_msg_buffer);
1064         }
1065 }
1066 
1067 /* usb specific object needed to register this driver with the usb subsystem */
1068 static struct usb_driver ems_usb_driver = {
1069         .name = "ems_usb",
1070         .probe = ems_usb_probe,
1071         .disconnect = ems_usb_disconnect,
1072         .id_table = ems_usb_table,
1073 };
1074 
1075 module_usb_driver(ems_usb_driver);

/* [<][>][^][v][top][bottom][index][help] */