This source file includes following definitions.
- tx_failure_cleanup
- rcar_can_error
- rcar_can_tx_done
- rcar_can_interrupt
- rcar_can_set_bittiming
- rcar_can_start
- rcar_can_open
- rcar_can_stop
- rcar_can_close
- rcar_can_start_xmit
- rcar_can_rx_pkt
- rcar_can_rx_poll
- rcar_can_do_set_mode
- rcar_can_get_berr_counter
- rcar_can_probe
- rcar_can_remove
- rcar_can_suspend
- rcar_can_resume
1
2
3
4
5
6
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/interrupt.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/platform_device.h>
15 #include <linux/can/led.h>
16 #include <linux/can/dev.h>
17 #include <linux/clk.h>
18 #include <linux/of.h>
19
20 #define RCAR_CAN_DRV_NAME "rcar_can"
21
22
23 enum CLKR {
24 CLKR_CLKP1 = 0,
25 CLKR_CLKP2 = 1,
26 CLKR_CLKEXT = 3,
27 };
28
29 #define RCAR_SUPPORTED_CLOCKS (BIT(CLKR_CLKP1) | BIT(CLKR_CLKP2) | \
30 BIT(CLKR_CLKEXT))
31
32
33
34
35
36
37 #define RCAR_CAN_N_MBX 64
38 #define RCAR_CAN_RX_FIFO_MBX 60
39 #define RCAR_CAN_TX_FIFO_MBX 56
40 #define RCAR_CAN_FIFO_DEPTH 4
41
42
43 struct rcar_can_mbox_regs {
44 u32 id;
45 u8 stub;
46 u8 dlc;
47 u8 data[8];
48 u8 tsh;
49 u8 tsl;
50 };
51
52 struct rcar_can_regs {
53 struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX];
54 u32 mkr_2_9[8];
55 u32 fidcr[2];
56 u32 mkivlr1;
57 u32 mier1;
58 u32 mkr_0_1[2];
59 u32 mkivlr0;
60 u32 mier0;
61 u8 pad_440[0x3c0];
62 u8 mctl[64];
63 u16 ctlr;
64 u16 str;
65 u8 bcr[3];
66 u8 clkr;
67 u8 rfcr;
68 u8 rfpcr;
69 u8 tfcr;
70 u8 tfpcr;
71 u8 eier;
72 u8 eifr;
73 u8 recr;
74 u8 tecr;
75 u8 ecsr;
76 u8 cssr;
77 u8 mssr;
78 u8 msmr;
79 u16 tsr;
80 u8 afsr;
81 u8 pad_857;
82 u8 tcr;
83 u8 pad_859[7];
84 u8 ier;
85 u8 isr;
86 u8 pad_862;
87 u8 mbsmr;
88 };
89
90 struct rcar_can_priv {
91 struct can_priv can;
92 struct net_device *ndev;
93 struct napi_struct napi;
94 struct rcar_can_regs __iomem *regs;
95 struct clk *clk;
96 struct clk *can_clk;
97 u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
98 u32 tx_head;
99 u32 tx_tail;
100 u8 clock_select;
101 u8 ier;
102 };
103
104 static const struct can_bittiming_const rcar_can_bittiming_const = {
105 .name = RCAR_CAN_DRV_NAME,
106 .tseg1_min = 4,
107 .tseg1_max = 16,
108 .tseg2_min = 2,
109 .tseg2_max = 8,
110 .sjw_max = 4,
111 .brp_min = 1,
112 .brp_max = 1024,
113 .brp_inc = 1,
114 };
115
116
117 #define RCAR_CAN_CTLR_BOM (3 << 11)
118 #define RCAR_CAN_CTLR_BOM_ENT (1 << 11)
119
120 #define RCAR_CAN_CTLR_SLPM (1 << 10)
121 #define RCAR_CAN_CTLR_CANM (3 << 8)
122 #define RCAR_CAN_CTLR_CANM_HALT (1 << 9)
123 #define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
124 #define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
125 #define RCAR_CAN_CTLR_MLM (1 << 3)
126 #define RCAR_CAN_CTLR_IDFM (3 << 1)
127 #define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2)
128 #define RCAR_CAN_CTLR_MBM (1 << 0)
129
130
131 #define RCAR_CAN_STR_RSTST (1 << 8)
132
133
134 #define RCAR_CAN_FIDCR_IDE (1 << 31)
135 #define RCAR_CAN_FIDCR_RTR (1 << 30)
136
137
138 #define RCAR_CAN_RFCR_RFEST (1 << 7)
139 #define RCAR_CAN_RFCR_RFE (1 << 0)
140
141
142 #define RCAR_CAN_TFCR_TFUST (7 << 1)
143
144 #define RCAR_CAN_TFCR_TFUST_SHIFT 1
145
146 #define RCAR_CAN_TFCR_TFE (1 << 0)
147
148 #define RCAR_CAN_N_RX_MKREGS1 2
149
150 #define RCAR_CAN_N_RX_MKREGS2 8
151
152
153 #define RCAR_CAN_BCR_TSEG1(x) (((x) & 0x0f) << 20)
154 #define RCAR_CAN_BCR_BPR(x) (((x) & 0x3ff) << 8)
155 #define RCAR_CAN_BCR_SJW(x) (((x) & 0x3) << 4)
156 #define RCAR_CAN_BCR_TSEG2(x) ((x) & 0x07)
157
158
159 #define RCAR_CAN_IDE (1 << 31)
160 #define RCAR_CAN_RTR (1 << 30)
161 #define RCAR_CAN_SID_SHIFT 18
162
163
164 #define RCAR_CAN_MIER1_RXFIE (1 << 28)
165 #define RCAR_CAN_MIER1_TXFIE (1 << 24)
166
167
168 #define RCAR_CAN_IER_ERSIE (1 << 5)
169 #define RCAR_CAN_IER_RXFIE (1 << 4)
170
171 #define RCAR_CAN_IER_TXFIE (1 << 3)
172
173
174 #define RCAR_CAN_ISR_ERSF (1 << 5)
175 #define RCAR_CAN_ISR_RXFF (1 << 4)
176
177 #define RCAR_CAN_ISR_TXFF (1 << 3)
178
179
180
181 #define RCAR_CAN_EIER_BLIE (1 << 7)
182 #define RCAR_CAN_EIER_OLIE (1 << 6)
183
184 #define RCAR_CAN_EIER_ORIE (1 << 5)
185 #define RCAR_CAN_EIER_BORIE (1 << 4)
186 #define RCAR_CAN_EIER_BOEIE (1 << 3)
187 #define RCAR_CAN_EIER_EPIE (1 << 2)
188 #define RCAR_CAN_EIER_EWIE (1 << 1)
189 #define RCAR_CAN_EIER_BEIE (1 << 0)
190
191
192 #define RCAR_CAN_EIFR_BLIF (1 << 7)
193 #define RCAR_CAN_EIFR_OLIF (1 << 6)
194
195 #define RCAR_CAN_EIFR_ORIF (1 << 5)
196 #define RCAR_CAN_EIFR_BORIF (1 << 4)
197 #define RCAR_CAN_EIFR_BOEIF (1 << 3)
198 #define RCAR_CAN_EIFR_EPIF (1 << 2)
199 #define RCAR_CAN_EIFR_EWIF (1 << 1)
200 #define RCAR_CAN_EIFR_BEIF (1 << 0)
201
202
203 #define RCAR_CAN_ECSR_EDPM (1 << 7)
204 #define RCAR_CAN_ECSR_ADEF (1 << 6)
205 #define RCAR_CAN_ECSR_BE0F (1 << 5)
206 #define RCAR_CAN_ECSR_BE1F (1 << 4)
207 #define RCAR_CAN_ECSR_CEF (1 << 3)
208 #define RCAR_CAN_ECSR_AEF (1 << 2)
209 #define RCAR_CAN_ECSR_FEF (1 << 1)
210 #define RCAR_CAN_ECSR_SEF (1 << 0)
211
212 #define RCAR_CAN_NAPI_WEIGHT 4
213 #define MAX_STR_READS 0x100
214
215 static void tx_failure_cleanup(struct net_device *ndev)
216 {
217 int i;
218
219 for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
220 can_free_echo_skb(ndev, i);
221 }
222
223 static void rcar_can_error(struct net_device *ndev)
224 {
225 struct rcar_can_priv *priv = netdev_priv(ndev);
226 struct net_device_stats *stats = &ndev->stats;
227 struct can_frame *cf;
228 struct sk_buff *skb;
229 u8 eifr, txerr = 0, rxerr = 0;
230
231
232 skb = alloc_can_err_skb(ndev, &cf);
233
234 eifr = readb(&priv->regs->eifr);
235 if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
236 txerr = readb(&priv->regs->tecr);
237 rxerr = readb(&priv->regs->recr);
238 if (skb) {
239 cf->can_id |= CAN_ERR_CRTL;
240 cf->data[6] = txerr;
241 cf->data[7] = rxerr;
242 }
243 }
244 if (eifr & RCAR_CAN_EIFR_BEIF) {
245 int rx_errors = 0, tx_errors = 0;
246 u8 ecsr;
247
248 netdev_dbg(priv->ndev, "Bus error interrupt:\n");
249 if (skb)
250 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
251
252 ecsr = readb(&priv->regs->ecsr);
253 if (ecsr & RCAR_CAN_ECSR_ADEF) {
254 netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
255 tx_errors++;
256 writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
257 if (skb)
258 cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
259 }
260 if (ecsr & RCAR_CAN_ECSR_BE0F) {
261 netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
262 tx_errors++;
263 writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
264 if (skb)
265 cf->data[2] |= CAN_ERR_PROT_BIT0;
266 }
267 if (ecsr & RCAR_CAN_ECSR_BE1F) {
268 netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
269 tx_errors++;
270 writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
271 if (skb)
272 cf->data[2] |= CAN_ERR_PROT_BIT1;
273 }
274 if (ecsr & RCAR_CAN_ECSR_CEF) {
275 netdev_dbg(priv->ndev, "CRC Error\n");
276 rx_errors++;
277 writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
278 if (skb)
279 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
280 }
281 if (ecsr & RCAR_CAN_ECSR_AEF) {
282 netdev_dbg(priv->ndev, "ACK Error\n");
283 tx_errors++;
284 writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
285 if (skb) {
286 cf->can_id |= CAN_ERR_ACK;
287 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
288 }
289 }
290 if (ecsr & RCAR_CAN_ECSR_FEF) {
291 netdev_dbg(priv->ndev, "Form Error\n");
292 rx_errors++;
293 writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
294 if (skb)
295 cf->data[2] |= CAN_ERR_PROT_FORM;
296 }
297 if (ecsr & RCAR_CAN_ECSR_SEF) {
298 netdev_dbg(priv->ndev, "Stuff Error\n");
299 rx_errors++;
300 writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
301 if (skb)
302 cf->data[2] |= CAN_ERR_PROT_STUFF;
303 }
304
305 priv->can.can_stats.bus_error++;
306 ndev->stats.rx_errors += rx_errors;
307 ndev->stats.tx_errors += tx_errors;
308 writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
309 }
310 if (eifr & RCAR_CAN_EIFR_EWIF) {
311 netdev_dbg(priv->ndev, "Error warning interrupt\n");
312 priv->can.state = CAN_STATE_ERROR_WARNING;
313 priv->can.can_stats.error_warning++;
314
315 writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
316 if (skb)
317 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
318 CAN_ERR_CRTL_RX_WARNING;
319 }
320 if (eifr & RCAR_CAN_EIFR_EPIF) {
321 netdev_dbg(priv->ndev, "Error passive interrupt\n");
322 priv->can.state = CAN_STATE_ERROR_PASSIVE;
323 priv->can.can_stats.error_passive++;
324
325 writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
326 if (skb)
327 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
328 CAN_ERR_CRTL_RX_PASSIVE;
329 }
330 if (eifr & RCAR_CAN_EIFR_BOEIF) {
331 netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
332 tx_failure_cleanup(ndev);
333 priv->ier = RCAR_CAN_IER_ERSIE;
334 writeb(priv->ier, &priv->regs->ier);
335 priv->can.state = CAN_STATE_BUS_OFF;
336
337 writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
338 priv->can.can_stats.bus_off++;
339 can_bus_off(ndev);
340 if (skb)
341 cf->can_id |= CAN_ERR_BUSOFF;
342 }
343 if (eifr & RCAR_CAN_EIFR_ORIF) {
344 netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
345 ndev->stats.rx_over_errors++;
346 ndev->stats.rx_errors++;
347 writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
348 if (skb) {
349 cf->can_id |= CAN_ERR_CRTL;
350 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
351 }
352 }
353 if (eifr & RCAR_CAN_EIFR_OLIF) {
354 netdev_dbg(priv->ndev,
355 "Overload Frame Transmission error interrupt\n");
356 ndev->stats.rx_over_errors++;
357 ndev->stats.rx_errors++;
358 writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
359 if (skb) {
360 cf->can_id |= CAN_ERR_PROT;
361 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
362 }
363 }
364
365 if (skb) {
366 stats->rx_packets++;
367 stats->rx_bytes += cf->can_dlc;
368 netif_rx(skb);
369 }
370 }
371
372 static void rcar_can_tx_done(struct net_device *ndev)
373 {
374 struct rcar_can_priv *priv = netdev_priv(ndev);
375 struct net_device_stats *stats = &ndev->stats;
376 u8 isr;
377
378 while (1) {
379 u8 unsent = readb(&priv->regs->tfcr);
380
381 unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
382 RCAR_CAN_TFCR_TFUST_SHIFT;
383 if (priv->tx_head - priv->tx_tail <= unsent)
384 break;
385 stats->tx_packets++;
386 stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
387 RCAR_CAN_FIFO_DEPTH];
388 priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
389 can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
390 priv->tx_tail++;
391 netif_wake_queue(ndev);
392 }
393
394 isr = readb(&priv->regs->isr);
395 writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
396 can_led_event(ndev, CAN_LED_EVENT_TX);
397 }
398
399 static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
400 {
401 struct net_device *ndev = dev_id;
402 struct rcar_can_priv *priv = netdev_priv(ndev);
403 u8 isr;
404
405 isr = readb(&priv->regs->isr);
406 if (!(isr & priv->ier))
407 return IRQ_NONE;
408
409 if (isr & RCAR_CAN_ISR_ERSF)
410 rcar_can_error(ndev);
411
412 if (isr & RCAR_CAN_ISR_TXFF)
413 rcar_can_tx_done(ndev);
414
415 if (isr & RCAR_CAN_ISR_RXFF) {
416 if (napi_schedule_prep(&priv->napi)) {
417
418 priv->ier &= ~RCAR_CAN_IER_RXFIE;
419 writeb(priv->ier, &priv->regs->ier);
420 __napi_schedule(&priv->napi);
421 }
422 }
423
424 return IRQ_HANDLED;
425 }
426
427 static void rcar_can_set_bittiming(struct net_device *dev)
428 {
429 struct rcar_can_priv *priv = netdev_priv(dev);
430 struct can_bittiming *bt = &priv->can.bittiming;
431 u32 bcr;
432
433 bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
434 RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
435 RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
436
437
438
439
440 writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
441 }
442
443 static void rcar_can_start(struct net_device *ndev)
444 {
445 struct rcar_can_priv *priv = netdev_priv(ndev);
446 u16 ctlr;
447 int i;
448
449
450
451
452
453
454
455 ctlr = readw(&priv->regs->ctlr);
456 ctlr &= ~RCAR_CAN_CTLR_SLPM;
457 writew(ctlr, &priv->regs->ctlr);
458
459 ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
460 writew(ctlr, &priv->regs->ctlr);
461 for (i = 0; i < MAX_STR_READS; i++) {
462 if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
463 break;
464 }
465 rcar_can_set_bittiming(ndev);
466 ctlr |= RCAR_CAN_CTLR_IDFM_MIXED;
467 ctlr |= RCAR_CAN_CTLR_BOM_ENT;
468
469 ctlr |= RCAR_CAN_CTLR_MBM;
470 ctlr |= RCAR_CAN_CTLR_MLM;
471 writew(ctlr, &priv->regs->ctlr);
472
473
474 writel(0, &priv->regs->mkr_2_9[6]);
475 writel(0, &priv->regs->mkr_2_9[7]);
476
477 writel(0, &priv->regs->mkivlr1);
478
479 writel(0, &priv->regs->fidcr[0]);
480 writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
481
482 writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
483
484 priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
485 RCAR_CAN_IER_TXFIE;
486 writeb(priv->ier, &priv->regs->ier);
487
488
489 writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
490
491 writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
492 (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
493 RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
494 RCAR_CAN_EIER_OLIE, &priv->regs->eier);
495 priv->can.state = CAN_STATE_ERROR_ACTIVE;
496
497
498 writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
499 for (i = 0; i < MAX_STR_READS; i++) {
500 if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
501 break;
502 }
503
504 writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
505 writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
506 }
507
508 static int rcar_can_open(struct net_device *ndev)
509 {
510 struct rcar_can_priv *priv = netdev_priv(ndev);
511 int err;
512
513 err = clk_prepare_enable(priv->clk);
514 if (err) {
515 netdev_err(ndev,
516 "failed to enable peripheral clock, error %d\n",
517 err);
518 goto out;
519 }
520 err = clk_prepare_enable(priv->can_clk);
521 if (err) {
522 netdev_err(ndev, "failed to enable CAN clock, error %d\n",
523 err);
524 goto out_clock;
525 }
526 err = open_candev(ndev);
527 if (err) {
528 netdev_err(ndev, "open_candev() failed, error %d\n", err);
529 goto out_can_clock;
530 }
531 napi_enable(&priv->napi);
532 err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
533 if (err) {
534 netdev_err(ndev, "request_irq(%d) failed, error %d\n",
535 ndev->irq, err);
536 goto out_close;
537 }
538 can_led_event(ndev, CAN_LED_EVENT_OPEN);
539 rcar_can_start(ndev);
540 netif_start_queue(ndev);
541 return 0;
542 out_close:
543 napi_disable(&priv->napi);
544 close_candev(ndev);
545 out_can_clock:
546 clk_disable_unprepare(priv->can_clk);
547 out_clock:
548 clk_disable_unprepare(priv->clk);
549 out:
550 return err;
551 }
552
553 static void rcar_can_stop(struct net_device *ndev)
554 {
555 struct rcar_can_priv *priv = netdev_priv(ndev);
556 u16 ctlr;
557 int i;
558
559
560 ctlr = readw(&priv->regs->ctlr);
561 ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
562 writew(ctlr, &priv->regs->ctlr);
563 for (i = 0; i < MAX_STR_READS; i++) {
564 if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
565 break;
566 }
567 writel(0, &priv->regs->mier0);
568 writel(0, &priv->regs->mier1);
569 writeb(0, &priv->regs->ier);
570 writeb(0, &priv->regs->eier);
571
572 ctlr |= RCAR_CAN_CTLR_SLPM;
573 writew(ctlr, &priv->regs->ctlr);
574 priv->can.state = CAN_STATE_STOPPED;
575 }
576
577 static int rcar_can_close(struct net_device *ndev)
578 {
579 struct rcar_can_priv *priv = netdev_priv(ndev);
580
581 netif_stop_queue(ndev);
582 rcar_can_stop(ndev);
583 free_irq(ndev->irq, ndev);
584 napi_disable(&priv->napi);
585 clk_disable_unprepare(priv->can_clk);
586 clk_disable_unprepare(priv->clk);
587 close_candev(ndev);
588 can_led_event(ndev, CAN_LED_EVENT_STOP);
589 return 0;
590 }
591
592 static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
593 struct net_device *ndev)
594 {
595 struct rcar_can_priv *priv = netdev_priv(ndev);
596 struct can_frame *cf = (struct can_frame *)skb->data;
597 u32 data, i;
598
599 if (can_dropped_invalid_skb(ndev, skb))
600 return NETDEV_TX_OK;
601
602 if (cf->can_id & CAN_EFF_FLAG)
603 data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
604 else
605 data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
606
607 if (cf->can_id & CAN_RTR_FLAG) {
608 data |= RCAR_CAN_RTR;
609 } else {
610 for (i = 0; i < cf->can_dlc; i++)
611 writeb(cf->data[i],
612 &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
613 }
614
615 writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
616
617 writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
618
619 priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
620 can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
621 priv->tx_head++;
622
623
624
625
626 writeb(0xff, &priv->regs->tfpcr);
627
628 if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
629 netif_stop_queue(ndev);
630
631 return NETDEV_TX_OK;
632 }
633
634 static const struct net_device_ops rcar_can_netdev_ops = {
635 .ndo_open = rcar_can_open,
636 .ndo_stop = rcar_can_close,
637 .ndo_start_xmit = rcar_can_start_xmit,
638 .ndo_change_mtu = can_change_mtu,
639 };
640
641 static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
642 {
643 struct net_device_stats *stats = &priv->ndev->stats;
644 struct can_frame *cf;
645 struct sk_buff *skb;
646 u32 data;
647 u8 dlc;
648
649 skb = alloc_can_skb(priv->ndev, &cf);
650 if (!skb) {
651 stats->rx_dropped++;
652 return;
653 }
654
655 data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
656 if (data & RCAR_CAN_IDE)
657 cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
658 else
659 cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
660
661 dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
662 cf->can_dlc = get_can_dlc(dlc);
663 if (data & RCAR_CAN_RTR) {
664 cf->can_id |= CAN_RTR_FLAG;
665 } else {
666 for (dlc = 0; dlc < cf->can_dlc; dlc++)
667 cf->data[dlc] =
668 readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
669 }
670
671 can_led_event(priv->ndev, CAN_LED_EVENT_RX);
672
673 stats->rx_bytes += cf->can_dlc;
674 stats->rx_packets++;
675 netif_receive_skb(skb);
676 }
677
678 static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
679 {
680 struct rcar_can_priv *priv = container_of(napi,
681 struct rcar_can_priv, napi);
682 int num_pkts;
683
684 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
685 u8 rfcr, isr;
686
687 isr = readb(&priv->regs->isr);
688
689 if (isr & RCAR_CAN_ISR_RXFF)
690 writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
691 rfcr = readb(&priv->regs->rfcr);
692 if (rfcr & RCAR_CAN_RFCR_RFEST)
693 break;
694 rcar_can_rx_pkt(priv);
695
696
697
698
699 writeb(0xff, &priv->regs->rfpcr);
700 }
701
702 if (num_pkts < quota) {
703 napi_complete_done(napi, num_pkts);
704 priv->ier |= RCAR_CAN_IER_RXFIE;
705 writeb(priv->ier, &priv->regs->ier);
706 }
707 return num_pkts;
708 }
709
710 static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
711 {
712 switch (mode) {
713 case CAN_MODE_START:
714 rcar_can_start(ndev);
715 netif_wake_queue(ndev);
716 return 0;
717 default:
718 return -EOPNOTSUPP;
719 }
720 }
721
722 static int rcar_can_get_berr_counter(const struct net_device *dev,
723 struct can_berr_counter *bec)
724 {
725 struct rcar_can_priv *priv = netdev_priv(dev);
726 int err;
727
728 err = clk_prepare_enable(priv->clk);
729 if (err)
730 return err;
731 bec->txerr = readb(&priv->regs->tecr);
732 bec->rxerr = readb(&priv->regs->recr);
733 clk_disable_unprepare(priv->clk);
734 return 0;
735 }
736
737 static const char * const clock_names[] = {
738 [CLKR_CLKP1] = "clkp1",
739 [CLKR_CLKP2] = "clkp2",
740 [CLKR_CLKEXT] = "can_clk",
741 };
742
743 static int rcar_can_probe(struct platform_device *pdev)
744 {
745 struct rcar_can_priv *priv;
746 struct net_device *ndev;
747 struct resource *mem;
748 void __iomem *addr;
749 u32 clock_select = CLKR_CLKP1;
750 int err = -ENODEV;
751 int irq;
752
753 of_property_read_u32(pdev->dev.of_node, "renesas,can-clock-select",
754 &clock_select);
755
756 irq = platform_get_irq(pdev, 0);
757 if (irq < 0) {
758 err = irq;
759 goto fail;
760 }
761
762 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
763 addr = devm_ioremap_resource(&pdev->dev, mem);
764 if (IS_ERR(addr)) {
765 err = PTR_ERR(addr);
766 goto fail;
767 }
768
769 ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
770 if (!ndev) {
771 dev_err(&pdev->dev, "alloc_candev() failed\n");
772 err = -ENOMEM;
773 goto fail;
774 }
775
776 priv = netdev_priv(ndev);
777
778 priv->clk = devm_clk_get(&pdev->dev, "clkp1");
779 if (IS_ERR(priv->clk)) {
780 err = PTR_ERR(priv->clk);
781 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
782 err);
783 goto fail_clk;
784 }
785
786 if (!(BIT(clock_select) & RCAR_SUPPORTED_CLOCKS)) {
787 err = -EINVAL;
788 dev_err(&pdev->dev, "invalid CAN clock selected\n");
789 goto fail_clk;
790 }
791 priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
792 if (IS_ERR(priv->can_clk)) {
793 err = PTR_ERR(priv->can_clk);
794 dev_err(&pdev->dev, "cannot get CAN clock, error %d\n", err);
795 goto fail_clk;
796 }
797
798 ndev->netdev_ops = &rcar_can_netdev_ops;
799 ndev->irq = irq;
800 ndev->flags |= IFF_ECHO;
801 priv->ndev = ndev;
802 priv->regs = addr;
803 priv->clock_select = clock_select;
804 priv->can.clock.freq = clk_get_rate(priv->can_clk);
805 priv->can.bittiming_const = &rcar_can_bittiming_const;
806 priv->can.do_set_mode = rcar_can_do_set_mode;
807 priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
808 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
809 platform_set_drvdata(pdev, ndev);
810 SET_NETDEV_DEV(ndev, &pdev->dev);
811
812 netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
813 RCAR_CAN_NAPI_WEIGHT);
814 err = register_candev(ndev);
815 if (err) {
816 dev_err(&pdev->dev, "register_candev() failed, error %d\n",
817 err);
818 goto fail_candev;
819 }
820
821 devm_can_led_init(ndev);
822
823 dev_info(&pdev->dev, "device registered (IRQ%d)\n", ndev->irq);
824
825 return 0;
826 fail_candev:
827 netif_napi_del(&priv->napi);
828 fail_clk:
829 free_candev(ndev);
830 fail:
831 return err;
832 }
833
834 static int rcar_can_remove(struct platform_device *pdev)
835 {
836 struct net_device *ndev = platform_get_drvdata(pdev);
837 struct rcar_can_priv *priv = netdev_priv(ndev);
838
839 unregister_candev(ndev);
840 netif_napi_del(&priv->napi);
841 free_candev(ndev);
842 return 0;
843 }
844
845 static int __maybe_unused rcar_can_suspend(struct device *dev)
846 {
847 struct net_device *ndev = dev_get_drvdata(dev);
848 struct rcar_can_priv *priv = netdev_priv(ndev);
849 u16 ctlr;
850
851 if (netif_running(ndev)) {
852 netif_stop_queue(ndev);
853 netif_device_detach(ndev);
854 }
855 ctlr = readw(&priv->regs->ctlr);
856 ctlr |= RCAR_CAN_CTLR_CANM_HALT;
857 writew(ctlr, &priv->regs->ctlr);
858 ctlr |= RCAR_CAN_CTLR_SLPM;
859 writew(ctlr, &priv->regs->ctlr);
860 priv->can.state = CAN_STATE_SLEEPING;
861
862 clk_disable(priv->clk);
863 return 0;
864 }
865
866 static int __maybe_unused rcar_can_resume(struct device *dev)
867 {
868 struct net_device *ndev = dev_get_drvdata(dev);
869 struct rcar_can_priv *priv = netdev_priv(ndev);
870 u16 ctlr;
871 int err;
872
873 err = clk_enable(priv->clk);
874 if (err) {
875 netdev_err(ndev, "clk_enable() failed, error %d\n", err);
876 return err;
877 }
878
879 ctlr = readw(&priv->regs->ctlr);
880 ctlr &= ~RCAR_CAN_CTLR_SLPM;
881 writew(ctlr, &priv->regs->ctlr);
882 ctlr &= ~RCAR_CAN_CTLR_CANM;
883 writew(ctlr, &priv->regs->ctlr);
884 priv->can.state = CAN_STATE_ERROR_ACTIVE;
885
886 if (netif_running(ndev)) {
887 netif_device_attach(ndev);
888 netif_start_queue(ndev);
889 }
890 return 0;
891 }
892
893 static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
894
895 static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
896 { .compatible = "renesas,can-r8a7778" },
897 { .compatible = "renesas,can-r8a7779" },
898 { .compatible = "renesas,can-r8a7790" },
899 { .compatible = "renesas,can-r8a7791" },
900 { .compatible = "renesas,rcar-gen1-can" },
901 { .compatible = "renesas,rcar-gen2-can" },
902 { .compatible = "renesas,rcar-gen3-can" },
903 { }
904 };
905 MODULE_DEVICE_TABLE(of, rcar_can_of_table);
906
907 static struct platform_driver rcar_can_driver = {
908 .driver = {
909 .name = RCAR_CAN_DRV_NAME,
910 .of_match_table = of_match_ptr(rcar_can_of_table),
911 .pm = &rcar_can_pm_ops,
912 },
913 .probe = rcar_can_probe,
914 .remove = rcar_can_remove,
915 };
916
917 module_platform_driver(rcar_can_driver);
918
919 MODULE_AUTHOR("Cogent Embedded, Inc.");
920 MODULE_LICENSE("GPL");
921 MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
922 MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);