This source file includes following definitions.
- append_crc_ccitt
- check_crc_ccitt
- calc_crc_ccitt
- hdlc_rx_add_bytes
- hdlc_rx_flag
- hdlcdrv_receiver
- do_kiss_params
- hdlcdrv_transmitter
- start_tx
- hdlcdrv_arbitrate
- hdlcdrv_send_packet
- hdlcdrv_set_mac_address
- hdlcdrv_open
- hdlcdrv_close
- hdlcdrv_ioctl
- hdlcdrv_setup
- hdlcdrv_register
- hdlcdrv_unregister
- hdlcdrv_init_driver
- hdlcdrv_cleanup_driver
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 #include <linux/capability.h>
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/net.h>
36 #include <linux/in.h>
37 #include <linux/if.h>
38 #include <linux/errno.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41
42 #include <linux/netdevice.h>
43 #include <linux/if_arp.h>
44 #include <linux/skbuff.h>
45 #include <linux/hdlcdrv.h>
46 #include <linux/random.h>
47 #include <net/ax25.h>
48 #include <linux/uaccess.h>
49
50 #include <linux/crc-ccitt.h>
51
52
53
54 #define KISS_VERBOSE
55
56
57
58 #define PARAM_TXDELAY 1
59 #define PARAM_PERSIST 2
60 #define PARAM_SLOTTIME 3
61 #define PARAM_TXTAIL 4
62 #define PARAM_FULLDUP 5
63 #define PARAM_HARDWARE 6
64 #define PARAM_RETURN 255
65
66
67
68
69
70
71
72
73
74
75 static inline void append_crc_ccitt(unsigned char *buffer, int len)
76 {
77 unsigned int crc = crc_ccitt(0xffff, buffer, len) ^ 0xffff;
78 buffer += len;
79 *buffer++ = crc;
80 *buffer++ = crc >> 8;
81 }
82
83
84
85 static inline int check_crc_ccitt(const unsigned char *buf, int cnt)
86 {
87 return (crc_ccitt(0xffff, buf, cnt) & 0xffff) == 0xf0b8;
88 }
89
90
91
92 #if 0
93 static int calc_crc_ccitt(const unsigned char *buf, int cnt)
94 {
95 unsigned int crc = 0xffff;
96
97 for (; cnt > 0; cnt--)
98 crc = (crc >> 8) ^ crc_ccitt_table[(crc ^ *buf++) & 0xff];
99 crc ^= 0xffff;
100 return crc & 0xffff;
101 }
102 #endif
103
104
105
106 #define tenms_to_2flags(s,tenms) ((tenms * s->par.bitrate) / 100 / 16)
107
108
109
110
111
112
113 static int hdlc_rx_add_bytes(struct hdlcdrv_state *s, unsigned int bits,
114 int num)
115 {
116 int added = 0;
117
118 while (s->hdlcrx.rx_state && num >= 8) {
119 if (s->hdlcrx.len >= sizeof(s->hdlcrx.buffer)) {
120 s->hdlcrx.rx_state = 0;
121 return 0;
122 }
123 *s->hdlcrx.bp++ = bits >> (32-num);
124 s->hdlcrx.len++;
125 num -= 8;
126 added += 8;
127 }
128 return added;
129 }
130
131 static void hdlc_rx_flag(struct net_device *dev, struct hdlcdrv_state *s)
132 {
133 struct sk_buff *skb;
134 int pkt_len;
135 unsigned char *cp;
136
137 if (s->hdlcrx.len < 4)
138 return;
139 if (!check_crc_ccitt(s->hdlcrx.buffer, s->hdlcrx.len))
140 return;
141 pkt_len = s->hdlcrx.len - 2 + 1;
142 if (!(skb = dev_alloc_skb(pkt_len))) {
143 printk("%s: memory squeeze, dropping packet\n", dev->name);
144 dev->stats.rx_dropped++;
145 return;
146 }
147 cp = skb_put(skb, pkt_len);
148 *cp++ = 0;
149 memcpy(cp, s->hdlcrx.buffer, pkt_len - 1);
150 skb->protocol = ax25_type_trans(skb, dev);
151 netif_rx(skb);
152 dev->stats.rx_packets++;
153 }
154
155 void hdlcdrv_receiver(struct net_device *dev, struct hdlcdrv_state *s)
156 {
157 int i;
158 unsigned int mask1, mask2, mask3, mask4, mask5, mask6, word;
159
160 if (!s || s->magic != HDLCDRV_MAGIC)
161 return;
162 if (test_and_set_bit(0, &s->hdlcrx.in_hdlc_rx))
163 return;
164
165 while (!hdlcdrv_hbuf_empty(&s->hdlcrx.hbuf)) {
166 word = hdlcdrv_hbuf_get(&s->hdlcrx.hbuf);
167
168 #ifdef HDLCDRV_DEBUG
169 hdlcdrv_add_bitbuffer_word(&s->bitbuf_hdlc, word);
170 #endif
171 s->hdlcrx.bitstream >>= 16;
172 s->hdlcrx.bitstream |= word << 16;
173 s->hdlcrx.bitbuf >>= 16;
174 s->hdlcrx.bitbuf |= word << 16;
175 s->hdlcrx.numbits += 16;
176 for(i = 15, mask1 = 0x1fc00, mask2 = 0x1fe00, mask3 = 0x0fc00,
177 mask4 = 0x1f800, mask5 = 0xf800, mask6 = 0xffff;
178 i >= 0;
179 i--, mask1 <<= 1, mask2 <<= 1, mask3 <<= 1, mask4 <<= 1,
180 mask5 <<= 1, mask6 = (mask6 << 1) | 1) {
181 if ((s->hdlcrx.bitstream & mask1) == mask1)
182 s->hdlcrx.rx_state = 0;
183 else if ((s->hdlcrx.bitstream & mask2) == mask3) {
184
185 if (s->hdlcrx.rx_state) {
186 hdlc_rx_add_bytes(s, s->hdlcrx.bitbuf
187 << (8+i),
188 s->hdlcrx.numbits
189 -8-i);
190 hdlc_rx_flag(dev, s);
191 }
192 s->hdlcrx.len = 0;
193 s->hdlcrx.bp = s->hdlcrx.buffer;
194 s->hdlcrx.rx_state = 1;
195 s->hdlcrx.numbits = i;
196 } else if ((s->hdlcrx.bitstream & mask4) == mask5) {
197
198 s->hdlcrx.numbits--;
199 s->hdlcrx.bitbuf = (s->hdlcrx.bitbuf & (~mask6)) |
200 ((s->hdlcrx.bitbuf & mask6) << 1);
201 }
202 }
203 s->hdlcrx.numbits -= hdlc_rx_add_bytes(s, s->hdlcrx.bitbuf,
204 s->hdlcrx.numbits);
205 }
206 clear_bit(0, &s->hdlcrx.in_hdlc_rx);
207 }
208
209
210
211 static inline void do_kiss_params(struct hdlcdrv_state *s,
212 unsigned char *data, unsigned long len)
213 {
214
215 #ifdef KISS_VERBOSE
216 #define PKP(a,b) printk(KERN_INFO "hdlcdrv.c: channel params: " a "\n", b)
217 #else
218 #define PKP(a,b)
219 #endif
220
221 if (len < 2)
222 return;
223 switch(data[0]) {
224 case PARAM_TXDELAY:
225 s->ch_params.tx_delay = data[1];
226 PKP("TX delay = %ums", 10 * s->ch_params.tx_delay);
227 break;
228 case PARAM_PERSIST:
229 s->ch_params.ppersist = data[1];
230 PKP("p persistence = %u", s->ch_params.ppersist);
231 break;
232 case PARAM_SLOTTIME:
233 s->ch_params.slottime = data[1];
234 PKP("slot time = %ums", s->ch_params.slottime);
235 break;
236 case PARAM_TXTAIL:
237 s->ch_params.tx_tail = data[1];
238 PKP("TX tail = %ums", s->ch_params.tx_tail);
239 break;
240 case PARAM_FULLDUP:
241 s->ch_params.fulldup = !!data[1];
242 PKP("%s duplex", s->ch_params.fulldup ? "full" : "half");
243 break;
244 default:
245 break;
246 }
247 #undef PKP
248 }
249
250
251
252 void hdlcdrv_transmitter(struct net_device *dev, struct hdlcdrv_state *s)
253 {
254 unsigned int mask1, mask2, mask3;
255 int i;
256 struct sk_buff *skb;
257 int pkt_len;
258
259 if (!s || s->magic != HDLCDRV_MAGIC)
260 return;
261 if (test_and_set_bit(0, &s->hdlctx.in_hdlc_tx))
262 return;
263 for (;;) {
264 if (s->hdlctx.numbits >= 16) {
265 if (hdlcdrv_hbuf_full(&s->hdlctx.hbuf)) {
266 clear_bit(0, &s->hdlctx.in_hdlc_tx);
267 return;
268 }
269 hdlcdrv_hbuf_put(&s->hdlctx.hbuf, s->hdlctx.bitbuf);
270 s->hdlctx.bitbuf >>= 16;
271 s->hdlctx.numbits -= 16;
272 }
273 switch (s->hdlctx.tx_state) {
274 default:
275 clear_bit(0, &s->hdlctx.in_hdlc_tx);
276 return;
277 case 0:
278 case 1:
279 if (s->hdlctx.numflags) {
280 s->hdlctx.numflags--;
281 s->hdlctx.bitbuf |=
282 0x7e7e << s->hdlctx.numbits;
283 s->hdlctx.numbits += 16;
284 break;
285 }
286 if (s->hdlctx.tx_state == 1) {
287 clear_bit(0, &s->hdlctx.in_hdlc_tx);
288 return;
289 }
290 if (!(skb = s->skb)) {
291 int flgs = tenms_to_2flags(s, s->ch_params.tx_tail);
292 if (flgs < 2)
293 flgs = 2;
294 s->hdlctx.tx_state = 1;
295 s->hdlctx.numflags = flgs;
296 break;
297 }
298 s->skb = NULL;
299 netif_wake_queue(dev);
300 pkt_len = skb->len-1;
301 if (pkt_len >= HDLCDRV_MAXFLEN || pkt_len < 2) {
302 s->hdlctx.tx_state = 0;
303 s->hdlctx.numflags = 1;
304 dev_kfree_skb_irq(skb);
305 break;
306 }
307 skb_copy_from_linear_data_offset(skb, 1,
308 s->hdlctx.buffer,
309 pkt_len);
310 dev_kfree_skb_irq(skb);
311 s->hdlctx.bp = s->hdlctx.buffer;
312 append_crc_ccitt(s->hdlctx.buffer, pkt_len);
313 s->hdlctx.len = pkt_len+2;
314 s->hdlctx.tx_state = 2;
315 s->hdlctx.bitstream = 0;
316 dev->stats.tx_packets++;
317 break;
318 case 2:
319 if (!s->hdlctx.len) {
320 s->hdlctx.tx_state = 0;
321 s->hdlctx.numflags = 1;
322 break;
323 }
324 s->hdlctx.len--;
325 s->hdlctx.bitbuf |= *s->hdlctx.bp <<
326 s->hdlctx.numbits;
327 s->hdlctx.bitstream >>= 8;
328 s->hdlctx.bitstream |= (*s->hdlctx.bp++) << 16;
329 mask1 = 0x1f000;
330 mask2 = 0x10000;
331 mask3 = 0xffffffff >> (31-s->hdlctx.numbits);
332 s->hdlctx.numbits += 8;
333 for(i = 0; i < 8; i++, mask1 <<= 1, mask2 <<= 1,
334 mask3 = (mask3 << 1) | 1) {
335 if ((s->hdlctx.bitstream & mask1) != mask1)
336 continue;
337 s->hdlctx.bitstream &= ~mask2;
338 s->hdlctx.bitbuf =
339 (s->hdlctx.bitbuf & mask3) |
340 ((s->hdlctx.bitbuf &
341 (~mask3)) << 1);
342 s->hdlctx.numbits++;
343 mask3 = (mask3 << 1) | 1;
344 }
345 break;
346 }
347 }
348 }
349
350
351
352 static void start_tx(struct net_device *dev, struct hdlcdrv_state *s)
353 {
354 s->hdlctx.tx_state = 0;
355 s->hdlctx.numflags = tenms_to_2flags(s, s->ch_params.tx_delay);
356 s->hdlctx.bitbuf = s->hdlctx.bitstream = s->hdlctx.numbits = 0;
357 hdlcdrv_transmitter(dev, s);
358 s->hdlctx.ptt = 1;
359 s->ptt_keyed++;
360 }
361
362
363
364 void hdlcdrv_arbitrate(struct net_device *dev, struct hdlcdrv_state *s)
365 {
366 if (!s || s->magic != HDLCDRV_MAGIC || s->hdlctx.ptt || !s->skb)
367 return;
368 if (s->ch_params.fulldup) {
369 start_tx(dev, s);
370 return;
371 }
372 if (s->hdlcrx.dcd) {
373 s->hdlctx.slotcnt = s->ch_params.slottime;
374 return;
375 }
376 if ((--s->hdlctx.slotcnt) > 0)
377 return;
378 s->hdlctx.slotcnt = s->ch_params.slottime;
379 if ((prandom_u32() % 256) > s->ch_params.ppersist)
380 return;
381 start_tx(dev, s);
382 }
383
384
385
386
387
388
389 static netdev_tx_t hdlcdrv_send_packet(struct sk_buff *skb,
390 struct net_device *dev)
391 {
392 struct hdlcdrv_state *sm = netdev_priv(dev);
393
394 if (skb->protocol == htons(ETH_P_IP))
395 return ax25_ip_xmit(skb);
396
397 if (skb->data[0] != 0) {
398 do_kiss_params(sm, skb->data, skb->len);
399 dev_kfree_skb(skb);
400 return NETDEV_TX_OK;
401 }
402 if (sm->skb) {
403 dev_kfree_skb(skb);
404 return NETDEV_TX_OK;
405 }
406 netif_stop_queue(dev);
407 sm->skb = skb;
408 return NETDEV_TX_OK;
409 }
410
411
412
413 static int hdlcdrv_set_mac_address(struct net_device *dev, void *addr)
414 {
415 struct sockaddr *sa = (struct sockaddr *)addr;
416
417
418 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
419 return 0;
420 }
421
422
423
424
425
426
427
428
429
430
431
432 static int hdlcdrv_open(struct net_device *dev)
433 {
434 struct hdlcdrv_state *s = netdev_priv(dev);
435 int i;
436
437 if (!s->ops || !s->ops->open)
438 return -ENODEV;
439
440
441
442
443 s->opened = 1;
444 s->hdlcrx.hbuf.rd = s->hdlcrx.hbuf.wr = 0;
445 s->hdlcrx.in_hdlc_rx = 0;
446 s->hdlcrx.rx_state = 0;
447
448 s->hdlctx.hbuf.rd = s->hdlctx.hbuf.wr = 0;
449 s->hdlctx.in_hdlc_tx = 0;
450 s->hdlctx.tx_state = 1;
451 s->hdlctx.numflags = 0;
452 s->hdlctx.bitstream = s->hdlctx.bitbuf = s->hdlctx.numbits = 0;
453 s->hdlctx.ptt = 0;
454 s->hdlctx.slotcnt = s->ch_params.slottime;
455 s->hdlctx.calibrate = 0;
456
457 i = s->ops->open(dev);
458 if (i)
459 return i;
460 netif_start_queue(dev);
461 return 0;
462 }
463
464
465
466
467
468
469 static int hdlcdrv_close(struct net_device *dev)
470 {
471 struct hdlcdrv_state *s = netdev_priv(dev);
472 int i = 0;
473
474 netif_stop_queue(dev);
475
476 if (s->ops && s->ops->close)
477 i = s->ops->close(dev);
478 dev_kfree_skb(s->skb);
479 s->skb = NULL;
480 s->opened = 0;
481 return i;
482 }
483
484
485
486 static int hdlcdrv_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
487 {
488 struct hdlcdrv_state *s = netdev_priv(dev);
489 struct hdlcdrv_ioctl bi;
490
491 if (cmd != SIOCDEVPRIVATE) {
492 if (s->ops && s->ops->ioctl)
493 return s->ops->ioctl(dev, ifr, &bi, cmd);
494 return -ENOIOCTLCMD;
495 }
496 if (copy_from_user(&bi, ifr->ifr_data, sizeof(bi)))
497 return -EFAULT;
498
499 switch (bi.cmd) {
500 default:
501 if (s->ops && s->ops->ioctl)
502 return s->ops->ioctl(dev, ifr, &bi, cmd);
503 return -ENOIOCTLCMD;
504
505 case HDLCDRVCTL_GETCHANNELPAR:
506 bi.data.cp.tx_delay = s->ch_params.tx_delay;
507 bi.data.cp.tx_tail = s->ch_params.tx_tail;
508 bi.data.cp.slottime = s->ch_params.slottime;
509 bi.data.cp.ppersist = s->ch_params.ppersist;
510 bi.data.cp.fulldup = s->ch_params.fulldup;
511 break;
512
513 case HDLCDRVCTL_SETCHANNELPAR:
514 if (!capable(CAP_NET_ADMIN))
515 return -EACCES;
516 s->ch_params.tx_delay = bi.data.cp.tx_delay;
517 s->ch_params.tx_tail = bi.data.cp.tx_tail;
518 s->ch_params.slottime = bi.data.cp.slottime;
519 s->ch_params.ppersist = bi.data.cp.ppersist;
520 s->ch_params.fulldup = bi.data.cp.fulldup;
521 s->hdlctx.slotcnt = 1;
522 return 0;
523
524 case HDLCDRVCTL_GETMODEMPAR:
525 bi.data.mp.iobase = dev->base_addr;
526 bi.data.mp.irq = dev->irq;
527 bi.data.mp.dma = dev->dma;
528 bi.data.mp.dma2 = s->ptt_out.dma2;
529 bi.data.mp.seriobase = s->ptt_out.seriobase;
530 bi.data.mp.pariobase = s->ptt_out.pariobase;
531 bi.data.mp.midiiobase = s->ptt_out.midiiobase;
532 break;
533
534 case HDLCDRVCTL_SETMODEMPAR:
535 if ((!capable(CAP_SYS_RAWIO)) || netif_running(dev))
536 return -EACCES;
537 dev->base_addr = bi.data.mp.iobase;
538 dev->irq = bi.data.mp.irq;
539 dev->dma = bi.data.mp.dma;
540 s->ptt_out.dma2 = bi.data.mp.dma2;
541 s->ptt_out.seriobase = bi.data.mp.seriobase;
542 s->ptt_out.pariobase = bi.data.mp.pariobase;
543 s->ptt_out.midiiobase = bi.data.mp.midiiobase;
544 return 0;
545
546 case HDLCDRVCTL_GETSTAT:
547 bi.data.cs.ptt = hdlcdrv_ptt(s);
548 bi.data.cs.dcd = s->hdlcrx.dcd;
549 bi.data.cs.ptt_keyed = s->ptt_keyed;
550 bi.data.cs.tx_packets = dev->stats.tx_packets;
551 bi.data.cs.tx_errors = dev->stats.tx_errors;
552 bi.data.cs.rx_packets = dev->stats.rx_packets;
553 bi.data.cs.rx_errors = dev->stats.rx_errors;
554 break;
555
556 case HDLCDRVCTL_OLDGETSTAT:
557 bi.data.ocs.ptt = hdlcdrv_ptt(s);
558 bi.data.ocs.dcd = s->hdlcrx.dcd;
559 bi.data.ocs.ptt_keyed = s->ptt_keyed;
560 break;
561
562 case HDLCDRVCTL_CALIBRATE:
563 if(!capable(CAP_SYS_RAWIO))
564 return -EPERM;
565 if (s->par.bitrate <= 0)
566 return -EINVAL;
567 if (bi.data.calibrate > INT_MAX / s->par.bitrate)
568 return -EINVAL;
569 s->hdlctx.calibrate = bi.data.calibrate * s->par.bitrate / 16;
570 return 0;
571
572 case HDLCDRVCTL_GETSAMPLES:
573 #ifndef HDLCDRV_DEBUG
574 return -EPERM;
575 #else
576 if (s->bitbuf_channel.rd == s->bitbuf_channel.wr)
577 return -EAGAIN;
578 bi.data.bits =
579 s->bitbuf_channel.buffer[s->bitbuf_channel.rd];
580 s->bitbuf_channel.rd = (s->bitbuf_channel.rd+1) %
581 sizeof(s->bitbuf_channel.buffer);
582 break;
583 #endif
584
585 case HDLCDRVCTL_GETBITS:
586 #ifndef HDLCDRV_DEBUG
587 return -EPERM;
588 #else
589 if (s->bitbuf_hdlc.rd == s->bitbuf_hdlc.wr)
590 return -EAGAIN;
591 bi.data.bits =
592 s->bitbuf_hdlc.buffer[s->bitbuf_hdlc.rd];
593 s->bitbuf_hdlc.rd = (s->bitbuf_hdlc.rd+1) %
594 sizeof(s->bitbuf_hdlc.buffer);
595 break;
596 #endif
597
598 case HDLCDRVCTL_DRIVERNAME:
599 if (s->ops && s->ops->drvname) {
600 strncpy(bi.data.drivername, s->ops->drvname,
601 sizeof(bi.data.drivername));
602 break;
603 }
604 bi.data.drivername[0] = '\0';
605 break;
606
607 }
608 if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
609 return -EFAULT;
610 return 0;
611
612 }
613
614
615
616 static const struct net_device_ops hdlcdrv_netdev = {
617 .ndo_open = hdlcdrv_open,
618 .ndo_stop = hdlcdrv_close,
619 .ndo_start_xmit = hdlcdrv_send_packet,
620 .ndo_do_ioctl = hdlcdrv_ioctl,
621 .ndo_set_mac_address = hdlcdrv_set_mac_address,
622 };
623
624
625
626
627 static void hdlcdrv_setup(struct net_device *dev)
628 {
629 static const struct hdlcdrv_channel_params dflt_ch_params = {
630 20, 2, 10, 40, 0
631 };
632 struct hdlcdrv_state *s = netdev_priv(dev);
633
634
635
636
637 s->ch_params = dflt_ch_params;
638 s->ptt_keyed = 0;
639
640 spin_lock_init(&s->hdlcrx.hbuf.lock);
641 s->hdlcrx.hbuf.rd = s->hdlcrx.hbuf.wr = 0;
642 s->hdlcrx.in_hdlc_rx = 0;
643 s->hdlcrx.rx_state = 0;
644
645 spin_lock_init(&s->hdlctx.hbuf.lock);
646 s->hdlctx.hbuf.rd = s->hdlctx.hbuf.wr = 0;
647 s->hdlctx.in_hdlc_tx = 0;
648 s->hdlctx.tx_state = 1;
649 s->hdlctx.numflags = 0;
650 s->hdlctx.bitstream = s->hdlctx.bitbuf = s->hdlctx.numbits = 0;
651 s->hdlctx.ptt = 0;
652 s->hdlctx.slotcnt = s->ch_params.slottime;
653 s->hdlctx.calibrate = 0;
654
655 #ifdef HDLCDRV_DEBUG
656 s->bitbuf_channel.rd = s->bitbuf_channel.wr = 0;
657 s->bitbuf_channel.shreg = 0x80;
658
659 s->bitbuf_hdlc.rd = s->bitbuf_hdlc.wr = 0;
660 s->bitbuf_hdlc.shreg = 0x80;
661 #endif
662
663
664
665
666 s->skb = NULL;
667
668 dev->netdev_ops = &hdlcdrv_netdev;
669 dev->header_ops = &ax25_header_ops;
670
671 dev->type = ARPHRD_AX25;
672 dev->hard_header_len = AX25_MAX_HEADER_LEN + AX25_BPQ_HEADER_LEN;
673 dev->mtu = AX25_DEF_PACLEN;
674 dev->addr_len = AX25_ADDR_LEN;
675 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
676 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
677 dev->tx_queue_len = 16;
678 }
679
680
681 struct net_device *hdlcdrv_register(const struct hdlcdrv_ops *ops,
682 unsigned int privsize, const char *ifname,
683 unsigned int baseaddr, unsigned int irq,
684 unsigned int dma)
685 {
686 struct net_device *dev;
687 struct hdlcdrv_state *s;
688 int err;
689
690 BUG_ON(ops == NULL);
691
692 if (privsize < sizeof(struct hdlcdrv_state))
693 privsize = sizeof(struct hdlcdrv_state);
694
695 dev = alloc_netdev(privsize, ifname, NET_NAME_UNKNOWN, hdlcdrv_setup);
696 if (!dev)
697 return ERR_PTR(-ENOMEM);
698
699
700
701
702 s = netdev_priv(dev);
703 s->magic = HDLCDRV_MAGIC;
704 s->ops = ops;
705 dev->base_addr = baseaddr;
706 dev->irq = irq;
707 dev->dma = dma;
708
709 err = register_netdev(dev);
710 if (err < 0) {
711 printk(KERN_WARNING "hdlcdrv: cannot register net "
712 "device %s\n", dev->name);
713 free_netdev(dev);
714 dev = ERR_PTR(err);
715 }
716 return dev;
717 }
718
719
720
721 void hdlcdrv_unregister(struct net_device *dev)
722 {
723 struct hdlcdrv_state *s = netdev_priv(dev);
724
725 BUG_ON(s->magic != HDLCDRV_MAGIC);
726
727 if (s->opened && s->ops->close)
728 s->ops->close(dev);
729 unregister_netdev(dev);
730
731 free_netdev(dev);
732 }
733
734
735
736 EXPORT_SYMBOL(hdlcdrv_receiver);
737 EXPORT_SYMBOL(hdlcdrv_transmitter);
738 EXPORT_SYMBOL(hdlcdrv_arbitrate);
739 EXPORT_SYMBOL(hdlcdrv_register);
740 EXPORT_SYMBOL(hdlcdrv_unregister);
741
742
743
744 static int __init hdlcdrv_init_driver(void)
745 {
746 printk(KERN_INFO "hdlcdrv: (C) 1996-2000 Thomas Sailer HB9JNX/AE4WA\n");
747 printk(KERN_INFO "hdlcdrv: version 0.8\n");
748 return 0;
749 }
750
751
752
753 static void __exit hdlcdrv_cleanup_driver(void)
754 {
755 printk(KERN_INFO "hdlcdrv: cleanup\n");
756 }
757
758
759
760 MODULE_AUTHOR("Thomas M. Sailer, sailer@ife.ee.ethz.ch, hb9jnx@hb9w.che.eu");
761 MODULE_DESCRIPTION("Packet Radio network interface HDLC encoder/decoder");
762 MODULE_LICENSE("GPL");
763 module_init(hdlcdrv_init_driver);
764 module_exit(hdlcdrv_cleanup_driver);
765
766