root/drivers/net/wimax/i2400m/fw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. i2400m_bm_cmd_prepare
  2. i2400m_zrealloc_2x
  3. i2400m_barker_db_add
  4. i2400m_barker_db_exit
  5. i2400m_barker_db_known_barkers
  6. i2400m_barker_db_init
  7. i2400m_is_boot_barker
  8. __i2400m_bm_ack_verify
  9. i2400m_bm_cmd
  10. i2400m_download_chunk
  11. i2400m_dnload_bcf
  12. i2400m_boot_is_signed
  13. i2400m_dnload_finalize
  14. i2400m_bootrom_init
  15. i2400m_read_mac_addr
  16. i2400m_dnload_init_nonsigned
  17. i2400m_dnload_init_signed
  18. i2400m_dnload_init
  19. i2400m_fw_hdr_check
  20. i2400m_fw_check
  21. i2400m_bcf_hdr_match
  22. i2400m_bcf_hdr_find
  23. i2400m_fw_dnload
  24. i2400m_fw_bootstrap
  25. i2400m_fw_destroy
  26. i2400m_fw_get
  27. i2400m_fw_put
  28. i2400m_dev_bootstrap
  29. i2400m_fw_cache
  30. i2400m_fw_uncache

   1 /*
   2  * Intel Wireless WiMAX Connection 2400m
   3  * Firmware uploader
   4  *
   5  *
   6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
   7  *
   8  * Redistribution and use in source and binary forms, with or without
   9  * modification, are permitted provided that the following conditions
  10  * are met:
  11  *
  12  *   * Redistributions of source code must retain the above copyright
  13  *     notice, this list of conditions and the following disclaimer.
  14  *   * Redistributions in binary form must reproduce the above copyright
  15  *     notice, this list of conditions and the following disclaimer in
  16  *     the documentation and/or other materials provided with the
  17  *     distribution.
  18  *   * Neither the name of Intel Corporation nor the names of its
  19  *     contributors may be used to endorse or promote products derived
  20  *     from this software without specific prior written permission.
  21  *
  22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33  *
  34  *
  35  * Intel Corporation <linux-wimax@intel.com>
  36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
  37  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  38  *  - Initial implementation
  39  *
  40  *
  41  * THE PROCEDURE
  42  *
  43  * The 2400m and derived devices work in two modes: boot-mode or
  44  * normal mode. In boot mode we can execute only a handful of commands
  45  * targeted at uploading the firmware and launching it.
  46  *
  47  * The 2400m enters boot mode when it is first connected to the
  48  * system, when it crashes and when you ask it to reboot. There are
  49  * two submodes of the boot mode: signed and non-signed. Signed takes
  50  * firmwares signed with a certain private key, non-signed takes any
  51  * firmware. Normal hardware takes only signed firmware.
  52  *
  53  * On boot mode, in USB, we write to the device using the bulk out
  54  * endpoint and read from it in the notification endpoint.
  55  *
  56  * Upon entrance to boot mode, the device sends (preceded with a few
  57  * zero length packets (ZLPs) on the notification endpoint in USB) a
  58  * reboot barker (4 le32 words with the same value). We ack it by
  59  * sending the same barker to the device. The device acks with a
  60  * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
  61  * then is fully booted. At this point we can upload the firmware.
  62  *
  63  * Note that different iterations of the device and EEPROM
  64  * configurations will send different [re]boot barkers; these are
  65  * collected in i2400m_barker_db along with the firmware
  66  * characteristics they require.
  67  *
  68  * This process is accomplished by the i2400m_bootrom_init()
  69  * function. All the device interaction happens through the
  70  * i2400m_bm_cmd() [boot mode command]. Special return values will
  71  * indicate if the device did reset during the process.
  72  *
  73  * After this, we read the MAC address and then (if needed)
  74  * reinitialize the device. We need to read it ahead of time because
  75  * in the future, we might not upload the firmware until userspace
  76  * 'ifconfig up's the device.
  77  *
  78  * We can then upload the firmware file. The file is composed of a BCF
  79  * header (basic data, keys and signatures) and a list of write
  80  * commands and payloads. Optionally more BCF headers might follow the
  81  * main payload. We first upload the header [i2400m_dnload_init()] and
  82  * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
  83  * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
  84  * the new firmware [i2400m_dnload_finalize()].
  85  *
  86  * Once firmware is uploaded, we are good to go :)
  87  *
  88  * When we don't know in which mode we are, we first try by sending a
  89  * warm reset request that will take us to boot-mode. If we time out
  90  * waiting for a reboot barker, that means maybe we are already in
  91  * boot mode, so we send a reboot barker.
  92  *
  93  * COMMAND EXECUTION
  94  *
  95  * This code (and process) is single threaded; for executing commands,
  96  * we post a URB to the notification endpoint, post the command, wait
  97  * for data on the notification buffer. We don't need to worry about
  98  * others as we know we are the only ones in there.
  99  *
 100  * BACKEND IMPLEMENTATION
 101  *
 102  * This code is bus-generic; the bus-specific driver provides back end
 103  * implementations to send a boot mode command to the device and to
 104  * read an acknolwedgement from it (or an asynchronous notification)
 105  * from it.
 106  *
 107  * FIRMWARE LOADING
 108  *
 109  * Note that in some cases, we can't just load a firmware file (for
 110  * example, when resuming). For that, we might cache the firmware
 111  * file. Thus, when doing the bootstrap, if there is a cache firmware
 112  * file, it is used; if not, loading from disk is attempted.
 113  *
 114  * ROADMAP
 115  *
 116  * i2400m_barker_db_init              Called by i2400m_driver_init()
 117  *   i2400m_barker_db_add
 118  *
 119  * i2400m_barker_db_exit              Called by i2400m_driver_exit()
 120  *
 121  * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
 122  *   request_firmware
 123  *   i2400m_fw_bootstrap
 124  *     i2400m_fw_check
 125  *       i2400m_fw_hdr_check
 126  *     i2400m_fw_dnload
 127  *   release_firmware
 128  *
 129  * i2400m_fw_dnload
 130  *   i2400m_bootrom_init
 131  *     i2400m_bm_cmd
 132  *     i2400m_reset
 133  *   i2400m_dnload_init
 134  *     i2400m_dnload_init_signed
 135  *     i2400m_dnload_init_nonsigned
 136  *       i2400m_download_chunk
 137  *         i2400m_bm_cmd
 138  *   i2400m_dnload_bcf
 139  *     i2400m_bm_cmd
 140  *   i2400m_dnload_finalize
 141  *     i2400m_bm_cmd
 142  *
 143  * i2400m_bm_cmd
 144  *   i2400m->bus_bm_cmd_send()
 145  *   i2400m->bus_bm_wait_for_ack
 146  *   __i2400m_bm_ack_verify
 147  *     i2400m_is_boot_barker
 148  *
 149  * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
 150  *                                    commands before sending
 151  *
 152  * i2400m_pm_notifier                 Called on Power Management events
 153  *   i2400m_fw_cache
 154  *   i2400m_fw_uncache
 155  */
 156 #include <linux/firmware.h>
 157 #include <linux/sched.h>
 158 #include <linux/slab.h>
 159 #include <linux/usb.h>
 160 #include <linux/export.h>
 161 #include "i2400m.h"
 162 
 163 
 164 #define D_SUBMODULE fw
 165 #include "debug-levels.h"
 166 
 167 
 168 static const __le32 i2400m_ACK_BARKER[4] = {
 169         cpu_to_le32(I2400M_ACK_BARKER),
 170         cpu_to_le32(I2400M_ACK_BARKER),
 171         cpu_to_le32(I2400M_ACK_BARKER),
 172         cpu_to_le32(I2400M_ACK_BARKER)
 173 };
 174 
 175 
 176 /**
 177  * Prepare a boot-mode command for delivery
 178  *
 179  * @cmd: pointer to bootrom header to prepare
 180  *
 181  * Computes checksum if so needed. After calling this function, DO NOT
 182  * modify the command or header as the checksum won't work anymore.
 183  *
 184  * We do it from here because some times we cannot do it in the
 185  * original context the command was sent (it is a const), so when we
 186  * copy it to our staging buffer, we add the checksum there.
 187  */
 188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
 189 {
 190         if (i2400m_brh_get_use_checksum(cmd)) {
 191                 int i;
 192                 u32 checksum = 0;
 193                 const u32 *checksum_ptr = (void *) cmd->payload;
 194                 for (i = 0; i < cmd->data_size / 4; i++)
 195                         checksum += cpu_to_le32(*checksum_ptr++);
 196                 checksum += cmd->command + cmd->target_addr + cmd->data_size;
 197                 cmd->block_checksum = cpu_to_le32(checksum);
 198         }
 199 }
 200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
 201 
 202 
 203 /*
 204  * Database of known barkers.
 205  *
 206  * A barker is what the device sends indicating he is ready to be
 207  * bootloaded. Different versions of the device will send different
 208  * barkers. Depending on the barker, it might mean the device wants
 209  * some kind of firmware or the other.
 210  */
 211 static struct i2400m_barker_db {
 212         __le32 data[4];
 213 } *i2400m_barker_db;
 214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
 215 
 216 
 217 static
 218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
 219                        gfp_t gfp_flags)
 220 {
 221         size_t old_count = *_count,
 222                 new_count = old_count ? 2 * old_count : 2,
 223                 old_size = el_size * old_count,
 224                 new_size = el_size * new_count;
 225         void *nptr = krealloc(*ptr, new_size, gfp_flags);
 226         if (nptr) {
 227                 /* zero the other half or the whole thing if old_count
 228                  * was zero */
 229                 if (old_size == 0)
 230                         memset(nptr, 0, new_size);
 231                 else
 232                         memset(nptr + old_size, 0, old_size);
 233                 *_count = new_count;
 234                 *ptr = nptr;
 235                 return 0;
 236         } else
 237                 return -ENOMEM;
 238 }
 239 
 240 
 241 /*
 242  * Add a barker to the database
 243  *
 244  * This cannot used outside of this module and only at at module_init
 245  * time. This is to avoid the need to do locking.
 246  */
 247 static
 248 int i2400m_barker_db_add(u32 barker_id)
 249 {
 250         int result;
 251 
 252         struct i2400m_barker_db *barker;
 253         if (i2400m_barker_db_used >= i2400m_barker_db_size) {
 254                 result = i2400m_zrealloc_2x(
 255                         (void **) &i2400m_barker_db, &i2400m_barker_db_size,
 256                         sizeof(i2400m_barker_db[0]), GFP_KERNEL);
 257                 if (result < 0)
 258                         return result;
 259         }
 260         barker = i2400m_barker_db + i2400m_barker_db_used++;
 261         barker->data[0] = le32_to_cpu(barker_id);
 262         barker->data[1] = le32_to_cpu(barker_id);
 263         barker->data[2] = le32_to_cpu(barker_id);
 264         barker->data[3] = le32_to_cpu(barker_id);
 265         return 0;
 266 }
 267 
 268 
 269 void i2400m_barker_db_exit(void)
 270 {
 271         kfree(i2400m_barker_db);
 272         i2400m_barker_db = NULL;
 273         i2400m_barker_db_size = 0;
 274         i2400m_barker_db_used = 0;
 275 }
 276 
 277 
 278 /*
 279  * Helper function to add all the known stable barkers to the barker
 280  * database.
 281  */
 282 static
 283 int i2400m_barker_db_known_barkers(void)
 284 {
 285         int result;
 286 
 287         result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
 288         if (result < 0)
 289                 goto error_add;
 290         result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
 291         if (result < 0)
 292                 goto error_add;
 293         result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
 294         if (result < 0)
 295                 goto error_add;
 296 error_add:
 297        return result;
 298 }
 299 
 300 
 301 /*
 302  * Initialize the barker database
 303  *
 304  * This can only be used from the module_init function for this
 305  * module; this is to avoid the need to do locking.
 306  *
 307  * @options: command line argument with extra barkers to
 308  *     recognize. This is a comma-separated list of 32-bit hex
 309  *     numbers. They are appended to the existing list. Setting 0
 310  *     cleans the existing list and starts a new one.
 311  */
 312 int i2400m_barker_db_init(const char *_options)
 313 {
 314         int result;
 315         char *options = NULL, *options_orig, *token;
 316 
 317         i2400m_barker_db = NULL;
 318         i2400m_barker_db_size = 0;
 319         i2400m_barker_db_used = 0;
 320 
 321         result = i2400m_barker_db_known_barkers();
 322         if (result < 0)
 323                 goto error_add;
 324         /* parse command line options from i2400m.barkers */
 325         if (_options != NULL) {
 326                 unsigned barker;
 327 
 328                 options_orig = kstrdup(_options, GFP_KERNEL);
 329                 if (options_orig == NULL) {
 330                         result = -ENOMEM;
 331                         goto error_parse;
 332                 }
 333                 options = options_orig;
 334 
 335                 while ((token = strsep(&options, ",")) != NULL) {
 336                         if (*token == '\0')     /* eat joint commas */
 337                                 continue;
 338                         if (sscanf(token, "%x", &barker) != 1
 339                             || barker > 0xffffffff) {
 340                                 printk(KERN_ERR "%s: can't recognize "
 341                                        "i2400m.barkers value '%s' as "
 342                                        "a 32-bit number\n",
 343                                        __func__, token);
 344                                 result = -EINVAL;
 345                                 goto error_parse;
 346                         }
 347                         if (barker == 0) {
 348                                 /* clean list and start new */
 349                                 i2400m_barker_db_exit();
 350                                 continue;
 351                         }
 352                         result = i2400m_barker_db_add(barker);
 353                         if (result < 0)
 354                                 goto error_parse_add;
 355                 }
 356                 kfree(options_orig);
 357         }
 358         return 0;
 359 
 360 error_parse_add:
 361 error_parse:
 362         kfree(options_orig);
 363 error_add:
 364         kfree(i2400m_barker_db);
 365         return result;
 366 }
 367 
 368 
 369 /*
 370  * Recognize a boot barker
 371  *
 372  * @buf: buffer where the boot barker.
 373  * @buf_size: size of the buffer (has to be 16 bytes). It is passed
 374  *     here so the function can check it for the caller.
 375  *
 376  * Note that as a side effect, upon identifying the obtained boot
 377  * barker, this function will set i2400m->barker to point to the right
 378  * barker database entry. Subsequent calls to the function will result
 379  * in verifying that the same type of boot barker is returned when the
 380  * device [re]boots (as long as the same device instance is used).
 381  *
 382  * Return: 0 if @buf matches a known boot barker. -ENOENT if the
 383  *     buffer in @buf doesn't match any boot barker in the database or
 384  *     -EILSEQ if the buffer doesn't have the right size.
 385  */
 386 int i2400m_is_boot_barker(struct i2400m *i2400m,
 387                           const void *buf, size_t buf_size)
 388 {
 389         int result;
 390         struct device *dev = i2400m_dev(i2400m);
 391         struct i2400m_barker_db *barker;
 392         int i;
 393 
 394         result = -ENOENT;
 395         if (buf_size != sizeof(i2400m_barker_db[i].data))
 396                 return result;
 397 
 398         /* Short circuit if we have already discovered the barker
 399          * associated with the device. */
 400         if (i2400m->barker &&
 401             !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data)))
 402                 return 0;
 403 
 404         for (i = 0; i < i2400m_barker_db_used; i++) {
 405                 barker = &i2400m_barker_db[i];
 406                 BUILD_BUG_ON(sizeof(barker->data) != 16);
 407                 if (memcmp(buf, barker->data, sizeof(barker->data)))
 408                         continue;
 409 
 410                 if (i2400m->barker == NULL) {
 411                         i2400m->barker = barker;
 412                         d_printf(1, dev, "boot barker set to #%u/%08x\n",
 413                                  i, le32_to_cpu(barker->data[0]));
 414                         if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
 415                                 i2400m->sboot = 0;
 416                         else
 417                                 i2400m->sboot = 1;
 418                 } else if (i2400m->barker != barker) {
 419                         dev_err(dev, "HW inconsistency: device "
 420                                 "reports a different boot barker "
 421                                 "than set (from %08x to %08x)\n",
 422                                 le32_to_cpu(i2400m->barker->data[0]),
 423                                 le32_to_cpu(barker->data[0]));
 424                         result = -EIO;
 425                 } else
 426                         d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
 427                                  i, le32_to_cpu(barker->data[0]));
 428                 result = 0;
 429                 break;
 430         }
 431         return result;
 432 }
 433 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
 434 
 435 
 436 /*
 437  * Verify the ack data received
 438  *
 439  * Given a reply to a boot mode command, chew it and verify everything
 440  * is ok.
 441  *
 442  * @opcode: opcode which generated this ack. For error messages.
 443  * @ack: pointer to ack data we received
 444  * @ack_size: size of that data buffer
 445  * @flags: I2400M_BM_CMD_* flags we called the command with.
 446  *
 447  * Way too long function -- maybe it should be further split
 448  */
 449 static
 450 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
 451                                struct i2400m_bootrom_header *ack,
 452                                size_t ack_size, int flags)
 453 {
 454         ssize_t result = -ENOMEM;
 455         struct device *dev = i2400m_dev(i2400m);
 456 
 457         d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
 458                   i2400m, opcode, ack, ack_size);
 459         if (ack_size < sizeof(*ack)) {
 460                 result = -EIO;
 461                 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
 462                         "return enough data (%zu bytes vs %zu expected)\n",
 463                         opcode, ack_size, sizeof(*ack));
 464                 goto error_ack_short;
 465         }
 466         result = i2400m_is_boot_barker(i2400m, ack, ack_size);
 467         if (result >= 0) {
 468                 result = -ERESTARTSYS;
 469                 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
 470                 goto error_reboot;
 471         }
 472         if (ack_size == sizeof(i2400m_ACK_BARKER)
 473                  && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
 474                 result = -EISCONN;
 475                 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
 476                          opcode);
 477                 goto error_reboot_ack;
 478         }
 479         result = 0;
 480         if (flags & I2400M_BM_CMD_RAW)
 481                 goto out_raw;
 482         ack->data_size = le32_to_cpu(ack->data_size);
 483         ack->target_addr = le32_to_cpu(ack->target_addr);
 484         ack->block_checksum = le32_to_cpu(ack->block_checksum);
 485         d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
 486                  "response %u csum %u rr %u da %u\n",
 487                  opcode, i2400m_brh_get_opcode(ack),
 488                  i2400m_brh_get_response(ack),
 489                  i2400m_brh_get_use_checksum(ack),
 490                  i2400m_brh_get_response_required(ack),
 491                  i2400m_brh_get_direct_access(ack));
 492         result = -EIO;
 493         if (i2400m_brh_get_signature(ack) != 0xcbbc) {
 494                 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
 495                         "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
 496                 goto error_ack_signature;
 497         }
 498         if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
 499                 dev_err(dev, "boot-mode cmd %d: HW BUG? "
 500                         "received response for opcode %u, expected %u\n",
 501                         opcode, i2400m_brh_get_opcode(ack), opcode);
 502                 goto error_ack_opcode;
 503         }
 504         if (i2400m_brh_get_response(ack) != 0) {        /* failed? */
 505                 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
 506                         opcode, i2400m_brh_get_response(ack));
 507                 goto error_ack_failed;
 508         }
 509         if (ack_size < ack->data_size + sizeof(*ack)) {
 510                 dev_err(dev, "boot-mode cmd %d: SW BUG "
 511                         "driver provided only %zu bytes for %zu bytes "
 512                         "of data\n", opcode, ack_size,
 513                         (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
 514                 goto error_ack_short_buffer;
 515         }
 516         result = ack_size;
 517         /* Don't you love this stack of empty targets? Well, I don't
 518          * either, but it helps track exactly who comes in here and
 519          * why :) */
 520 error_ack_short_buffer:
 521 error_ack_failed:
 522 error_ack_opcode:
 523 error_ack_signature:
 524 out_raw:
 525 error_reboot_ack:
 526 error_reboot:
 527 error_ack_short:
 528         d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
 529                 i2400m, opcode, ack, ack_size, (int) result);
 530         return result;
 531 }
 532 
 533 
 534 /**
 535  * i2400m_bm_cmd - Execute a boot mode command
 536  *
 537  * @cmd: buffer containing the command data (pointing at the header).
 538  *     This data can be ANYWHERE (for USB, we will copy it to an
 539  *     specific buffer). Make sure everything is in proper little
 540  *     endian.
 541  *
 542  *     A raw buffer can be also sent, just cast it and set flags to
 543  *     I2400M_BM_CMD_RAW.
 544  *
 545  *     This function will generate a checksum for you if the
 546  *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
 547  *     is set).
 548  *
 549  *     You can use the i2400m->bm_cmd_buf to stage your commands and
 550  *     send them.
 551  *
 552  *     If NULL, no command is sent (we just wait for an ack).
 553  *
 554  * @cmd_size: size of the command. Will be auto padded to the
 555  *     bus-specific drivers padding requirements.
 556  *
 557  * @ack: buffer where to place the acknowledgement. If it is a regular
 558  *     command response, all fields will be returned with the right,
 559  *     native endianess.
 560  *
 561  *     You *cannot* use i2400m->bm_ack_buf for this buffer.
 562  *
 563  * @ack_size: size of @ack, 16 aligned; you need to provide at least
 564  *     sizeof(*ack) bytes and then enough to contain the return data
 565  *     from the command
 566  *
 567  * @flags: see I2400M_BM_CMD_* above.
 568  *
 569  * @returns: bytes received by the notification; if < 0, an errno code
 570  *     denoting an error or:
 571  *
 572  *     -ERESTARTSYS  The device has rebooted
 573  *
 574  * Executes a boot-mode command and waits for a response, doing basic
 575  * validation on it; if a zero length response is received, it retries
 576  * waiting for a response until a non-zero one is received (timing out
 577  * after %I2400M_BOOT_RETRIES retries).
 578  */
 579 static
 580 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
 581                       const struct i2400m_bootrom_header *cmd, size_t cmd_size,
 582                       struct i2400m_bootrom_header *ack, size_t ack_size,
 583                       int flags)
 584 {
 585         ssize_t result = -ENOMEM, rx_bytes;
 586         struct device *dev = i2400m_dev(i2400m);
 587         int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
 588 
 589         d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
 590                   i2400m, cmd, cmd_size, ack, ack_size);
 591         BUG_ON(ack_size < sizeof(*ack));
 592         BUG_ON(i2400m->boot_mode == 0);
 593 
 594         if (cmd != NULL) {              /* send the command */
 595                 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
 596                 if (result < 0)
 597                         goto error_cmd_send;
 598                 if ((flags & I2400M_BM_CMD_RAW) == 0)
 599                         d_printf(5, dev,
 600                                  "boot-mode cmd %d csum %u rr %u da %u: "
 601                                  "addr 0x%04x size %u block csum 0x%04x\n",
 602                                  opcode, i2400m_brh_get_use_checksum(cmd),
 603                                  i2400m_brh_get_response_required(cmd),
 604                                  i2400m_brh_get_direct_access(cmd),
 605                                  cmd->target_addr, cmd->data_size,
 606                                  cmd->block_checksum);
 607         }
 608         result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
 609         if (result < 0) {
 610                 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
 611                         opcode, (int) result);  /* bah, %zd doesn't work */
 612                 goto error_wait_for_ack;
 613         }
 614         rx_bytes = result;
 615         /* verify the ack and read more if necessary [result is the
 616          * final amount of bytes we get in the ack]  */
 617         result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
 618         if (result < 0)
 619                 goto error_bad_ack;
 620         /* Don't you love this stack of empty targets? Well, I don't
 621          * either, but it helps track exactly who comes in here and
 622          * why :) */
 623         result = rx_bytes;
 624 error_bad_ack:
 625 error_wait_for_ack:
 626 error_cmd_send:
 627         d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
 628                 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
 629         return result;
 630 }
 631 
 632 
 633 /**
 634  * i2400m_download_chunk - write a single chunk of data to the device's memory
 635  *
 636  * @i2400m: device descriptor
 637  * @buf: the buffer to write
 638  * @buf_len: length of the buffer to write
 639  * @addr: address in the device memory space
 640  * @direct: bootrom write mode
 641  * @do_csum: should a checksum validation be performed
 642  */
 643 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
 644                                  size_t __chunk_len, unsigned long addr,
 645                                  unsigned int direct, unsigned int do_csum)
 646 {
 647         int ret;
 648         size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
 649         struct device *dev = i2400m_dev(i2400m);
 650         struct {
 651                 struct i2400m_bootrom_header cmd;
 652                 u8 cmd_payload[];
 653         } __packed *buf;
 654         struct i2400m_bootrom_header ack;
 655 
 656         d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 657                   "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
 658                   addr, direct, do_csum);
 659         buf = i2400m->bm_cmd_buf;
 660         memcpy(buf->cmd_payload, chunk, __chunk_len);
 661         memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
 662 
 663         buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
 664                                               __chunk_len & 0x3 ? 0 : do_csum,
 665                                               __chunk_len & 0xf ? 0 : direct);
 666         buf->cmd.target_addr = cpu_to_le32(addr);
 667         buf->cmd.data_size = cpu_to_le32(__chunk_len);
 668         ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
 669                             &ack, sizeof(ack), 0);
 670         if (ret >= 0)
 671                 ret = 0;
 672         d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 673                 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
 674                 addr, direct, do_csum, ret);
 675         return ret;
 676 }
 677 
 678 
 679 /*
 680  * Download a BCF file's sections to the device
 681  *
 682  * @i2400m: device descriptor
 683  * @bcf: pointer to firmware data (first header followed by the
 684  *     payloads). Assumed verified and consistent.
 685  * @bcf_len: length (in bytes) of the @bcf buffer.
 686  *
 687  * Returns: < 0 errno code on error or the offset to the jump instruction.
 688  *
 689  * Given a BCF file, downloads each section (a command and a payload)
 690  * to the device's address space. Actually, it just executes each
 691  * command i the BCF file.
 692  *
 693  * The section size has to be aligned to 4 bytes AND the padding has
 694  * to be taken from the firmware file, as the signature takes it into
 695  * account.
 696  */
 697 static
 698 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
 699                           const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
 700 {
 701         ssize_t ret;
 702         struct device *dev = i2400m_dev(i2400m);
 703         size_t offset,          /* iterator offset */
 704                 data_size,      /* Size of the data payload */
 705                 section_size,   /* Size of the whole section (cmd + payload) */
 706                 section = 1;
 707         const struct i2400m_bootrom_header *bh;
 708         struct i2400m_bootrom_header ack;
 709 
 710         d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
 711                   i2400m, bcf, bcf_len);
 712         /* Iterate over the command blocks in the BCF file that start
 713          * after the header */
 714         offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
 715         while (1) {     /* start sending the file */
 716                 bh = (void *) bcf + offset;
 717                 data_size = le32_to_cpu(bh->data_size);
 718                 section_size = ALIGN(sizeof(*bh) + data_size, 4);
 719                 d_printf(7, dev,
 720                          "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
 721                          section, offset, sizeof(*bh) + data_size,
 722                          le32_to_cpu(bh->target_addr));
 723                 /*
 724                  * We look for JUMP cmd from the bootmode header,
 725                  * either I2400M_BRH_SIGNED_JUMP for secure boot
 726                  * or I2400M_BRH_JUMP for unsecure boot, the last chunk
 727                  * should be the bootmode header with JUMP cmd.
 728                  */
 729                 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
 730                         i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
 731                         d_printf(5, dev,  "jump found @%zu\n", offset);
 732                         break;
 733                 }
 734                 if (offset + section_size > bcf_len) {
 735                         dev_err(dev, "fw %s: bad section #%zu, "
 736                                 "end (@%zu) beyond EOF (@%zu)\n",
 737                                 i2400m->fw_name, section,
 738                                 offset + section_size,  bcf_len);
 739                         ret = -EINVAL;
 740                         goto error_section_beyond_eof;
 741                 }
 742                 __i2400m_msleep(20);
 743                 ret = i2400m_bm_cmd(i2400m, bh, section_size,
 744                                     &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 745                 if (ret < 0) {
 746                         dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
 747                                 "failed %d\n", i2400m->fw_name, section,
 748                                 offset, sizeof(*bh) + data_size, (int) ret);
 749                         goto error_send;
 750                 }
 751                 offset += section_size;
 752                 section++;
 753         }
 754         ret = offset;
 755 error_section_beyond_eof:
 756 error_send:
 757         d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
 758                 i2400m, bcf, bcf_len, (int) ret);
 759         return ret;
 760 }
 761 
 762 
 763 /*
 764  * Indicate if the device emitted a reboot barker that indicates
 765  * "signed boot"
 766  */
 767 static
 768 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
 769 {
 770         return likely(i2400m->sboot);
 771 }
 772 
 773 
 774 /*
 775  * Do the final steps of uploading firmware
 776  *
 777  * @bcf_hdr: BCF header we are actually using
 778  * @bcf: pointer to the firmware image (which matches the first header
 779  *     that is followed by the actual payloads).
 780  * @offset: [byte] offset into @bcf for the command we need to send.
 781  *
 782  * Depending on the boot mode (signed vs non-signed), different
 783  * actions need to be taken.
 784  */
 785 static
 786 int i2400m_dnload_finalize(struct i2400m *i2400m,
 787                            const struct i2400m_bcf_hdr *bcf_hdr,
 788                            const struct i2400m_bcf_hdr *bcf, size_t offset)
 789 {
 790         int ret = 0;
 791         struct device *dev = i2400m_dev(i2400m);
 792         struct i2400m_bootrom_header *cmd, ack;
 793         struct {
 794                 struct i2400m_bootrom_header cmd;
 795                 u8 cmd_pl[0];
 796         } __packed *cmd_buf;
 797         size_t signature_block_offset, signature_block_size;
 798 
 799         d_fnstart(3, dev, "offset %zu\n", offset);
 800         cmd = (void *) bcf + offset;
 801         if (i2400m_boot_is_signed(i2400m) == 0) {
 802                 struct i2400m_bootrom_header jump_ack;
 803                 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
 804                         le32_to_cpu(cmd->target_addr));
 805                 cmd_buf = i2400m->bm_cmd_buf;
 806                 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 807                 cmd = &cmd_buf->cmd;
 808                 /* now cmd points to the actual bootrom_header in cmd_buf */
 809                 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
 810                 cmd->data_size = 0;
 811                 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 812                                     &jump_ack, sizeof(jump_ack), 0);
 813         } else {
 814                 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
 815                          le32_to_cpu(cmd->target_addr));
 816                 cmd_buf = i2400m->bm_cmd_buf;
 817                 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 818                 signature_block_offset =
 819                         sizeof(*bcf_hdr)
 820                         + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
 821                         + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
 822                 signature_block_size =
 823                         le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
 824                 memcpy(cmd_buf->cmd_pl,
 825                        (void *) bcf_hdr + signature_block_offset,
 826                        signature_block_size);
 827                 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
 828                                     sizeof(cmd_buf->cmd) + signature_block_size,
 829                                     &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 830         }
 831         d_fnend(3, dev, "returning %d\n", ret);
 832         return ret;
 833 }
 834 
 835 
 836 /**
 837  * i2400m_bootrom_init - Reboots a powered device into boot mode
 838  *
 839  * @i2400m: device descriptor
 840  * @flags:
 841  *      I2400M_BRI_SOFT: a reboot barker has been seen
 842  *          already, so don't wait for it.
 843  *
 844  *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
 845  *          for a reboot barker notification. This is a one shot; if
 846  *          the state machine needs to send a reboot command it will.
 847  *
 848  * Returns:
 849  *
 850  *     < 0 errno code on error, 0 if ok.
 851  *
 852  * Description:
 853  *
 854  * Tries hard enough to put the device in boot-mode. There are two
 855  * main phases to this:
 856  *
 857  * a. (1) send a reboot command and (2) get a reboot barker
 858  *
 859  * b. (1) echo/ack the reboot sending the reboot barker back and (2)
 860  *        getting an ack barker in return
 861  *
 862  * We want to skip (a) in some cases [soft]. The state machine is
 863  * horrible, but it is basically: on each phase, send what has to be
 864  * sent (if any), wait for the answer and act on the answer. We might
 865  * have to backtrack and retry, so we keep a max tries counter for
 866  * that.
 867  *
 868  * It sucks because we don't know ahead of time which is going to be
 869  * the reboot barker (the device might send different ones depending
 870  * on its EEPROM config) and once the device reboots and waits for the
 871  * echo/ack reboot barker being sent back, it doesn't understand
 872  * anything else. So we can be left at the point where we don't know
 873  * what to send to it -- cold reset and bus reset seem to have little
 874  * effect. So the function iterates (in this case) through all the
 875  * known barkers and tries them all until an ACK is
 876  * received. Otherwise, it gives up.
 877  *
 878  * If we get a timeout after sending a warm reset, we do it again.
 879  */
 880 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
 881 {
 882         int result;
 883         struct device *dev = i2400m_dev(i2400m);
 884         struct i2400m_bootrom_header *cmd;
 885         struct i2400m_bootrom_header ack;
 886         int count = i2400m->bus_bm_retries;
 887         int ack_timeout_cnt = 1;
 888         unsigned i;
 889 
 890         BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
 891         BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
 892 
 893         d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
 894         result = -ENOMEM;
 895         cmd = i2400m->bm_cmd_buf;
 896         if (flags & I2400M_BRI_SOFT)
 897                 goto do_reboot_ack;
 898 do_reboot:
 899         ack_timeout_cnt = 1;
 900         if (--count < 0)
 901                 goto error_timeout;
 902         d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
 903                  count);
 904         if ((flags & I2400M_BRI_NO_REBOOT) == 0)
 905                 i2400m_reset(i2400m, I2400M_RT_WARM);
 906         result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
 907                                I2400M_BM_CMD_RAW);
 908         flags &= ~I2400M_BRI_NO_REBOOT;
 909         switch (result) {
 910         case -ERESTARTSYS:
 911                 /*
 912                  * at this point, i2400m_bm_cmd(), through
 913                  * __i2400m_bm_ack_process(), has updated
 914                  * i2400m->barker and we are good to go.
 915                  */
 916                 d_printf(4, dev, "device reboot: got reboot barker\n");
 917                 break;
 918         case -EISCONN:  /* we don't know how it got here...but we follow it */
 919                 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
 920                 goto do_reboot;
 921         case -ETIMEDOUT:
 922                 /*
 923                  * Device has timed out, we might be in boot mode
 924                  * already and expecting an ack; if we don't know what
 925                  * the barker is, we just send them all. Cold reset
 926                  * and bus reset don't work. Beats me.
 927                  */
 928                 if (i2400m->barker != NULL) {
 929                         dev_err(dev, "device boot: reboot barker timed out, "
 930                                 "trying (set) %08x echo/ack\n",
 931                                 le32_to_cpu(i2400m->barker->data[0]));
 932                         goto do_reboot_ack;
 933                 }
 934                 for (i = 0; i < i2400m_barker_db_used; i++) {
 935                         struct i2400m_barker_db *barker = &i2400m_barker_db[i];
 936                         memcpy(cmd, barker->data, sizeof(barker->data));
 937                         result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 938                                                &ack, sizeof(ack),
 939                                                I2400M_BM_CMD_RAW);
 940                         if (result == -EISCONN) {
 941                                 dev_warn(dev, "device boot: got ack barker "
 942                                          "after sending echo/ack barker "
 943                                          "#%d/%08x; rebooting j.i.c.\n",
 944                                          i, le32_to_cpu(barker->data[0]));
 945                                 flags &= ~I2400M_BRI_NO_REBOOT;
 946                                 goto do_reboot;
 947                         }
 948                 }
 949                 dev_err(dev, "device boot: tried all the echo/acks, could "
 950                         "not get device to respond; giving up");
 951                 result = -ESHUTDOWN;
 952         case -EPROTO:
 953         case -ESHUTDOWN:        /* dev is gone */
 954         case -EINTR:            /* user cancelled */
 955                 goto error_dev_gone;
 956         default:
 957                 dev_err(dev, "device reboot: error %d while waiting "
 958                         "for reboot barker - rebooting\n", result);
 959                 d_dump(1, dev, &ack, result);
 960                 goto do_reboot;
 961         }
 962         /* At this point we ack back with 4 REBOOT barkers and expect
 963          * 4 ACK barkers. This is ugly, as we send a raw command --
 964          * hence the cast. _bm_cmd() will catch the reboot ack
 965          * notification and report it as -EISCONN. */
 966 do_reboot_ack:
 967         d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
 968         memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
 969         result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 970                                &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 971         switch (result) {
 972         case -ERESTARTSYS:
 973                 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
 974                 if (--count < 0)
 975                         goto error_timeout;
 976                 goto do_reboot_ack;
 977         case -EISCONN:
 978                 d_printf(4, dev, "reboot ack: got ack barker - good\n");
 979                 break;
 980         case -ETIMEDOUT:        /* no response, maybe it is the other type? */
 981                 if (ack_timeout_cnt-- < 0) {
 982                         d_printf(4, dev, "reboot ack timedout: retrying\n");
 983                         goto do_reboot_ack;
 984                 } else {
 985                         dev_err(dev, "reboot ack timedout too long: "
 986                                 "trying reboot\n");
 987                         goto do_reboot;
 988                 }
 989                 break;
 990         case -EPROTO:
 991         case -ESHUTDOWN:        /* dev is gone */
 992                 goto error_dev_gone;
 993         default:
 994                 dev_err(dev, "device reboot ack: error %d while waiting for "
 995                         "reboot ack barker - rebooting\n", result);
 996                 goto do_reboot;
 997         }
 998         d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
 999         result = 0;
1000 exit_timeout:
1001 error_dev_gone:
1002         d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1003                 i2400m, flags, result);
1004         return result;
1005 
1006 error_timeout:
1007         dev_err(dev, "Timed out waiting for reboot ack\n");
1008         result = -ETIMEDOUT;
1009         goto exit_timeout;
1010 }
1011 
1012 
1013 /*
1014  * Read the MAC addr
1015  *
1016  * The position this function reads is fixed in device memory and
1017  * always available, even without firmware.
1018  *
1019  * Note we specify we want to read only six bytes, but provide space
1020  * for 16, as we always get it rounded up.
1021  */
1022 int i2400m_read_mac_addr(struct i2400m *i2400m)
1023 {
1024         int result;
1025         struct device *dev = i2400m_dev(i2400m);
1026         struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1027         struct i2400m_bootrom_header *cmd;
1028         struct {
1029                 struct i2400m_bootrom_header ack;
1030                 u8 ack_pl[16];
1031         } __packed ack_buf;
1032 
1033         d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1034         cmd = i2400m->bm_cmd_buf;
1035         cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1036         cmd->target_addr = cpu_to_le32(0x00203fe8);
1037         cmd->data_size = cpu_to_le32(6);
1038         result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1039                                &ack_buf.ack, sizeof(ack_buf), 0);
1040         if (result < 0) {
1041                 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1042                 goto error_read_mac;
1043         }
1044         d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1045         if (i2400m->bus_bm_mac_addr_impaired == 1) {
1046                 ack_buf.ack_pl[0] = 0x00;
1047                 ack_buf.ack_pl[1] = 0x16;
1048                 ack_buf.ack_pl[2] = 0xd3;
1049                 get_random_bytes(&ack_buf.ack_pl[3], 3);
1050                 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1051                         "mac addr is %pM\n", ack_buf.ack_pl);
1052                 result = 0;
1053         }
1054         net_dev->addr_len = ETH_ALEN;
1055         memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1056 error_read_mac:
1057         d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1058         return result;
1059 }
1060 
1061 
1062 /*
1063  * Initialize a non signed boot
1064  *
1065  * This implies sending some magic values to the device's memory. Note
1066  * we convert the values to little endian in the same array
1067  * declaration.
1068  */
1069 static
1070 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1071 {
1072         unsigned i = 0;
1073         int ret = 0;
1074         struct device *dev = i2400m_dev(i2400m);
1075         d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1076         if (i2400m->bus_bm_pokes_table) {
1077                 while (i2400m->bus_bm_pokes_table[i].address) {
1078                         ret = i2400m_download_chunk(
1079                                 i2400m,
1080                                 &i2400m->bus_bm_pokes_table[i].data,
1081                                 sizeof(i2400m->bus_bm_pokes_table[i].data),
1082                                 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1083                         if (ret < 0)
1084                                 break;
1085                         i++;
1086                 }
1087         }
1088         d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1089         return ret;
1090 }
1091 
1092 
1093 /*
1094  * Initialize the signed boot process
1095  *
1096  * @i2400m: device descriptor
1097  *
1098  * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1099  *     memory (it has gone through basic validation).
1100  *
1101  * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1102  *     rebooted.
1103  *
1104  * This writes the firmware BCF header to the device using the
1105  * HASH_PAYLOAD_ONLY command.
1106  */
1107 static
1108 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1109                               const struct i2400m_bcf_hdr *bcf_hdr)
1110 {
1111         int ret;
1112         struct device *dev = i2400m_dev(i2400m);
1113         struct {
1114                 struct i2400m_bootrom_header cmd;
1115                 struct i2400m_bcf_hdr cmd_pl;
1116         } __packed *cmd_buf;
1117         struct i2400m_bootrom_header ack;
1118 
1119         d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1120         cmd_buf = i2400m->bm_cmd_buf;
1121         cmd_buf->cmd.command =
1122                 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1123         cmd_buf->cmd.target_addr = 0;
1124         cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1125         memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1126         ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1127                             &ack, sizeof(ack), 0);
1128         if (ret >= 0)
1129                 ret = 0;
1130         d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1131         return ret;
1132 }
1133 
1134 
1135 /*
1136  * Initialize the firmware download at the device size
1137  *
1138  * Multiplex to the one that matters based on the device's mode
1139  * (signed or non-signed).
1140  */
1141 static
1142 int i2400m_dnload_init(struct i2400m *i2400m,
1143                        const struct i2400m_bcf_hdr *bcf_hdr)
1144 {
1145         int result;
1146         struct device *dev = i2400m_dev(i2400m);
1147 
1148         if (i2400m_boot_is_signed(i2400m)) {
1149                 d_printf(1, dev, "signed boot\n");
1150                 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1151                 if (result == -ERESTARTSYS)
1152                         return result;
1153                 if (result < 0)
1154                         dev_err(dev, "firmware %s: signed boot download "
1155                                 "initialization failed: %d\n",
1156                                 i2400m->fw_name, result);
1157         } else {
1158                 /* non-signed boot process without pokes */
1159                 d_printf(1, dev, "non-signed boot\n");
1160                 result = i2400m_dnload_init_nonsigned(i2400m);
1161                 if (result == -ERESTARTSYS)
1162                         return result;
1163                 if (result < 0)
1164                         dev_err(dev, "firmware %s: non-signed download "
1165                                 "initialization failed: %d\n",
1166                                 i2400m->fw_name, result);
1167         }
1168         return result;
1169 }
1170 
1171 
1172 /*
1173  * Run consistency tests on the firmware file and load up headers
1174  *
1175  * Check for the firmware being made for the i2400m device,
1176  * etc...These checks are mostly informative, as the device will make
1177  * them too; but the driver's response is more informative on what
1178  * went wrong.
1179  *
1180  * This will also look at all the headers present on the firmware
1181  * file, and update i2400m->fw_bcf_hdr to point to them.
1182  */
1183 static
1184 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1185                         const struct i2400m_bcf_hdr *bcf_hdr,
1186                         size_t index, size_t offset)
1187 {
1188         struct device *dev = i2400m_dev(i2400m);
1189 
1190         unsigned module_type, header_len, major_version, minor_version,
1191                 module_id, module_vendor, date, size;
1192 
1193         module_type = le32_to_cpu(bcf_hdr->module_type);
1194         header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1195         major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1196                 >> 16;
1197         minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1198         module_id = le32_to_cpu(bcf_hdr->module_id);
1199         module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1200         date = le32_to_cpu(bcf_hdr->date);
1201         size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1202 
1203         d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1204                  "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1205                  i2400m->fw_name, index, offset,
1206                  module_type, module_vendor, module_id,
1207                  major_version, minor_version, header_len, size, date);
1208 
1209         /* Hard errors */
1210         if (major_version != 1) {
1211                 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1212                         "v%u.%u not supported\n",
1213                         i2400m->fw_name, index, offset,
1214                         major_version, minor_version);
1215                 return -EBADF;
1216         }
1217 
1218         if (module_type != 6) {         /* built for the right hardware? */
1219                 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1220                         "type 0x%x; aborting\n",
1221                         i2400m->fw_name, index, offset,
1222                         module_type);
1223                 return -EBADF;
1224         }
1225 
1226         if (module_vendor != 0x8086) {
1227                 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1228                         "vendor 0x%x; aborting\n",
1229                         i2400m->fw_name, index, offset, module_vendor);
1230                 return -EBADF;
1231         }
1232 
1233         if (date < 0x20080300)
1234                 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1235                          "too old; unsupported\n",
1236                          i2400m->fw_name, index, offset, date);
1237         return 0;
1238 }
1239 
1240 
1241 /*
1242  * Run consistency tests on the firmware file and load up headers
1243  *
1244  * Check for the firmware being made for the i2400m device,
1245  * etc...These checks are mostly informative, as the device will make
1246  * them too; but the driver's response is more informative on what
1247  * went wrong.
1248  *
1249  * This will also look at all the headers present on the firmware
1250  * file, and update i2400m->fw_hdrs to point to them.
1251  */
1252 static
1253 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1254 {
1255         int result;
1256         struct device *dev = i2400m_dev(i2400m);
1257         size_t headers = 0;
1258         const struct i2400m_bcf_hdr *bcf_hdr;
1259         const void *itr, *next, *top;
1260         size_t slots = 0, used_slots = 0;
1261 
1262         for (itr = bcf, top = itr + bcf_size;
1263              itr < top;
1264              headers++, itr = next) {
1265                 size_t leftover, offset, header_len, size;
1266 
1267                 leftover = top - itr;
1268                 offset = itr - bcf;
1269                 if (leftover <= sizeof(*bcf_hdr)) {
1270                         dev_err(dev, "firmware %s: %zu B left at @%zx, "
1271                                 "not enough for BCF header\n",
1272                                 i2400m->fw_name, leftover, offset);
1273                         break;
1274                 }
1275                 bcf_hdr = itr;
1276                 /* Only the first header is supposed to be followed by
1277                  * payload */
1278                 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1279                 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1280                 if (headers == 0)
1281                         next = itr + size;
1282                 else
1283                         next = itr + header_len;
1284 
1285                 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1286                 if (result < 0)
1287                         continue;
1288                 if (used_slots + 1 >= slots) {
1289                         /* +1 -> we need to account for the one we'll
1290                          * occupy and at least an extra one for
1291                          * always being NULL */
1292                         result = i2400m_zrealloc_2x(
1293                                 (void **) &i2400m->fw_hdrs, &slots,
1294                                 sizeof(i2400m->fw_hdrs[0]),
1295                                 GFP_KERNEL);
1296                         if (result < 0)
1297                                 goto error_zrealloc;
1298                 }
1299                 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1300                 used_slots++;
1301         }
1302         if (headers == 0) {
1303                 dev_err(dev, "firmware %s: no usable headers found\n",
1304                         i2400m->fw_name);
1305                 result = -EBADF;
1306         } else
1307                 result = 0;
1308 error_zrealloc:
1309         return result;
1310 }
1311 
1312 
1313 /*
1314  * Match a barker to a BCF header module ID
1315  *
1316  * The device sends a barker which tells the firmware loader which
1317  * header in the BCF file has to be used. This does the matching.
1318  */
1319 static
1320 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1321                               const struct i2400m_bcf_hdr *bcf_hdr)
1322 {
1323         u32 barker = le32_to_cpu(i2400m->barker->data[0])
1324                 & 0x7fffffff;
1325         u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1326                 & 0x7fffffff;   /* high bit used for something else */
1327 
1328         /* special case for 5x50 */
1329         if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1330                 return 1;
1331         if (module_id == barker)
1332                 return 1;
1333         return 0;
1334 }
1335 
1336 static
1337 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1338 {
1339         struct device *dev = i2400m_dev(i2400m);
1340         const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1341         unsigned i = 0;
1342         u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1343 
1344         d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1345         if (barker == I2400M_NBOOT_BARKER) {
1346                 bcf_hdr = i2400m->fw_hdrs[0];
1347                 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1348                          "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1349                 return bcf_hdr;
1350         }
1351         for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1352                 bcf_hdr = *bcf_itr;
1353                 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1354                         d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1355                                  i, le32_to_cpu(bcf_hdr->module_id));
1356                         return bcf_hdr;
1357                 } else
1358                         d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1359                                  i, le32_to_cpu(bcf_hdr->module_id));
1360         }
1361         dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1362                 barker);
1363         return NULL;
1364 }
1365 
1366 
1367 /*
1368  * Download the firmware to the device
1369  *
1370  * @i2400m: device descriptor
1371  * @bcf: pointer to loaded (and minimally verified for consistency)
1372  *    firmware
1373  * @bcf_size: size of the @bcf buffer (header plus payloads)
1374  *
1375  * The process for doing this is described in this file's header.
1376  *
1377  * Note we only reinitialize boot-mode if the flags say so. Some hw
1378  * iterations need it, some don't. In any case, if we loop, we always
1379  * need to reinitialize the boot room, hence the flags modification.
1380  */
1381 static
1382 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1383                      size_t fw_size, enum i2400m_bri flags)
1384 {
1385         int ret = 0;
1386         struct device *dev = i2400m_dev(i2400m);
1387         int count = i2400m->bus_bm_retries;
1388         const struct i2400m_bcf_hdr *bcf_hdr;
1389         size_t bcf_size;
1390 
1391         d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1392                   i2400m, bcf, fw_size);
1393         i2400m->boot_mode = 1;
1394         wmb();          /* Make sure other readers see it */
1395 hw_reboot:
1396         if (count-- == 0) {
1397                 ret = -ERESTARTSYS;
1398                 dev_err(dev, "device rebooted too many times, aborting\n");
1399                 goto error_too_many_reboots;
1400         }
1401         if (flags & I2400M_BRI_MAC_REINIT) {
1402                 ret = i2400m_bootrom_init(i2400m, flags);
1403                 if (ret < 0) {
1404                         dev_err(dev, "bootrom init failed: %d\n", ret);
1405                         goto error_bootrom_init;
1406                 }
1407         }
1408         flags |= I2400M_BRI_MAC_REINIT;
1409 
1410         /*
1411          * Initialize the download, push the bytes to the device and
1412          * then jump to the new firmware. Note @ret is passed with the
1413          * offset of the jump instruction to _dnload_finalize()
1414          *
1415          * Note we need to use the BCF header in the firmware image
1416          * that matches the barker that the device sent when it
1417          * rebooted, so it has to be passed along.
1418          */
1419         ret = -EBADF;
1420         bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1421         if (bcf_hdr == NULL)
1422                 goto error_bcf_hdr_find;
1423 
1424         ret = i2400m_dnload_init(i2400m, bcf_hdr);
1425         if (ret == -ERESTARTSYS)
1426                 goto error_dev_rebooted;
1427         if (ret < 0)
1428                 goto error_dnload_init;
1429 
1430         /*
1431          * bcf_size refers to one header size plus the fw sections size
1432          * indicated by the header,ie. if there are other extended headers
1433          * at the tail, they are not counted
1434          */
1435         bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1436         ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1437         if (ret == -ERESTARTSYS)
1438                 goto error_dev_rebooted;
1439         if (ret < 0) {
1440                 dev_err(dev, "fw %s: download failed: %d\n",
1441                         i2400m->fw_name, ret);
1442                 goto error_dnload_bcf;
1443         }
1444 
1445         ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1446         if (ret == -ERESTARTSYS)
1447                 goto error_dev_rebooted;
1448         if (ret < 0) {
1449                 dev_err(dev, "fw %s: "
1450                         "download finalization failed: %d\n",
1451                         i2400m->fw_name, ret);
1452                 goto error_dnload_finalize;
1453         }
1454 
1455         d_printf(2, dev, "fw %s successfully uploaded\n",
1456                  i2400m->fw_name);
1457         i2400m->boot_mode = 0;
1458         wmb();          /* Make sure i2400m_msg_to_dev() sees boot_mode */
1459 error_dnload_finalize:
1460 error_dnload_bcf:
1461 error_dnload_init:
1462 error_bcf_hdr_find:
1463 error_bootrom_init:
1464 error_too_many_reboots:
1465         d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1466                 i2400m, bcf, fw_size, ret);
1467         return ret;
1468 
1469 error_dev_rebooted:
1470         dev_err(dev, "device rebooted, %d tries left\n", count);
1471         /* we got the notification already, no need to wait for it again */
1472         flags |= I2400M_BRI_SOFT;
1473         goto hw_reboot;
1474 }
1475 
1476 static
1477 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1478                         enum i2400m_bri flags)
1479 {
1480         int ret;
1481         struct device *dev = i2400m_dev(i2400m);
1482         const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
1483 
1484         d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1485         bcf = (void *) fw->data;
1486         ret = i2400m_fw_check(i2400m, bcf, fw->size);
1487         if (ret >= 0)
1488                 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1489         if (ret < 0)
1490                 dev_err(dev, "%s: cannot use: %d, skipping\n",
1491                         i2400m->fw_name, ret);
1492         kfree(i2400m->fw_hdrs);
1493         i2400m->fw_hdrs = NULL;
1494         d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1495         return ret;
1496 }
1497 
1498 
1499 /* Refcounted container for firmware data */
1500 struct i2400m_fw {
1501         struct kref kref;
1502         const struct firmware *fw;
1503 };
1504 
1505 
1506 static
1507 void i2400m_fw_destroy(struct kref *kref)
1508 {
1509         struct i2400m_fw *i2400m_fw =
1510                 container_of(kref, struct i2400m_fw, kref);
1511         release_firmware(i2400m_fw->fw);
1512         kfree(i2400m_fw);
1513 }
1514 
1515 
1516 static
1517 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1518 {
1519         if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1520                 kref_get(&i2400m_fw->kref);
1521         return i2400m_fw;
1522 }
1523 
1524 
1525 static
1526 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1527 {
1528         kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1529 }
1530 
1531 
1532 /**
1533  * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1534  *
1535  * @i2400m: device descriptor
1536  *
1537  * Returns: >= 0 if ok, < 0 errno code on error.
1538  *
1539  * This sets up the firmware upload environment, loads the firmware
1540  * file from disk, verifies and then calls the firmware upload process
1541  * per se.
1542  *
1543  * Can be called either from probe, or after a warm reset.  Can not be
1544  * called from within an interrupt.  All the flow in this code is
1545  * single-threade; all I/Os are synchronous.
1546  */
1547 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1548 {
1549         int ret, itr;
1550         struct device *dev = i2400m_dev(i2400m);
1551         struct i2400m_fw *i2400m_fw;
1552         const struct firmware *fw;
1553         const char *fw_name;
1554 
1555         d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1556 
1557         ret = -ENODEV;
1558         spin_lock(&i2400m->rx_lock);
1559         i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1560         spin_unlock(&i2400m->rx_lock);
1561         if (i2400m_fw == (void *) ~0) {
1562                 dev_err(dev, "can't load firmware now!");
1563                 goto out;
1564         } else if (i2400m_fw != NULL) {
1565                 dev_info(dev, "firmware %s: loading from cache\n",
1566                          i2400m->fw_name);
1567                 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1568                 i2400m_fw_put(i2400m_fw);
1569                 goto out;
1570         }
1571 
1572         /* Load firmware files to memory. */
1573         for (itr = 0, ret = -ENOENT; ; itr++) {
1574                 fw_name = i2400m->bus_fw_names[itr];
1575                 if (fw_name == NULL) {
1576                         dev_err(dev, "Could not find a usable firmware image\n");
1577                         break;
1578                 }
1579                 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1580                 ret = request_firmware(&fw, fw_name, dev);
1581                 if (ret < 0) {
1582                         dev_err(dev, "fw %s: cannot load file: %d\n",
1583                                 fw_name, ret);
1584                         continue;
1585                 }
1586                 i2400m->fw_name = fw_name;
1587                 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1588                 release_firmware(fw);
1589                 if (ret >= 0)   /* firmware loaded successfully */
1590                         break;
1591                 i2400m->fw_name = NULL;
1592         }
1593 out:
1594         d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1595         return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1598 
1599 
1600 void i2400m_fw_cache(struct i2400m *i2400m)
1601 {
1602         int result;
1603         struct i2400m_fw *i2400m_fw;
1604         struct device *dev = i2400m_dev(i2400m);
1605 
1606         /* if there is anything there, free it -- now, this'd be weird */
1607         spin_lock(&i2400m->rx_lock);
1608         i2400m_fw = i2400m->fw_cached;
1609         spin_unlock(&i2400m->rx_lock);
1610         if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1611                 i2400m_fw_put(i2400m_fw);
1612                 WARN(1, "%s:%u: still cached fw still present?\n",
1613                      __func__, __LINE__);
1614         }
1615 
1616         if (i2400m->fw_name == NULL) {
1617                 dev_err(dev, "firmware n/a: can't cache\n");
1618                 i2400m_fw = (void *) ~0;
1619                 goto out;
1620         }
1621 
1622         i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1623         if (i2400m_fw == NULL)
1624                 goto out;
1625         kref_init(&i2400m_fw->kref);
1626         result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1627         if (result < 0) {
1628                 dev_err(dev, "firmware %s: failed to cache: %d\n",
1629                         i2400m->fw_name, result);
1630                 kfree(i2400m_fw);
1631                 i2400m_fw = (void *) ~0;
1632         } else
1633                 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1634 out:
1635         spin_lock(&i2400m->rx_lock);
1636         i2400m->fw_cached = i2400m_fw;
1637         spin_unlock(&i2400m->rx_lock);
1638 }
1639 
1640 
1641 void i2400m_fw_uncache(struct i2400m *i2400m)
1642 {
1643         struct i2400m_fw *i2400m_fw;
1644 
1645         spin_lock(&i2400m->rx_lock);
1646         i2400m_fw = i2400m->fw_cached;
1647         i2400m->fw_cached = NULL;
1648         spin_unlock(&i2400m->rx_lock);
1649 
1650         if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1651                 i2400m_fw_put(i2400m_fw);
1652 }
1653 

/* [<][>][^][v][top][bottom][index][help] */