root/drivers/net/hyperv/netvsc_drv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. netvsc_change_rx_flags
  2. netvsc_set_rx_mode
  3. netvsc_tx_enable
  4. netvsc_open
  5. netvsc_wait_until_empty
  6. netvsc_tx_disable
  7. netvsc_close
  8. init_ppi_data
  9. netvsc_get_hash
  10. netvsc_get_tx_queue
  11. netvsc_pick_tx
  12. netvsc_select_queue
  13. fill_pg_buf
  14. init_page_array
  15. count_skb_frag_slots
  16. netvsc_get_slots
  17. net_checksum_info
  18. netvsc_vf_xmit
  19. netvsc_start_xmit
  20. netvsc_linkstatus_callback
  21. netvsc_comp_ipcsum
  22. netvsc_alloc_recv_skb
  23. netvsc_recv_callback
  24. netvsc_get_drvinfo
  25. netvsc_get_channels
  26. netvsc_detach
  27. netvsc_attach
  28. netvsc_set_channels
  29. netvsc_validate_ethtool_ss_cmd
  30. netvsc_init_settings
  31. netvsc_get_link_ksettings
  32. netvsc_set_link_ksettings
  33. netvsc_change_mtu
  34. netvsc_get_vf_stats
  35. netvsc_get_pcpu_stats
  36. netvsc_get_stats64
  37. netvsc_set_mac_addr
  38. netvsc_get_sset_count
  39. netvsc_get_ethtool_stats
  40. netvsc_get_strings
  41. netvsc_get_rss_hash_opts
  42. netvsc_get_rxnfc
  43. netvsc_set_rss_hash_opts
  44. netvsc_set_rxnfc
  45. netvsc_get_rxfh_key_size
  46. netvsc_rss_indir_size
  47. netvsc_get_rxfh
  48. netvsc_set_rxfh
  49. __netvsc_get_ringparam
  50. netvsc_get_ringparam
  51. netvsc_set_ringparam
  52. netvsc_set_features
  53. netvsc_get_msglevel
  54. netvsc_set_msglevel
  55. netvsc_link_change
  56. get_netvsc_byref
  57. netvsc_vf_handle_frame
  58. netvsc_vf_join
  59. __netvsc_vf_setup
  60. netvsc_vf_setup
  61. get_netvsc_byslot
  62. netvsc_register_vf
  63. netvsc_vf_changed
  64. netvsc_unregister_vf
  65. netvsc_probe
  66. netvsc_remove
  67. netvsc_netdev_event
  68. netvsc_drv_exit
  69. netvsc_drv_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (c) 2009, Microsoft Corporation.
   4  *
   5  * Authors:
   6  *   Haiyang Zhang <haiyangz@microsoft.com>
   7  *   Hank Janssen  <hjanssen@microsoft.com>
   8  */
   9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10 
  11 #include <linux/init.h>
  12 #include <linux/atomic.h>
  13 #include <linux/module.h>
  14 #include <linux/highmem.h>
  15 #include <linux/device.h>
  16 #include <linux/io.h>
  17 #include <linux/delay.h>
  18 #include <linux/netdevice.h>
  19 #include <linux/inetdevice.h>
  20 #include <linux/etherdevice.h>
  21 #include <linux/pci.h>
  22 #include <linux/skbuff.h>
  23 #include <linux/if_vlan.h>
  24 #include <linux/in.h>
  25 #include <linux/slab.h>
  26 #include <linux/rtnetlink.h>
  27 #include <linux/netpoll.h>
  28 
  29 #include <net/arp.h>
  30 #include <net/route.h>
  31 #include <net/sock.h>
  32 #include <net/pkt_sched.h>
  33 #include <net/checksum.h>
  34 #include <net/ip6_checksum.h>
  35 
  36 #include "hyperv_net.h"
  37 
  38 #define RING_SIZE_MIN   64
  39 #define RETRY_US_LO     5000
  40 #define RETRY_US_HI     10000
  41 #define RETRY_MAX       2000    /* >10 sec */
  42 
  43 #define LINKCHANGE_INT (2 * HZ)
  44 #define VF_TAKEOVER_INT (HZ / 10)
  45 
  46 static unsigned int ring_size __ro_after_init = 128;
  47 module_param(ring_size, uint, 0444);
  48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  49 unsigned int netvsc_ring_bytes __ro_after_init;
  50 
  51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  52                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
  53                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  54                                 NETIF_MSG_TX_ERR;
  55 
  56 static int debug = -1;
  57 module_param(debug, int, 0444);
  58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59 
  60 static LIST_HEAD(netvsc_dev_list);
  61 
  62 static void netvsc_change_rx_flags(struct net_device *net, int change)
  63 {
  64         struct net_device_context *ndev_ctx = netdev_priv(net);
  65         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  66         int inc;
  67 
  68         if (!vf_netdev)
  69                 return;
  70 
  71         if (change & IFF_PROMISC) {
  72                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  73                 dev_set_promiscuity(vf_netdev, inc);
  74         }
  75 
  76         if (change & IFF_ALLMULTI) {
  77                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  78                 dev_set_allmulti(vf_netdev, inc);
  79         }
  80 }
  81 
  82 static void netvsc_set_rx_mode(struct net_device *net)
  83 {
  84         struct net_device_context *ndev_ctx = netdev_priv(net);
  85         struct net_device *vf_netdev;
  86         struct netvsc_device *nvdev;
  87 
  88         rcu_read_lock();
  89         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  90         if (vf_netdev) {
  91                 dev_uc_sync(vf_netdev, net);
  92                 dev_mc_sync(vf_netdev, net);
  93         }
  94 
  95         nvdev = rcu_dereference(ndev_ctx->nvdev);
  96         if (nvdev)
  97                 rndis_filter_update(nvdev);
  98         rcu_read_unlock();
  99 }
 100 
 101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 102                              struct net_device *ndev)
 103 {
 104         nvscdev->tx_disable = false;
 105         virt_wmb(); /* ensure queue wake up mechanism is on */
 106 
 107         netif_tx_wake_all_queues(ndev);
 108 }
 109 
 110 static int netvsc_open(struct net_device *net)
 111 {
 112         struct net_device_context *ndev_ctx = netdev_priv(net);
 113         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 114         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 115         struct rndis_device *rdev;
 116         int ret = 0;
 117 
 118         netif_carrier_off(net);
 119 
 120         /* Open up the device */
 121         ret = rndis_filter_open(nvdev);
 122         if (ret != 0) {
 123                 netdev_err(net, "unable to open device (ret %d).\n", ret);
 124                 return ret;
 125         }
 126 
 127         rdev = nvdev->extension;
 128         if (!rdev->link_state) {
 129                 netif_carrier_on(net);
 130                 netvsc_tx_enable(nvdev, net);
 131         }
 132 
 133         if (vf_netdev) {
 134                 /* Setting synthetic device up transparently sets
 135                  * slave as up. If open fails, then slave will be
 136                  * still be offline (and not used).
 137                  */
 138                 ret = dev_open(vf_netdev, NULL);
 139                 if (ret)
 140                         netdev_warn(net,
 141                                     "unable to open slave: %s: %d\n",
 142                                     vf_netdev->name, ret);
 143         }
 144         return 0;
 145 }
 146 
 147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 148 {
 149         unsigned int retry = 0;
 150         int i;
 151 
 152         /* Ensure pending bytes in ring are read */
 153         for (;;) {
 154                 u32 aread = 0;
 155 
 156                 for (i = 0; i < nvdev->num_chn; i++) {
 157                         struct vmbus_channel *chn
 158                                 = nvdev->chan_table[i].channel;
 159 
 160                         if (!chn)
 161                                 continue;
 162 
 163                         /* make sure receive not running now */
 164                         napi_synchronize(&nvdev->chan_table[i].napi);
 165 
 166                         aread = hv_get_bytes_to_read(&chn->inbound);
 167                         if (aread)
 168                                 break;
 169 
 170                         aread = hv_get_bytes_to_read(&chn->outbound);
 171                         if (aread)
 172                                 break;
 173                 }
 174 
 175                 if (aread == 0)
 176                         return 0;
 177 
 178                 if (++retry > RETRY_MAX)
 179                         return -ETIMEDOUT;
 180 
 181                 usleep_range(RETRY_US_LO, RETRY_US_HI);
 182         }
 183 }
 184 
 185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 186                               struct net_device *ndev)
 187 {
 188         if (nvscdev) {
 189                 nvscdev->tx_disable = true;
 190                 virt_wmb(); /* ensure txq will not wake up after stop */
 191         }
 192 
 193         netif_tx_disable(ndev);
 194 }
 195 
 196 static int netvsc_close(struct net_device *net)
 197 {
 198         struct net_device_context *net_device_ctx = netdev_priv(net);
 199         struct net_device *vf_netdev
 200                 = rtnl_dereference(net_device_ctx->vf_netdev);
 201         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 202         int ret;
 203 
 204         netvsc_tx_disable(nvdev, net);
 205 
 206         /* No need to close rndis filter if it is removed already */
 207         if (!nvdev)
 208                 return 0;
 209 
 210         ret = rndis_filter_close(nvdev);
 211         if (ret != 0) {
 212                 netdev_err(net, "unable to close device (ret %d).\n", ret);
 213                 return ret;
 214         }
 215 
 216         ret = netvsc_wait_until_empty(nvdev);
 217         if (ret)
 218                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
 219 
 220         if (vf_netdev)
 221                 dev_close(vf_netdev);
 222 
 223         return ret;
 224 }
 225 
 226 static inline void *init_ppi_data(struct rndis_message *msg,
 227                                   u32 ppi_size, u32 pkt_type)
 228 {
 229         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 230         struct rndis_per_packet_info *ppi;
 231 
 232         rndis_pkt->data_offset += ppi_size;
 233         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 234                 + rndis_pkt->per_pkt_info_len;
 235 
 236         ppi->size = ppi_size;
 237         ppi->type = pkt_type;
 238         ppi->internal = 0;
 239         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 240 
 241         rndis_pkt->per_pkt_info_len += ppi_size;
 242 
 243         return ppi + 1;
 244 }
 245 
 246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 247  * packets. We can use ethtool to change UDP hash level when necessary.
 248  */
 249 static inline u32 netvsc_get_hash(
 250         struct sk_buff *skb,
 251         const struct net_device_context *ndc)
 252 {
 253         struct flow_keys flow;
 254         u32 hash, pkt_proto = 0;
 255         static u32 hashrnd __read_mostly;
 256 
 257         net_get_random_once(&hashrnd, sizeof(hashrnd));
 258 
 259         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 260                 return 0;
 261 
 262         switch (flow.basic.ip_proto) {
 263         case IPPROTO_TCP:
 264                 if (flow.basic.n_proto == htons(ETH_P_IP))
 265                         pkt_proto = HV_TCP4_L4HASH;
 266                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 267                         pkt_proto = HV_TCP6_L4HASH;
 268 
 269                 break;
 270 
 271         case IPPROTO_UDP:
 272                 if (flow.basic.n_proto == htons(ETH_P_IP))
 273                         pkt_proto = HV_UDP4_L4HASH;
 274                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 275                         pkt_proto = HV_UDP6_L4HASH;
 276 
 277                 break;
 278         }
 279 
 280         if (pkt_proto & ndc->l4_hash) {
 281                 return skb_get_hash(skb);
 282         } else {
 283                 if (flow.basic.n_proto == htons(ETH_P_IP))
 284                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 285                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 286                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 287                 else
 288                         return 0;
 289 
 290                 __skb_set_sw_hash(skb, hash, false);
 291         }
 292 
 293         return hash;
 294 }
 295 
 296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
 297                                       struct sk_buff *skb, int old_idx)
 298 {
 299         const struct net_device_context *ndc = netdev_priv(ndev);
 300         struct sock *sk = skb->sk;
 301         int q_idx;
 302 
 303         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 304                               (VRSS_SEND_TAB_SIZE - 1)];
 305 
 306         /* If queue index changed record the new value */
 307         if (q_idx != old_idx &&
 308             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 309                 sk_tx_queue_set(sk, q_idx);
 310 
 311         return q_idx;
 312 }
 313 
 314 /*
 315  * Select queue for transmit.
 316  *
 317  * If a valid queue has already been assigned, then use that.
 318  * Otherwise compute tx queue based on hash and the send table.
 319  *
 320  * This is basically similar to default (netdev_pick_tx) with the added step
 321  * of using the host send_table when no other queue has been assigned.
 322  *
 323  * TODO support XPS - but get_xps_queue not exported
 324  */
 325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 326 {
 327         int q_idx = sk_tx_queue_get(skb->sk);
 328 
 329         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 330                 /* If forwarding a packet, we use the recorded queue when
 331                  * available for better cache locality.
 332                  */
 333                 if (skb_rx_queue_recorded(skb))
 334                         q_idx = skb_get_rx_queue(skb);
 335                 else
 336                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 337         }
 338 
 339         return q_idx;
 340 }
 341 
 342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 343                                struct net_device *sb_dev)
 344 {
 345         struct net_device_context *ndc = netdev_priv(ndev);
 346         struct net_device *vf_netdev;
 347         u16 txq;
 348 
 349         rcu_read_lock();
 350         vf_netdev = rcu_dereference(ndc->vf_netdev);
 351         if (vf_netdev) {
 352                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 353 
 354                 if (vf_ops->ndo_select_queue)
 355                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 356                 else
 357                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
 358 
 359                 /* Record the queue selected by VF so that it can be
 360                  * used for common case where VF has more queues than
 361                  * the synthetic device.
 362                  */
 363                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 364         } else {
 365                 txq = netvsc_pick_tx(ndev, skb);
 366         }
 367         rcu_read_unlock();
 368 
 369         while (unlikely(txq >= ndev->real_num_tx_queues))
 370                 txq -= ndev->real_num_tx_queues;
 371 
 372         return txq;
 373 }
 374 
 375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 376                        struct hv_page_buffer *pb)
 377 {
 378         int j = 0;
 379 
 380         /* Deal with compound pages by ignoring unused part
 381          * of the page.
 382          */
 383         page += (offset >> PAGE_SHIFT);
 384         offset &= ~PAGE_MASK;
 385 
 386         while (len > 0) {
 387                 unsigned long bytes;
 388 
 389                 bytes = PAGE_SIZE - offset;
 390                 if (bytes > len)
 391                         bytes = len;
 392                 pb[j].pfn = page_to_pfn(page);
 393                 pb[j].offset = offset;
 394                 pb[j].len = bytes;
 395 
 396                 offset += bytes;
 397                 len -= bytes;
 398 
 399                 if (offset == PAGE_SIZE && len) {
 400                         page++;
 401                         offset = 0;
 402                         j++;
 403                 }
 404         }
 405 
 406         return j + 1;
 407 }
 408 
 409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 410                            struct hv_netvsc_packet *packet,
 411                            struct hv_page_buffer *pb)
 412 {
 413         u32 slots_used = 0;
 414         char *data = skb->data;
 415         int frags = skb_shinfo(skb)->nr_frags;
 416         int i;
 417 
 418         /* The packet is laid out thus:
 419          * 1. hdr: RNDIS header and PPI
 420          * 2. skb linear data
 421          * 3. skb fragment data
 422          */
 423         slots_used += fill_pg_buf(virt_to_page(hdr),
 424                                   offset_in_page(hdr),
 425                                   len, &pb[slots_used]);
 426 
 427         packet->rmsg_size = len;
 428         packet->rmsg_pgcnt = slots_used;
 429 
 430         slots_used += fill_pg_buf(virt_to_page(data),
 431                                 offset_in_page(data),
 432                                 skb_headlen(skb), &pb[slots_used]);
 433 
 434         for (i = 0; i < frags; i++) {
 435                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 436 
 437                 slots_used += fill_pg_buf(skb_frag_page(frag),
 438                                         skb_frag_off(frag),
 439                                         skb_frag_size(frag), &pb[slots_used]);
 440         }
 441         return slots_used;
 442 }
 443 
 444 static int count_skb_frag_slots(struct sk_buff *skb)
 445 {
 446         int i, frags = skb_shinfo(skb)->nr_frags;
 447         int pages = 0;
 448 
 449         for (i = 0; i < frags; i++) {
 450                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 451                 unsigned long size = skb_frag_size(frag);
 452                 unsigned long offset = skb_frag_off(frag);
 453 
 454                 /* Skip unused frames from start of page */
 455                 offset &= ~PAGE_MASK;
 456                 pages += PFN_UP(offset + size);
 457         }
 458         return pages;
 459 }
 460 
 461 static int netvsc_get_slots(struct sk_buff *skb)
 462 {
 463         char *data = skb->data;
 464         unsigned int offset = offset_in_page(data);
 465         unsigned int len = skb_headlen(skb);
 466         int slots;
 467         int frag_slots;
 468 
 469         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 470         frag_slots = count_skb_frag_slots(skb);
 471         return slots + frag_slots;
 472 }
 473 
 474 static u32 net_checksum_info(struct sk_buff *skb)
 475 {
 476         if (skb->protocol == htons(ETH_P_IP)) {
 477                 struct iphdr *ip = ip_hdr(skb);
 478 
 479                 if (ip->protocol == IPPROTO_TCP)
 480                         return TRANSPORT_INFO_IPV4_TCP;
 481                 else if (ip->protocol == IPPROTO_UDP)
 482                         return TRANSPORT_INFO_IPV4_UDP;
 483         } else {
 484                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
 485 
 486                 if (ip6->nexthdr == IPPROTO_TCP)
 487                         return TRANSPORT_INFO_IPV6_TCP;
 488                 else if (ip6->nexthdr == IPPROTO_UDP)
 489                         return TRANSPORT_INFO_IPV6_UDP;
 490         }
 491 
 492         return TRANSPORT_INFO_NOT_IP;
 493 }
 494 
 495 /* Send skb on the slave VF device. */
 496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 497                           struct sk_buff *skb)
 498 {
 499         struct net_device_context *ndev_ctx = netdev_priv(net);
 500         unsigned int len = skb->len;
 501         int rc;
 502 
 503         skb->dev = vf_netdev;
 504         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
 505 
 506         rc = dev_queue_xmit(skb);
 507         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 508                 struct netvsc_vf_pcpu_stats *pcpu_stats
 509                         = this_cpu_ptr(ndev_ctx->vf_stats);
 510 
 511                 u64_stats_update_begin(&pcpu_stats->syncp);
 512                 pcpu_stats->tx_packets++;
 513                 pcpu_stats->tx_bytes += len;
 514                 u64_stats_update_end(&pcpu_stats->syncp);
 515         } else {
 516                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 517         }
 518 
 519         return rc;
 520 }
 521 
 522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 523 {
 524         struct net_device_context *net_device_ctx = netdev_priv(net);
 525         struct hv_netvsc_packet *packet = NULL;
 526         int ret;
 527         unsigned int num_data_pgs;
 528         struct rndis_message *rndis_msg;
 529         struct net_device *vf_netdev;
 530         u32 rndis_msg_size;
 531         u32 hash;
 532         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 533 
 534         /* if VF is present and up then redirect packets
 535          * already called with rcu_read_lock_bh
 536          */
 537         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538         if (vf_netdev && netif_running(vf_netdev) &&
 539             !netpoll_tx_running(net))
 540                 return netvsc_vf_xmit(net, vf_netdev, skb);
 541 
 542         /* We will atmost need two pages to describe the rndis
 543          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 544          * of pages in a single packet. If skb is scattered around
 545          * more pages we try linearizing it.
 546          */
 547 
 548         num_data_pgs = netvsc_get_slots(skb) + 2;
 549 
 550         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 551                 ++net_device_ctx->eth_stats.tx_scattered;
 552 
 553                 if (skb_linearize(skb))
 554                         goto no_memory;
 555 
 556                 num_data_pgs = netvsc_get_slots(skb) + 2;
 557                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 558                         ++net_device_ctx->eth_stats.tx_too_big;
 559                         goto drop;
 560                 }
 561         }
 562 
 563         /*
 564          * Place the rndis header in the skb head room and
 565          * the skb->cb will be used for hv_netvsc_packet
 566          * structure.
 567          */
 568         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 569         if (ret)
 570                 goto no_memory;
 571 
 572         /* Use the skb control buffer for building up the packet */
 573         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 574                         FIELD_SIZEOF(struct sk_buff, cb));
 575         packet = (struct hv_netvsc_packet *)skb->cb;
 576 
 577         packet->q_idx = skb_get_queue_mapping(skb);
 578 
 579         packet->total_data_buflen = skb->len;
 580         packet->total_bytes = skb->len;
 581         packet->total_packets = 1;
 582 
 583         rndis_msg = (struct rndis_message *)skb->head;
 584 
 585         /* Add the rndis header */
 586         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 587         rndis_msg->msg_len = packet->total_data_buflen;
 588 
 589         rndis_msg->msg.pkt = (struct rndis_packet) {
 590                 .data_offset = sizeof(struct rndis_packet),
 591                 .data_len = packet->total_data_buflen,
 592                 .per_pkt_info_offset = sizeof(struct rndis_packet),
 593         };
 594 
 595         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 596 
 597         hash = skb_get_hash_raw(skb);
 598         if (hash != 0 && net->real_num_tx_queues > 1) {
 599                 u32 *hash_info;
 600 
 601                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
 602                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 603                                           NBL_HASH_VALUE);
 604                 *hash_info = hash;
 605         }
 606 
 607         if (skb_vlan_tag_present(skb)) {
 608                 struct ndis_pkt_8021q_info *vlan;
 609 
 610                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 611                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 612                                      IEEE_8021Q_INFO);
 613 
 614                 vlan->value = 0;
 615                 vlan->vlanid = skb_vlan_tag_get_id(skb);
 616                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
 617                 vlan->pri = skb_vlan_tag_get_prio(skb);
 618         }
 619 
 620         if (skb_is_gso(skb)) {
 621                 struct ndis_tcp_lso_info *lso_info;
 622 
 623                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
 624                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 625                                          TCP_LARGESEND_PKTINFO);
 626 
 627                 lso_info->value = 0;
 628                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 629                 if (skb->protocol == htons(ETH_P_IP)) {
 630                         lso_info->lso_v2_transmit.ip_version =
 631                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 632                         ip_hdr(skb)->tot_len = 0;
 633                         ip_hdr(skb)->check = 0;
 634                         tcp_hdr(skb)->check =
 635                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 636                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 637                 } else {
 638                         lso_info->lso_v2_transmit.ip_version =
 639                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 640                         ipv6_hdr(skb)->payload_len = 0;
 641                         tcp_hdr(skb)->check =
 642                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 643                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 644                 }
 645                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 646                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 647         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 648                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 649                         struct ndis_tcp_ip_checksum_info *csum_info;
 650 
 651                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 652                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 653                                                   TCPIP_CHKSUM_PKTINFO);
 654 
 655                         csum_info->value = 0;
 656                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 657 
 658                         if (skb->protocol == htons(ETH_P_IP)) {
 659                                 csum_info->transmit.is_ipv4 = 1;
 660 
 661                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 662                                         csum_info->transmit.tcp_checksum = 1;
 663                                 else
 664                                         csum_info->transmit.udp_checksum = 1;
 665                         } else {
 666                                 csum_info->transmit.is_ipv6 = 1;
 667 
 668                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 669                                         csum_info->transmit.tcp_checksum = 1;
 670                                 else
 671                                         csum_info->transmit.udp_checksum = 1;
 672                         }
 673                 } else {
 674                         /* Can't do offload of this type of checksum */
 675                         if (skb_checksum_help(skb))
 676                                 goto drop;
 677                 }
 678         }
 679 
 680         /* Start filling in the page buffers with the rndis hdr */
 681         rndis_msg->msg_len += rndis_msg_size;
 682         packet->total_data_buflen = rndis_msg->msg_len;
 683         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 684                                                skb, packet, pb);
 685 
 686         /* timestamp packet in software */
 687         skb_tx_timestamp(skb);
 688 
 689         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
 690         if (likely(ret == 0))
 691                 return NETDEV_TX_OK;
 692 
 693         if (ret == -EAGAIN) {
 694                 ++net_device_ctx->eth_stats.tx_busy;
 695                 return NETDEV_TX_BUSY;
 696         }
 697 
 698         if (ret == -ENOSPC)
 699                 ++net_device_ctx->eth_stats.tx_no_space;
 700 
 701 drop:
 702         dev_kfree_skb_any(skb);
 703         net->stats.tx_dropped++;
 704 
 705         return NETDEV_TX_OK;
 706 
 707 no_memory:
 708         ++net_device_ctx->eth_stats.tx_no_memory;
 709         goto drop;
 710 }
 711 
 712 /*
 713  * netvsc_linkstatus_callback - Link up/down notification
 714  */
 715 void netvsc_linkstatus_callback(struct net_device *net,
 716                                 struct rndis_message *resp)
 717 {
 718         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 719         struct net_device_context *ndev_ctx = netdev_priv(net);
 720         struct netvsc_reconfig *event;
 721         unsigned long flags;
 722 
 723         /* Update the physical link speed when changing to another vSwitch */
 724         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 725                 u32 speed;
 726 
 727                 speed = *(u32 *)((void *)indicate
 728                                  + indicate->status_buf_offset) / 10000;
 729                 ndev_ctx->speed = speed;
 730                 return;
 731         }
 732 
 733         /* Handle these link change statuses below */
 734         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 735             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 736             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 737                 return;
 738 
 739         if (net->reg_state != NETREG_REGISTERED)
 740                 return;
 741 
 742         event = kzalloc(sizeof(*event), GFP_ATOMIC);
 743         if (!event)
 744                 return;
 745         event->event = indicate->status;
 746 
 747         spin_lock_irqsave(&ndev_ctx->lock, flags);
 748         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 749         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 750 
 751         schedule_delayed_work(&ndev_ctx->dwork, 0);
 752 }
 753 
 754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
 755 {
 756         struct iphdr *iph = (struct iphdr *)skb->data;
 757 
 758         iph->check = 0;
 759         iph->check = ip_fast_csum(iph, iph->ihl);
 760 }
 761 
 762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 763                                              struct netvsc_channel *nvchan)
 764 {
 765         struct napi_struct *napi = &nvchan->napi;
 766         const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
 767         const struct ndis_tcp_ip_checksum_info *csum_info =
 768                                                 nvchan->rsc.csum_info;
 769         struct sk_buff *skb;
 770         int i;
 771 
 772         skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 773         if (!skb)
 774                 return skb;
 775 
 776         /*
 777          * Copy to skb. This copy is needed here since the memory pointed by
 778          * hv_netvsc_packet cannot be deallocated
 779          */
 780         for (i = 0; i < nvchan->rsc.cnt; i++)
 781                 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
 782 
 783         skb->protocol = eth_type_trans(skb, net);
 784 
 785         /* skb is already created with CHECKSUM_NONE */
 786         skb_checksum_none_assert(skb);
 787 
 788         /* Incoming packets may have IP header checksum verified by the host.
 789          * They may not have IP header checksum computed after coalescing.
 790          * We compute it here if the flags are set, because on Linux, the IP
 791          * checksum is always checked.
 792          */
 793         if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
 794             csum_info->receive.ip_checksum_succeeded &&
 795             skb->protocol == htons(ETH_P_IP))
 796                 netvsc_comp_ipcsum(skb);
 797 
 798         /* Do L4 checksum offload if enabled and present. */
 799         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 800                 if (csum_info->receive.tcp_checksum_succeeded ||
 801                     csum_info->receive.udp_checksum_succeeded)
 802                         skb->ip_summed = CHECKSUM_UNNECESSARY;
 803         }
 804 
 805         if (vlan) {
 806                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 807                         (vlan->cfi ? VLAN_CFI_MASK : 0);
 808 
 809                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 810                                        vlan_tci);
 811         }
 812 
 813         return skb;
 814 }
 815 
 816 /*
 817  * netvsc_recv_callback -  Callback when we receive a packet from the
 818  * "wire" on the specified device.
 819  */
 820 int netvsc_recv_callback(struct net_device *net,
 821                          struct netvsc_device *net_device,
 822                          struct netvsc_channel *nvchan)
 823 {
 824         struct net_device_context *net_device_ctx = netdev_priv(net);
 825         struct vmbus_channel *channel = nvchan->channel;
 826         u16 q_idx = channel->offermsg.offer.sub_channel_index;
 827         struct sk_buff *skb;
 828         struct netvsc_stats *rx_stats;
 829 
 830         if (net->reg_state != NETREG_REGISTERED)
 831                 return NVSP_STAT_FAIL;
 832 
 833         /* Allocate a skb - TODO direct I/O to pages? */
 834         skb = netvsc_alloc_recv_skb(net, nvchan);
 835 
 836         if (unlikely(!skb)) {
 837                 ++net_device_ctx->eth_stats.rx_no_memory;
 838                 return NVSP_STAT_FAIL;
 839         }
 840 
 841         skb_record_rx_queue(skb, q_idx);
 842 
 843         /*
 844          * Even if injecting the packet, record the statistics
 845          * on the synthetic device because modifying the VF device
 846          * statistics will not work correctly.
 847          */
 848         rx_stats = &nvchan->rx_stats;
 849         u64_stats_update_begin(&rx_stats->syncp);
 850         rx_stats->packets++;
 851         rx_stats->bytes += nvchan->rsc.pktlen;
 852 
 853         if (skb->pkt_type == PACKET_BROADCAST)
 854                 ++rx_stats->broadcast;
 855         else if (skb->pkt_type == PACKET_MULTICAST)
 856                 ++rx_stats->multicast;
 857         u64_stats_update_end(&rx_stats->syncp);
 858 
 859         napi_gro_receive(&nvchan->napi, skb);
 860         return NVSP_STAT_SUCCESS;
 861 }
 862 
 863 static void netvsc_get_drvinfo(struct net_device *net,
 864                                struct ethtool_drvinfo *info)
 865 {
 866         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 867         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 868 }
 869 
 870 static void netvsc_get_channels(struct net_device *net,
 871                                 struct ethtool_channels *channel)
 872 {
 873         struct net_device_context *net_device_ctx = netdev_priv(net);
 874         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 875 
 876         if (nvdev) {
 877                 channel->max_combined   = nvdev->max_chn;
 878                 channel->combined_count = nvdev->num_chn;
 879         }
 880 }
 881 
 882 /* Alloc struct netvsc_device_info, and initialize it from either existing
 883  * struct netvsc_device, or from default values.
 884  */
 885 static struct netvsc_device_info *netvsc_devinfo_get
 886                         (struct netvsc_device *nvdev)
 887 {
 888         struct netvsc_device_info *dev_info;
 889 
 890         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 891 
 892         if (!dev_info)
 893                 return NULL;
 894 
 895         if (nvdev) {
 896                 dev_info->num_chn = nvdev->num_chn;
 897                 dev_info->send_sections = nvdev->send_section_cnt;
 898                 dev_info->send_section_size = nvdev->send_section_size;
 899                 dev_info->recv_sections = nvdev->recv_section_cnt;
 900                 dev_info->recv_section_size = nvdev->recv_section_size;
 901 
 902                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 903                        NETVSC_HASH_KEYLEN);
 904         } else {
 905                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 906                 dev_info->send_sections = NETVSC_DEFAULT_TX;
 907                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 908                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
 909                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 910         }
 911 
 912         return dev_info;
 913 }
 914 
 915 static int netvsc_detach(struct net_device *ndev,
 916                          struct netvsc_device *nvdev)
 917 {
 918         struct net_device_context *ndev_ctx = netdev_priv(ndev);
 919         struct hv_device *hdev = ndev_ctx->device_ctx;
 920         int ret;
 921 
 922         /* Don't try continuing to try and setup sub channels */
 923         if (cancel_work_sync(&nvdev->subchan_work))
 924                 nvdev->num_chn = 1;
 925 
 926         /* If device was up (receiving) then shutdown */
 927         if (netif_running(ndev)) {
 928                 netvsc_tx_disable(nvdev, ndev);
 929 
 930                 ret = rndis_filter_close(nvdev);
 931                 if (ret) {
 932                         netdev_err(ndev,
 933                                    "unable to close device (ret %d).\n", ret);
 934                         return ret;
 935                 }
 936 
 937                 ret = netvsc_wait_until_empty(nvdev);
 938                 if (ret) {
 939                         netdev_err(ndev,
 940                                    "Ring buffer not empty after closing rndis\n");
 941                         return ret;
 942                 }
 943         }
 944 
 945         netif_device_detach(ndev);
 946 
 947         rndis_filter_device_remove(hdev, nvdev);
 948 
 949         return 0;
 950 }
 951 
 952 static int netvsc_attach(struct net_device *ndev,
 953                          struct netvsc_device_info *dev_info)
 954 {
 955         struct net_device_context *ndev_ctx = netdev_priv(ndev);
 956         struct hv_device *hdev = ndev_ctx->device_ctx;
 957         struct netvsc_device *nvdev;
 958         struct rndis_device *rdev;
 959         int ret;
 960 
 961         nvdev = rndis_filter_device_add(hdev, dev_info);
 962         if (IS_ERR(nvdev))
 963                 return PTR_ERR(nvdev);
 964 
 965         if (nvdev->num_chn > 1) {
 966                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
 967 
 968                 /* if unavailable, just proceed with one queue */
 969                 if (ret) {
 970                         nvdev->max_chn = 1;
 971                         nvdev->num_chn = 1;
 972                 }
 973         }
 974 
 975         /* In any case device is now ready */
 976         nvdev->tx_disable = false;
 977         netif_device_attach(ndev);
 978 
 979         /* Note: enable and attach happen when sub-channels setup */
 980         netif_carrier_off(ndev);
 981 
 982         if (netif_running(ndev)) {
 983                 ret = rndis_filter_open(nvdev);
 984                 if (ret)
 985                         goto err;
 986 
 987                 rdev = nvdev->extension;
 988                 if (!rdev->link_state)
 989                         netif_carrier_on(ndev);
 990         }
 991 
 992         return 0;
 993 
 994 err:
 995         netif_device_detach(ndev);
 996 
 997         rndis_filter_device_remove(hdev, nvdev);
 998 
 999         return ret;
1000 }
1001 
1002 static int netvsc_set_channels(struct net_device *net,
1003                                struct ethtool_channels *channels)
1004 {
1005         struct net_device_context *net_device_ctx = netdev_priv(net);
1006         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007         unsigned int orig, count = channels->combined_count;
1008         struct netvsc_device_info *device_info;
1009         int ret;
1010 
1011         /* We do not support separate count for rx, tx, or other */
1012         if (count == 0 ||
1013             channels->rx_count || channels->tx_count || channels->other_count)
1014                 return -EINVAL;
1015 
1016         if (!nvdev || nvdev->destroy)
1017                 return -ENODEV;
1018 
1019         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020                 return -EINVAL;
1021 
1022         if (count > nvdev->max_chn)
1023                 return -EINVAL;
1024 
1025         orig = nvdev->num_chn;
1026 
1027         device_info = netvsc_devinfo_get(nvdev);
1028 
1029         if (!device_info)
1030                 return -ENOMEM;
1031 
1032         device_info->num_chn = count;
1033 
1034         ret = netvsc_detach(net, nvdev);
1035         if (ret)
1036                 goto out;
1037 
1038         ret = netvsc_attach(net, device_info);
1039         if (ret) {
1040                 device_info->num_chn = orig;
1041                 if (netvsc_attach(net, device_info))
1042                         netdev_err(net, "restoring channel setting failed\n");
1043         }
1044 
1045 out:
1046         kfree(device_info);
1047         return ret;
1048 }
1049 
1050 static bool
1051 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052 {
1053         struct ethtool_link_ksettings diff1 = *cmd;
1054         struct ethtool_link_ksettings diff2 = {};
1055 
1056         diff1.base.speed = 0;
1057         diff1.base.duplex = 0;
1058         /* advertising and cmd are usually set */
1059         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060         diff1.base.cmd = 0;
1061         /* We set port to PORT_OTHER */
1062         diff2.base.port = PORT_OTHER;
1063 
1064         return !memcmp(&diff1, &diff2, sizeof(diff1));
1065 }
1066 
1067 static void netvsc_init_settings(struct net_device *dev)
1068 {
1069         struct net_device_context *ndc = netdev_priv(dev);
1070 
1071         ndc->l4_hash = HV_DEFAULT_L4HASH;
1072 
1073         ndc->speed = SPEED_UNKNOWN;
1074         ndc->duplex = DUPLEX_FULL;
1075 
1076         dev->features = NETIF_F_LRO;
1077 }
1078 
1079 static int netvsc_get_link_ksettings(struct net_device *dev,
1080                                      struct ethtool_link_ksettings *cmd)
1081 {
1082         struct net_device_context *ndc = netdev_priv(dev);
1083 
1084         cmd->base.speed = ndc->speed;
1085         cmd->base.duplex = ndc->duplex;
1086         cmd->base.port = PORT_OTHER;
1087 
1088         return 0;
1089 }
1090 
1091 static int netvsc_set_link_ksettings(struct net_device *dev,
1092                                      const struct ethtool_link_ksettings *cmd)
1093 {
1094         struct net_device_context *ndc = netdev_priv(dev);
1095         u32 speed;
1096 
1097         speed = cmd->base.speed;
1098         if (!ethtool_validate_speed(speed) ||
1099             !ethtool_validate_duplex(cmd->base.duplex) ||
1100             !netvsc_validate_ethtool_ss_cmd(cmd))
1101                 return -EINVAL;
1102 
1103         ndc->speed = speed;
1104         ndc->duplex = cmd->base.duplex;
1105 
1106         return 0;
1107 }
1108 
1109 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110 {
1111         struct net_device_context *ndevctx = netdev_priv(ndev);
1112         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114         int orig_mtu = ndev->mtu;
1115         struct netvsc_device_info *device_info;
1116         int ret = 0;
1117 
1118         if (!nvdev || nvdev->destroy)
1119                 return -ENODEV;
1120 
1121         device_info = netvsc_devinfo_get(nvdev);
1122 
1123         if (!device_info)
1124                 return -ENOMEM;
1125 
1126         /* Change MTU of underlying VF netdev first. */
1127         if (vf_netdev) {
1128                 ret = dev_set_mtu(vf_netdev, mtu);
1129                 if (ret)
1130                         goto out;
1131         }
1132 
1133         ret = netvsc_detach(ndev, nvdev);
1134         if (ret)
1135                 goto rollback_vf;
1136 
1137         ndev->mtu = mtu;
1138 
1139         ret = netvsc_attach(ndev, device_info);
1140         if (!ret)
1141                 goto out;
1142 
1143         /* Attempt rollback to original MTU */
1144         ndev->mtu = orig_mtu;
1145 
1146         if (netvsc_attach(ndev, device_info))
1147                 netdev_err(ndev, "restoring mtu failed\n");
1148 rollback_vf:
1149         if (vf_netdev)
1150                 dev_set_mtu(vf_netdev, orig_mtu);
1151 
1152 out:
1153         kfree(device_info);
1154         return ret;
1155 }
1156 
1157 static void netvsc_get_vf_stats(struct net_device *net,
1158                                 struct netvsc_vf_pcpu_stats *tot)
1159 {
1160         struct net_device_context *ndev_ctx = netdev_priv(net);
1161         int i;
1162 
1163         memset(tot, 0, sizeof(*tot));
1164 
1165         for_each_possible_cpu(i) {
1166                 const struct netvsc_vf_pcpu_stats *stats
1167                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1168                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169                 unsigned int start;
1170 
1171                 do {
1172                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1173                         rx_packets = stats->rx_packets;
1174                         tx_packets = stats->tx_packets;
1175                         rx_bytes = stats->rx_bytes;
1176                         tx_bytes = stats->tx_bytes;
1177                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178 
1179                 tot->rx_packets += rx_packets;
1180                 tot->tx_packets += tx_packets;
1181                 tot->rx_bytes   += rx_bytes;
1182                 tot->tx_bytes   += tx_bytes;
1183                 tot->tx_dropped += stats->tx_dropped;
1184         }
1185 }
1186 
1187 static void netvsc_get_pcpu_stats(struct net_device *net,
1188                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189 {
1190         struct net_device_context *ndev_ctx = netdev_priv(net);
1191         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192         int i;
1193 
1194         /* fetch percpu stats of vf */
1195         for_each_possible_cpu(i) {
1196                 const struct netvsc_vf_pcpu_stats *stats =
1197                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1198                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199                 unsigned int start;
1200 
1201                 do {
1202                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1203                         this_tot->vf_rx_packets = stats->rx_packets;
1204                         this_tot->vf_tx_packets = stats->tx_packets;
1205                         this_tot->vf_rx_bytes = stats->rx_bytes;
1206                         this_tot->vf_tx_bytes = stats->tx_bytes;
1207                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208                 this_tot->rx_packets = this_tot->vf_rx_packets;
1209                 this_tot->tx_packets = this_tot->vf_tx_packets;
1210                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1211                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1212         }
1213 
1214         /* fetch percpu stats of netvsc */
1215         for (i = 0; i < nvdev->num_chn; i++) {
1216                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217                 const struct netvsc_stats *stats;
1218                 struct netvsc_ethtool_pcpu_stats *this_tot =
1219                         &pcpu_tot[nvchan->channel->target_cpu];
1220                 u64 packets, bytes;
1221                 unsigned int start;
1222 
1223                 stats = &nvchan->tx_stats;
1224                 do {
1225                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1226                         packets = stats->packets;
1227                         bytes = stats->bytes;
1228                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229 
1230                 this_tot->tx_bytes      += bytes;
1231                 this_tot->tx_packets    += packets;
1232 
1233                 stats = &nvchan->rx_stats;
1234                 do {
1235                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1236                         packets = stats->packets;
1237                         bytes = stats->bytes;
1238                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239 
1240                 this_tot->rx_bytes      += bytes;
1241                 this_tot->rx_packets    += packets;
1242         }
1243 }
1244 
1245 static void netvsc_get_stats64(struct net_device *net,
1246                                struct rtnl_link_stats64 *t)
1247 {
1248         struct net_device_context *ndev_ctx = netdev_priv(net);
1249         struct netvsc_device *nvdev;
1250         struct netvsc_vf_pcpu_stats vf_tot;
1251         int i;
1252 
1253         rcu_read_lock();
1254 
1255         nvdev = rcu_dereference(ndev_ctx->nvdev);
1256         if (!nvdev)
1257                 goto out;
1258 
1259         netdev_stats_to_stats64(t, &net->stats);
1260 
1261         netvsc_get_vf_stats(net, &vf_tot);
1262         t->rx_packets += vf_tot.rx_packets;
1263         t->tx_packets += vf_tot.tx_packets;
1264         t->rx_bytes   += vf_tot.rx_bytes;
1265         t->tx_bytes   += vf_tot.tx_bytes;
1266         t->tx_dropped += vf_tot.tx_dropped;
1267 
1268         for (i = 0; i < nvdev->num_chn; i++) {
1269                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270                 const struct netvsc_stats *stats;
1271                 u64 packets, bytes, multicast;
1272                 unsigned int start;
1273 
1274                 stats = &nvchan->tx_stats;
1275                 do {
1276                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1277                         packets = stats->packets;
1278                         bytes = stats->bytes;
1279                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280 
1281                 t->tx_bytes     += bytes;
1282                 t->tx_packets   += packets;
1283 
1284                 stats = &nvchan->rx_stats;
1285                 do {
1286                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1287                         packets = stats->packets;
1288                         bytes = stats->bytes;
1289                         multicast = stats->multicast + stats->broadcast;
1290                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291 
1292                 t->rx_bytes     += bytes;
1293                 t->rx_packets   += packets;
1294                 t->multicast    += multicast;
1295         }
1296 out:
1297         rcu_read_unlock();
1298 }
1299 
1300 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301 {
1302         struct net_device_context *ndc = netdev_priv(ndev);
1303         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305         struct sockaddr *addr = p;
1306         int err;
1307 
1308         err = eth_prepare_mac_addr_change(ndev, p);
1309         if (err)
1310                 return err;
1311 
1312         if (!nvdev)
1313                 return -ENODEV;
1314 
1315         if (vf_netdev) {
1316                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1317                 if (err)
1318                         return err;
1319         }
1320 
1321         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322         if (!err) {
1323                 eth_commit_mac_addr_change(ndev, p);
1324         } else if (vf_netdev) {
1325                 /* rollback change on VF */
1326                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327                 dev_set_mac_address(vf_netdev, addr, NULL);
1328         }
1329 
1330         return err;
1331 }
1332 
1333 static const struct {
1334         char name[ETH_GSTRING_LEN];
1335         u16 offset;
1336 } netvsc_stats[] = {
1337         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347 }, pcpu_stats[] = {
1348         { "cpu%u_rx_packets",
1349                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350         { "cpu%u_rx_bytes",
1351                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352         { "cpu%u_tx_packets",
1353                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354         { "cpu%u_tx_bytes",
1355                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356         { "cpu%u_vf_rx_packets",
1357                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358         { "cpu%u_vf_rx_bytes",
1359                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360         { "cpu%u_vf_tx_packets",
1361                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362         { "cpu%u_vf_tx_bytes",
1363                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364 }, vf_stats[] = {
1365         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370 };
1371 
1372 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1373 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1374 
1375 /* statistics per queue (rx/tx packets/bytes) */
1376 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377 
1378 /* 4 statistics per queue (rx/tx packets/bytes) */
1379 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380 
1381 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382 {
1383         struct net_device_context *ndc = netdev_priv(dev);
1384         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385 
1386         if (!nvdev)
1387                 return -ENODEV;
1388 
1389         switch (string_set) {
1390         case ETH_SS_STATS:
1391                 return NETVSC_GLOBAL_STATS_LEN
1392                         + NETVSC_VF_STATS_LEN
1393                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1394                         + NETVSC_PCPU_STATS_LEN;
1395         default:
1396                 return -EINVAL;
1397         }
1398 }
1399 
1400 static void netvsc_get_ethtool_stats(struct net_device *dev,
1401                                      struct ethtool_stats *stats, u64 *data)
1402 {
1403         struct net_device_context *ndc = netdev_priv(dev);
1404         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405         const void *nds = &ndc->eth_stats;
1406         const struct netvsc_stats *qstats;
1407         struct netvsc_vf_pcpu_stats sum;
1408         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409         unsigned int start;
1410         u64 packets, bytes;
1411         int i, j, cpu;
1412 
1413         if (!nvdev)
1414                 return;
1415 
1416         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418 
1419         netvsc_get_vf_stats(dev, &sum);
1420         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422 
1423         for (j = 0; j < nvdev->num_chn; j++) {
1424                 qstats = &nvdev->chan_table[j].tx_stats;
1425 
1426                 do {
1427                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428                         packets = qstats->packets;
1429                         bytes = qstats->bytes;
1430                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431                 data[i++] = packets;
1432                 data[i++] = bytes;
1433 
1434                 qstats = &nvdev->chan_table[j].rx_stats;
1435                 do {
1436                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437                         packets = qstats->packets;
1438                         bytes = qstats->bytes;
1439                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440                 data[i++] = packets;
1441                 data[i++] = bytes;
1442         }
1443 
1444         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1446                                   GFP_KERNEL);
1447         netvsc_get_pcpu_stats(dev, pcpu_sum);
1448         for_each_present_cpu(cpu) {
1449                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450 
1451                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452                         data[i++] = *(u64 *)((void *)this_sum
1453                                              + pcpu_stats[j].offset);
1454         }
1455         kvfree(pcpu_sum);
1456 }
1457 
1458 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459 {
1460         struct net_device_context *ndc = netdev_priv(dev);
1461         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462         u8 *p = data;
1463         int i, cpu;
1464 
1465         if (!nvdev)
1466                 return;
1467 
1468         switch (stringset) {
1469         case ETH_SS_STATS:
1470                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472                         p += ETH_GSTRING_LEN;
1473                 }
1474 
1475                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477                         p += ETH_GSTRING_LEN;
1478                 }
1479 
1480                 for (i = 0; i < nvdev->num_chn; i++) {
1481                         sprintf(p, "tx_queue_%u_packets", i);
1482                         p += ETH_GSTRING_LEN;
1483                         sprintf(p, "tx_queue_%u_bytes", i);
1484                         p += ETH_GSTRING_LEN;
1485                         sprintf(p, "rx_queue_%u_packets", i);
1486                         p += ETH_GSTRING_LEN;
1487                         sprintf(p, "rx_queue_%u_bytes", i);
1488                         p += ETH_GSTRING_LEN;
1489                 }
1490 
1491                 for_each_present_cpu(cpu) {
1492                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493                                 sprintf(p, pcpu_stats[i].name, cpu);
1494                                 p += ETH_GSTRING_LEN;
1495                         }
1496                 }
1497 
1498                 break;
1499         }
1500 }
1501 
1502 static int
1503 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504                          struct ethtool_rxnfc *info)
1505 {
1506         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507 
1508         info->data = RXH_IP_SRC | RXH_IP_DST;
1509 
1510         switch (info->flow_type) {
1511         case TCP_V4_FLOW:
1512                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1513                         info->data |= l4_flag;
1514 
1515                 break;
1516 
1517         case TCP_V6_FLOW:
1518                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1519                         info->data |= l4_flag;
1520 
1521                 break;
1522 
1523         case UDP_V4_FLOW:
1524                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1525                         info->data |= l4_flag;
1526 
1527                 break;
1528 
1529         case UDP_V6_FLOW:
1530                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1531                         info->data |= l4_flag;
1532 
1533                 break;
1534 
1535         case IPV4_FLOW:
1536         case IPV6_FLOW:
1537                 break;
1538         default:
1539                 info->data = 0;
1540                 break;
1541         }
1542 
1543         return 0;
1544 }
1545 
1546 static int
1547 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548                  u32 *rules)
1549 {
1550         struct net_device_context *ndc = netdev_priv(dev);
1551         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552 
1553         if (!nvdev)
1554                 return -ENODEV;
1555 
1556         switch (info->cmd) {
1557         case ETHTOOL_GRXRINGS:
1558                 info->data = nvdev->num_chn;
1559                 return 0;
1560 
1561         case ETHTOOL_GRXFH:
1562                 return netvsc_get_rss_hash_opts(ndc, info);
1563         }
1564         return -EOPNOTSUPP;
1565 }
1566 
1567 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568                                     struct ethtool_rxnfc *info)
1569 {
1570         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572                 switch (info->flow_type) {
1573                 case TCP_V4_FLOW:
1574                         ndc->l4_hash |= HV_TCP4_L4HASH;
1575                         break;
1576 
1577                 case TCP_V6_FLOW:
1578                         ndc->l4_hash |= HV_TCP6_L4HASH;
1579                         break;
1580 
1581                 case UDP_V4_FLOW:
1582                         ndc->l4_hash |= HV_UDP4_L4HASH;
1583                         break;
1584 
1585                 case UDP_V6_FLOW:
1586                         ndc->l4_hash |= HV_UDP6_L4HASH;
1587                         break;
1588 
1589                 default:
1590                         return -EOPNOTSUPP;
1591                 }
1592 
1593                 return 0;
1594         }
1595 
1596         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597                 switch (info->flow_type) {
1598                 case TCP_V4_FLOW:
1599                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600                         break;
1601 
1602                 case TCP_V6_FLOW:
1603                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604                         break;
1605 
1606                 case UDP_V4_FLOW:
1607                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608                         break;
1609 
1610                 case UDP_V6_FLOW:
1611                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612                         break;
1613 
1614                 default:
1615                         return -EOPNOTSUPP;
1616                 }
1617 
1618                 return 0;
1619         }
1620 
1621         return -EOPNOTSUPP;
1622 }
1623 
1624 static int
1625 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626 {
1627         struct net_device_context *ndc = netdev_priv(ndev);
1628 
1629         if (info->cmd == ETHTOOL_SRXFH)
1630                 return netvsc_set_rss_hash_opts(ndc, info);
1631 
1632         return -EOPNOTSUPP;
1633 }
1634 
1635 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636 {
1637         return NETVSC_HASH_KEYLEN;
1638 }
1639 
1640 static u32 netvsc_rss_indir_size(struct net_device *dev)
1641 {
1642         return ITAB_NUM;
1643 }
1644 
1645 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646                            u8 *hfunc)
1647 {
1648         struct net_device_context *ndc = netdev_priv(dev);
1649         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650         struct rndis_device *rndis_dev;
1651         int i;
1652 
1653         if (!ndev)
1654                 return -ENODEV;
1655 
1656         if (hfunc)
1657                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1658 
1659         rndis_dev = ndev->extension;
1660         if (indir) {
1661                 for (i = 0; i < ITAB_NUM; i++)
1662                         indir[i] = ndc->rx_table[i];
1663         }
1664 
1665         if (key)
1666                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667 
1668         return 0;
1669 }
1670 
1671 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672                            const u8 *key, const u8 hfunc)
1673 {
1674         struct net_device_context *ndc = netdev_priv(dev);
1675         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676         struct rndis_device *rndis_dev;
1677         int i;
1678 
1679         if (!ndev)
1680                 return -ENODEV;
1681 
1682         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683                 return -EOPNOTSUPP;
1684 
1685         rndis_dev = ndev->extension;
1686         if (indir) {
1687                 for (i = 0; i < ITAB_NUM; i++)
1688                         if (indir[i] >= ndev->num_chn)
1689                                 return -EINVAL;
1690 
1691                 for (i = 0; i < ITAB_NUM; i++)
1692                         ndc->rx_table[i] = indir[i];
1693         }
1694 
1695         if (!key) {
1696                 if (!indir)
1697                         return 0;
1698 
1699                 key = rndis_dev->rss_key;
1700         }
1701 
1702         return rndis_filter_set_rss_param(rndis_dev, key);
1703 }
1704 
1705 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706  * It does have pre-allocated receive area which is divided into sections.
1707  */
1708 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709                                    struct ethtool_ringparam *ring)
1710 {
1711         u32 max_buf_size;
1712 
1713         ring->rx_pending = nvdev->recv_section_cnt;
1714         ring->tx_pending = nvdev->send_section_cnt;
1715 
1716         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718         else
1719                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720 
1721         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723                 / nvdev->send_section_size;
1724 }
1725 
1726 static void netvsc_get_ringparam(struct net_device *ndev,
1727                                  struct ethtool_ringparam *ring)
1728 {
1729         struct net_device_context *ndevctx = netdev_priv(ndev);
1730         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731 
1732         if (!nvdev)
1733                 return;
1734 
1735         __netvsc_get_ringparam(nvdev, ring);
1736 }
1737 
1738 static int netvsc_set_ringparam(struct net_device *ndev,
1739                                 struct ethtool_ringparam *ring)
1740 {
1741         struct net_device_context *ndevctx = netdev_priv(ndev);
1742         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743         struct netvsc_device_info *device_info;
1744         struct ethtool_ringparam orig;
1745         u32 new_tx, new_rx;
1746         int ret = 0;
1747 
1748         if (!nvdev || nvdev->destroy)
1749                 return -ENODEV;
1750 
1751         memset(&orig, 0, sizeof(orig));
1752         __netvsc_get_ringparam(nvdev, &orig);
1753 
1754         new_tx = clamp_t(u32, ring->tx_pending,
1755                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756         new_rx = clamp_t(u32, ring->rx_pending,
1757                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758 
1759         if (new_tx == orig.tx_pending &&
1760             new_rx == orig.rx_pending)
1761                 return 0;        /* no change */
1762 
1763         device_info = netvsc_devinfo_get(nvdev);
1764 
1765         if (!device_info)
1766                 return -ENOMEM;
1767 
1768         device_info->send_sections = new_tx;
1769         device_info->recv_sections = new_rx;
1770 
1771         ret = netvsc_detach(ndev, nvdev);
1772         if (ret)
1773                 goto out;
1774 
1775         ret = netvsc_attach(ndev, device_info);
1776         if (ret) {
1777                 device_info->send_sections = orig.tx_pending;
1778                 device_info->recv_sections = orig.rx_pending;
1779 
1780                 if (netvsc_attach(ndev, device_info))
1781                         netdev_err(ndev, "restoring ringparam failed");
1782         }
1783 
1784 out:
1785         kfree(device_info);
1786         return ret;
1787 }
1788 
1789 static int netvsc_set_features(struct net_device *ndev,
1790                                netdev_features_t features)
1791 {
1792         netdev_features_t change = features ^ ndev->features;
1793         struct net_device_context *ndevctx = netdev_priv(ndev);
1794         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796         struct ndis_offload_params offloads;
1797         int ret = 0;
1798 
1799         if (!nvdev || nvdev->destroy)
1800                 return -ENODEV;
1801 
1802         if (!(change & NETIF_F_LRO))
1803                 goto syncvf;
1804 
1805         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806 
1807         if (features & NETIF_F_LRO) {
1808                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810         } else {
1811                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813         }
1814 
1815         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816 
1817         if (ret) {
1818                 features ^= NETIF_F_LRO;
1819                 ndev->features = features;
1820         }
1821 
1822 syncvf:
1823         if (!vf_netdev)
1824                 return ret;
1825 
1826         vf_netdev->wanted_features = features;
1827         netdev_update_features(vf_netdev);
1828 
1829         return ret;
1830 }
1831 
1832 static u32 netvsc_get_msglevel(struct net_device *ndev)
1833 {
1834         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835 
1836         return ndev_ctx->msg_enable;
1837 }
1838 
1839 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840 {
1841         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842 
1843         ndev_ctx->msg_enable = val;
1844 }
1845 
1846 static const struct ethtool_ops ethtool_ops = {
1847         .get_drvinfo    = netvsc_get_drvinfo,
1848         .get_msglevel   = netvsc_get_msglevel,
1849         .set_msglevel   = netvsc_set_msglevel,
1850         .get_link       = ethtool_op_get_link,
1851         .get_ethtool_stats = netvsc_get_ethtool_stats,
1852         .get_sset_count = netvsc_get_sset_count,
1853         .get_strings    = netvsc_get_strings,
1854         .get_channels   = netvsc_get_channels,
1855         .set_channels   = netvsc_set_channels,
1856         .get_ts_info    = ethtool_op_get_ts_info,
1857         .get_rxnfc      = netvsc_get_rxnfc,
1858         .set_rxnfc      = netvsc_set_rxnfc,
1859         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860         .get_rxfh_indir_size = netvsc_rss_indir_size,
1861         .get_rxfh       = netvsc_get_rxfh,
1862         .set_rxfh       = netvsc_set_rxfh,
1863         .get_link_ksettings = netvsc_get_link_ksettings,
1864         .set_link_ksettings = netvsc_set_link_ksettings,
1865         .get_ringparam  = netvsc_get_ringparam,
1866         .set_ringparam  = netvsc_set_ringparam,
1867 };
1868 
1869 static const struct net_device_ops device_ops = {
1870         .ndo_open =                     netvsc_open,
1871         .ndo_stop =                     netvsc_close,
1872         .ndo_start_xmit =               netvsc_start_xmit,
1873         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1874         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1875         .ndo_set_features =             netvsc_set_features,
1876         .ndo_change_mtu =               netvsc_change_mtu,
1877         .ndo_validate_addr =            eth_validate_addr,
1878         .ndo_set_mac_address =          netvsc_set_mac_addr,
1879         .ndo_select_queue =             netvsc_select_queue,
1880         .ndo_get_stats64 =              netvsc_get_stats64,
1881 };
1882 
1883 /*
1884  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886  * present send GARP packet to network peers with netif_notify_peers().
1887  */
1888 static void netvsc_link_change(struct work_struct *w)
1889 {
1890         struct net_device_context *ndev_ctx =
1891                 container_of(w, struct net_device_context, dwork.work);
1892         struct hv_device *device_obj = ndev_ctx->device_ctx;
1893         struct net_device *net = hv_get_drvdata(device_obj);
1894         struct netvsc_device *net_device;
1895         struct rndis_device *rdev;
1896         struct netvsc_reconfig *event = NULL;
1897         bool notify = false, reschedule = false;
1898         unsigned long flags, next_reconfig, delay;
1899 
1900         /* if changes are happening, comeback later */
1901         if (!rtnl_trylock()) {
1902                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903                 return;
1904         }
1905 
1906         net_device = rtnl_dereference(ndev_ctx->nvdev);
1907         if (!net_device)
1908                 goto out_unlock;
1909 
1910         rdev = net_device->extension;
1911 
1912         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913         if (time_is_after_jiffies(next_reconfig)) {
1914                 /* link_watch only sends one notification with current state
1915                  * per second, avoid doing reconfig more frequently. Handle
1916                  * wrap around.
1917                  */
1918                 delay = next_reconfig - jiffies;
1919                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1921                 goto out_unlock;
1922         }
1923         ndev_ctx->last_reconfig = jiffies;
1924 
1925         spin_lock_irqsave(&ndev_ctx->lock, flags);
1926         if (!list_empty(&ndev_ctx->reconfig_events)) {
1927                 event = list_first_entry(&ndev_ctx->reconfig_events,
1928                                          struct netvsc_reconfig, list);
1929                 list_del(&event->list);
1930                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931         }
1932         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933 
1934         if (!event)
1935                 goto out_unlock;
1936 
1937         switch (event->event) {
1938                 /* Only the following events are possible due to the check in
1939                  * netvsc_linkstatus_callback()
1940                  */
1941         case RNDIS_STATUS_MEDIA_CONNECT:
1942                 if (rdev->link_state) {
1943                         rdev->link_state = false;
1944                         netif_carrier_on(net);
1945                         netvsc_tx_enable(net_device, net);
1946                 } else {
1947                         notify = true;
1948                 }
1949                 kfree(event);
1950                 break;
1951         case RNDIS_STATUS_MEDIA_DISCONNECT:
1952                 if (!rdev->link_state) {
1953                         rdev->link_state = true;
1954                         netif_carrier_off(net);
1955                         netvsc_tx_disable(net_device, net);
1956                 }
1957                 kfree(event);
1958                 break;
1959         case RNDIS_STATUS_NETWORK_CHANGE:
1960                 /* Only makes sense if carrier is present */
1961                 if (!rdev->link_state) {
1962                         rdev->link_state = true;
1963                         netif_carrier_off(net);
1964                         netvsc_tx_disable(net_device, net);
1965                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1967                         list_add(&event->list, &ndev_ctx->reconfig_events);
1968                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969                         reschedule = true;
1970                 }
1971                 break;
1972         }
1973 
1974         rtnl_unlock();
1975 
1976         if (notify)
1977                 netdev_notify_peers(net);
1978 
1979         /* link_watch only sends one notification with current state per
1980          * second, handle next reconfig event in 2 seconds.
1981          */
1982         if (reschedule)
1983                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984 
1985         return;
1986 
1987 out_unlock:
1988         rtnl_unlock();
1989 }
1990 
1991 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992 {
1993         struct net_device_context *net_device_ctx;
1994         struct net_device *dev;
1995 
1996         dev = netdev_master_upper_dev_get(vf_netdev);
1997         if (!dev || dev->netdev_ops != &device_ops)
1998                 return NULL;    /* not a netvsc device */
1999 
2000         net_device_ctx = netdev_priv(dev);
2001         if (!rtnl_dereference(net_device_ctx->nvdev))
2002                 return NULL;    /* device is removed */
2003 
2004         return dev;
2005 }
2006 
2007 /* Called when VF is injecting data into network stack.
2008  * Change the associated network device from VF to netvsc.
2009  * note: already called with rcu_read_lock
2010  */
2011 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012 {
2013         struct sk_buff *skb = *pskb;
2014         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016         struct netvsc_vf_pcpu_stats *pcpu_stats
2017                  = this_cpu_ptr(ndev_ctx->vf_stats);
2018 
2019         skb = skb_share_check(skb, GFP_ATOMIC);
2020         if (unlikely(!skb))
2021                 return RX_HANDLER_CONSUMED;
2022 
2023         *pskb = skb;
2024 
2025         skb->dev = ndev;
2026 
2027         u64_stats_update_begin(&pcpu_stats->syncp);
2028         pcpu_stats->rx_packets++;
2029         pcpu_stats->rx_bytes += skb->len;
2030         u64_stats_update_end(&pcpu_stats->syncp);
2031 
2032         return RX_HANDLER_ANOTHER;
2033 }
2034 
2035 static int netvsc_vf_join(struct net_device *vf_netdev,
2036                           struct net_device *ndev)
2037 {
2038         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039         int ret;
2040 
2041         ret = netdev_rx_handler_register(vf_netdev,
2042                                          netvsc_vf_handle_frame, ndev);
2043         if (ret != 0) {
2044                 netdev_err(vf_netdev,
2045                            "can not register netvsc VF receive handler (err = %d)\n",
2046                            ret);
2047                 goto rx_handler_failed;
2048         }
2049 
2050         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051                                            NULL, NULL, NULL);
2052         if (ret != 0) {
2053                 netdev_err(vf_netdev,
2054                            "can not set master device %s (err = %d)\n",
2055                            ndev->name, ret);
2056                 goto upper_link_failed;
2057         }
2058 
2059         /* set slave flag before open to prevent IPv6 addrconf */
2060         vf_netdev->flags |= IFF_SLAVE;
2061 
2062         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063 
2064         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065 
2066         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067         return 0;
2068 
2069 upper_link_failed:
2070         netdev_rx_handler_unregister(vf_netdev);
2071 rx_handler_failed:
2072         return ret;
2073 }
2074 
2075 static void __netvsc_vf_setup(struct net_device *ndev,
2076                               struct net_device *vf_netdev)
2077 {
2078         int ret;
2079 
2080         /* Align MTU of VF with master */
2081         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082         if (ret)
2083                 netdev_warn(vf_netdev,
2084                             "unable to change mtu to %u\n", ndev->mtu);
2085 
2086         /* set multicast etc flags on VF */
2087         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088 
2089         /* sync address list from ndev to VF */
2090         netif_addr_lock_bh(ndev);
2091         dev_uc_sync(vf_netdev, ndev);
2092         dev_mc_sync(vf_netdev, ndev);
2093         netif_addr_unlock_bh(ndev);
2094 
2095         if (netif_running(ndev)) {
2096                 ret = dev_open(vf_netdev, NULL);
2097                 if (ret)
2098                         netdev_warn(vf_netdev,
2099                                     "unable to open: %d\n", ret);
2100         }
2101 }
2102 
2103 /* Setup VF as slave of the synthetic device.
2104  * Runs in workqueue to avoid recursion in netlink callbacks.
2105  */
2106 static void netvsc_vf_setup(struct work_struct *w)
2107 {
2108         struct net_device_context *ndev_ctx
2109                 = container_of(w, struct net_device_context, vf_takeover.work);
2110         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111         struct net_device *vf_netdev;
2112 
2113         if (!rtnl_trylock()) {
2114                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115                 return;
2116         }
2117 
2118         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119         if (vf_netdev)
2120                 __netvsc_vf_setup(ndev, vf_netdev);
2121 
2122         rtnl_unlock();
2123 }
2124 
2125 /* Find netvsc by VF serial number.
2126  * The PCI hyperv controller records the serial number as the slot kobj name.
2127  */
2128 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129 {
2130         struct device *parent = vf_netdev->dev.parent;
2131         struct net_device_context *ndev_ctx;
2132         struct pci_dev *pdev;
2133         u32 serial;
2134 
2135         if (!parent || !dev_is_pci(parent))
2136                 return NULL; /* not a PCI device */
2137 
2138         pdev = to_pci_dev(parent);
2139         if (!pdev->slot) {
2140                 netdev_notice(vf_netdev, "no PCI slot information\n");
2141                 return NULL;
2142         }
2143 
2144         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146                               pci_slot_name(pdev->slot));
2147                 return NULL;
2148         }
2149 
2150         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151                 if (!ndev_ctx->vf_alloc)
2152                         continue;
2153 
2154                 if (ndev_ctx->vf_serial == serial)
2155                         return hv_get_drvdata(ndev_ctx->device_ctx);
2156         }
2157 
2158         netdev_notice(vf_netdev,
2159                       "no netdev found for vf serial:%u\n", serial);
2160         return NULL;
2161 }
2162 
2163 static int netvsc_register_vf(struct net_device *vf_netdev)
2164 {
2165         struct net_device_context *net_device_ctx;
2166         struct netvsc_device *netvsc_dev;
2167         struct net_device *ndev;
2168         int ret;
2169 
2170         if (vf_netdev->addr_len != ETH_ALEN)
2171                 return NOTIFY_DONE;
2172 
2173         ndev = get_netvsc_byslot(vf_netdev);
2174         if (!ndev)
2175                 return NOTIFY_DONE;
2176 
2177         net_device_ctx = netdev_priv(ndev);
2178         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180                 return NOTIFY_DONE;
2181 
2182         /* if synthetic interface is a different namespace,
2183          * then move the VF to that namespace; join will be
2184          * done again in that context.
2185          */
2186         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187                 ret = dev_change_net_namespace(vf_netdev,
2188                                                dev_net(ndev), "eth%d");
2189                 if (ret)
2190                         netdev_err(vf_netdev,
2191                                    "could not move to same namespace as %s: %d\n",
2192                                    ndev->name, ret);
2193                 else
2194                         netdev_info(vf_netdev,
2195                                     "VF moved to namespace with: %s\n",
2196                                     ndev->name);
2197                 return NOTIFY_DONE;
2198         }
2199 
2200         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201 
2202         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203                 return NOTIFY_DONE;
2204 
2205         dev_hold(vf_netdev);
2206         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207 
2208         vf_netdev->wanted_features = ndev->features;
2209         netdev_update_features(vf_netdev);
2210 
2211         return NOTIFY_OK;
2212 }
2213 
2214 /* VF up/down change detected, schedule to change data path */
2215 static int netvsc_vf_changed(struct net_device *vf_netdev)
2216 {
2217         struct net_device_context *net_device_ctx;
2218         struct netvsc_device *netvsc_dev;
2219         struct net_device *ndev;
2220         bool vf_is_up = netif_running(vf_netdev);
2221 
2222         ndev = get_netvsc_byref(vf_netdev);
2223         if (!ndev)
2224                 return NOTIFY_DONE;
2225 
2226         net_device_ctx = netdev_priv(ndev);
2227         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228         if (!netvsc_dev)
2229                 return NOTIFY_DONE;
2230 
2231         netvsc_switch_datapath(ndev, vf_is_up);
2232         netdev_info(ndev, "Data path switched %s VF: %s\n",
2233                     vf_is_up ? "to" : "from", vf_netdev->name);
2234 
2235         return NOTIFY_OK;
2236 }
2237 
2238 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239 {
2240         struct net_device *ndev;
2241         struct net_device_context *net_device_ctx;
2242 
2243         ndev = get_netvsc_byref(vf_netdev);
2244         if (!ndev)
2245                 return NOTIFY_DONE;
2246 
2247         net_device_ctx = netdev_priv(ndev);
2248         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249 
2250         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251 
2252         netdev_rx_handler_unregister(vf_netdev);
2253         netdev_upper_dev_unlink(vf_netdev, ndev);
2254         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255         dev_put(vf_netdev);
2256 
2257         return NOTIFY_OK;
2258 }
2259 
2260 static int netvsc_probe(struct hv_device *dev,
2261                         const struct hv_vmbus_device_id *dev_id)
2262 {
2263         struct net_device *net = NULL;
2264         struct net_device_context *net_device_ctx;
2265         struct netvsc_device_info *device_info = NULL;
2266         struct netvsc_device *nvdev;
2267         int ret = -ENOMEM;
2268 
2269         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270                                 VRSS_CHANNEL_MAX);
2271         if (!net)
2272                 goto no_net;
2273 
2274         netif_carrier_off(net);
2275 
2276         netvsc_init_settings(net);
2277 
2278         net_device_ctx = netdev_priv(net);
2279         net_device_ctx->device_ctx = dev;
2280         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281         if (netif_msg_probe(net_device_ctx))
2282                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2283                            net_device_ctx->msg_enable);
2284 
2285         hv_set_drvdata(dev, net);
2286 
2287         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288 
2289         spin_lock_init(&net_device_ctx->lock);
2290         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292 
2293         net_device_ctx->vf_stats
2294                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295         if (!net_device_ctx->vf_stats)
2296                 goto no_stats;
2297 
2298         net->netdev_ops = &device_ops;
2299         net->ethtool_ops = &ethtool_ops;
2300         SET_NETDEV_DEV(net, &dev->device);
2301 
2302         /* We always need headroom for rndis header */
2303         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304 
2305         /* Initialize the number of queues to be 1, we may change it if more
2306          * channels are offered later.
2307          */
2308         netif_set_real_num_tx_queues(net, 1);
2309         netif_set_real_num_rx_queues(net, 1);
2310 
2311         /* Notify the netvsc driver of the new device */
2312         device_info = netvsc_devinfo_get(NULL);
2313 
2314         if (!device_info) {
2315                 ret = -ENOMEM;
2316                 goto devinfo_failed;
2317         }
2318 
2319         nvdev = rndis_filter_device_add(dev, device_info);
2320         if (IS_ERR(nvdev)) {
2321                 ret = PTR_ERR(nvdev);
2322                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323                 goto rndis_failed;
2324         }
2325 
2326         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327 
2328         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2329          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330          * all subchannels to show up, but that may not happen because
2331          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332          * -> ... -> device_add() -> ... -> __device_attach() can't get
2333          * the device lock, so all the subchannels can't be processed --
2334          * finally netvsc_subchan_work() hangs forever.
2335          */
2336         rtnl_lock();
2337 
2338         if (nvdev->num_chn > 1)
2339                 schedule_work(&nvdev->subchan_work);
2340 
2341         /* hw_features computed in rndis_netdev_set_hwcaps() */
2342         net->features = net->hw_features |
2343                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344                 NETIF_F_HW_VLAN_CTAG_RX;
2345         net->vlan_features = net->features;
2346 
2347         /* MTU range: 68 - 1500 or 65521 */
2348         net->min_mtu = NETVSC_MTU_MIN;
2349         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351         else
2352                 net->max_mtu = ETH_DATA_LEN;
2353 
2354         nvdev->tx_disable = false;
2355 
2356         ret = register_netdevice(net);
2357         if (ret != 0) {
2358                 pr_err("Unable to register netdev.\n");
2359                 goto register_failed;
2360         }
2361 
2362         list_add(&net_device_ctx->list, &netvsc_dev_list);
2363         rtnl_unlock();
2364 
2365         kfree(device_info);
2366         return 0;
2367 
2368 register_failed:
2369         rtnl_unlock();
2370         rndis_filter_device_remove(dev, nvdev);
2371 rndis_failed:
2372         kfree(device_info);
2373 devinfo_failed:
2374         free_percpu(net_device_ctx->vf_stats);
2375 no_stats:
2376         hv_set_drvdata(dev, NULL);
2377         free_netdev(net);
2378 no_net:
2379         return ret;
2380 }
2381 
2382 static int netvsc_remove(struct hv_device *dev)
2383 {
2384         struct net_device_context *ndev_ctx;
2385         struct net_device *vf_netdev, *net;
2386         struct netvsc_device *nvdev;
2387 
2388         net = hv_get_drvdata(dev);
2389         if (net == NULL) {
2390                 dev_err(&dev->device, "No net device to remove\n");
2391                 return 0;
2392         }
2393 
2394         ndev_ctx = netdev_priv(net);
2395 
2396         cancel_delayed_work_sync(&ndev_ctx->dwork);
2397 
2398         rtnl_lock();
2399         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2400         if (nvdev)
2401                 cancel_work_sync(&nvdev->subchan_work);
2402 
2403         /*
2404          * Call to the vsc driver to let it know that the device is being
2405          * removed. Also blocks mtu and channel changes.
2406          */
2407         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2408         if (vf_netdev)
2409                 netvsc_unregister_vf(vf_netdev);
2410 
2411         if (nvdev)
2412                 rndis_filter_device_remove(dev, nvdev);
2413 
2414         unregister_netdevice(net);
2415         list_del(&ndev_ctx->list);
2416 
2417         rtnl_unlock();
2418 
2419         hv_set_drvdata(dev, NULL);
2420 
2421         free_percpu(ndev_ctx->vf_stats);
2422         free_netdev(net);
2423         return 0;
2424 }
2425 
2426 static const struct hv_vmbus_device_id id_table[] = {
2427         /* Network guid */
2428         { HV_NIC_GUID, },
2429         { },
2430 };
2431 
2432 MODULE_DEVICE_TABLE(vmbus, id_table);
2433 
2434 /* The one and only one */
2435 static struct  hv_driver netvsc_drv = {
2436         .name = KBUILD_MODNAME,
2437         .id_table = id_table,
2438         .probe = netvsc_probe,
2439         .remove = netvsc_remove,
2440         .driver = {
2441                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2442         },
2443 };
2444 
2445 /*
2446  * On Hyper-V, every VF interface is matched with a corresponding
2447  * synthetic interface. The synthetic interface is presented first
2448  * to the guest. When the corresponding VF instance is registered,
2449  * we will take care of switching the data path.
2450  */
2451 static int netvsc_netdev_event(struct notifier_block *this,
2452                                unsigned long event, void *ptr)
2453 {
2454         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2455 
2456         /* Skip our own events */
2457         if (event_dev->netdev_ops == &device_ops)
2458                 return NOTIFY_DONE;
2459 
2460         /* Avoid non-Ethernet type devices */
2461         if (event_dev->type != ARPHRD_ETHER)
2462                 return NOTIFY_DONE;
2463 
2464         /* Avoid Vlan dev with same MAC registering as VF */
2465         if (is_vlan_dev(event_dev))
2466                 return NOTIFY_DONE;
2467 
2468         /* Avoid Bonding master dev with same MAC registering as VF */
2469         if ((event_dev->priv_flags & IFF_BONDING) &&
2470             (event_dev->flags & IFF_MASTER))
2471                 return NOTIFY_DONE;
2472 
2473         switch (event) {
2474         case NETDEV_REGISTER:
2475                 return netvsc_register_vf(event_dev);
2476         case NETDEV_UNREGISTER:
2477                 return netvsc_unregister_vf(event_dev);
2478         case NETDEV_UP:
2479         case NETDEV_DOWN:
2480                 return netvsc_vf_changed(event_dev);
2481         default:
2482                 return NOTIFY_DONE;
2483         }
2484 }
2485 
2486 static struct notifier_block netvsc_netdev_notifier = {
2487         .notifier_call = netvsc_netdev_event,
2488 };
2489 
2490 static void __exit netvsc_drv_exit(void)
2491 {
2492         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2493         vmbus_driver_unregister(&netvsc_drv);
2494 }
2495 
2496 static int __init netvsc_drv_init(void)
2497 {
2498         int ret;
2499 
2500         if (ring_size < RING_SIZE_MIN) {
2501                 ring_size = RING_SIZE_MIN;
2502                 pr_info("Increased ring_size to %u (min allowed)\n",
2503                         ring_size);
2504         }
2505         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2506 
2507         ret = vmbus_driver_register(&netvsc_drv);
2508         if (ret)
2509                 return ret;
2510 
2511         register_netdevice_notifier(&netvsc_netdev_notifier);
2512         return 0;
2513 }
2514 
2515 MODULE_LICENSE("GPL");
2516 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2517 
2518 module_init(netvsc_drv_init);
2519 module_exit(netvsc_drv_exit);

/* [<][>][^][v][top][bottom][index][help] */