root/drivers/net/wireless/ralink/rt2x00/rt2500usb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rt2500usb_register_read
  2. rt2500usb_register_read_lock
  3. rt2500usb_register_write
  4. rt2500usb_register_write_lock
  5. rt2500usb_register_multiwrite
  6. rt2500usb_regbusy_read
  7. rt2500usb_bbp_write
  8. rt2500usb_bbp_read
  9. rt2500usb_rf_write
  10. _rt2500usb_register_read
  11. _rt2500usb_register_write
  12. rt2500usb_rfkill_poll
  13. rt2500usb_brightness_set
  14. rt2500usb_blink_set
  15. rt2500usb_init_led
  16. rt2500usb_config_key
  17. rt2500usb_config_filter
  18. rt2500usb_config_intf
  19. rt2500usb_config_erp
  20. rt2500usb_config_ant
  21. rt2500usb_config_channel
  22. rt2500usb_config_txpower
  23. rt2500usb_config_ps
  24. rt2500usb_config
  25. rt2500usb_link_stats
  26. rt2500usb_reset_tuner
  27. rt2500usb_start_queue
  28. rt2500usb_stop_queue
  29. rt2500usb_init_registers
  30. rt2500usb_wait_bbp_ready
  31. rt2500usb_init_bbp
  32. rt2500usb_enable_radio
  33. rt2500usb_disable_radio
  34. rt2500usb_set_state
  35. rt2500usb_set_device_state
  36. rt2500usb_write_tx_desc
  37. rt2500usb_write_beacon
  38. rt2500usb_get_tx_data_len
  39. rt2500usb_fill_rxdone
  40. rt2500usb_beacondone
  41. rt2500usb_validate_eeprom
  42. rt2500usb_init_eeprom
  43. rt2500usb_probe_hw_mode
  44. rt2500usb_probe_hw
  45. rt2500usb_queue_init
  46. rt2500usb_probe

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4         <http://rt2x00.serialmonkey.com>
   5 
   6  */
   7 
   8 /*
   9         Module: rt2500usb
  10         Abstract: rt2500usb device specific routines.
  11         Supported chipsets: RT2570.
  12  */
  13 
  14 #include <linux/delay.h>
  15 #include <linux/etherdevice.h>
  16 #include <linux/kernel.h>
  17 #include <linux/module.h>
  18 #include <linux/slab.h>
  19 #include <linux/usb.h>
  20 
  21 #include "rt2x00.h"
  22 #include "rt2x00usb.h"
  23 #include "rt2500usb.h"
  24 
  25 /*
  26  * Allow hardware encryption to be disabled.
  27  */
  28 static bool modparam_nohwcrypt;
  29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
  30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  31 
  32 /*
  33  * Register access.
  34  * All access to the CSR registers will go through the methods
  35  * rt2500usb_register_read and rt2500usb_register_write.
  36  * BBP and RF register require indirect register access,
  37  * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38  * These indirect registers work with busy bits,
  39  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
  40  * the register while taking a REGISTER_BUSY_DELAY us delay
  41  * between each attampt. When the busy bit is still set at that time,
  42  * the access attempt is considered to have failed,
  43  * and we will print an error.
  44  * If the csr_mutex is already held then the _lock variants must
  45  * be used instead.
  46  */
  47 static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  48                                    const unsigned int offset)
  49 {
  50         __le16 reg;
  51         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  52                                       USB_VENDOR_REQUEST_IN, offset,
  53                                       &reg, sizeof(reg));
  54         return le16_to_cpu(reg);
  55 }
  56 
  57 static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  58                                         const unsigned int offset)
  59 {
  60         __le16 reg;
  61         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  62                                        USB_VENDOR_REQUEST_IN, offset,
  63                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
  64         return le16_to_cpu(reg);
  65 }
  66 
  67 static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  68                                             const unsigned int offset,
  69                                             u16 value)
  70 {
  71         __le16 reg = cpu_to_le16(value);
  72         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  73                                       USB_VENDOR_REQUEST_OUT, offset,
  74                                       &reg, sizeof(reg));
  75 }
  76 
  77 static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  78                                                  const unsigned int offset,
  79                                                  u16 value)
  80 {
  81         __le16 reg = cpu_to_le16(value);
  82         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  83                                        USB_VENDOR_REQUEST_OUT, offset,
  84                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
  85 }
  86 
  87 static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  88                                                  const unsigned int offset,
  89                                                  void *value, const u16 length)
  90 {
  91         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  92                                       USB_VENDOR_REQUEST_OUT, offset,
  93                                       value, length);
  94 }
  95 
  96 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  97                                   const unsigned int offset,
  98                                   struct rt2x00_field16 field,
  99                                   u16 *reg)
 100 {
 101         unsigned int i;
 102 
 103         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 104                 *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
 105                 if (!rt2x00_get_field16(*reg, field))
 106                         return 1;
 107                 udelay(REGISTER_BUSY_DELAY);
 108         }
 109 
 110         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 111                    offset, *reg);
 112         *reg = ~0;
 113 
 114         return 0;
 115 }
 116 
 117 #define WAIT_FOR_BBP(__dev, __reg) \
 118         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 119 #define WAIT_FOR_RF(__dev, __reg) \
 120         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 121 
 122 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 123                                 const unsigned int word, const u8 value)
 124 {
 125         u16 reg;
 126 
 127         mutex_lock(&rt2x00dev->csr_mutex);
 128 
 129         /*
 130          * Wait until the BBP becomes available, afterwards we
 131          * can safely write the new data into the register.
 132          */
 133         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 134                 reg = 0;
 135                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 136                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 137                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 138 
 139                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 140         }
 141 
 142         mutex_unlock(&rt2x00dev->csr_mutex);
 143 }
 144 
 145 static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 146                              const unsigned int word)
 147 {
 148         u16 reg;
 149         u8 value;
 150 
 151         mutex_lock(&rt2x00dev->csr_mutex);
 152 
 153         /*
 154          * Wait until the BBP becomes available, afterwards we
 155          * can safely write the read request into the register.
 156          * After the data has been written, we wait until hardware
 157          * returns the correct value, if at any time the register
 158          * doesn't become available in time, reg will be 0xffffffff
 159          * which means we return 0xff to the caller.
 160          */
 161         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 162                 reg = 0;
 163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 165 
 166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 167 
 168                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
 169                         reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
 170         }
 171 
 172         value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 173 
 174         mutex_unlock(&rt2x00dev->csr_mutex);
 175 
 176         return value;
 177 }
 178 
 179 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 180                                const unsigned int word, const u32 value)
 181 {
 182         u16 reg;
 183 
 184         mutex_lock(&rt2x00dev->csr_mutex);
 185 
 186         /*
 187          * Wait until the RF becomes available, afterwards we
 188          * can safely write the new data into the register.
 189          */
 190         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 191                 reg = 0;
 192                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 193                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 194 
 195                 reg = 0;
 196                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 197                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 198                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 199                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 200 
 201                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 202                 rt2x00_rf_write(rt2x00dev, word, value);
 203         }
 204 
 205         mutex_unlock(&rt2x00dev->csr_mutex);
 206 }
 207 
 208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 209 static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 210                                      const unsigned int offset)
 211 {
 212         return rt2500usb_register_read(rt2x00dev, offset);
 213 }
 214 
 215 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 216                                       const unsigned int offset,
 217                                       u32 value)
 218 {
 219         rt2500usb_register_write(rt2x00dev, offset, value);
 220 }
 221 
 222 static const struct rt2x00debug rt2500usb_rt2x00debug = {
 223         .owner  = THIS_MODULE,
 224         .csr    = {
 225                 .read           = _rt2500usb_register_read,
 226                 .write          = _rt2500usb_register_write,
 227                 .flags          = RT2X00DEBUGFS_OFFSET,
 228                 .word_base      = CSR_REG_BASE,
 229                 .word_size      = sizeof(u16),
 230                 .word_count     = CSR_REG_SIZE / sizeof(u16),
 231         },
 232         .eeprom = {
 233                 .read           = rt2x00_eeprom_read,
 234                 .write          = rt2x00_eeprom_write,
 235                 .word_base      = EEPROM_BASE,
 236                 .word_size      = sizeof(u16),
 237                 .word_count     = EEPROM_SIZE / sizeof(u16),
 238         },
 239         .bbp    = {
 240                 .read           = rt2500usb_bbp_read,
 241                 .write          = rt2500usb_bbp_write,
 242                 .word_base      = BBP_BASE,
 243                 .word_size      = sizeof(u8),
 244                 .word_count     = BBP_SIZE / sizeof(u8),
 245         },
 246         .rf     = {
 247                 .read           = rt2x00_rf_read,
 248                 .write          = rt2500usb_rf_write,
 249                 .word_base      = RF_BASE,
 250                 .word_size      = sizeof(u32),
 251                 .word_count     = RF_SIZE / sizeof(u32),
 252         },
 253 };
 254 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 255 
 256 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 257 {
 258         u16 reg;
 259 
 260         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
 261         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 262 }
 263 
 264 #ifdef CONFIG_RT2X00_LIB_LEDS
 265 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 266                                      enum led_brightness brightness)
 267 {
 268         struct rt2x00_led *led =
 269             container_of(led_cdev, struct rt2x00_led, led_dev);
 270         unsigned int enabled = brightness != LED_OFF;
 271         u16 reg;
 272 
 273         reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
 274 
 275         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 276                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 277         else if (led->type == LED_TYPE_ACTIVITY)
 278                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 279 
 280         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 281 }
 282 
 283 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 284                                unsigned long *delay_on,
 285                                unsigned long *delay_off)
 286 {
 287         struct rt2x00_led *led =
 288             container_of(led_cdev, struct rt2x00_led, led_dev);
 289         u16 reg;
 290 
 291         reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
 292         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 293         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 294         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 295 
 296         return 0;
 297 }
 298 
 299 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 300                                struct rt2x00_led *led,
 301                                enum led_type type)
 302 {
 303         led->rt2x00dev = rt2x00dev;
 304         led->type = type;
 305         led->led_dev.brightness_set = rt2500usb_brightness_set;
 306         led->led_dev.blink_set = rt2500usb_blink_set;
 307         led->flags = LED_INITIALIZED;
 308 }
 309 #endif /* CONFIG_RT2X00_LIB_LEDS */
 310 
 311 /*
 312  * Configuration handlers.
 313  */
 314 
 315 /*
 316  * rt2500usb does not differentiate between shared and pairwise
 317  * keys, so we should use the same function for both key types.
 318  */
 319 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 320                                 struct rt2x00lib_crypto *crypto,
 321                                 struct ieee80211_key_conf *key)
 322 {
 323         u32 mask;
 324         u16 reg;
 325         enum cipher curr_cipher;
 326 
 327         if (crypto->cmd == SET_KEY) {
 328                 /*
 329                  * Disallow to set WEP key other than with index 0,
 330                  * it is known that not work at least on some hardware.
 331                  * SW crypto will be used in that case.
 332                  */
 333                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 334                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 335                     key->keyidx != 0)
 336                         return -EOPNOTSUPP;
 337 
 338                 /*
 339                  * Pairwise key will always be entry 0, but this
 340                  * could collide with a shared key on the same
 341                  * position...
 342                  */
 343                 mask = TXRX_CSR0_KEY_ID.bit_mask;
 344 
 345                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 346                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 347                 reg &= mask;
 348 
 349                 if (reg && reg == mask)
 350                         return -ENOSPC;
 351 
 352                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 353 
 354                 key->hw_key_idx += reg ? ffz(reg) : 0;
 355                 /*
 356                  * Hardware requires that all keys use the same cipher
 357                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 358                  * If this is not the first key, compare the cipher with the
 359                  * first one and fall back to SW crypto if not the same.
 360                  */
 361                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 362                         return -EOPNOTSUPP;
 363 
 364                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 365                                               crypto->key, sizeof(crypto->key));
 366 
 367                 /*
 368                  * The driver does not support the IV/EIV generation
 369                  * in hardware. However it demands the data to be provided
 370                  * both separately as well as inside the frame.
 371                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 372                  * to ensure rt2x00lib will not strip the data from the
 373                  * frame after the copy, now we must tell mac80211
 374                  * to generate the IV/EIV data.
 375                  */
 376                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 377                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 378         }
 379 
 380         /*
 381          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 382          * a particular key is valid.
 383          */
 384         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 385         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 386         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 387 
 388         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 389         if (crypto->cmd == SET_KEY)
 390                 mask |= 1 << key->hw_key_idx;
 391         else if (crypto->cmd == DISABLE_KEY)
 392                 mask &= ~(1 << key->hw_key_idx);
 393         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 394         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 395 
 396         return 0;
 397 }
 398 
 399 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 400                                     const unsigned int filter_flags)
 401 {
 402         u16 reg;
 403 
 404         /*
 405          * Start configuration steps.
 406          * Note that the version error will always be dropped
 407          * and broadcast frames will always be accepted since
 408          * there is no filter for it at this time.
 409          */
 410         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 411         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 412                            !(filter_flags & FIF_FCSFAIL));
 413         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 414                            !(filter_flags & FIF_PLCPFAIL));
 415         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 416                            !(filter_flags & FIF_CONTROL));
 417         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 418                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 419         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 420                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 421                            !rt2x00dev->intf_ap_count);
 422         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 423         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 424                            !(filter_flags & FIF_ALLMULTI));
 425         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 426         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 427 }
 428 
 429 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 430                                   struct rt2x00_intf *intf,
 431                                   struct rt2x00intf_conf *conf,
 432                                   const unsigned int flags)
 433 {
 434         unsigned int bcn_preload;
 435         u16 reg;
 436 
 437         if (flags & CONFIG_UPDATE_TYPE) {
 438                 /*
 439                  * Enable beacon config
 440                  */
 441                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 442                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
 443                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 444                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 445                                    2 * (conf->type != NL80211_IFTYPE_STATION));
 446                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 447 
 448                 /*
 449                  * Enable synchronisation.
 450                  */
 451                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 452                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 453                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 454 
 455                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 456                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 457                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 458         }
 459 
 460         if (flags & CONFIG_UPDATE_MAC)
 461                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 462                                               (3 * sizeof(__le16)));
 463 
 464         if (flags & CONFIG_UPDATE_BSSID)
 465                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 466                                               (3 * sizeof(__le16)));
 467 }
 468 
 469 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 470                                  struct rt2x00lib_erp *erp,
 471                                  u32 changed)
 472 {
 473         u16 reg;
 474 
 475         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 476                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
 477                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 478                                    !!erp->short_preamble);
 479                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 480         }
 481 
 482         if (changed & BSS_CHANGED_BASIC_RATES)
 483                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 484                                          erp->basic_rates);
 485 
 486         if (changed & BSS_CHANGED_BEACON_INT) {
 487                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 488                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 489                                    erp->beacon_int * 4);
 490                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 491         }
 492 
 493         if (changed & BSS_CHANGED_ERP_SLOT) {
 494                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 495                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 496                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 497         }
 498 }
 499 
 500 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 501                                  struct antenna_setup *ant)
 502 {
 503         u8 r2;
 504         u8 r14;
 505         u16 csr5;
 506         u16 csr6;
 507 
 508         /*
 509          * We should never come here because rt2x00lib is supposed
 510          * to catch this and send us the correct antenna explicitely.
 511          */
 512         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 513                ant->tx == ANTENNA_SW_DIVERSITY);
 514 
 515         r2 = rt2500usb_bbp_read(rt2x00dev, 2);
 516         r14 = rt2500usb_bbp_read(rt2x00dev, 14);
 517         csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
 518         csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
 519 
 520         /*
 521          * Configure the TX antenna.
 522          */
 523         switch (ant->tx) {
 524         case ANTENNA_HW_DIVERSITY:
 525                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 526                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 527                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 528                 break;
 529         case ANTENNA_A:
 530                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 531                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 532                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 533                 break;
 534         case ANTENNA_B:
 535         default:
 536                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 537                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 538                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 539                 break;
 540         }
 541 
 542         /*
 543          * Configure the RX antenna.
 544          */
 545         switch (ant->rx) {
 546         case ANTENNA_HW_DIVERSITY:
 547                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 548                 break;
 549         case ANTENNA_A:
 550                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 551                 break;
 552         case ANTENNA_B:
 553         default:
 554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 555                 break;
 556         }
 557 
 558         /*
 559          * RT2525E and RT5222 need to flip TX I/Q
 560          */
 561         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 562                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 563                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 564                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 565 
 566                 /*
 567                  * RT2525E does not need RX I/Q Flip.
 568                  */
 569                 if (rt2x00_rf(rt2x00dev, RF2525E))
 570                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 571         } else {
 572                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 573                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 574         }
 575 
 576         rt2500usb_bbp_write(rt2x00dev, 2, r2);
 577         rt2500usb_bbp_write(rt2x00dev, 14, r14);
 578         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 579         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 580 }
 581 
 582 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 583                                      struct rf_channel *rf, const int txpower)
 584 {
 585         /*
 586          * Set TXpower.
 587          */
 588         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 589 
 590         /*
 591          * For RT2525E we should first set the channel to half band higher.
 592          */
 593         if (rt2x00_rf(rt2x00dev, RF2525E)) {
 594                 static const u32 vals[] = {
 595                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 596                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 597                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 598                         0x00000902, 0x00000906
 599                 };
 600 
 601                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 602                 if (rf->rf4)
 603                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 604         }
 605 
 606         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 607         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 608         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 609         if (rf->rf4)
 610                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 611 }
 612 
 613 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 614                                      const int txpower)
 615 {
 616         u32 rf3;
 617 
 618         rf3 = rt2x00_rf_read(rt2x00dev, 3);
 619         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 620         rt2500usb_rf_write(rt2x00dev, 3, rf3);
 621 }
 622 
 623 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 624                                 struct rt2x00lib_conf *libconf)
 625 {
 626         enum dev_state state =
 627             (libconf->conf->flags & IEEE80211_CONF_PS) ?
 628                 STATE_SLEEP : STATE_AWAKE;
 629         u16 reg;
 630 
 631         if (state == STATE_SLEEP) {
 632                 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 633                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 634                                    rt2x00dev->beacon_int - 20);
 635                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 636                                    libconf->conf->listen_interval - 1);
 637 
 638                 /* We must first disable autowake before it can be enabled */
 639                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 640                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 641 
 642                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 643                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 644         } else {
 645                 reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 646                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 647                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 648         }
 649 
 650         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 651 }
 652 
 653 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 654                              struct rt2x00lib_conf *libconf,
 655                              const unsigned int flags)
 656 {
 657         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 658                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 659                                          libconf->conf->power_level);
 660         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 661             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 662                 rt2500usb_config_txpower(rt2x00dev,
 663                                          libconf->conf->power_level);
 664         if (flags & IEEE80211_CONF_CHANGE_PS)
 665                 rt2500usb_config_ps(rt2x00dev, libconf);
 666 }
 667 
 668 /*
 669  * Link tuning
 670  */
 671 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 672                                  struct link_qual *qual)
 673 {
 674         u16 reg;
 675 
 676         /*
 677          * Update FCS error count from register.
 678          */
 679         reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
 680         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 681 
 682         /*
 683          * Update False CCA count from register.
 684          */
 685         reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
 686         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 687 }
 688 
 689 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 690                                   struct link_qual *qual)
 691 {
 692         u16 eeprom;
 693         u16 value;
 694 
 695         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
 696         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 697         rt2500usb_bbp_write(rt2x00dev, 24, value);
 698 
 699         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
 700         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 701         rt2500usb_bbp_write(rt2x00dev, 25, value);
 702 
 703         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
 704         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 705         rt2500usb_bbp_write(rt2x00dev, 61, value);
 706 
 707         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
 708         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 709         rt2500usb_bbp_write(rt2x00dev, 17, value);
 710 
 711         qual->vgc_level = value;
 712 }
 713 
 714 /*
 715  * Queue handlers.
 716  */
 717 static void rt2500usb_start_queue(struct data_queue *queue)
 718 {
 719         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 720         u16 reg;
 721 
 722         switch (queue->qid) {
 723         case QID_RX:
 724                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 725                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 726                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 727                 break;
 728         case QID_BEACON:
 729                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 730                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 731                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 732                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 733                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 734                 break;
 735         default:
 736                 break;
 737         }
 738 }
 739 
 740 static void rt2500usb_stop_queue(struct data_queue *queue)
 741 {
 742         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 743         u16 reg;
 744 
 745         switch (queue->qid) {
 746         case QID_RX:
 747                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 748                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 749                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 750                 break;
 751         case QID_BEACON:
 752                 reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 753                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 754                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 755                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 756                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 757                 break;
 758         default:
 759                 break;
 760         }
 761 }
 762 
 763 /*
 764  * Initialization functions.
 765  */
 766 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 767 {
 768         u16 reg;
 769 
 770         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 771                                     USB_MODE_TEST, REGISTER_TIMEOUT);
 772         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 773                                     0x00f0, REGISTER_TIMEOUT);
 774 
 775         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 776         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 777         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 778 
 779         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 780         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 781 
 782         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 783         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 784         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 785         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 786         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 787 
 788         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 789         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 790         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 791         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 792         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 793 
 794         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
 795         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 796         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 797         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 798         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 799         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 800 
 801         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
 802         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 803         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 804         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 805         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 806         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 807 
 808         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
 809         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 810         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 811         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 812         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 813         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 814 
 815         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
 816         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 817         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 818         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 819         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 820         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 821 
 822         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 823         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 824         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 825         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 826         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 827         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 828 
 829         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 830         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 831 
 832         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 833                 return -EBUSY;
 834 
 835         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 836         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 837         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 838         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 839         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 840 
 841         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 842                 reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
 843                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 844         } else {
 845                 reg = 0;
 846                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 847                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 848         }
 849         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 850 
 851         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 852         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 853         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 854         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 855 
 856         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
 857         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 858                            rt2x00dev->rx->data_size);
 859         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 860 
 861         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 862         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 863         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 864         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 865         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 866 
 867         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 868         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 869         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 870 
 871         reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
 872         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 873         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 874 
 875         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
 876         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 877         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 878 
 879         return 0;
 880 }
 881 
 882 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 883 {
 884         unsigned int i;
 885         u8 value;
 886 
 887         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 888                 value = rt2500usb_bbp_read(rt2x00dev, 0);
 889                 if ((value != 0xff) && (value != 0x00))
 890                         return 0;
 891                 udelay(REGISTER_BUSY_DELAY);
 892         }
 893 
 894         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 895         return -EACCES;
 896 }
 897 
 898 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 899 {
 900         unsigned int i;
 901         u16 eeprom;
 902         u8 value;
 903         u8 reg_id;
 904 
 905         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 906                 return -EACCES;
 907 
 908         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 909         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 910         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 911         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 912         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 913         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 914         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 915         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 916         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 917         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 918         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 919         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 920         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 921         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 922         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 923         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 924         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 925         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 926         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 927         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 928         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 929         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 930         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 931         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 932         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 933         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 934         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 935         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 936         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 937         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 938         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 939 
 940         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 941                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 942 
 943                 if (eeprom != 0xffff && eeprom != 0x0000) {
 944                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 945                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 946                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 947                 }
 948         }
 949 
 950         return 0;
 951 }
 952 
 953 /*
 954  * Device state switch handlers.
 955  */
 956 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 957 {
 958         /*
 959          * Initialize all registers.
 960          */
 961         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 962                      rt2500usb_init_bbp(rt2x00dev)))
 963                 return -EIO;
 964 
 965         return 0;
 966 }
 967 
 968 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 969 {
 970         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 971         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 972 
 973         /*
 974          * Disable synchronisation.
 975          */
 976         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
 977 
 978         rt2x00usb_disable_radio(rt2x00dev);
 979 }
 980 
 981 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
 982                                enum dev_state state)
 983 {
 984         u16 reg;
 985         u16 reg2;
 986         unsigned int i;
 987         char put_to_sleep;
 988         char bbp_state;
 989         char rf_state;
 990 
 991         put_to_sleep = (state != STATE_AWAKE);
 992 
 993         reg = 0;
 994         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
 995         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
 996         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
 997         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
 998         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
 999         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1000 
1001         /*
1002          * Device is not guaranteed to be in the requested state yet.
1003          * We must wait until the register indicates that the
1004          * device has entered the correct state.
1005          */
1006         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1007                 reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1008                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1009                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1010                 if (bbp_state == state && rf_state == state)
1011                         return 0;
1012                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013                 msleep(30);
1014         }
1015 
1016         return -EBUSY;
1017 }
1018 
1019 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1020                                       enum dev_state state)
1021 {
1022         int retval = 0;
1023 
1024         switch (state) {
1025         case STATE_RADIO_ON:
1026                 retval = rt2500usb_enable_radio(rt2x00dev);
1027                 break;
1028         case STATE_RADIO_OFF:
1029                 rt2500usb_disable_radio(rt2x00dev);
1030                 break;
1031         case STATE_RADIO_IRQ_ON:
1032         case STATE_RADIO_IRQ_OFF:
1033                 /* No support, but no error either */
1034                 break;
1035         case STATE_DEEP_SLEEP:
1036         case STATE_SLEEP:
1037         case STATE_STANDBY:
1038         case STATE_AWAKE:
1039                 retval = rt2500usb_set_state(rt2x00dev, state);
1040                 break;
1041         default:
1042                 retval = -ENOTSUPP;
1043                 break;
1044         }
1045 
1046         if (unlikely(retval))
1047                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1048                            state, retval);
1049 
1050         return retval;
1051 }
1052 
1053 /*
1054  * TX descriptor initialization
1055  */
1056 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1057                                     struct txentry_desc *txdesc)
1058 {
1059         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1060         __le32 *txd = (__le32 *) entry->skb->data;
1061         u32 word;
1062 
1063         /*
1064          * Start writing the descriptor words.
1065          */
1066         word = rt2x00_desc_read(txd, 0);
1067         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1068         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070         rt2x00_set_field32(&word, TXD_W0_ACK,
1071                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074         rt2x00_set_field32(&word, TXD_W0_OFDM,
1075                            (txdesc->rate_mode == RATE_MODE_OFDM));
1076         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1078         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1079         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1080         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1081         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1082         rt2x00_desc_write(txd, 0, word);
1083 
1084         word = rt2x00_desc_read(txd, 1);
1085         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1086         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1087         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1088         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1089         rt2x00_desc_write(txd, 1, word);
1090 
1091         word = rt2x00_desc_read(txd, 2);
1092         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1093         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1094         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1095                            txdesc->u.plcp.length_low);
1096         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1097                            txdesc->u.plcp.length_high);
1098         rt2x00_desc_write(txd, 2, word);
1099 
1100         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1101                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1102                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1103         }
1104 
1105         /*
1106          * Register descriptor details in skb frame descriptor.
1107          */
1108         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1109         skbdesc->desc = txd;
1110         skbdesc->desc_len = TXD_DESC_SIZE;
1111 }
1112 
1113 /*
1114  * TX data initialization
1115  */
1116 static void rt2500usb_beacondone(struct urb *urb);
1117 
1118 static void rt2500usb_write_beacon(struct queue_entry *entry,
1119                                    struct txentry_desc *txdesc)
1120 {
1121         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1122         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1123         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1124         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1125         int length;
1126         u16 reg, reg0;
1127 
1128         /*
1129          * Disable beaconing while we are reloading the beacon data,
1130          * otherwise we might be sending out invalid data.
1131          */
1132         reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1133         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1134         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1135 
1136         /*
1137          * Add space for the descriptor in front of the skb.
1138          */
1139         skb_push(entry->skb, TXD_DESC_SIZE);
1140         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1141 
1142         /*
1143          * Write the TX descriptor for the beacon.
1144          */
1145         rt2500usb_write_tx_desc(entry, txdesc);
1146 
1147         /*
1148          * Dump beacon to userspace through debugfs.
1149          */
1150         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1151 
1152         /*
1153          * USB devices cannot blindly pass the skb->len as the
1154          * length of the data to usb_fill_bulk_urb. Pass the skb
1155          * to the driver to determine what the length should be.
1156          */
1157         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1158 
1159         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160                           entry->skb->data, length, rt2500usb_beacondone,
1161                           entry);
1162 
1163         /*
1164          * Second we need to create the guardian byte.
1165          * We only need a single byte, so lets recycle
1166          * the 'flags' field we are not using for beacons.
1167          */
1168         bcn_priv->guardian_data = 0;
1169         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171                           entry);
1172 
1173         /*
1174          * Send out the guardian byte.
1175          */
1176         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177 
1178         /*
1179          * Enable beaconing again.
1180          */
1181         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1182         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1183         reg0 = reg;
1184         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1185         /*
1186          * Beacon generation will fail initially.
1187          * To prevent this we need to change the TXRX_CSR19
1188          * register several times (reg0 is the same as reg
1189          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1190          * and 1 in reg).
1191          */
1192         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1193         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1194         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1196         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197 }
1198 
1199 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1200 {
1201         int length;
1202 
1203         /*
1204          * The length _must_ be a multiple of 2,
1205          * but it must _not_ be a multiple of the USB packet size.
1206          */
1207         length = roundup(entry->skb->len, 2);
1208         length += (2 * !(length % entry->queue->usb_maxpacket));
1209 
1210         return length;
1211 }
1212 
1213 /*
1214  * RX control handlers
1215  */
1216 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1217                                   struct rxdone_entry_desc *rxdesc)
1218 {
1219         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1221         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222         __le32 *rxd =
1223             (__le32 *)(entry->skb->data +
1224                        (entry_priv->urb->actual_length -
1225                         entry->queue->desc_size));
1226         u32 word0;
1227         u32 word1;
1228 
1229         /*
1230          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231          * frame data in rt2x00usb.
1232          */
1233         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1234         rxd = (__le32 *)skbdesc->desc;
1235 
1236         /*
1237          * It is now safe to read the descriptor on all architectures.
1238          */
1239         word0 = rt2x00_desc_read(rxd, 0);
1240         word1 = rt2x00_desc_read(rxd, 1);
1241 
1242         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1243                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1244         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1245                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1246 
1247         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1248         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1249                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1250 
1251         if (rxdesc->cipher != CIPHER_NONE) {
1252                 rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1253                 rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1254                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1255 
1256                 /* ICV is located at the end of frame */
1257 
1258                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1259                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1260                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1261                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1262                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1263         }
1264 
1265         /*
1266          * Obtain the status about this packet.
1267          * When frame was received with an OFDM bitrate,
1268          * the signal is the PLCP value. If it was received with
1269          * a CCK bitrate the signal is the rate in 100kbit/s.
1270          */
1271         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1272         rxdesc->rssi =
1273             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1274         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1275 
1276         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1277                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1278         else
1279                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1280         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1281                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1282 
1283         /*
1284          * Adjust the skb memory window to the frame boundaries.
1285          */
1286         skb_trim(entry->skb, rxdesc->size);
1287 }
1288 
1289 /*
1290  * Interrupt functions.
1291  */
1292 static void rt2500usb_beacondone(struct urb *urb)
1293 {
1294         struct queue_entry *entry = (struct queue_entry *)urb->context;
1295         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1296 
1297         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1298                 return;
1299 
1300         /*
1301          * Check if this was the guardian beacon,
1302          * if that was the case we need to send the real beacon now.
1303          * Otherwise we should free the sk_buffer, the device
1304          * should be doing the rest of the work now.
1305          */
1306         if (bcn_priv->guardian_urb == urb) {
1307                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1308         } else if (bcn_priv->urb == urb) {
1309                 dev_kfree_skb(entry->skb);
1310                 entry->skb = NULL;
1311         }
1312 }
1313 
1314 /*
1315  * Device probe functions.
1316  */
1317 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1318 {
1319         u16 word;
1320         u8 *mac;
1321         u8 bbp;
1322 
1323         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1324 
1325         /*
1326          * Start validation of the data that has been read.
1327          */
1328         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1329         rt2x00lib_set_mac_address(rt2x00dev, mac);
1330 
1331         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1332         if (word == 0xffff) {
1333                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1334                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1335                                    ANTENNA_SW_DIVERSITY);
1336                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1337                                    ANTENNA_SW_DIVERSITY);
1338                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1339                                    LED_MODE_DEFAULT);
1340                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1341                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1342                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1343                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1344                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1345         }
1346 
1347         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1348         if (word == 0xffff) {
1349                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1350                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1351                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1352                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1353                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1354         }
1355 
1356         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1357         if (word == 0xffff) {
1358                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1359                                    DEFAULT_RSSI_OFFSET);
1360                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1361                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1362                                   word);
1363         }
1364 
1365         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1366         if (word == 0xffff) {
1367                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1368                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1369                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1370         }
1371 
1372         /*
1373          * Switch lower vgc bound to current BBP R17 value,
1374          * lower the value a bit for better quality.
1375          */
1376         bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1377         bbp -= 6;
1378 
1379         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1380         if (word == 0xffff) {
1381                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1382                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1383                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1384                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1385         } else {
1386                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1387                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1388         }
1389 
1390         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1391         if (word == 0xffff) {
1392                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1393                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1394                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1395                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1396         }
1397 
1398         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1399         if (word == 0xffff) {
1400                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1401                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1402                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1403                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1404         }
1405 
1406         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1407         if (word == 0xffff) {
1408                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1409                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1410                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1411                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1412         }
1413 
1414         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1415         if (word == 0xffff) {
1416                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1417                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1418                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1419                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1420         }
1421 
1422         return 0;
1423 }
1424 
1425 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1426 {
1427         u16 reg;
1428         u16 value;
1429         u16 eeprom;
1430 
1431         /*
1432          * Read EEPROM word for configuration.
1433          */
1434         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1435 
1436         /*
1437          * Identify RF chipset.
1438          */
1439         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1440         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1441         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1442 
1443         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1444                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1445                 return -ENODEV;
1446         }
1447 
1448         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1449             !rt2x00_rf(rt2x00dev, RF2523) &&
1450             !rt2x00_rf(rt2x00dev, RF2524) &&
1451             !rt2x00_rf(rt2x00dev, RF2525) &&
1452             !rt2x00_rf(rt2x00dev, RF2525E) &&
1453             !rt2x00_rf(rt2x00dev, RF5222)) {
1454                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1455                 return -ENODEV;
1456         }
1457 
1458         /*
1459          * Identify default antenna configuration.
1460          */
1461         rt2x00dev->default_ant.tx =
1462             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463         rt2x00dev->default_ant.rx =
1464             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465 
1466         /*
1467          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468          * I am not 100% sure about this, but the legacy drivers do not
1469          * indicate antenna swapping in software is required when
1470          * diversity is enabled.
1471          */
1472         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1473                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1474         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1475                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1476 
1477         /*
1478          * Store led mode, for correct led behaviour.
1479          */
1480 #ifdef CONFIG_RT2X00_LIB_LEDS
1481         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482 
1483         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1484         if (value == LED_MODE_TXRX_ACTIVITY ||
1485             value == LED_MODE_DEFAULT ||
1486             value == LED_MODE_ASUS)
1487                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1488                                    LED_TYPE_ACTIVITY);
1489 #endif /* CONFIG_RT2X00_LIB_LEDS */
1490 
1491         /*
1492          * Detect if this device has an hardware controlled radio.
1493          */
1494         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1495                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1496 
1497         /*
1498          * Read the RSSI <-> dBm offset information.
1499          */
1500         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1501         rt2x00dev->rssi_offset =
1502             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1503 
1504         return 0;
1505 }
1506 
1507 /*
1508  * RF value list for RF2522
1509  * Supports: 2.4 GHz
1510  */
1511 static const struct rf_channel rf_vals_bg_2522[] = {
1512         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1513         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1514         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1515         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1516         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1517         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1518         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1519         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1520         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1521         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1526 };
1527 
1528 /*
1529  * RF value list for RF2523
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2523[] = {
1533         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1547 };
1548 
1549 /*
1550  * RF value list for RF2524
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2524[] = {
1554         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1568 };
1569 
1570 /*
1571  * RF value list for RF2525
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2525[] = {
1575         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1589 };
1590 
1591 /*
1592  * RF value list for RF2525e
1593  * Supports: 2.4 GHz
1594  */
1595 static const struct rf_channel rf_vals_bg_2525e[] = {
1596         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1610 };
1611 
1612 /*
1613  * RF value list for RF5222
1614  * Supports: 2.4 GHz & 5.2 GHz
1615  */
1616 static const struct rf_channel rf_vals_5222[] = {
1617         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1631 
1632         /* 802.11 UNI / HyperLan 2 */
1633         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1641 
1642         /* 802.11 HyperLan 2 */
1643         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1653 
1654         /* 802.11 UNII */
1655         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1660 };
1661 
1662 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1663 {
1664         struct hw_mode_spec *spec = &rt2x00dev->spec;
1665         struct channel_info *info;
1666         char *tx_power;
1667         unsigned int i;
1668 
1669         /*
1670          * Initialize all hw fields.
1671          *
1672          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673          * capable of sending the buffered frames out after the DTIM
1674          * transmission using rt2x00lib_beacondone. This will send out
1675          * multicast and broadcast traffic immediately instead of buffering it
1676          * infinitly and thus dropping it after some time.
1677          */
1678         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1679         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1680         ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1681         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1682 
1683         /*
1684          * Disable powersaving as default.
1685          */
1686         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1687 
1688         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1689         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1690                                 rt2x00_eeprom_addr(rt2x00dev,
1691                                                    EEPROM_MAC_ADDR_0));
1692 
1693         /*
1694          * Initialize hw_mode information.
1695          */
1696         spec->supported_bands = SUPPORT_BAND_2GHZ;
1697         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1698 
1699         if (rt2x00_rf(rt2x00dev, RF2522)) {
1700                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1701                 spec->channels = rf_vals_bg_2522;
1702         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1703                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1704                 spec->channels = rf_vals_bg_2523;
1705         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1706                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1707                 spec->channels = rf_vals_bg_2524;
1708         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1709                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1710                 spec->channels = rf_vals_bg_2525;
1711         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1712                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1713                 spec->channels = rf_vals_bg_2525e;
1714         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1715                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1716                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1717                 spec->channels = rf_vals_5222;
1718         }
1719 
1720         /*
1721          * Create channel information array
1722          */
1723         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1724         if (!info)
1725                 return -ENOMEM;
1726 
1727         spec->channels_info = info;
1728 
1729         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1730         for (i = 0; i < 14; i++) {
1731                 info[i].max_power = MAX_TXPOWER;
1732                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1733         }
1734 
1735         if (spec->num_channels > 14) {
1736                 for (i = 14; i < spec->num_channels; i++) {
1737                         info[i].max_power = MAX_TXPOWER;
1738                         info[i].default_power1 = DEFAULT_TXPOWER;
1739                 }
1740         }
1741 
1742         return 0;
1743 }
1744 
1745 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1746 {
1747         int retval;
1748         u16 reg;
1749 
1750         /*
1751          * Allocate eeprom data.
1752          */
1753         retval = rt2500usb_validate_eeprom(rt2x00dev);
1754         if (retval)
1755                 return retval;
1756 
1757         retval = rt2500usb_init_eeprom(rt2x00dev);
1758         if (retval)
1759                 return retval;
1760 
1761         /*
1762          * Enable rfkill polling by setting GPIO direction of the
1763          * rfkill switch GPIO pin correctly.
1764          */
1765         reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1766         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1767         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1768 
1769         /*
1770          * Initialize hw specifications.
1771          */
1772         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1773         if (retval)
1774                 return retval;
1775 
1776         /*
1777          * This device requires the atim queue
1778          */
1779         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1780         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1781         if (!modparam_nohwcrypt) {
1782                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1783                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1784         }
1785         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1786         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1787 
1788         /*
1789          * Set the rssi offset.
1790          */
1791         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1792 
1793         return 0;
1794 }
1795 
1796 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1797         .tx                     = rt2x00mac_tx,
1798         .start                  = rt2x00mac_start,
1799         .stop                   = rt2x00mac_stop,
1800         .add_interface          = rt2x00mac_add_interface,
1801         .remove_interface       = rt2x00mac_remove_interface,
1802         .config                 = rt2x00mac_config,
1803         .configure_filter       = rt2x00mac_configure_filter,
1804         .set_tim                = rt2x00mac_set_tim,
1805         .set_key                = rt2x00mac_set_key,
1806         .sw_scan_start          = rt2x00mac_sw_scan_start,
1807         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1808         .get_stats              = rt2x00mac_get_stats,
1809         .bss_info_changed       = rt2x00mac_bss_info_changed,
1810         .conf_tx                = rt2x00mac_conf_tx,
1811         .rfkill_poll            = rt2x00mac_rfkill_poll,
1812         .flush                  = rt2x00mac_flush,
1813         .set_antenna            = rt2x00mac_set_antenna,
1814         .get_antenna            = rt2x00mac_get_antenna,
1815         .get_ringparam          = rt2x00mac_get_ringparam,
1816         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1817 };
1818 
1819 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1820         .probe_hw               = rt2500usb_probe_hw,
1821         .initialize             = rt2x00usb_initialize,
1822         .uninitialize           = rt2x00usb_uninitialize,
1823         .clear_entry            = rt2x00usb_clear_entry,
1824         .set_device_state       = rt2500usb_set_device_state,
1825         .rfkill_poll            = rt2500usb_rfkill_poll,
1826         .link_stats             = rt2500usb_link_stats,
1827         .reset_tuner            = rt2500usb_reset_tuner,
1828         .watchdog               = rt2x00usb_watchdog,
1829         .start_queue            = rt2500usb_start_queue,
1830         .kick_queue             = rt2x00usb_kick_queue,
1831         .stop_queue             = rt2500usb_stop_queue,
1832         .flush_queue            = rt2x00usb_flush_queue,
1833         .write_tx_desc          = rt2500usb_write_tx_desc,
1834         .write_beacon           = rt2500usb_write_beacon,
1835         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1836         .fill_rxdone            = rt2500usb_fill_rxdone,
1837         .config_shared_key      = rt2500usb_config_key,
1838         .config_pairwise_key    = rt2500usb_config_key,
1839         .config_filter          = rt2500usb_config_filter,
1840         .config_intf            = rt2500usb_config_intf,
1841         .config_erp             = rt2500usb_config_erp,
1842         .config_ant             = rt2500usb_config_ant,
1843         .config                 = rt2500usb_config,
1844 };
1845 
1846 static void rt2500usb_queue_init(struct data_queue *queue)
1847 {
1848         switch (queue->qid) {
1849         case QID_RX:
1850                 queue->limit = 32;
1851                 queue->data_size = DATA_FRAME_SIZE;
1852                 queue->desc_size = RXD_DESC_SIZE;
1853                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1854                 break;
1855 
1856         case QID_AC_VO:
1857         case QID_AC_VI:
1858         case QID_AC_BE:
1859         case QID_AC_BK:
1860                 queue->limit = 32;
1861                 queue->data_size = DATA_FRAME_SIZE;
1862                 queue->desc_size = TXD_DESC_SIZE;
1863                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1864                 break;
1865 
1866         case QID_BEACON:
1867                 queue->limit = 1;
1868                 queue->data_size = MGMT_FRAME_SIZE;
1869                 queue->desc_size = TXD_DESC_SIZE;
1870                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1871                 break;
1872 
1873         case QID_ATIM:
1874                 queue->limit = 8;
1875                 queue->data_size = DATA_FRAME_SIZE;
1876                 queue->desc_size = TXD_DESC_SIZE;
1877                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878                 break;
1879 
1880         default:
1881                 BUG();
1882                 break;
1883         }
1884 }
1885 
1886 static const struct rt2x00_ops rt2500usb_ops = {
1887         .name                   = KBUILD_MODNAME,
1888         .max_ap_intf            = 1,
1889         .eeprom_size            = EEPROM_SIZE,
1890         .rf_size                = RF_SIZE,
1891         .tx_queues              = NUM_TX_QUEUES,
1892         .queue_init             = rt2500usb_queue_init,
1893         .lib                    = &rt2500usb_rt2x00_ops,
1894         .hw                     = &rt2500usb_mac80211_ops,
1895 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1896         .debugfs                = &rt2500usb_rt2x00debug,
1897 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1898 };
1899 
1900 /*
1901  * rt2500usb module information.
1902  */
1903 static const struct usb_device_id rt2500usb_device_table[] = {
1904         /* ASUS */
1905         { USB_DEVICE(0x0b05, 0x1706) },
1906         { USB_DEVICE(0x0b05, 0x1707) },
1907         /* Belkin */
1908         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1909         { USB_DEVICE(0x050d, 0x7051) },
1910         /* Cisco Systems */
1911         { USB_DEVICE(0x13b1, 0x000d) },
1912         { USB_DEVICE(0x13b1, 0x0011) },
1913         { USB_DEVICE(0x13b1, 0x001a) },
1914         /* Conceptronic */
1915         { USB_DEVICE(0x14b2, 0x3c02) },
1916         /* D-LINK */
1917         { USB_DEVICE(0x2001, 0x3c00) },
1918         /* Gigabyte */
1919         { USB_DEVICE(0x1044, 0x8001) },
1920         { USB_DEVICE(0x1044, 0x8007) },
1921         /* Hercules */
1922         { USB_DEVICE(0x06f8, 0xe000) },
1923         /* Melco */
1924         { USB_DEVICE(0x0411, 0x005e) },
1925         { USB_DEVICE(0x0411, 0x0066) },
1926         { USB_DEVICE(0x0411, 0x0067) },
1927         { USB_DEVICE(0x0411, 0x008b) },
1928         { USB_DEVICE(0x0411, 0x0097) },
1929         /* MSI */
1930         { USB_DEVICE(0x0db0, 0x6861) },
1931         { USB_DEVICE(0x0db0, 0x6865) },
1932         { USB_DEVICE(0x0db0, 0x6869) },
1933         /* Ralink */
1934         { USB_DEVICE(0x148f, 0x1706) },
1935         { USB_DEVICE(0x148f, 0x2570) },
1936         { USB_DEVICE(0x148f, 0x9020) },
1937         /* Sagem */
1938         { USB_DEVICE(0x079b, 0x004b) },
1939         /* Siemens */
1940         { USB_DEVICE(0x0681, 0x3c06) },
1941         /* SMC */
1942         { USB_DEVICE(0x0707, 0xee13) },
1943         /* Spairon */
1944         { USB_DEVICE(0x114b, 0x0110) },
1945         /* SURECOM */
1946         { USB_DEVICE(0x0769, 0x11f3) },
1947         /* Trust */
1948         { USB_DEVICE(0x0eb0, 0x9020) },
1949         /* VTech */
1950         { USB_DEVICE(0x0f88, 0x3012) },
1951         /* Zinwell */
1952         { USB_DEVICE(0x5a57, 0x0260) },
1953         { 0, }
1954 };
1955 
1956 MODULE_AUTHOR(DRV_PROJECT);
1957 MODULE_VERSION(DRV_VERSION);
1958 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1959 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1960 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1961 MODULE_LICENSE("GPL");
1962 
1963 static int rt2500usb_probe(struct usb_interface *usb_intf,
1964                            const struct usb_device_id *id)
1965 {
1966         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1967 }
1968 
1969 static struct usb_driver rt2500usb_driver = {
1970         .name           = KBUILD_MODNAME,
1971         .id_table       = rt2500usb_device_table,
1972         .probe          = rt2500usb_probe,
1973         .disconnect     = rt2x00usb_disconnect,
1974         .suspend        = rt2x00usb_suspend,
1975         .resume         = rt2x00usb_resume,
1976         .reset_resume   = rt2x00usb_resume,
1977         .disable_hub_initiated_lpm = 1,
1978 };
1979 
1980 module_usb_driver(rt2500usb_driver);

/* [<][>][^][v][top][bottom][index][help] */