root/drivers/net/wireless/ralink/rt2x00/rt2500pci.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rt2500pci_bbp_write
  2. rt2500pci_bbp_read
  3. rt2500pci_rf_write
  4. rt2500pci_eepromregister_read
  5. rt2500pci_eepromregister_write
  6. rt2500pci_rfkill_poll
  7. rt2500pci_brightness_set
  8. rt2500pci_blink_set
  9. rt2500pci_init_led
  10. rt2500pci_config_filter
  11. rt2500pci_config_intf
  12. rt2500pci_config_erp
  13. rt2500pci_config_ant
  14. rt2500pci_config_channel
  15. rt2500pci_config_txpower
  16. rt2500pci_config_retry_limit
  17. rt2500pci_config_ps
  18. rt2500pci_config
  19. rt2500pci_link_stats
  20. rt2500pci_set_vgc
  21. rt2500pci_reset_tuner
  22. rt2500pci_link_tuner
  23. rt2500pci_start_queue
  24. rt2500pci_kick_queue
  25. rt2500pci_stop_queue
  26. rt2500pci_get_entry_state
  27. rt2500pci_clear_entry
  28. rt2500pci_init_queues
  29. rt2500pci_init_registers
  30. rt2500pci_wait_bbp_ready
  31. rt2500pci_init_bbp
  32. rt2500pci_toggle_irq
  33. rt2500pci_enable_radio
  34. rt2500pci_disable_radio
  35. rt2500pci_set_state
  36. rt2500pci_set_device_state
  37. rt2500pci_write_tx_desc
  38. rt2500pci_write_beacon
  39. rt2500pci_fill_rxdone
  40. rt2500pci_txdone
  41. rt2500pci_enable_interrupt
  42. rt2500pci_txstatus_tasklet
  43. rt2500pci_tbtt_tasklet
  44. rt2500pci_rxdone_tasklet
  45. rt2500pci_interrupt
  46. rt2500pci_validate_eeprom
  47. rt2500pci_init_eeprom
  48. rt2500pci_probe_hw_mode
  49. rt2500pci_probe_hw
  50. rt2500pci_get_tsf
  51. rt2500pci_tx_last_beacon
  52. rt2500pci_queue_init
  53. rt2500pci_probe

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4         <http://rt2x00.serialmonkey.com>
   5 
   6  */
   7 
   8 /*
   9         Module: rt2500pci
  10         Abstract: rt2500pci device specific routines.
  11         Supported chipsets: RT2560.
  12  */
  13 
  14 #include <linux/delay.h>
  15 #include <linux/etherdevice.h>
  16 #include <linux/kernel.h>
  17 #include <linux/module.h>
  18 #include <linux/pci.h>
  19 #include <linux/eeprom_93cx6.h>
  20 #include <linux/slab.h>
  21 
  22 #include "rt2x00.h"
  23 #include "rt2x00mmio.h"
  24 #include "rt2x00pci.h"
  25 #include "rt2500pci.h"
  26 
  27 /*
  28  * Register access.
  29  * All access to the CSR registers will go through the methods
  30  * rt2x00mmio_register_read and rt2x00mmio_register_write.
  31  * BBP and RF register require indirect register access,
  32  * and use the CSR registers BBPCSR and RFCSR to achieve this.
  33  * These indirect registers work with busy bits,
  34  * and we will try maximal REGISTER_BUSY_COUNT times to access
  35  * the register while taking a REGISTER_BUSY_DELAY us delay
  36  * between each attampt. When the busy bit is still set at that time,
  37  * the access attempt is considered to have failed,
  38  * and we will print an error.
  39  */
  40 #define WAIT_FOR_BBP(__dev, __reg) \
  41         rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  42 #define WAIT_FOR_RF(__dev, __reg) \
  43         rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  44 
  45 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  46                                 const unsigned int word, const u8 value)
  47 {
  48         u32 reg;
  49 
  50         mutex_lock(&rt2x00dev->csr_mutex);
  51 
  52         /*
  53          * Wait until the BBP becomes available, afterwards we
  54          * can safely write the new data into the register.
  55          */
  56         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  57                 reg = 0;
  58                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  59                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  60                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  61                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  62 
  63                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  64         }
  65 
  66         mutex_unlock(&rt2x00dev->csr_mutex);
  67 }
  68 
  69 static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70                              const unsigned int word)
  71 {
  72         u32 reg;
  73         u8 value;
  74 
  75         mutex_lock(&rt2x00dev->csr_mutex);
  76 
  77         /*
  78          * Wait until the BBP becomes available, afterwards we
  79          * can safely write the read request into the register.
  80          * After the data has been written, we wait until hardware
  81          * returns the correct value, if at any time the register
  82          * doesn't become available in time, reg will be 0xffffffff
  83          * which means we return 0xff to the caller.
  84          */
  85         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  86                 reg = 0;
  87                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  88                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  89                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  90 
  91                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  92 
  93                 WAIT_FOR_BBP(rt2x00dev, &reg);
  94         }
  95 
  96         value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  97 
  98         mutex_unlock(&rt2x00dev->csr_mutex);
  99 
 100         return value;
 101 }
 102 
 103 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 104                                const unsigned int word, const u32 value)
 105 {
 106         u32 reg;
 107 
 108         mutex_lock(&rt2x00dev->csr_mutex);
 109 
 110         /*
 111          * Wait until the RF becomes available, afterwards we
 112          * can safely write the new data into the register.
 113          */
 114         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 115                 reg = 0;
 116                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 117                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 118                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 119                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 120 
 121                 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 122                 rt2x00_rf_write(rt2x00dev, word, value);
 123         }
 124 
 125         mutex_unlock(&rt2x00dev->csr_mutex);
 126 }
 127 
 128 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 129 {
 130         struct rt2x00_dev *rt2x00dev = eeprom->data;
 131         u32 reg;
 132 
 133         reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
 134 
 135         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 136         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 137         eeprom->reg_data_clock =
 138             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 139         eeprom->reg_chip_select =
 140             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 141 }
 142 
 143 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 144 {
 145         struct rt2x00_dev *rt2x00dev = eeprom->data;
 146         u32 reg = 0;
 147 
 148         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 149         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 150         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 151                            !!eeprom->reg_data_clock);
 152         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 153                            !!eeprom->reg_chip_select);
 154 
 155         rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 156 }
 157 
 158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
 159 static const struct rt2x00debug rt2500pci_rt2x00debug = {
 160         .owner  = THIS_MODULE,
 161         .csr    = {
 162                 .read           = rt2x00mmio_register_read,
 163                 .write          = rt2x00mmio_register_write,
 164                 .flags          = RT2X00DEBUGFS_OFFSET,
 165                 .word_base      = CSR_REG_BASE,
 166                 .word_size      = sizeof(u32),
 167                 .word_count     = CSR_REG_SIZE / sizeof(u32),
 168         },
 169         .eeprom = {
 170                 .read           = rt2x00_eeprom_read,
 171                 .write          = rt2x00_eeprom_write,
 172                 .word_base      = EEPROM_BASE,
 173                 .word_size      = sizeof(u16),
 174                 .word_count     = EEPROM_SIZE / sizeof(u16),
 175         },
 176         .bbp    = {
 177                 .read           = rt2500pci_bbp_read,
 178                 .write          = rt2500pci_bbp_write,
 179                 .word_base      = BBP_BASE,
 180                 .word_size      = sizeof(u8),
 181                 .word_count     = BBP_SIZE / sizeof(u8),
 182         },
 183         .rf     = {
 184                 .read           = rt2x00_rf_read,
 185                 .write          = rt2500pci_rf_write,
 186                 .word_base      = RF_BASE,
 187                 .word_size      = sizeof(u32),
 188                 .word_count     = RF_SIZE / sizeof(u32),
 189         },
 190 };
 191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 192 
 193 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 194 {
 195         u32 reg;
 196 
 197         reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
 198         return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 199 }
 200 
 201 #ifdef CONFIG_RT2X00_LIB_LEDS
 202 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 203                                      enum led_brightness brightness)
 204 {
 205         struct rt2x00_led *led =
 206             container_of(led_cdev, struct rt2x00_led, led_dev);
 207         unsigned int enabled = brightness != LED_OFF;
 208         u32 reg;
 209 
 210         reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 211 
 212         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 213                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 214         else if (led->type == LED_TYPE_ACTIVITY)
 215                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 216 
 217         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 218 }
 219 
 220 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 221                                unsigned long *delay_on,
 222                                unsigned long *delay_off)
 223 {
 224         struct rt2x00_led *led =
 225             container_of(led_cdev, struct rt2x00_led, led_dev);
 226         u32 reg;
 227 
 228         reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 229         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 230         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 231         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 232 
 233         return 0;
 234 }
 235 
 236 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 237                                struct rt2x00_led *led,
 238                                enum led_type type)
 239 {
 240         led->rt2x00dev = rt2x00dev;
 241         led->type = type;
 242         led->led_dev.brightness_set = rt2500pci_brightness_set;
 243         led->led_dev.blink_set = rt2500pci_blink_set;
 244         led->flags = LED_INITIALIZED;
 245 }
 246 #endif /* CONFIG_RT2X00_LIB_LEDS */
 247 
 248 /*
 249  * Configuration handlers.
 250  */
 251 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 252                                     const unsigned int filter_flags)
 253 {
 254         u32 reg;
 255 
 256         /*
 257          * Start configuration steps.
 258          * Note that the version error will always be dropped
 259          * and broadcast frames will always be accepted since
 260          * there is no filter for it at this time.
 261          */
 262         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 263         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 264                            !(filter_flags & FIF_FCSFAIL));
 265         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 266                            !(filter_flags & FIF_PLCPFAIL));
 267         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 268                            !(filter_flags & FIF_CONTROL));
 269         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 270                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 271         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 272                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 273                            !rt2x00dev->intf_ap_count);
 274         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 275         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 276                            !(filter_flags & FIF_ALLMULTI));
 277         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 278         rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 279 }
 280 
 281 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 282                                   struct rt2x00_intf *intf,
 283                                   struct rt2x00intf_conf *conf,
 284                                   const unsigned int flags)
 285 {
 286         struct data_queue *queue = rt2x00dev->bcn;
 287         unsigned int bcn_preload;
 288         u32 reg;
 289 
 290         if (flags & CONFIG_UPDATE_TYPE) {
 291                 /*
 292                  * Enable beacon config
 293                  */
 294                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 295                 reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
 296                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 297                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 298                 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 299 
 300                 /*
 301                  * Enable synchronisation.
 302                  */
 303                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 304                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 305                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 306         }
 307 
 308         if (flags & CONFIG_UPDATE_MAC)
 309                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 310                                               conf->mac, sizeof(conf->mac));
 311 
 312         if (flags & CONFIG_UPDATE_BSSID)
 313                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 314                                               conf->bssid, sizeof(conf->bssid));
 315 }
 316 
 317 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 318                                  struct rt2x00lib_erp *erp,
 319                                  u32 changed)
 320 {
 321         int preamble_mask;
 322         u32 reg;
 323 
 324         /*
 325          * When short preamble is enabled, we should set bit 0x08
 326          */
 327         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 328                 preamble_mask = erp->short_preamble << 3;
 329 
 330                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
 331                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 332                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 333                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 334                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 335                 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 336 
 337                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
 338                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 339                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 340                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 341                                    GET_DURATION(ACK_SIZE, 10));
 342                 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 343 
 344                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
 345                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 346                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 347                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 348                                    GET_DURATION(ACK_SIZE, 20));
 349                 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 350 
 351                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
 352                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 353                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 354                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 355                                    GET_DURATION(ACK_SIZE, 55));
 356                 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 357 
 358                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
 359                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 360                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 361                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 362                                    GET_DURATION(ACK_SIZE, 110));
 363                 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 364         }
 365 
 366         if (changed & BSS_CHANGED_BASIC_RATES)
 367                 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 368 
 369         if (changed & BSS_CHANGED_ERP_SLOT) {
 370                 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 371                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 372                 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 373 
 374                 reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
 375                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 376                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 377                 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 378 
 379                 reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
 380                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 381                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 382                 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 383         }
 384 
 385         if (changed & BSS_CHANGED_BEACON_INT) {
 386                 reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
 387                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 388                                    erp->beacon_int * 16);
 389                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 390                                    erp->beacon_int * 16);
 391                 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 392         }
 393 
 394 }
 395 
 396 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 397                                  struct antenna_setup *ant)
 398 {
 399         u32 reg;
 400         u8 r14;
 401         u8 r2;
 402 
 403         /*
 404          * We should never come here because rt2x00lib is supposed
 405          * to catch this and send us the correct antenna explicitely.
 406          */
 407         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 408                ant->tx == ANTENNA_SW_DIVERSITY);
 409 
 410         reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
 411         r14 = rt2500pci_bbp_read(rt2x00dev, 14);
 412         r2 = rt2500pci_bbp_read(rt2x00dev, 2);
 413 
 414         /*
 415          * Configure the TX antenna.
 416          */
 417         switch (ant->tx) {
 418         case ANTENNA_A:
 419                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 420                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 421                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 422                 break;
 423         case ANTENNA_B:
 424         default:
 425                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 426                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 427                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 428                 break;
 429         }
 430 
 431         /*
 432          * Configure the RX antenna.
 433          */
 434         switch (ant->rx) {
 435         case ANTENNA_A:
 436                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 437                 break;
 438         case ANTENNA_B:
 439         default:
 440                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 441                 break;
 442         }
 443 
 444         /*
 445          * RT2525E and RT5222 need to flip TX I/Q
 446          */
 447         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 448                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 449                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 450                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 451 
 452                 /*
 453                  * RT2525E does not need RX I/Q Flip.
 454                  */
 455                 if (rt2x00_rf(rt2x00dev, RF2525E))
 456                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 457         } else {
 458                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 459                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 460         }
 461 
 462         rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
 463         rt2500pci_bbp_write(rt2x00dev, 14, r14);
 464         rt2500pci_bbp_write(rt2x00dev, 2, r2);
 465 }
 466 
 467 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 468                                      struct rf_channel *rf, const int txpower)
 469 {
 470         u8 r70;
 471 
 472         /*
 473          * Set TXpower.
 474          */
 475         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 476 
 477         /*
 478          * Switch on tuning bits.
 479          * For RT2523 devices we do not need to update the R1 register.
 480          */
 481         if (!rt2x00_rf(rt2x00dev, RF2523))
 482                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 483         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 484 
 485         /*
 486          * For RT2525 we should first set the channel to half band higher.
 487          */
 488         if (rt2x00_rf(rt2x00dev, RF2525)) {
 489                 static const u32 vals[] = {
 490                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 491                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 492                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 493                         0x00080d2e, 0x00080d3a
 494                 };
 495 
 496                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 497                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 498                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 499                 if (rf->rf4)
 500                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 501         }
 502 
 503         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 504         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 505         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 506         if (rf->rf4)
 507                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 508 
 509         /*
 510          * Channel 14 requires the Japan filter bit to be set.
 511          */
 512         r70 = 0x46;
 513         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 514         rt2500pci_bbp_write(rt2x00dev, 70, r70);
 515 
 516         msleep(1);
 517 
 518         /*
 519          * Switch off tuning bits.
 520          * For RT2523 devices we do not need to update the R1 register.
 521          */
 522         if (!rt2x00_rf(rt2x00dev, RF2523)) {
 523                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 524                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 525         }
 526 
 527         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 528         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 529 
 530         /*
 531          * Clear false CRC during channel switch.
 532          */
 533         rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
 534 }
 535 
 536 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 537                                      const int txpower)
 538 {
 539         u32 rf3;
 540 
 541         rf3 = rt2x00_rf_read(rt2x00dev, 3);
 542         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 543         rt2500pci_rf_write(rt2x00dev, 3, rf3);
 544 }
 545 
 546 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 547                                          struct rt2x00lib_conf *libconf)
 548 {
 549         u32 reg;
 550 
 551         reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 552         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 553                            libconf->conf->long_frame_max_tx_count);
 554         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 555                            libconf->conf->short_frame_max_tx_count);
 556         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 557 }
 558 
 559 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 560                                 struct rt2x00lib_conf *libconf)
 561 {
 562         enum dev_state state =
 563             (libconf->conf->flags & IEEE80211_CONF_PS) ?
 564                 STATE_SLEEP : STATE_AWAKE;
 565         u32 reg;
 566 
 567         if (state == STATE_SLEEP) {
 568                 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 569                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 570                                    (rt2x00dev->beacon_int - 20) * 16);
 571                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 572                                    libconf->conf->listen_interval - 1);
 573 
 574                 /* We must first disable autowake before it can be enabled */
 575                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 576                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 577 
 578                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 579                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 580         } else {
 581                 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 582                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 583                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 584         }
 585 
 586         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 587 }
 588 
 589 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 590                              struct rt2x00lib_conf *libconf,
 591                              const unsigned int flags)
 592 {
 593         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 594                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 595                                          libconf->conf->power_level);
 596         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 597             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 598                 rt2500pci_config_txpower(rt2x00dev,
 599                                          libconf->conf->power_level);
 600         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 601                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
 602         if (flags & IEEE80211_CONF_CHANGE_PS)
 603                 rt2500pci_config_ps(rt2x00dev, libconf);
 604 }
 605 
 606 /*
 607  * Link tuning
 608  */
 609 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 610                                  struct link_qual *qual)
 611 {
 612         u32 reg;
 613 
 614         /*
 615          * Update FCS error count from register.
 616          */
 617         reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 618         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 619 
 620         /*
 621          * Update False CCA count from register.
 622          */
 623         reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
 624         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 625 }
 626 
 627 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 628                                      struct link_qual *qual, u8 vgc_level)
 629 {
 630         if (qual->vgc_level_reg != vgc_level) {
 631                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 632                 qual->vgc_level = vgc_level;
 633                 qual->vgc_level_reg = vgc_level;
 634         }
 635 }
 636 
 637 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 638                                   struct link_qual *qual)
 639 {
 640         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 641 }
 642 
 643 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 644                                  struct link_qual *qual, const u32 count)
 645 {
 646         /*
 647          * To prevent collisions with MAC ASIC on chipsets
 648          * up to version C the link tuning should halt after 20
 649          * seconds while being associated.
 650          */
 651         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 652             rt2x00dev->intf_associated && count > 20)
 653                 return;
 654 
 655         /*
 656          * Chipset versions C and lower should directly continue
 657          * to the dynamic CCA tuning. Chipset version D and higher
 658          * should go straight to dynamic CCA tuning when they
 659          * are not associated.
 660          */
 661         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 662             !rt2x00dev->intf_associated)
 663                 goto dynamic_cca_tune;
 664 
 665         /*
 666          * A too low RSSI will cause too much false CCA which will
 667          * then corrupt the R17 tuning. To remidy this the tuning should
 668          * be stopped (While making sure the R17 value will not exceed limits)
 669          */
 670         if (qual->rssi < -80 && count > 20) {
 671                 if (qual->vgc_level_reg >= 0x41)
 672                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 673                 return;
 674         }
 675 
 676         /*
 677          * Special big-R17 for short distance
 678          */
 679         if (qual->rssi >= -58) {
 680                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 681                 return;
 682         }
 683 
 684         /*
 685          * Special mid-R17 for middle distance
 686          */
 687         if (qual->rssi >= -74) {
 688                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 689                 return;
 690         }
 691 
 692         /*
 693          * Leave short or middle distance condition, restore r17
 694          * to the dynamic tuning range.
 695          */
 696         if (qual->vgc_level_reg >= 0x41) {
 697                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 698                 return;
 699         }
 700 
 701 dynamic_cca_tune:
 702 
 703         /*
 704          * R17 is inside the dynamic tuning range,
 705          * start tuning the link based on the false cca counter.
 706          */
 707         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 708                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 709         else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 710                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 711 }
 712 
 713 /*
 714  * Queue handlers.
 715  */
 716 static void rt2500pci_start_queue(struct data_queue *queue)
 717 {
 718         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 719         u32 reg;
 720 
 721         switch (queue->qid) {
 722         case QID_RX:
 723                 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 724                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 725                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 726                 break;
 727         case QID_BEACON:
 728                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 729                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 730                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 731                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 732                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 733                 break;
 734         default:
 735                 break;
 736         }
 737 }
 738 
 739 static void rt2500pci_kick_queue(struct data_queue *queue)
 740 {
 741         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 742         u32 reg;
 743 
 744         switch (queue->qid) {
 745         case QID_AC_VO:
 746                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 747                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 748                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 749                 break;
 750         case QID_AC_VI:
 751                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 752                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 753                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 754                 break;
 755         case QID_ATIM:
 756                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 757                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 758                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 759                 break;
 760         default:
 761                 break;
 762         }
 763 }
 764 
 765 static void rt2500pci_stop_queue(struct data_queue *queue)
 766 {
 767         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 768         u32 reg;
 769 
 770         switch (queue->qid) {
 771         case QID_AC_VO:
 772         case QID_AC_VI:
 773         case QID_ATIM:
 774                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 775                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 776                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 777                 break;
 778         case QID_RX:
 779                 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 780                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 781                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 782                 break;
 783         case QID_BEACON:
 784                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 785                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 786                 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 787                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 788                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 789 
 790                 /*
 791                  * Wait for possibly running tbtt tasklets.
 792                  */
 793                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
 794                 break;
 795         default:
 796                 break;
 797         }
 798 }
 799 
 800 /*
 801  * Initialization functions.
 802  */
 803 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 804 {
 805         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 806         u32 word;
 807 
 808         if (entry->queue->qid == QID_RX) {
 809                 word = rt2x00_desc_read(entry_priv->desc, 0);
 810 
 811                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 812         } else {
 813                 word = rt2x00_desc_read(entry_priv->desc, 0);
 814 
 815                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 816                         rt2x00_get_field32(word, TXD_W0_VALID));
 817         }
 818 }
 819 
 820 static void rt2500pci_clear_entry(struct queue_entry *entry)
 821 {
 822         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 823         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 824         u32 word;
 825 
 826         if (entry->queue->qid == QID_RX) {
 827                 word = rt2x00_desc_read(entry_priv->desc, 1);
 828                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 829                 rt2x00_desc_write(entry_priv->desc, 1, word);
 830 
 831                 word = rt2x00_desc_read(entry_priv->desc, 0);
 832                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 833                 rt2x00_desc_write(entry_priv->desc, 0, word);
 834         } else {
 835                 word = rt2x00_desc_read(entry_priv->desc, 0);
 836                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 837                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 838                 rt2x00_desc_write(entry_priv->desc, 0, word);
 839         }
 840 }
 841 
 842 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 843 {
 844         struct queue_entry_priv_mmio *entry_priv;
 845         u32 reg;
 846 
 847         /*
 848          * Initialize registers.
 849          */
 850         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
 851         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 852         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 853         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 854         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 855         rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 856 
 857         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 858         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
 859         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 860                            entry_priv->desc_dma);
 861         rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 862 
 863         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 864         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
 865         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 866                            entry_priv->desc_dma);
 867         rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 868 
 869         entry_priv = rt2x00dev->atim->entries[0].priv_data;
 870         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
 871         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 872                            entry_priv->desc_dma);
 873         rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 874 
 875         entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 876         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
 877         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 878                            entry_priv->desc_dma);
 879         rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 880 
 881         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
 882         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 883         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 884         rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 885 
 886         entry_priv = rt2x00dev->rx->entries[0].priv_data;
 887         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
 888         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 889                            entry_priv->desc_dma);
 890         rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 891 
 892         return 0;
 893 }
 894 
 895 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 896 {
 897         u32 reg;
 898 
 899         rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 900         rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 901         rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
 902         rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 903 
 904         reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
 905         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 906         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 907         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 908         rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 909 
 910         reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
 911         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 912                            rt2x00dev->rx->data_size / 128);
 913         rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 914 
 915         /*
 916          * Always use CWmin and CWmax set in descriptor.
 917          */
 918         reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 919         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 920         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 921 
 922         reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 923         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 924         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 925         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 926         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 927         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 928         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 929         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 930         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 931         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 932 
 933         rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
 934 
 935         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
 936         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 937         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 938         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 939         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 940         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 941         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 942         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 943         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 944         rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
 945 
 946         reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
 947         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 948         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 949         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 950         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 951         rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
 952 
 953         reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
 954         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 955         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 956         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 957         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 958         rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
 959 
 960         reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
 961         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 962         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 963         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 964         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 965         rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
 966 
 967         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
 968         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 969         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 970         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 971         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 972         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 973         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 974         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 975         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 976         rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 977 
 978         reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
 979         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 980         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 981         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 982         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 983         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 984         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
 985         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
 986         rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
 987 
 988         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 989 
 990         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 991         rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
 992 
 993         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 994                 return -EBUSY;
 995 
 996         rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
 997         rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
 998 
 999         reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1001         rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002 
1003         reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1005         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1006         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1007         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1008         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1009         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1010         rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011 
1012         rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013 
1014         rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015 
1016         reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1018         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1019         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1020         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021 
1022         reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1024         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1025         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026 
1027         /*
1028          * We must clear the FCS and FIFO error count.
1029          * These registers are cleared on read,
1030          * so we may pass a useless variable to store the value.
1031          */
1032         reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033         reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034 
1035         return 0;
1036 }
1037 
1038 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039 {
1040         unsigned int i;
1041         u8 value;
1042 
1043         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044                 value = rt2500pci_bbp_read(rt2x00dev, 0);
1045                 if ((value != 0xff) && (value != 0x00))
1046                         return 0;
1047                 udelay(REGISTER_BUSY_DELAY);
1048         }
1049 
1050         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051         return -EACCES;
1052 }
1053 
1054 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055 {
1056         unsigned int i;
1057         u16 eeprom;
1058         u8 reg_id;
1059         u8 value;
1060 
1061         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062                 return -EACCES;
1063 
1064         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094 
1095         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097 
1098                 if (eeprom != 0xffff && eeprom != 0x0000) {
1099                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102                 }
1103         }
1104 
1105         return 0;
1106 }
1107 
1108 /*
1109  * Device state switch handlers.
1110  */
1111 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112                                  enum dev_state state)
1113 {
1114         int mask = (state == STATE_RADIO_IRQ_OFF);
1115         u32 reg;
1116         unsigned long flags;
1117 
1118         /*
1119          * When interrupts are being enabled, the interrupt registers
1120          * should clear the register to assure a clean state.
1121          */
1122         if (state == STATE_RADIO_IRQ_ON) {
1123                 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124                 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125         }
1126 
1127         /*
1128          * Only toggle the interrupts bits we are going to use.
1129          * Non-checked interrupt bits are disabled by default.
1130          */
1131         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132 
1133         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1135         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1136         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1137         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1138         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1139         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140 
1141         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142 
1143         if (state == STATE_RADIO_IRQ_OFF) {
1144                 /*
1145                  * Ensure that all tasklets are finished.
1146                  */
1147                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150         }
1151 }
1152 
1153 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154 {
1155         /*
1156          * Initialize all registers.
1157          */
1158         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159                      rt2500pci_init_registers(rt2x00dev) ||
1160                      rt2500pci_init_bbp(rt2x00dev)))
1161                 return -EIO;
1162 
1163         return 0;
1164 }
1165 
1166 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167 {
1168         /*
1169          * Disable power
1170          */
1171         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172 }
1173 
1174 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175                                enum dev_state state)
1176 {
1177         u32 reg, reg2;
1178         unsigned int i;
1179         char put_to_sleep;
1180         char bbp_state;
1181         char rf_state;
1182 
1183         put_to_sleep = (state != STATE_AWAKE);
1184 
1185         reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1187         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1188         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1189         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190         rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191 
1192         /*
1193          * Device is not guaranteed to be in the requested state yet.
1194          * We must wait until the register indicates that the
1195          * device has entered the correct state.
1196          */
1197         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198                 reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201                 if (bbp_state == state && rf_state == state)
1202                         return 0;
1203                 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204                 msleep(10);
1205         }
1206 
1207         return -EBUSY;
1208 }
1209 
1210 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211                                       enum dev_state state)
1212 {
1213         int retval = 0;
1214 
1215         switch (state) {
1216         case STATE_RADIO_ON:
1217                 retval = rt2500pci_enable_radio(rt2x00dev);
1218                 break;
1219         case STATE_RADIO_OFF:
1220                 rt2500pci_disable_radio(rt2x00dev);
1221                 break;
1222         case STATE_RADIO_IRQ_ON:
1223         case STATE_RADIO_IRQ_OFF:
1224                 rt2500pci_toggle_irq(rt2x00dev, state);
1225                 break;
1226         case STATE_DEEP_SLEEP:
1227         case STATE_SLEEP:
1228         case STATE_STANDBY:
1229         case STATE_AWAKE:
1230                 retval = rt2500pci_set_state(rt2x00dev, state);
1231                 break;
1232         default:
1233                 retval = -ENOTSUPP;
1234                 break;
1235         }
1236 
1237         if (unlikely(retval))
1238                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239                            state, retval);
1240 
1241         return retval;
1242 }
1243 
1244 /*
1245  * TX descriptor initialization
1246  */
1247 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248                                     struct txentry_desc *txdesc)
1249 {
1250         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252         __le32 *txd = entry_priv->desc;
1253         u32 word;
1254 
1255         /*
1256          * Start writing the descriptor words.
1257          */
1258         word = rt2x00_desc_read(txd, 1);
1259         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260         rt2x00_desc_write(txd, 1, word);
1261 
1262         word = rt2x00_desc_read(txd, 2);
1263         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264         rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265         rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266         rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267         rt2x00_desc_write(txd, 2, word);
1268 
1269         word = rt2x00_desc_read(txd, 3);
1270         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273                            txdesc->u.plcp.length_low);
1274         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275                            txdesc->u.plcp.length_high);
1276         rt2x00_desc_write(txd, 3, word);
1277 
1278         word = rt2x00_desc_read(txd, 10);
1279         rt2x00_set_field32(&word, TXD_W10_RTS,
1280                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281         rt2x00_desc_write(txd, 10, word);
1282 
1283         /*
1284          * Writing TXD word 0 must the last to prevent a race condition with
1285          * the device, whereby the device may take hold of the TXD before we
1286          * finished updating it.
1287          */
1288         word = rt2x00_desc_read(txd, 0);
1289         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293         rt2x00_set_field32(&word, TXD_W0_ACK,
1294                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297         rt2x00_set_field32(&word, TXD_W0_OFDM,
1298                            (txdesc->rate_mode == RATE_MODE_OFDM));
1299         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305         rt2x00_desc_write(txd, 0, word);
1306 
1307         /*
1308          * Register descriptor details in skb frame descriptor.
1309          */
1310         skbdesc->desc = txd;
1311         skbdesc->desc_len = TXD_DESC_SIZE;
1312 }
1313 
1314 /*
1315  * TX data initialization
1316  */
1317 static void rt2500pci_write_beacon(struct queue_entry *entry,
1318                                    struct txentry_desc *txdesc)
1319 {
1320         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321         u32 reg;
1322 
1323         /*
1324          * Disable beaconing while we are reloading the beacon data,
1325          * otherwise we might be sending out invalid data.
1326          */
1327         reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1329         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330 
1331         if (rt2x00queue_map_txskb(entry)) {
1332                 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333                 goto out;
1334         }
1335 
1336         /*
1337          * Write the TX descriptor for the beacon.
1338          */
1339         rt2500pci_write_tx_desc(entry, txdesc);
1340 
1341         /*
1342          * Dump beacon to userspace through debugfs.
1343          */
1344         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345 out:
1346         /*
1347          * Enable beaconing again.
1348          */
1349         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1350         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351 }
1352 
1353 /*
1354  * RX control handlers
1355  */
1356 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357                                   struct rxdone_entry_desc *rxdesc)
1358 {
1359         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360         u32 word0;
1361         u32 word2;
1362 
1363         word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364         word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365 
1366         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370 
1371         /*
1372          * Obtain the status about this packet.
1373          * When frame was received with an OFDM bitrate,
1374          * the signal is the PLCP value. If it was received with
1375          * a CCK bitrate the signal is the rate in 100kbit/s.
1376          */
1377         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379             entry->queue->rt2x00dev->rssi_offset;
1380         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381 
1382         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384         else
1385                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1388 }
1389 
1390 /*
1391  * Interrupt functions.
1392  */
1393 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394                              const enum data_queue_qid queue_idx)
1395 {
1396         struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397         struct queue_entry_priv_mmio *entry_priv;
1398         struct queue_entry *entry;
1399         struct txdone_entry_desc txdesc;
1400         u32 word;
1401 
1402         while (!rt2x00queue_empty(queue)) {
1403                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404                 entry_priv = entry->priv_data;
1405                 word = rt2x00_desc_read(entry_priv->desc, 0);
1406 
1407                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408                     !rt2x00_get_field32(word, TXD_W0_VALID))
1409                         break;
1410 
1411                 /*
1412                  * Obtain the status about this packet.
1413                  */
1414                 txdesc.flags = 0;
1415                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416                 case 0: /* Success */
1417                 case 1: /* Success with retry */
1418                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419                         break;
1420                 case 2: /* Failure, excessive retries */
1421                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422                         /* Fall through - this is a failed frame! */
1423                 default: /* Failure */
1424                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1425                 }
1426                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427 
1428                 rt2x00lib_txdone(entry, &txdesc);
1429         }
1430 }
1431 
1432 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433                                               struct rt2x00_field32 irq_field)
1434 {
1435         u32 reg;
1436 
1437         /*
1438          * Enable a single interrupt. The interrupt mask register
1439          * access needs locking.
1440          */
1441         spin_lock_irq(&rt2x00dev->irqmask_lock);
1442 
1443         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444         rt2x00_set_field32(&reg, irq_field, 0);
1445         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446 
1447         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448 }
1449 
1450 static void rt2500pci_txstatus_tasklet(unsigned long data)
1451 {
1452         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1453         u32 reg;
1454 
1455         /*
1456          * Handle all tx queues.
1457          */
1458         rt2500pci_txdone(rt2x00dev, QID_ATIM);
1459         rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1460         rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1461 
1462         /*
1463          * Enable all TXDONE interrupts again.
1464          */
1465         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1466                 spin_lock_irq(&rt2x00dev->irqmask_lock);
1467 
1468                 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1469                 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1470                 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1471                 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1472                 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1473 
1474                 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1475         }
1476 }
1477 
1478 static void rt2500pci_tbtt_tasklet(unsigned long data)
1479 {
1480         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1481         rt2x00lib_beacondone(rt2x00dev);
1482         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1483                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1484 }
1485 
1486 static void rt2500pci_rxdone_tasklet(unsigned long data)
1487 {
1488         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489         if (rt2x00mmio_rxdone(rt2x00dev))
1490                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1491         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1492                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1493 }
1494 
1495 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1496 {
1497         struct rt2x00_dev *rt2x00dev = dev_instance;
1498         u32 reg, mask;
1499 
1500         /*
1501          * Get the interrupt sources & saved to local variable.
1502          * Write register value back to clear pending interrupts.
1503          */
1504         reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1505         rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1506 
1507         if (!reg)
1508                 return IRQ_NONE;
1509 
1510         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1511                 return IRQ_HANDLED;
1512 
1513         mask = reg;
1514 
1515         /*
1516          * Schedule tasklets for interrupt handling.
1517          */
1518         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1519                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1520 
1521         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1522                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1523 
1524         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1525             rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1526             rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1527                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1528                 /*
1529                  * Mask out all txdone interrupts.
1530                  */
1531                 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1532                 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1533                 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1534         }
1535 
1536         /*
1537          * Disable all interrupts for which a tasklet was scheduled right now,
1538          * the tasklet will reenable the appropriate interrupts.
1539          */
1540         spin_lock(&rt2x00dev->irqmask_lock);
1541 
1542         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1543         reg |= mask;
1544         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1545 
1546         spin_unlock(&rt2x00dev->irqmask_lock);
1547 
1548         return IRQ_HANDLED;
1549 }
1550 
1551 /*
1552  * Device probe functions.
1553  */
1554 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1555 {
1556         struct eeprom_93cx6 eeprom;
1557         u32 reg;
1558         u16 word;
1559         u8 *mac;
1560 
1561         reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1562 
1563         eeprom.data = rt2x00dev;
1564         eeprom.register_read = rt2500pci_eepromregister_read;
1565         eeprom.register_write = rt2500pci_eepromregister_write;
1566         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1567             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1568         eeprom.reg_data_in = 0;
1569         eeprom.reg_data_out = 0;
1570         eeprom.reg_data_clock = 0;
1571         eeprom.reg_chip_select = 0;
1572 
1573         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1574                                EEPROM_SIZE / sizeof(u16));
1575 
1576         /*
1577          * Start validation of the data that has been read.
1578          */
1579         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1580         rt2x00lib_set_mac_address(rt2x00dev, mac);
1581 
1582         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1583         if (word == 0xffff) {
1584                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1585                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1586                                    ANTENNA_SW_DIVERSITY);
1587                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1588                                    ANTENNA_SW_DIVERSITY);
1589                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1590                                    LED_MODE_DEFAULT);
1591                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1592                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1593                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1594                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1595                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1596         }
1597 
1598         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1599         if (word == 0xffff) {
1600                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1601                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1602                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1603                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1604                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1605         }
1606 
1607         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1608         if (word == 0xffff) {
1609                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1610                                    DEFAULT_RSSI_OFFSET);
1611                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1612                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1613                                   word);
1614         }
1615 
1616         return 0;
1617 }
1618 
1619 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1620 {
1621         u32 reg;
1622         u16 value;
1623         u16 eeprom;
1624 
1625         /*
1626          * Read EEPROM word for configuration.
1627          */
1628         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1629 
1630         /*
1631          * Identify RF chipset.
1632          */
1633         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1634         reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1635         rt2x00_set_chip(rt2x00dev, RT2560, value,
1636                         rt2x00_get_field32(reg, CSR0_REVISION));
1637 
1638         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1639             !rt2x00_rf(rt2x00dev, RF2523) &&
1640             !rt2x00_rf(rt2x00dev, RF2524) &&
1641             !rt2x00_rf(rt2x00dev, RF2525) &&
1642             !rt2x00_rf(rt2x00dev, RF2525E) &&
1643             !rt2x00_rf(rt2x00dev, RF5222)) {
1644                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1645                 return -ENODEV;
1646         }
1647 
1648         /*
1649          * Identify default antenna configuration.
1650          */
1651         rt2x00dev->default_ant.tx =
1652             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1653         rt2x00dev->default_ant.rx =
1654             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1655 
1656         /*
1657          * Store led mode, for correct led behaviour.
1658          */
1659 #ifdef CONFIG_RT2X00_LIB_LEDS
1660         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1661 
1662         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1663         if (value == LED_MODE_TXRX_ACTIVITY ||
1664             value == LED_MODE_DEFAULT ||
1665             value == LED_MODE_ASUS)
1666                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1667                                    LED_TYPE_ACTIVITY);
1668 #endif /* CONFIG_RT2X00_LIB_LEDS */
1669 
1670         /*
1671          * Detect if this device has an hardware controlled radio.
1672          */
1673         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1674                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1675                 /*
1676                  * On this device RFKILL initialized during probe does not work.
1677                  */
1678                 __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1679         }
1680 
1681         /*
1682          * Check if the BBP tuning should be enabled.
1683          */
1684         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1685         if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1686                 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1687 
1688         /*
1689          * Read the RSSI <-> dBm offset information.
1690          */
1691         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1692         rt2x00dev->rssi_offset =
1693             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1694 
1695         return 0;
1696 }
1697 
1698 /*
1699  * RF value list for RF2522
1700  * Supports: 2.4 GHz
1701  */
1702 static const struct rf_channel rf_vals_bg_2522[] = {
1703         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1704         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1705         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1706         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1707         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1708         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1709         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1710         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1711         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1712         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1713         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1714         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1715         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1716         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1717 };
1718 
1719 /*
1720  * RF value list for RF2523
1721  * Supports: 2.4 GHz
1722  */
1723 static const struct rf_channel rf_vals_bg_2523[] = {
1724         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1725         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1726         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1727         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1728         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1729         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1730         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1731         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1732         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1733         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1734         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1735         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1736         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1737         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1738 };
1739 
1740 /*
1741  * RF value list for RF2524
1742  * Supports: 2.4 GHz
1743  */
1744 static const struct rf_channel rf_vals_bg_2524[] = {
1745         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1746         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1747         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1748         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1749         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1750         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1751         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1752         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1753         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1754         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1755         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1756         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1757         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1758         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1759 };
1760 
1761 /*
1762  * RF value list for RF2525
1763  * Supports: 2.4 GHz
1764  */
1765 static const struct rf_channel rf_vals_bg_2525[] = {
1766         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1767         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1768         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1769         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1770         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1771         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1772         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1773         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1774         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1775         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1776         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1777         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1778         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1779         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1780 };
1781 
1782 /*
1783  * RF value list for RF2525e
1784  * Supports: 2.4 GHz
1785  */
1786 static const struct rf_channel rf_vals_bg_2525e[] = {
1787         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1788         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1789         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1790         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1791         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1792         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1793         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1794         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1795         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1796         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1797         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1798         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1799         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1800         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1801 };
1802 
1803 /*
1804  * RF value list for RF5222
1805  * Supports: 2.4 GHz & 5.2 GHz
1806  */
1807 static const struct rf_channel rf_vals_5222[] = {
1808         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1809         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1810         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1811         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1812         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1813         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1814         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1815         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1816         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1817         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1818         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1819         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1820         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1821         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1822 
1823         /* 802.11 UNI / HyperLan 2 */
1824         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1825         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1826         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1827         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1828         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1829         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1830         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1831         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1832 
1833         /* 802.11 HyperLan 2 */
1834         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1835         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1836         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1837         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1838         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1839         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1840         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1841         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1842         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1843         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1844 
1845         /* 802.11 UNII */
1846         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1847         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1848         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1849         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1850         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1851 };
1852 
1853 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1854 {
1855         struct hw_mode_spec *spec = &rt2x00dev->spec;
1856         struct channel_info *info;
1857         char *tx_power;
1858         unsigned int i;
1859 
1860         /*
1861          * Initialize all hw fields.
1862          */
1863         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1864         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1865         ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1866         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1867 
1868         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1869         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1870                                 rt2x00_eeprom_addr(rt2x00dev,
1871                                                    EEPROM_MAC_ADDR_0));
1872 
1873         /*
1874          * Disable powersaving as default.
1875          */
1876         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1877 
1878         /*
1879          * Initialize hw_mode information.
1880          */
1881         spec->supported_bands = SUPPORT_BAND_2GHZ;
1882         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1883 
1884         if (rt2x00_rf(rt2x00dev, RF2522)) {
1885                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1886                 spec->channels = rf_vals_bg_2522;
1887         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1888                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1889                 spec->channels = rf_vals_bg_2523;
1890         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1891                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1892                 spec->channels = rf_vals_bg_2524;
1893         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1894                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1895                 spec->channels = rf_vals_bg_2525;
1896         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1897                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1898                 spec->channels = rf_vals_bg_2525e;
1899         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1900                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1901                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1902                 spec->channels = rf_vals_5222;
1903         }
1904 
1905         /*
1906          * Create channel information array
1907          */
1908         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1909         if (!info)
1910                 return -ENOMEM;
1911 
1912         spec->channels_info = info;
1913 
1914         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1915         for (i = 0; i < 14; i++) {
1916                 info[i].max_power = MAX_TXPOWER;
1917                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1918         }
1919 
1920         if (spec->num_channels > 14) {
1921                 for (i = 14; i < spec->num_channels; i++) {
1922                         info[i].max_power = MAX_TXPOWER;
1923                         info[i].default_power1 = DEFAULT_TXPOWER;
1924                 }
1925         }
1926 
1927         return 0;
1928 }
1929 
1930 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1931 {
1932         int retval;
1933         u32 reg;
1934 
1935         /*
1936          * Allocate eeprom data.
1937          */
1938         retval = rt2500pci_validate_eeprom(rt2x00dev);
1939         if (retval)
1940                 return retval;
1941 
1942         retval = rt2500pci_init_eeprom(rt2x00dev);
1943         if (retval)
1944                 return retval;
1945 
1946         /*
1947          * Enable rfkill polling by setting GPIO direction of the
1948          * rfkill switch GPIO pin correctly.
1949          */
1950         reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1951         rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1952         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1953 
1954         /*
1955          * Initialize hw specifications.
1956          */
1957         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1958         if (retval)
1959                 return retval;
1960 
1961         /*
1962          * This device requires the atim queue and DMA-mapped skbs.
1963          */
1964         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1965         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1966         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1967 
1968         /*
1969          * Set the rssi offset.
1970          */
1971         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1972 
1973         return 0;
1974 }
1975 
1976 /*
1977  * IEEE80211 stack callback functions.
1978  */
1979 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1980                              struct ieee80211_vif *vif)
1981 {
1982         struct rt2x00_dev *rt2x00dev = hw->priv;
1983         u64 tsf;
1984         u32 reg;
1985 
1986         reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1987         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1988         reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1989         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1990 
1991         return tsf;
1992 }
1993 
1994 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1995 {
1996         struct rt2x00_dev *rt2x00dev = hw->priv;
1997         u32 reg;
1998 
1999         reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2000         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2001 }
2002 
2003 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2004         .tx                     = rt2x00mac_tx,
2005         .start                  = rt2x00mac_start,
2006         .stop                   = rt2x00mac_stop,
2007         .add_interface          = rt2x00mac_add_interface,
2008         .remove_interface       = rt2x00mac_remove_interface,
2009         .config                 = rt2x00mac_config,
2010         .configure_filter       = rt2x00mac_configure_filter,
2011         .sw_scan_start          = rt2x00mac_sw_scan_start,
2012         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2013         .get_stats              = rt2x00mac_get_stats,
2014         .bss_info_changed       = rt2x00mac_bss_info_changed,
2015         .conf_tx                = rt2x00mac_conf_tx,
2016         .get_tsf                = rt2500pci_get_tsf,
2017         .tx_last_beacon         = rt2500pci_tx_last_beacon,
2018         .rfkill_poll            = rt2x00mac_rfkill_poll,
2019         .flush                  = rt2x00mac_flush,
2020         .set_antenna            = rt2x00mac_set_antenna,
2021         .get_antenna            = rt2x00mac_get_antenna,
2022         .get_ringparam          = rt2x00mac_get_ringparam,
2023         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2024 };
2025 
2026 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2027         .irq_handler            = rt2500pci_interrupt,
2028         .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2029         .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2030         .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2031         .probe_hw               = rt2500pci_probe_hw,
2032         .initialize             = rt2x00mmio_initialize,
2033         .uninitialize           = rt2x00mmio_uninitialize,
2034         .get_entry_state        = rt2500pci_get_entry_state,
2035         .clear_entry            = rt2500pci_clear_entry,
2036         .set_device_state       = rt2500pci_set_device_state,
2037         .rfkill_poll            = rt2500pci_rfkill_poll,
2038         .link_stats             = rt2500pci_link_stats,
2039         .reset_tuner            = rt2500pci_reset_tuner,
2040         .link_tuner             = rt2500pci_link_tuner,
2041         .start_queue            = rt2500pci_start_queue,
2042         .kick_queue             = rt2500pci_kick_queue,
2043         .stop_queue             = rt2500pci_stop_queue,
2044         .flush_queue            = rt2x00mmio_flush_queue,
2045         .write_tx_desc          = rt2500pci_write_tx_desc,
2046         .write_beacon           = rt2500pci_write_beacon,
2047         .fill_rxdone            = rt2500pci_fill_rxdone,
2048         .config_filter          = rt2500pci_config_filter,
2049         .config_intf            = rt2500pci_config_intf,
2050         .config_erp             = rt2500pci_config_erp,
2051         .config_ant             = rt2500pci_config_ant,
2052         .config                 = rt2500pci_config,
2053 };
2054 
2055 static void rt2500pci_queue_init(struct data_queue *queue)
2056 {
2057         switch (queue->qid) {
2058         case QID_RX:
2059                 queue->limit = 32;
2060                 queue->data_size = DATA_FRAME_SIZE;
2061                 queue->desc_size = RXD_DESC_SIZE;
2062                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2063                 break;
2064 
2065         case QID_AC_VO:
2066         case QID_AC_VI:
2067         case QID_AC_BE:
2068         case QID_AC_BK:
2069                 queue->limit = 32;
2070                 queue->data_size = DATA_FRAME_SIZE;
2071                 queue->desc_size = TXD_DESC_SIZE;
2072                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2073                 break;
2074 
2075         case QID_BEACON:
2076                 queue->limit = 1;
2077                 queue->data_size = MGMT_FRAME_SIZE;
2078                 queue->desc_size = TXD_DESC_SIZE;
2079                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2080                 break;
2081 
2082         case QID_ATIM:
2083                 queue->limit = 8;
2084                 queue->data_size = DATA_FRAME_SIZE;
2085                 queue->desc_size = TXD_DESC_SIZE;
2086                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2087                 break;
2088 
2089         default:
2090                 BUG();
2091                 break;
2092         }
2093 }
2094 
2095 static const struct rt2x00_ops rt2500pci_ops = {
2096         .name                   = KBUILD_MODNAME,
2097         .max_ap_intf            = 1,
2098         .eeprom_size            = EEPROM_SIZE,
2099         .rf_size                = RF_SIZE,
2100         .tx_queues              = NUM_TX_QUEUES,
2101         .queue_init             = rt2500pci_queue_init,
2102         .lib                    = &rt2500pci_rt2x00_ops,
2103         .hw                     = &rt2500pci_mac80211_ops,
2104 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2105         .debugfs                = &rt2500pci_rt2x00debug,
2106 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2107 };
2108 
2109 /*
2110  * RT2500pci module information.
2111  */
2112 static const struct pci_device_id rt2500pci_device_table[] = {
2113         { PCI_DEVICE(0x1814, 0x0201) },
2114         { 0, }
2115 };
2116 
2117 MODULE_AUTHOR(DRV_PROJECT);
2118 MODULE_VERSION(DRV_VERSION);
2119 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2120 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2121 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2122 MODULE_LICENSE("GPL");
2123 
2124 static int rt2500pci_probe(struct pci_dev *pci_dev,
2125                            const struct pci_device_id *id)
2126 {
2127         return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2128 }
2129 
2130 static struct pci_driver rt2500pci_driver = {
2131         .name           = KBUILD_MODNAME,
2132         .id_table       = rt2500pci_device_table,
2133         .probe          = rt2500pci_probe,
2134         .remove         = rt2x00pci_remove,
2135         .suspend        = rt2x00pci_suspend,
2136         .resume         = rt2x00pci_resume,
2137 };
2138 
2139 module_pci_driver(rt2500pci_driver);

/* [<][>][^][v][top][bottom][index][help] */