root/drivers/net/wireless/ath/ath5k/phy.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath5k_hw_radio_revision
  2. ath5k_channel_ok
  3. ath5k_hw_chan_has_spur_noise
  4. ath5k_hw_rfb_op
  5. ath5k_hw_write_ofdm_timings
  6. ath5k_hw_phy_disable
  7. ath5k_hw_wait_for_synth
  8. ath5k_hw_rfgain_opt_init
  9. ath5k_hw_request_rfgain_probe
  10. ath5k_hw_rf_gainf_corr
  11. ath5k_hw_rf_check_gainf_readback
  12. ath5k_hw_rf_gainf_adjust
  13. ath5k_hw_gainf_calibrate
  14. ath5k_hw_rfgain_init
  15. ath5k_hw_rfregs_init
  16. ath5k_hw_rf5110_chan2athchan
  17. ath5k_hw_rf5110_channel
  18. ath5k_hw_rf5111_chan2athchan
  19. ath5k_hw_rf5111_channel
  20. ath5k_hw_rf5112_channel
  21. ath5k_hw_rf2425_channel
  22. ath5k_hw_channel
  23. ath5k_hw_read_measured_noise_floor
  24. ath5k_hw_init_nfcal_hist
  25. ath5k_hw_update_nfcal_hist
  26. ath5k_hw_get_median_noise_floor
  27. ath5k_hw_update_noise_floor
  28. ath5k_hw_rf5110_calibrate
  29. ath5k_hw_rf511x_iq_calibrate
  30. ath5k_hw_phy_calibrate
  31. ath5k_hw_set_spur_mitigation_filter
  32. ath5k_hw_set_def_antenna
  33. ath5k_hw_set_fast_div
  34. ath5k_hw_set_antenna_switch
  35. ath5k_hw_set_antenna_mode
  36. ath5k_get_interpolated_value
  37. ath5k_get_linear_pcdac_min
  38. ath5k_create_power_curve
  39. ath5k_get_chan_pcal_surrounding_piers
  40. ath5k_get_rate_pcal_data
  41. ath5k_get_max_ctl_power
  42. ath5k_fill_pwr_to_pcdac_table
  43. ath5k_combine_linear_pcdac_curves
  44. ath5k_write_pcdac_table
  45. ath5k_combine_pwr_to_pdadc_curves
  46. ath5k_write_pwr_to_pdadc_table
  47. ath5k_setup_channel_powertable
  48. ath5k_write_channel_powertable
  49. ath5k_setup_rate_powertable
  50. ath5k_hw_txpower
  51. ath5k_hw_set_txpower_limit
  52. ath5k_hw_phy_init

   1 /*
   2  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6  *
   7  * Permission to use, copy, modify, and distribute this software for any
   8  * purpose with or without fee is hereby granted, provided that the above
   9  * copyright notice and this permission notice appear in all copies.
  10  *
  11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18  *
  19  */
  20 
  21 /***********************\
  22 * PHY related functions *
  23 \***********************/
  24 
  25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26 
  27 #include <linux/delay.h>
  28 #include <linux/slab.h>
  29 #include <asm/unaligned.h>
  30 
  31 #include "ath5k.h"
  32 #include "reg.h"
  33 #include "rfbuffer.h"
  34 #include "rfgain.h"
  35 #include "../regd.h"
  36 
  37 
  38 /**
  39  * DOC: PHY related functions
  40  *
  41  * Here we handle the low-level functions related to baseband
  42  * and analog frontend (RF) parts. This is by far the most complex
  43  * part of the hw code so make sure you know what you are doing.
  44  *
  45  * Here is a list of what this is all about:
  46  *
  47  * - Channel setting/switching
  48  *
  49  * - Automatic Gain Control (AGC) calibration
  50  *
  51  * - Noise Floor calibration
  52  *
  53  * - I/Q imbalance calibration (QAM correction)
  54  *
  55  * - Calibration due to thermal changes (gain_F)
  56  *
  57  * - Spur noise mitigation
  58  *
  59  * - RF/PHY initialization for the various operating modes and bwmodes
  60  *
  61  * - Antenna control
  62  *
  63  * - TX power control per channel/rate/packet type
  64  *
  65  * Also have in mind we never got documentation for most of these
  66  * functions, what we have comes mostly from Atheros's code, reverse
  67  * engineering and patent docs/presentations etc.
  68  */
  69 
  70 
  71 /******************\
  72 * Helper functions *
  73 \******************/
  74 
  75 /**
  76  * ath5k_hw_radio_revision() - Get the PHY Chip revision
  77  * @ah: The &struct ath5k_hw
  78  * @band: One of enum nl80211_band
  79  *
  80  * Returns the revision number of a 2GHz, 5GHz or single chip
  81  * radio.
  82  */
  83 u16
  84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
  85 {
  86         unsigned int i;
  87         u32 srev;
  88         u16 ret;
  89 
  90         /*
  91          * Set the radio chip access register
  92          */
  93         switch (band) {
  94         case NL80211_BAND_2GHZ:
  95                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  96                 break;
  97         case NL80211_BAND_5GHZ:
  98                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  99                 break;
 100         default:
 101                 return 0;
 102         }
 103 
 104         usleep_range(2000, 2500);
 105 
 106         /* ...wait until PHY is ready and read the selected radio revision */
 107         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 108 
 109         for (i = 0; i < 8; i++)
 110                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 111 
 112         if (ah->ah_version == AR5K_AR5210) {
 113                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 114                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 115         } else {
 116                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 117                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 118                                 ((srev & 0x0f) << 4), 8);
 119         }
 120 
 121         /* Reset to the 5GHz mode */
 122         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 123 
 124         return ret;
 125 }
 126 
 127 /**
 128  * ath5k_channel_ok() - Check if a channel is supported by the hw
 129  * @ah: The &struct ath5k_hw
 130  * @channel: The &struct ieee80211_channel
 131  *
 132  * Note: We don't do any regulatory domain checks here, it's just
 133  * a sanity check.
 134  */
 135 bool
 136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 137 {
 138         u16 freq = channel->center_freq;
 139 
 140         /* Check if the channel is in our supported range */
 141         if (channel->band == NL80211_BAND_2GHZ) {
 142                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 143                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 144                         return true;
 145         } else if (channel->band == NL80211_BAND_5GHZ)
 146                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 147                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 148                         return true;
 149 
 150         return false;
 151 }
 152 
 153 /**
 154  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 155  * @ah: The &struct ath5k_hw
 156  * @channel: The &struct ieee80211_channel
 157  */
 158 bool
 159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 160                                 struct ieee80211_channel *channel)
 161 {
 162         u8 refclk_freq;
 163 
 164         if ((ah->ah_radio == AR5K_RF5112) ||
 165         (ah->ah_radio == AR5K_RF5413) ||
 166         (ah->ah_radio == AR5K_RF2413) ||
 167         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 168                 refclk_freq = 40;
 169         else
 170                 refclk_freq = 32;
 171 
 172         if ((channel->center_freq % refclk_freq != 0) &&
 173         ((channel->center_freq % refclk_freq < 10) ||
 174         (channel->center_freq % refclk_freq > 22)))
 175                 return true;
 176         else
 177                 return false;
 178 }
 179 
 180 /**
 181  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 182  * @ah: The &struct ath5k_hw
 183  * @rf_regs: The struct ath5k_rf_reg
 184  * @val: New value
 185  * @reg_id: RF register ID
 186  * @set: Indicate we need to swap data
 187  *
 188  * This is an internal function used to modify RF Banks before
 189  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 190  * infos.
 191  */
 192 static unsigned int
 193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 194                                         u32 val, u8 reg_id, bool set)
 195 {
 196         const struct ath5k_rf_reg *rfreg = NULL;
 197         u8 offset, bank, num_bits, col, position;
 198         u16 entry;
 199         u32 mask, data, last_bit, bits_shifted, first_bit;
 200         u32 *rfb;
 201         s32 bits_left;
 202         int i;
 203 
 204         data = 0;
 205         rfb = ah->ah_rf_banks;
 206 
 207         for (i = 0; i < ah->ah_rf_regs_count; i++) {
 208                 if (rf_regs[i].index == reg_id) {
 209                         rfreg = &rf_regs[i];
 210                         break;
 211                 }
 212         }
 213 
 214         if (rfb == NULL || rfreg == NULL) {
 215                 ATH5K_PRINTF("Rf register not found!\n");
 216                 /* should not happen */
 217                 return 0;
 218         }
 219 
 220         bank = rfreg->bank;
 221         num_bits = rfreg->field.len;
 222         first_bit = rfreg->field.pos;
 223         col = rfreg->field.col;
 224 
 225         /* first_bit is an offset from bank's
 226          * start. Since we have all banks on
 227          * the same array, we use this offset
 228          * to mark each bank's start */
 229         offset = ah->ah_offset[bank];
 230 
 231         /* Boundary check */
 232         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 233                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
 234                 return 0;
 235         }
 236 
 237         entry = ((first_bit - 1) / 8) + offset;
 238         position = (first_bit - 1) % 8;
 239 
 240         if (set)
 241                 data = ath5k_hw_bitswap(val, num_bits);
 242 
 243         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 244              position = 0, entry++) {
 245 
 246                 last_bit = (position + bits_left > 8) ? 8 :
 247                                         position + bits_left;
 248 
 249                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 250                                                                 (col * 8);
 251 
 252                 if (set) {
 253                         rfb[entry] &= ~mask;
 254                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
 255                         data >>= (8 - position);
 256                 } else {
 257                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 258                                 << bits_shifted;
 259                         bits_shifted += last_bit - position;
 260                 }
 261 
 262                 bits_left -= 8 - position;
 263         }
 264 
 265         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 266 
 267         return data;
 268 }
 269 
 270 /**
 271  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 272  * @ah: the &struct ath5k_hw
 273  * @channel: the currently set channel upon reset
 274  *
 275  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 276  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 277  *
 278  * Since delta slope is floating point we split it on its exponent and
 279  * mantissa and provide these values on hw.
 280  *
 281  * For more infos i think this patent is related
 282  * "http://www.freepatentsonline.com/7184495.html"
 283  */
 284 static inline int
 285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 286                                 struct ieee80211_channel *channel)
 287 {
 288         /* Get exponent and mantissa and set it */
 289         u32 coef_scaled, coef_exp, coef_man,
 290                 ds_coef_exp, ds_coef_man, clock;
 291 
 292         BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 293                 (channel->hw_value == AR5K_MODE_11B));
 294 
 295         /* Get coefficient
 296          * ALGO: coef = (5 * clock / carrier_freq) / 2
 297          * we scale coef by shifting clock value by 24 for
 298          * better precision since we use integers */
 299         switch (ah->ah_bwmode) {
 300         case AR5K_BWMODE_40MHZ:
 301                 clock = 40 * 2;
 302                 break;
 303         case AR5K_BWMODE_10MHZ:
 304                 clock = 40 / 2;
 305                 break;
 306         case AR5K_BWMODE_5MHZ:
 307                 clock = 40 / 4;
 308                 break;
 309         default:
 310                 clock = 40;
 311                 break;
 312         }
 313         coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 314 
 315         /* Get exponent
 316          * ALGO: coef_exp = 14 - highest set bit position */
 317         coef_exp = ilog2(coef_scaled);
 318 
 319         /* Doesn't make sense if it's zero*/
 320         if (!coef_scaled || !coef_exp)
 321                 return -EINVAL;
 322 
 323         /* Note: we've shifted coef_scaled by 24 */
 324         coef_exp = 14 - (coef_exp - 24);
 325 
 326 
 327         /* Get mantissa (significant digits)
 328          * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 329         coef_man = coef_scaled +
 330                 (1 << (24 - coef_exp - 1));
 331 
 332         /* Calculate delta slope coefficient exponent
 333          * and mantissa (remove scaling) and set them on hw */
 334         ds_coef_man = coef_man >> (24 - coef_exp);
 335         ds_coef_exp = coef_exp - 16;
 336 
 337         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 338                 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 339         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 340                 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 341 
 342         return 0;
 343 }
 344 
 345 /**
 346  * ath5k_hw_phy_disable() - Disable PHY
 347  * @ah: The &struct ath5k_hw
 348  */
 349 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 350 {
 351         /*Just a try M.F.*/
 352         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 353 
 354         return 0;
 355 }
 356 
 357 /**
 358  * ath5k_hw_wait_for_synth() - Wait for synth to settle
 359  * @ah: The &struct ath5k_hw
 360  * @channel: The &struct ieee80211_channel
 361  */
 362 static void
 363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 364                         struct ieee80211_channel *channel)
 365 {
 366         /*
 367          * On 5211+ read activation -> rx delay
 368          * and use it (100ns steps).
 369          */
 370         if (ah->ah_version != AR5K_AR5210) {
 371                 u32 delay;
 372                 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 373                         AR5K_PHY_RX_DELAY_M;
 374                 delay = (channel->hw_value == AR5K_MODE_11B) ?
 375                         ((delay << 2) / 22) : (delay / 10);
 376                 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 377                         delay = delay << 1;
 378                 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 379                         delay = delay << 2;
 380                 /* XXX: /2 on turbo ? Let's be safe
 381                  * for now */
 382                 usleep_range(100 + delay, 100 + (2 * delay));
 383         } else {
 384                 usleep_range(1000, 1500);
 385         }
 386 }
 387 
 388 
 389 /**********************\
 390 * RF Gain optimization *
 391 \**********************/
 392 
 393 /**
 394  * DOC: RF Gain optimization
 395  *
 396  * This code is used to optimize RF gain on different environments
 397  * (temperature mostly) based on feedback from a power detector.
 398  *
 399  * It's only used on RF5111 and RF5112, later RF chips seem to have
 400  * auto adjustment on hw -notice they have a much smaller BANK 7 and
 401  * no gain optimization ladder-.
 402  *
 403  * For more infos check out this patent doc
 404  * "http://www.freepatentsonline.com/7400691.html"
 405  *
 406  * This paper describes power drops as seen on the receiver due to
 407  * probe packets
 408  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 409  * %20of%20Power%20Control.pdf"
 410  *
 411  * And this is the MadWiFi bug entry related to the above
 412  * "http://madwifi-project.org/ticket/1659"
 413  * with various measurements and diagrams
 414  */
 415 
 416 /**
 417  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 418  * @ah: The &struct ath5k_hw
 419  */
 420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 421 {
 422         /* Initialize the gain optimization values */
 423         switch (ah->ah_radio) {
 424         case AR5K_RF5111:
 425                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 426                 ah->ah_gain.g_low = 20;
 427                 ah->ah_gain.g_high = 35;
 428                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 429                 break;
 430         case AR5K_RF5112:
 431                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 432                 ah->ah_gain.g_low = 20;
 433                 ah->ah_gain.g_high = 85;
 434                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 435                 break;
 436         default:
 437                 return -EINVAL;
 438         }
 439 
 440         return 0;
 441 }
 442 
 443 /**
 444  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 445  * @ah: The &struct ath5k_hw
 446  *
 447  * Schedules a gain probe check on the next transmitted packet.
 448  * That means our next packet is going to be sent with lower
 449  * tx power and a Peak to Average Power Detector (PAPD) will try
 450  * to measure the gain.
 451  *
 452  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 453  * just after we enable the probe so that we don't mess with
 454  * standard traffic.
 455  */
 456 static void
 457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 458 {
 459 
 460         /* Skip if gain calibration is inactive or
 461          * we already handle a probe request */
 462         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 463                 return;
 464 
 465         /* Send the packet with 2dB below max power as
 466          * patent doc suggest */
 467         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 468                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
 469                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 470 
 471         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 472 
 473 }
 474 
 475 /**
 476  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 477  * @ah: The &struct ath5k_hw
 478  *
 479  * Calculate Gain_F measurement correction
 480  * based on the current step for RF5112 rev. 2
 481  */
 482 static u32
 483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 484 {
 485         u32 mix, step;
 486         const struct ath5k_gain_opt *go;
 487         const struct ath5k_gain_opt_step *g_step;
 488         const struct ath5k_rf_reg *rf_regs;
 489 
 490         /* Only RF5112 Rev. 2 supports it */
 491         if ((ah->ah_radio != AR5K_RF5112) ||
 492         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 493                 return 0;
 494 
 495         go = &rfgain_opt_5112;
 496         rf_regs = rf_regs_5112a;
 497         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 498 
 499         g_step = &go->go_step[ah->ah_gain.g_step_idx];
 500 
 501         if (ah->ah_rf_banks == NULL)
 502                 return 0;
 503 
 504         ah->ah_gain.g_f_corr = 0;
 505 
 506         /* No VGA (Variable Gain Amplifier) override, skip */
 507         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 508                 return 0;
 509 
 510         /* Mix gain stepping */
 511         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 512 
 513         /* Mix gain override */
 514         mix = g_step->gos_param[0];
 515 
 516         switch (mix) {
 517         case 3:
 518                 ah->ah_gain.g_f_corr = step * 2;
 519                 break;
 520         case 2:
 521                 ah->ah_gain.g_f_corr = (step - 5) * 2;
 522                 break;
 523         case 1:
 524                 ah->ah_gain.g_f_corr = step;
 525                 break;
 526         default:
 527                 ah->ah_gain.g_f_corr = 0;
 528                 break;
 529         }
 530 
 531         return ah->ah_gain.g_f_corr;
 532 }
 533 
 534 /**
 535  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 536  * @ah: The &struct ath5k_hw
 537  *
 538  * Check if current gain_F measurement is in the range of our
 539  * power detector windows. If we get a measurement outside range
 540  * we know it's not accurate (detectors can't measure anything outside
 541  * their detection window) so we must ignore it.
 542  *
 543  * Returns true if readback was O.K. or false on failure
 544  */
 545 static bool
 546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 547 {
 548         const struct ath5k_rf_reg *rf_regs;
 549         u32 step, mix_ovr, level[4];
 550 
 551         if (ah->ah_rf_banks == NULL)
 552                 return false;
 553 
 554         if (ah->ah_radio == AR5K_RF5111) {
 555 
 556                 rf_regs = rf_regs_5111;
 557                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 558 
 559                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 560                         false);
 561 
 562                 level[0] = 0;
 563                 level[1] = (step == 63) ? 50 : step + 4;
 564                 level[2] = (step != 63) ? 64 : level[0];
 565                 level[3] = level[2] + 50;
 566 
 567                 ah->ah_gain.g_high = level[3] -
 568                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 569                 ah->ah_gain.g_low = level[0] +
 570                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 571         } else {
 572 
 573                 rf_regs = rf_regs_5112;
 574                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 575 
 576                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 577                         false);
 578 
 579                 level[0] = level[2] = 0;
 580 
 581                 if (mix_ovr == 1) {
 582                         level[1] = level[3] = 83;
 583                 } else {
 584                         level[1] = level[3] = 107;
 585                         ah->ah_gain.g_high = 55;
 586                 }
 587         }
 588 
 589         return (ah->ah_gain.g_current >= level[0] &&
 590                         ah->ah_gain.g_current <= level[1]) ||
 591                 (ah->ah_gain.g_current >= level[2] &&
 592                         ah->ah_gain.g_current <= level[3]);
 593 }
 594 
 595 /**
 596  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 597  * @ah: The &struct ath5k_hw
 598  *
 599  * Choose the right target gain based on current gain
 600  * and RF gain optimization ladder
 601  */
 602 static s8
 603 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 604 {
 605         const struct ath5k_gain_opt *go;
 606         const struct ath5k_gain_opt_step *g_step;
 607         int ret = 0;
 608 
 609         switch (ah->ah_radio) {
 610         case AR5K_RF5111:
 611                 go = &rfgain_opt_5111;
 612                 break;
 613         case AR5K_RF5112:
 614                 go = &rfgain_opt_5112;
 615                 break;
 616         default:
 617                 return 0;
 618         }
 619 
 620         g_step = &go->go_step[ah->ah_gain.g_step_idx];
 621 
 622         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 623 
 624                 /* Reached maximum */
 625                 if (ah->ah_gain.g_step_idx == 0)
 626                         return -1;
 627 
 628                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 629                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 630                                 ah->ah_gain.g_step_idx > 0;
 631                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
 632                         ah->ah_gain.g_target -= 2 *
 633                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 634                             g_step->gos_gain);
 635 
 636                 ret = 1;
 637                 goto done;
 638         }
 639 
 640         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 641 
 642                 /* Reached minimum */
 643                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 644                         return -2;
 645 
 646                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 647                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 648                                 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 649                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
 650                         ah->ah_gain.g_target -= 2 *
 651                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 652                             g_step->gos_gain);
 653 
 654                 ret = 2;
 655                 goto done;
 656         }
 657 
 658 done:
 659         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 660                 "ret %d, gain step %u, current gain %u, target gain %u\n",
 661                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 662                 ah->ah_gain.g_target);
 663 
 664         return ret;
 665 }
 666 
 667 /**
 668  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 669  * @ah: The &struct ath5k_hw
 670  *
 671  * Main callback for thermal RF gain calibration engine
 672  * Check for a new gain reading and schedule an adjustment
 673  * if needed.
 674  *
 675  * Returns one of enum ath5k_rfgain codes
 676  */
 677 enum ath5k_rfgain
 678 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 679 {
 680         u32 data, type;
 681         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 682 
 683         if (ah->ah_rf_banks == NULL ||
 684         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 685                 return AR5K_RFGAIN_INACTIVE;
 686 
 687         /* No check requested, either engine is inactive
 688          * or an adjustment is already requested */
 689         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 690                 goto done;
 691 
 692         /* Read the PAPD (Peak to Average Power Detector)
 693          * register */
 694         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 695 
 696         /* No probe is scheduled, read gain_F measurement */
 697         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 698                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 699                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 700 
 701                 /* If tx packet is CCK correct the gain_F measurement
 702                  * by cck ofdm gain delta */
 703                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 704                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 705                                 ah->ah_gain.g_current +=
 706                                         ee->ee_cck_ofdm_gain_delta;
 707                         else
 708                                 ah->ah_gain.g_current +=
 709                                         AR5K_GAIN_CCK_PROBE_CORR;
 710                 }
 711 
 712                 /* Further correct gain_F measurement for
 713                  * RF5112A radios */
 714                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 715                         ath5k_hw_rf_gainf_corr(ah);
 716                         ah->ah_gain.g_current =
 717                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 718                                 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 719                                 0;
 720                 }
 721 
 722                 /* Check if measurement is ok and if we need
 723                  * to adjust gain, schedule a gain adjustment,
 724                  * else switch back to the active state */
 725                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
 726                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 727                 ath5k_hw_rf_gainf_adjust(ah)) {
 728                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 729                 } else {
 730                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 731                 }
 732         }
 733 
 734 done:
 735         return ah->ah_gain.g_state;
 736 }
 737 
 738 /**
 739  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 740  * @ah: The &struct ath5k_hw
 741  * @band: One of enum nl80211_band
 742  *
 743  * Write initial RF gain table to set the RF sensitivity.
 744  *
 745  * NOTE: This one works on all RF chips and has nothing to do
 746  * with Gain_F calibration
 747  */
 748 static int
 749 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
 750 {
 751         const struct ath5k_ini_rfgain *ath5k_rfg;
 752         unsigned int i, size, index;
 753 
 754         switch (ah->ah_radio) {
 755         case AR5K_RF5111:
 756                 ath5k_rfg = rfgain_5111;
 757                 size = ARRAY_SIZE(rfgain_5111);
 758                 break;
 759         case AR5K_RF5112:
 760                 ath5k_rfg = rfgain_5112;
 761                 size = ARRAY_SIZE(rfgain_5112);
 762                 break;
 763         case AR5K_RF2413:
 764                 ath5k_rfg = rfgain_2413;
 765                 size = ARRAY_SIZE(rfgain_2413);
 766                 break;
 767         case AR5K_RF2316:
 768                 ath5k_rfg = rfgain_2316;
 769                 size = ARRAY_SIZE(rfgain_2316);
 770                 break;
 771         case AR5K_RF5413:
 772                 ath5k_rfg = rfgain_5413;
 773                 size = ARRAY_SIZE(rfgain_5413);
 774                 break;
 775         case AR5K_RF2317:
 776         case AR5K_RF2425:
 777                 ath5k_rfg = rfgain_2425;
 778                 size = ARRAY_SIZE(rfgain_2425);
 779                 break;
 780         default:
 781                 return -EINVAL;
 782         }
 783 
 784         index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
 785 
 786         for (i = 0; i < size; i++) {
 787                 AR5K_REG_WAIT(i);
 788                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 789                         (u32)ath5k_rfg[i].rfg_register);
 790         }
 791 
 792         return 0;
 793 }
 794 
 795 
 796 /********************\
 797 * RF Registers setup *
 798 \********************/
 799 
 800 /**
 801  * ath5k_hw_rfregs_init() - Initialize RF register settings
 802  * @ah: The &struct ath5k_hw
 803  * @channel: The &struct ieee80211_channel
 804  * @mode: One of enum ath5k_driver_mode
 805  *
 806  * Setup RF registers by writing RF buffer on hw. For
 807  * more infos on this, check out rfbuffer.h
 808  */
 809 static int
 810 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 811                         struct ieee80211_channel *channel,
 812                         unsigned int mode)
 813 {
 814         const struct ath5k_rf_reg *rf_regs;
 815         const struct ath5k_ini_rfbuffer *ini_rfb;
 816         const struct ath5k_gain_opt *go = NULL;
 817         const struct ath5k_gain_opt_step *g_step;
 818         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 819         u8 ee_mode = 0;
 820         u32 *rfb;
 821         int i, obdb = -1, bank = -1;
 822 
 823         switch (ah->ah_radio) {
 824         case AR5K_RF5111:
 825                 rf_regs = rf_regs_5111;
 826                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 827                 ini_rfb = rfb_5111;
 828                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 829                 go = &rfgain_opt_5111;
 830                 break;
 831         case AR5K_RF5112:
 832                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 833                         rf_regs = rf_regs_5112a;
 834                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 835                         ini_rfb = rfb_5112a;
 836                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 837                 } else {
 838                         rf_regs = rf_regs_5112;
 839                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 840                         ini_rfb = rfb_5112;
 841                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 842                 }
 843                 go = &rfgain_opt_5112;
 844                 break;
 845         case AR5K_RF2413:
 846                 rf_regs = rf_regs_2413;
 847                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 848                 ini_rfb = rfb_2413;
 849                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 850                 break;
 851         case AR5K_RF2316:
 852                 rf_regs = rf_regs_2316;
 853                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 854                 ini_rfb = rfb_2316;
 855                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 856                 break;
 857         case AR5K_RF5413:
 858                 rf_regs = rf_regs_5413;
 859                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 860                 ini_rfb = rfb_5413;
 861                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 862                 break;
 863         case AR5K_RF2317:
 864                 rf_regs = rf_regs_2425;
 865                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 866                 ini_rfb = rfb_2317;
 867                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 868                 break;
 869         case AR5K_RF2425:
 870                 rf_regs = rf_regs_2425;
 871                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 872                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 873                         ini_rfb = rfb_2425;
 874                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 875                 } else {
 876                         ini_rfb = rfb_2417;
 877                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 878                 }
 879                 break;
 880         default:
 881                 return -EINVAL;
 882         }
 883 
 884         /* If it's the first time we set RF buffer, allocate
 885          * ah->ah_rf_banks based on ah->ah_rf_banks_size
 886          * we set above */
 887         if (ah->ah_rf_banks == NULL) {
 888                 ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
 889                                                                 sizeof(u32),
 890                                                                 GFP_KERNEL);
 891                 if (ah->ah_rf_banks == NULL) {
 892                         ATH5K_ERR(ah, "out of memory\n");
 893                         return -ENOMEM;
 894                 }
 895         }
 896 
 897         /* Copy values to modify them */
 898         rfb = ah->ah_rf_banks;
 899 
 900         for (i = 0; i < ah->ah_rf_banks_size; i++) {
 901                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 902                         ATH5K_ERR(ah, "invalid bank\n");
 903                         return -EINVAL;
 904                 }
 905 
 906                 /* Bank changed, write down the offset */
 907                 if (bank != ini_rfb[i].rfb_bank) {
 908                         bank = ini_rfb[i].rfb_bank;
 909                         ah->ah_offset[bank] = i;
 910                 }
 911 
 912                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 913         }
 914 
 915         /* Set Output and Driver bias current (OB/DB) */
 916         if (channel->band == NL80211_BAND_2GHZ) {
 917 
 918                 if (channel->hw_value == AR5K_MODE_11B)
 919                         ee_mode = AR5K_EEPROM_MODE_11B;
 920                 else
 921                         ee_mode = AR5K_EEPROM_MODE_11G;
 922 
 923                 /* For RF511X/RF211X combination we
 924                  * use b_OB and b_DB parameters stored
 925                  * in eeprom on ee->ee_ob[ee_mode][0]
 926                  *
 927                  * For all other chips we use OB/DB for 2GHz
 928                  * stored in the b/g modal section just like
 929                  * 802.11a on ee->ee_ob[ee_mode][1] */
 930                 if ((ah->ah_radio == AR5K_RF5111) ||
 931                 (ah->ah_radio == AR5K_RF5112))
 932                         obdb = 0;
 933                 else
 934                         obdb = 1;
 935 
 936                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 937                                                 AR5K_RF_OB_2GHZ, true);
 938 
 939                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 940                                                 AR5K_RF_DB_2GHZ, true);
 941 
 942         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 943         } else if ((channel->band == NL80211_BAND_5GHZ) ||
 944                         (ah->ah_radio == AR5K_RF5111)) {
 945 
 946                 /* For 11a, Turbo and XR we need to choose
 947                  * OB/DB based on frequency range */
 948                 ee_mode = AR5K_EEPROM_MODE_11A;
 949                 obdb =   channel->center_freq >= 5725 ? 3 :
 950                         (channel->center_freq >= 5500 ? 2 :
 951                         (channel->center_freq >= 5260 ? 1 :
 952                          (channel->center_freq > 4000 ? 0 : -1)));
 953 
 954                 if (obdb < 0)
 955                         return -EINVAL;
 956 
 957                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 958                                                 AR5K_RF_OB_5GHZ, true);
 959 
 960                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 961                                                 AR5K_RF_DB_5GHZ, true);
 962         }
 963 
 964         g_step = &go->go_step[ah->ah_gain.g_step_idx];
 965 
 966         /* Set turbo mode (N/A on RF5413) */
 967         if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 968         (ah->ah_radio != AR5K_RF5413))
 969                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 970 
 971         /* Bank Modifications (chip-specific) */
 972         if (ah->ah_radio == AR5K_RF5111) {
 973 
 974                 /* Set gain_F settings according to current step */
 975                 if (channel->hw_value != AR5K_MODE_11B) {
 976 
 977                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 978                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
 979                                         g_step->gos_param[0]);
 980 
 981                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 982                                                         AR5K_RF_PWD_90, true);
 983 
 984                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 985                                                         AR5K_RF_PWD_84, true);
 986 
 987                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 988                                                 AR5K_RF_RFGAIN_SEL, true);
 989 
 990                         /* We programmed gain_F parameters, switch back
 991                          * to active state */
 992                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 993 
 994                 }
 995 
 996                 /* Bank 6/7 setup */
 997 
 998                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 999                                                 AR5K_RF_PWD_XPD, true);
1000 
1001                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002                                                 AR5K_RF_XPD_GAIN, true);
1003 
1004                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005                                                 AR5K_RF_GAIN_I, true);
1006 
1007                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008                                                 AR5K_RF_PLO_SEL, true);
1009 
1010                 /* Tweak power detectors for half/quarter rate support */
1011                 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012                 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013                         u8 wait_i;
1014 
1015                         ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016                                                 AR5K_RF_WAIT_S, true);
1017 
1018                         wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019                                                         0x1f : 0x10;
1020 
1021                         ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022                                                 AR5K_RF_WAIT_I, true);
1023                         ath5k_hw_rfb_op(ah, rf_regs, 3,
1024                                                 AR5K_RF_MAX_TIME, true);
1025 
1026                 }
1027         }
1028 
1029         if (ah->ah_radio == AR5K_RF5112) {
1030 
1031                 /* Set gain_F settings according to current step */
1032                 if (channel->hw_value != AR5K_MODE_11B) {
1033 
1034                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035                                                 AR5K_RF_MIXGAIN_OVR, true);
1036 
1037                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038                                                 AR5K_RF_PWD_138, true);
1039 
1040                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041                                                 AR5K_RF_PWD_137, true);
1042 
1043                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044                                                 AR5K_RF_PWD_136, true);
1045 
1046                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047                                                 AR5K_RF_PWD_132, true);
1048 
1049                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050                                                 AR5K_RF_PWD_131, true);
1051 
1052                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053                                                 AR5K_RF_PWD_130, true);
1054 
1055                         /* We programmed gain_F parameters, switch back
1056                          * to active state */
1057                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058                 }
1059 
1060                 /* Bank 6/7 setup */
1061 
1062                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063                                                 AR5K_RF_XPD_SEL, true);
1064 
1065                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066                         /* Rev. 1 supports only one xpd */
1067                         ath5k_hw_rfb_op(ah, rf_regs,
1068                                                 ee->ee_x_gain[ee_mode],
1069                                                 AR5K_RF_XPD_GAIN, true);
1070 
1071                 } else {
1072                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073                         if (ee->ee_pd_gains[ee_mode] > 1) {
1074                                 ath5k_hw_rfb_op(ah, rf_regs,
1075                                                 pdg_curve_to_idx[0],
1076                                                 AR5K_RF_PD_GAIN_LO, true);
1077                                 ath5k_hw_rfb_op(ah, rf_regs,
1078                                                 pdg_curve_to_idx[1],
1079                                                 AR5K_RF_PD_GAIN_HI, true);
1080                         } else {
1081                                 ath5k_hw_rfb_op(ah, rf_regs,
1082                                                 pdg_curve_to_idx[0],
1083                                                 AR5K_RF_PD_GAIN_LO, true);
1084                                 ath5k_hw_rfb_op(ah, rf_regs,
1085                                                 pdg_curve_to_idx[0],
1086                                                 AR5K_RF_PD_GAIN_HI, true);
1087                         }
1088 
1089                         /* Lower synth voltage on Rev 2 */
1090                         if (ah->ah_radio == AR5K_RF5112 &&
1091                             (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092                                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1093                                                 AR5K_RF_HIGH_VC_CP, true);
1094 
1095                                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1096                                                 AR5K_RF_MID_VC_CP, true);
1097 
1098                                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1099                                                 AR5K_RF_LOW_VC_CP, true);
1100 
1101                                 ath5k_hw_rfb_op(ah, rf_regs, 2,
1102                                                 AR5K_RF_PUSH_UP, true);
1103                         }
1104 
1105                         /* Decrease power consumption on 5213+ BaseBand */
1106                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1108                                                 AR5K_RF_PAD2GND, true);
1109 
1110                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1111                                                 AR5K_RF_XB2_LVL, true);
1112 
1113                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1114                                                 AR5K_RF_XB5_LVL, true);
1115 
1116                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1117                                                 AR5K_RF_PWD_167, true);
1118 
1119                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
1120                                                 AR5K_RF_PWD_166, true);
1121                         }
1122                 }
1123 
1124                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125                                                 AR5K_RF_GAIN_I, true);
1126 
1127                 /* Tweak power detector for half/quarter rates */
1128                 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129                 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130                         u8 pd_delay;
1131 
1132                         pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133                                                         0xf : 0x8;
1134 
1135                         ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136                                                 AR5K_RF_PD_PERIOD_A, true);
1137                         ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138                                                 AR5K_RF_PD_DELAY_A, true);
1139 
1140                 }
1141         }
1142 
1143         if (ah->ah_radio == AR5K_RF5413 &&
1144         channel->band == NL80211_BAND_2GHZ) {
1145 
1146                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147                                                                         true);
1148 
1149                 /* Set optimum value for early revisions (on pci-e chips) */
1150                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151                 ah->ah_mac_srev < AR5K_SREV_AR5413)
1152                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
1154 
1155         }
1156 
1157         /* Write RF banks on hw */
1158         for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159                 AR5K_REG_WAIT(i);
1160                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161         }
1162 
1163         return 0;
1164 }
1165 
1166 
1167 /**************************\
1168   PHY/RF channel functions
1169 \**************************/
1170 
1171 /**
1172  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173  * @channel: The &struct ieee80211_channel
1174  *
1175  * Map channel frequency to IEEE channel number and convert it
1176  * to an internal channel value used by the RF5110 chipset.
1177  */
1178 static u32
1179 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180 {
1181         u32 athchan;
1182 
1183         athchan = (ath5k_hw_bitswap(
1184                         (ieee80211_frequency_to_channel(
1185                                 channel->center_freq) - 24) / 2, 5)
1186                                 << 1) | (1 << 6) | 0x1;
1187         return athchan;
1188 }
1189 
1190 /**
1191  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192  * @ah: The &struct ath5k_hw
1193  * @channel: The &struct ieee80211_channel
1194  */
1195 static int
1196 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197                 struct ieee80211_channel *channel)
1198 {
1199         u32 data;
1200 
1201         /*
1202          * Set the channel and wait
1203          */
1204         data = ath5k_hw_rf5110_chan2athchan(channel);
1205         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207         usleep_range(1000, 1500);
1208 
1209         return 0;
1210 }
1211 
1212 /**
1213  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214  * @ieee: IEEE channel number
1215  * @athchan: The &struct ath5k_athchan_2ghz
1216  *
1217  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218  * we need to add some offsets and extra flags to the data values we pass
1219  * on to the PHY. So for every 2GHz channel this function gets called
1220  * to do the conversion.
1221  */
1222 static int
1223 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224                 struct ath5k_athchan_2ghz *athchan)
1225 {
1226         int channel;
1227 
1228         /* Cast this value to catch negative channel numbers (>= -19) */
1229         channel = (int)ieee;
1230 
1231         /*
1232          * Map 2GHz IEEE channel to 5GHz Atheros channel
1233          */
1234         if (channel <= 13) {
1235                 athchan->a2_athchan = 115 + channel;
1236                 athchan->a2_flags = 0x46;
1237         } else if (channel == 14) {
1238                 athchan->a2_athchan = 124;
1239                 athchan->a2_flags = 0x44;
1240         } else if (channel >= 15 && channel <= 26) {
1241                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242                 athchan->a2_flags = 0x46;
1243         } else
1244                 return -EINVAL;
1245 
1246         return 0;
1247 }
1248 
1249 /**
1250  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251  * @ah: The &struct ath5k_hw
1252  * @channel: The &struct ieee80211_channel
1253  */
1254 static int
1255 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256                 struct ieee80211_channel *channel)
1257 {
1258         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259         unsigned int ath5k_channel =
1260                 ieee80211_frequency_to_channel(channel->center_freq);
1261         u32 data0, data1, clock;
1262         int ret;
1263 
1264         /*
1265          * Set the channel on the RF5111 radio
1266          */
1267         data0 = data1 = 0;
1268 
1269         if (channel->band == NL80211_BAND_2GHZ) {
1270                 /* Map 2GHz channel to 5GHz Atheros channel ID */
1271                 ret = ath5k_hw_rf5111_chan2athchan(
1272                         ieee80211_frequency_to_channel(channel->center_freq),
1273                         &ath5k_channel_2ghz);
1274                 if (ret)
1275                         return ret;
1276 
1277                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279                     << 5) | (1 << 4);
1280         }
1281 
1282         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283                 clock = 1;
1284                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285                         (clock << 1) | (1 << 10) | 1;
1286         } else {
1287                 clock = 0;
1288                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289                         << 2) | (clock << 1) | (1 << 10) | 1;
1290         }
1291 
1292         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293                         AR5K_RF_BUFFER);
1294         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295                         AR5K_RF_BUFFER_CONTROL_3);
1296 
1297         return 0;
1298 }
1299 
1300 /**
1301  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302  * @ah: The &struct ath5k_hw
1303  * @channel: The &struct ieee80211_channel
1304  *
1305  * On RF5112/2112 and newer we don't need to do any conversion.
1306  * We pass the frequency value after a few modifications to the
1307  * chip directly.
1308  *
1309  * NOTE: Make sure channel frequency given is within our range or else
1310  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311  */
1312 static int
1313 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314                 struct ieee80211_channel *channel)
1315 {
1316         u32 data, data0, data1, data2;
1317         u16 c;
1318 
1319         data = data0 = data1 = data2 = 0;
1320         c = channel->center_freq;
1321 
1322         /* My guess based on code:
1323          * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324          * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325          * (3040/2). data0 is used to set the PLL divider and data1
1326          * selects synth mode. */
1327         if (c < 4800) {
1328                 /* Channel 14 and all frequencies with 2Hz spacing
1329                  * below/above (non-standard channels) */
1330                 if (!((c - 2224) % 5)) {
1331                         /* Same as (c - 2224) / 5 */
1332                         data0 = ((2 * (c - 704)) - 3040) / 10;
1333                         data1 = 1;
1334                 /* Channel 1 and all frequencies with 5Hz spacing
1335                  * below/above (standard channels without channel 14) */
1336                 } else if (!((c - 2192) % 5)) {
1337                         /* Same as (c - 2192) / 5 */
1338                         data0 = ((2 * (c - 672)) - 3040) / 10;
1339                         data1 = 0;
1340                 } else
1341                         return -EINVAL;
1342 
1343                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344         /* This is more complex, we have a single synthesizer with
1345          * 4 reference clock settings (?) based on frequency spacing
1346          * and set using data2. LO is at 4800Hz and data0 is again used
1347          * to set some divider.
1348          *
1349          * NOTE: There is an old atheros presentation at Stanford
1350          * that mentions a method called dual direct conversion
1351          * with 1GHz sliding IF for RF5110. Maybe that's what we
1352          * have here, or an updated version. */
1353         } else if ((c % 5) != 2 || c > 5435) {
1354                 if (!(c % 20) && c >= 5120) {
1355                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356                         data2 = ath5k_hw_bitswap(3, 2);
1357                 } else if (!(c % 10)) {
1358                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359                         data2 = ath5k_hw_bitswap(2, 2);
1360                 } else if (!(c % 5)) {
1361                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362                         data2 = ath5k_hw_bitswap(1, 2);
1363                 } else
1364                         return -EINVAL;
1365         } else {
1366                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367                 data2 = ath5k_hw_bitswap(0, 2);
1368         }
1369 
1370         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371 
1372         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374 
1375         return 0;
1376 }
1377 
1378 /**
1379  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380  * @ah: The &struct ath5k_hw
1381  * @channel: The &struct ieee80211_channel
1382  *
1383  * AR2425/2417 have a different 2GHz RF so code changes
1384  * a little bit from RF5112.
1385  */
1386 static int
1387 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388                 struct ieee80211_channel *channel)
1389 {
1390         u32 data, data0, data2;
1391         u16 c;
1392 
1393         data = data0 = data2 = 0;
1394         c = channel->center_freq;
1395 
1396         if (c < 4800) {
1397                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1398                 data2 = 0;
1399         /* ? 5GHz ? */
1400         } else if ((c % 5) != 2 || c > 5435) {
1401                 if (!(c % 20) && c < 5120)
1402                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403                 else if (!(c % 10))
1404                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405                 else if (!(c % 5))
1406                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407                 else
1408                         return -EINVAL;
1409                 data2 = ath5k_hw_bitswap(1, 2);
1410         } else {
1411                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412                 data2 = ath5k_hw_bitswap(0, 2);
1413         }
1414 
1415         data = (data0 << 4) | data2 << 2 | 0x1001;
1416 
1417         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419 
1420         return 0;
1421 }
1422 
1423 /**
1424  * ath5k_hw_channel() - Set a channel on the radio chip
1425  * @ah: The &struct ath5k_hw
1426  * @channel: The &struct ieee80211_channel
1427  *
1428  * This is the main function called to set a channel on the
1429  * radio chip based on the radio chip version.
1430  */
1431 static int
1432 ath5k_hw_channel(struct ath5k_hw *ah,
1433                 struct ieee80211_channel *channel)
1434 {
1435         int ret;
1436         /*
1437          * Check bounds supported by the PHY (we don't care about regulatory
1438          * restrictions at this point).
1439          */
1440         if (!ath5k_channel_ok(ah, channel)) {
1441                 ATH5K_ERR(ah,
1442                         "channel frequency (%u MHz) out of supported "
1443                         "band range\n",
1444                         channel->center_freq);
1445                 return -EINVAL;
1446         }
1447 
1448         /*
1449          * Set the channel and wait
1450          */
1451         switch (ah->ah_radio) {
1452         case AR5K_RF5110:
1453                 ret = ath5k_hw_rf5110_channel(ah, channel);
1454                 break;
1455         case AR5K_RF5111:
1456                 ret = ath5k_hw_rf5111_channel(ah, channel);
1457                 break;
1458         case AR5K_RF2317:
1459         case AR5K_RF2425:
1460                 ret = ath5k_hw_rf2425_channel(ah, channel);
1461                 break;
1462         default:
1463                 ret = ath5k_hw_rf5112_channel(ah, channel);
1464                 break;
1465         }
1466 
1467         if (ret)
1468                 return ret;
1469 
1470         /* Set JAPAN setting for channel 14 */
1471         if (channel->center_freq == 2484) {
1472                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473                                 AR5K_PHY_CCKTXCTL_JAPAN);
1474         } else {
1475                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476                                 AR5K_PHY_CCKTXCTL_WORLD);
1477         }
1478 
1479         ah->ah_current_channel = channel;
1480 
1481         return 0;
1482 }
1483 
1484 
1485 /*****************\
1486   PHY calibration
1487 \*****************/
1488 
1489 /**
1490  * DOC: PHY Calibration routines
1491  *
1492  * Noise floor calibration: When we tell the hardware to
1493  * perform a noise floor calibration by setting the
1494  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495  * sample-and-hold the minimum noise level seen at the antennas.
1496  * This value is then stored in a ring buffer of recently measured
1497  * noise floor values so we have a moving window of the last few
1498  * samples. The median of the values in the history is then loaded
1499  * into the hardware for its own use for RSSI and CCA measurements.
1500  * This type of calibration doesn't interfere with traffic.
1501  *
1502  * AGC calibration: When we tell the hardware to perform
1503  * an AGC (Automatic Gain Control) calibration by setting the
1504  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505  * a calibration on the DC offsets of ADCs. During this period
1506  * rx/tx gets disabled so we have to deal with it on the driver
1507  * part.
1508  *
1509  * I/Q calibration: When we tell the hardware to perform
1510  * an I/Q calibration, it tries to correct I/Q imbalance and
1511  * fix QAM constellation by sampling data from rxed frames.
1512  * It doesn't interfere with traffic.
1513  *
1514  * For more infos on AGC and I/Q calibration check out patent doc
1515  * #03/094463.
1516  */
1517 
1518 /**
1519  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520  * @ah: The &struct ath5k_hw
1521  */
1522 static s32
1523 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524 {
1525         s32 val;
1526 
1527         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528         return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529 }
1530 
1531 /**
1532  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533  * @ah: The &struct ath5k_hw
1534  */
1535 void
1536 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537 {
1538         int i;
1539 
1540         ah->ah_nfcal_hist.index = 0;
1541         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542                 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543 }
1544 
1545 /**
1546  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547  * @ah: The &struct ath5k_hw
1548  * @noise_floor: The NF we got from hw
1549  */
1550 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551 {
1552         struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553         hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554         hist->nfval[hist->index] = noise_floor;
1555 }
1556 
1557 /**
1558  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559  * @ah: The &struct ath5k_hw
1560  */
1561 static s16
1562 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563 {
1564         s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565         s16 tmp;
1566         int i, j;
1567 
1568         memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570                 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571                         if (sort[j] > sort[j - 1]) {
1572                                 tmp = sort[j];
1573                                 sort[j] = sort[j - 1];
1574                                 sort[j - 1] = tmp;
1575                         }
1576                 }
1577         }
1578         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579                 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580                         "cal %d:%d\n", i, sort[i]);
1581         }
1582         return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583 }
1584 
1585 /**
1586  * ath5k_hw_update_noise_floor() - Update NF on hardware
1587  * @ah: The &struct ath5k_hw
1588  *
1589  * This is the main function we call to perform a NF calibration,
1590  * it reads NF from hardware, calculates the median and updates
1591  * NF on hw.
1592  */
1593 void
1594 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595 {
1596         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597         u32 val;
1598         s16 nf, threshold;
1599         u8 ee_mode;
1600 
1601         /* keep last value if calibration hasn't completed */
1602         if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603                 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604                         "NF did not complete in calibration window\n");
1605 
1606                 return;
1607         }
1608 
1609         ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610 
1611         ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612 
1613         /* completed NF calibration, test threshold */
1614         nf = ath5k_hw_read_measured_noise_floor(ah);
1615         threshold = ee->ee_noise_floor_thr[ee_mode];
1616 
1617         if (nf > threshold) {
1618                 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619                         "noise floor failure detected; "
1620                         "read %d, threshold %d\n",
1621                         nf, threshold);
1622 
1623                 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624         }
1625 
1626         ath5k_hw_update_nfcal_hist(ah, nf);
1627         nf = ath5k_hw_get_median_noise_floor(ah);
1628 
1629         /* load noise floor (in .5 dBm) so the hardware will use it */
1630         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631         val |= (nf * 2) & AR5K_PHY_NF_M;
1632         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633 
1634         AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635                 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636 
1637         ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638                 0, false);
1639 
1640         /*
1641          * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642          * so that we're not capped by the median we just loaded.
1643          * This will be used as the initial value for the next noise
1644          * floor calibration.
1645          */
1646         val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649                 AR5K_PHY_AGCCTL_NF_EN |
1650                 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651                 AR5K_PHY_AGCCTL_NF);
1652 
1653         ah->ah_noise_floor = nf;
1654 
1655         ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656 
1657         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658                 "noise floor calibrated: %d\n", nf);
1659 }
1660 
1661 /**
1662  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663  * @ah: The &struct ath5k_hw
1664  * @channel: The &struct ieee80211_channel
1665  *
1666  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667  */
1668 static int
1669 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670                 struct ieee80211_channel *channel)
1671 {
1672         u32 phy_sig, phy_agc, phy_sat, beacon;
1673         int ret;
1674 
1675         if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676                 return 0;
1677 
1678         /*
1679          * Disable beacons and RX/TX queues, wait
1680          */
1681         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682                 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685 
1686         usleep_range(2000, 2500);
1687 
1688         /*
1689          * Set the channel (with AGC turned off)
1690          */
1691         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692         udelay(10);
1693         ret = ath5k_hw_channel(ah, channel);
1694 
1695         /*
1696          * Activate PHY and wait
1697          */
1698         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699         usleep_range(1000, 1500);
1700 
1701         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702 
1703         if (ret)
1704                 return ret;
1705 
1706         /*
1707          * Calibrate the radio chip
1708          */
1709 
1710         /* Remember normal state */
1711         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714 
1715         /* Update radio registers */
1716         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718 
1719         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720                         AR5K_PHY_AGCCOARSE_LO)) |
1721                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723 
1724         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725                         AR5K_PHY_ADCSAT_THR)) |
1726                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728 
1729         udelay(20);
1730 
1731         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732         udelay(10);
1733         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735 
1736         usleep_range(1000, 1500);
1737 
1738         /*
1739          * Enable calibration and wait until completion
1740          */
1741         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742 
1743         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744                         AR5K_PHY_AGCCTL_CAL, 0, false);
1745 
1746         /* Reset to normal state */
1747         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750 
1751         if (ret) {
1752                 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753                                 channel->center_freq);
1754                 return ret;
1755         }
1756 
1757         /*
1758          * Re-enable RX/TX and beacons
1759          */
1760         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761                 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763 
1764         return 0;
1765 }
1766 
1767 /**
1768  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769  * @ah: The &struct ath5k_hw
1770  */
1771 static int
1772 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773 {
1774         u32 i_pwr, q_pwr;
1775         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776         int i;
1777 
1778         /* Skip if I/Q calibration is not needed or if it's still running */
1779         if (!ah->ah_iq_cal_needed)
1780                 return -EINVAL;
1781         else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783                                 "I/Q calibration still running");
1784                 return -EBUSY;
1785         }
1786 
1787         /* Calibration has finished, get the results and re-run */
1788 
1789         /* Work around for empty results which can apparently happen on 5212:
1790          * Read registers up to 10 times until we get both i_pr and q_pwr */
1791         for (i = 0; i <= 10; i++) {
1792                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796                         "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797                 if (i_pwr && q_pwr)
1798                         break;
1799         }
1800 
1801         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802 
1803         if (ah->ah_version == AR5K_AR5211)
1804                 q_coffd = q_pwr >> 6;
1805         else
1806                 q_coffd = q_pwr >> 7;
1807 
1808         /* In case i_coffd became zero, cancel calibration
1809          * not only it's too small, it'll also result a divide
1810          * by zero later on. */
1811         if (i_coffd == 0 || q_coffd < 2)
1812                 return -ECANCELED;
1813 
1814         /* Protect against loss of sign bits */
1815 
1816         i_coff = (-iq_corr) / i_coffd;
1817         i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818 
1819         if (ah->ah_version == AR5K_AR5211)
1820                 q_coff = (i_pwr / q_coffd) - 64;
1821         else
1822                 q_coff = (i_pwr / q_coffd) - 128;
1823         q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824 
1825         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826                         "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827                         i_coff, q_coff, i_coffd, q_coffd);
1828 
1829         /* Commit new I/Q values (set enable bit last to match HAL sources) */
1830         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833 
1834         /* Re-enable calibration -if we don't we'll commit
1835          * the same values again and again */
1836         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839 
1840         return 0;
1841 }
1842 
1843 /**
1844  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845  * @ah: The &struct ath5k_hw
1846  * @channel: The &struct ieee80211_channel
1847  *
1848  * The main function we call from above to perform
1849  * a short or full PHY calibration based on RF chip
1850  * and current channel
1851  */
1852 int
1853 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854                 struct ieee80211_channel *channel)
1855 {
1856         int ret;
1857 
1858         if (ah->ah_radio == AR5K_RF5110)
1859                 return ath5k_hw_rf5110_calibrate(ah, channel);
1860 
1861         ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862         if (ret) {
1863                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864                         "No I/Q correction performed (%uMHz)\n",
1865                         channel->center_freq);
1866 
1867                 /* Happens all the time if there is not much
1868                  * traffic, consider it normal behaviour. */
1869                 ret = 0;
1870         }
1871 
1872         /* On full calibration request a PAPD probe for
1873          * gainf calibration if needed */
1874         if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875             (ah->ah_radio == AR5K_RF5111 ||
1876              ah->ah_radio == AR5K_RF5112) &&
1877             channel->hw_value != AR5K_MODE_11B)
1878                 ath5k_hw_request_rfgain_probe(ah);
1879 
1880         /* Update noise floor */
1881         if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882                 ath5k_hw_update_noise_floor(ah);
1883 
1884         return ret;
1885 }
1886 
1887 
1888 /***************************\
1889 * Spur mitigation functions *
1890 \***************************/
1891 
1892 /**
1893  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894  * @ah: The &struct ath5k_hw
1895  * @channel: The &struct ieee80211_channel
1896  *
1897  * This function gets called during PHY initialization to
1898  * configure the spur filter for the given channel. Spur is noise
1899  * generated due to "reflection" effects, for more information on this
1900  * method check out patent US7643810
1901  */
1902 static void
1903 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904                                 struct ieee80211_channel *channel)
1905 {
1906         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907         u32 mag_mask[4] = {0, 0, 0, 0};
1908         u32 pilot_mask[2] = {0, 0};
1909         /* Note: fbin values are scaled up by 2 */
1910         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911         s32 spur_delta_phase, spur_freq_sigma_delta;
1912         s32 spur_offset, num_symbols_x16;
1913         u8 num_symbol_offsets, i, freq_band;
1914 
1915         /* Convert current frequency to fbin value (the same way channels
1916          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917          * up by 2 so we can compare it later */
1918         if (channel->band == NL80211_BAND_2GHZ) {
1919                 chan_fbin = (channel->center_freq - 2300) * 10;
1920                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1921         } else {
1922                 chan_fbin = (channel->center_freq - 4900) * 10;
1923                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1924         }
1925 
1926         /* Check if any spur_chan_fbin from EEPROM is
1927          * within our current channel's spur detection range */
1928         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930         /* XXX: Half/Quarter channels ?*/
1931         if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932                 spur_detection_window *= 2;
1933 
1934         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936 
1937                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938                  * so it's zero if we got nothing from EEPROM */
1939                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941                         break;
1942                 }
1943 
1944                 if ((chan_fbin - spur_detection_window <=
1945                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946                 (chan_fbin + spur_detection_window >=
1947                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949                         break;
1950                 }
1951         }
1952 
1953         /* We need to enable spur filter for this channel */
1954         if (spur_chan_fbin) {
1955                 spur_offset = spur_chan_fbin - chan_fbin;
1956                 /*
1957                  * Calculate deltas:
1958                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959                  * spur_delta_phase -> spur_offset / chip_freq << 11
1960                  * Note: Both values have 100Hz resolution
1961                  */
1962                 switch (ah->ah_bwmode) {
1963                 case AR5K_BWMODE_40MHZ:
1964                         /* Both sample_freq and chip_freq are 80MHz */
1965                         spur_delta_phase = (spur_offset << 16) / 25;
1966                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968                         break;
1969                 case AR5K_BWMODE_10MHZ:
1970                         /* Both sample_freq and chip_freq are 20MHz (?) */
1971                         spur_delta_phase = (spur_offset << 18) / 25;
1972                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974                         break;
1975                 case AR5K_BWMODE_5MHZ:
1976                         /* Both sample_freq and chip_freq are 10MHz (?) */
1977                         spur_delta_phase = (spur_offset << 19) / 25;
1978                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980                         break;
1981                 default:
1982                         if (channel->band == NL80211_BAND_5GHZ) {
1983                                 /* Both sample_freq and chip_freq are 40MHz */
1984                                 spur_delta_phase = (spur_offset << 17) / 25;
1985                                 spur_freq_sigma_delta =
1986                                                 (spur_delta_phase >> 10);
1987                                 symbol_width =
1988                                         AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989                         } else {
1990                                 /* sample_freq -> 40MHz chip_freq -> 44MHz
1991                                  * (for b compatibility) */
1992                                 spur_delta_phase = (spur_offset << 17) / 25;
1993                                 spur_freq_sigma_delta =
1994                                                 (spur_offset << 8) / 55;
1995                                 symbol_width =
1996                                         AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997                         }
1998                         break;
1999                 }
2000 
2001                 /* Calculate pilot and magnitude masks */
2002 
2003                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004                  * and divide by symbol_width to find how many symbols we have
2005                  * Note: number of symbols is scaled up by 16 */
2006                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007 
2008                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009                 if (!(num_symbols_x16 & 0xF))
2010                         /* _X_ */
2011                         num_symbol_offsets = 3;
2012                 else
2013                         /* _xx_ */
2014                         num_symbol_offsets = 4;
2015 
2016                 for (i = 0; i < num_symbol_offsets; i++) {
2017 
2018                         /* Calculate pilot mask */
2019                         s32 curr_sym_off =
2020                                 (num_symbols_x16 / 16) + i + 25;
2021 
2022                         /* Pilot magnitude mask seems to be a way to
2023                          * declare the boundaries for our detection
2024                          * window or something, it's 2 for the middle
2025                          * value(s) where the symbol is expected to be
2026                          * and 1 on the boundary values */
2027                         u8 plt_mag_map =
2028                                 (i == 0 || i == (num_symbol_offsets - 1))
2029                                                                 ? 1 : 2;
2030 
2031                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032                                 if (curr_sym_off <= 25)
2033                                         pilot_mask[0] |= 1 << curr_sym_off;
2034                                 else if (curr_sym_off >= 27)
2035                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038 
2039                         /* Calculate magnitude mask (for viterbi decoder) */
2040                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041                                 mag_mask[0] |=
2042                                         plt_mag_map << (curr_sym_off + 1) * 2;
2043                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044                                 mag_mask[1] |=
2045                                         plt_mag_map << (curr_sym_off - 15) * 2;
2046                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047                                 mag_mask[2] |=
2048                                         plt_mag_map << (curr_sym_off - 31) * 2;
2049                         else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050                                 mag_mask[3] |=
2051                                         plt_mag_map << (curr_sym_off - 47) * 2;
2052 
2053                 }
2054 
2055                 /* Write settings on hw to enable spur filter */
2056                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058                 /* XXX: Self correlator also ? */
2059                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060                                         AR5K_PHY_IQ_PILOT_MASK_EN |
2061                                         AR5K_PHY_IQ_CHAN_MASK_EN |
2062                                         AR5K_PHY_IQ_SPUR_FILT_EN);
2063 
2064                 /* Set delta phase and freq sigma delta */
2065                 ath5k_hw_reg_write(ah,
2066                                 AR5K_REG_SM(spur_delta_phase,
2067                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068                                 AR5K_REG_SM(spur_freq_sigma_delta,
2069                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071                                 AR5K_PHY_TIMING_11);
2072 
2073                 /* Write pilot masks */
2074                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077                                         pilot_mask[1]);
2078 
2079                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082                                         pilot_mask[1]);
2083 
2084                 /* Write magnitude masks */
2085                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090                                         mag_mask[3]);
2091 
2092                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
2097                                         mag_mask[3]);
2098 
2099         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100         AR5K_PHY_IQ_SPUR_FILT_EN) {
2101                 /* Clean up spur mitigation settings and disable filter */
2102                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105                                         AR5K_PHY_IQ_PILOT_MASK_EN |
2106                                         AR5K_PHY_IQ_CHAN_MASK_EN |
2107                                         AR5K_PHY_IQ_SPUR_FILT_EN);
2108                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109 
2110                 /* Clear pilot masks */
2111                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114                                         0);
2115 
2116                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119                                         0);
2120 
2121                 /* Clear magnitude masks */
2122                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127                                         0);
2128 
2129                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
2134                                         0);
2135         }
2136 }
2137 
2138 
2139 /*****************\
2140 * Antenna control *
2141 \*****************/
2142 
2143 /**
2144  * DOC: Antenna control
2145  *
2146  * Hw supports up to 14 antennas ! I haven't found any card that implements
2147  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150  *
2151  * We can have a single antenna for RX and multiple antennas for TX.
2152  * RX antenna is our "default" antenna (usually antenna 1) set on
2153  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154  * (0 for automatic selection, 1 - 14 antenna number).
2155  *
2156  * We can let hw do all the work doing fast antenna diversity for both
2157  * tx and rx or we can do things manually. Here are the options we have
2158  * (all are bits of STA_ID1 register):
2159  *
2160  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161  * control descriptor, use the default antenna to transmit or else use the last
2162  * antenna on which we received an ACK.
2163  *
2164  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165  * the antenna on which we got the ACK for that frame.
2166  *
2167  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168  * one on the TX descriptor.
2169  *
2170  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171  * (ACKs etc), or else use current antenna (the one we just used for TX).
2172  *
2173  * Using the above we support the following scenarios:
2174  *
2175  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176  *
2177  * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2178  *
2179  * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2180  *
2181  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182  *
2183  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184  *
2185  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186  *
2187  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188  *
2189  * Also note that when setting antenna to F on tx descriptor card inverts
2190  * current tx antenna.
2191  */
2192 
2193 /**
2194  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195  * @ah: The &struct ath5k_hw
2196  * @ant: Antenna number
2197  */
2198 static void
2199 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200 {
2201         if (ah->ah_version != AR5K_AR5210)
2202                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203 }
2204 
2205 /**
2206  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207  * @ah: The &struct ath5k_hw
2208  * @ee_mode: One of enum ath5k_driver_mode
2209  * @enable: True to enable, false to disable
2210  */
2211 static void
2212 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213 {
2214         switch (ee_mode) {
2215         case AR5K_EEPROM_MODE_11G:
2216                 /* XXX: This is set to
2217                  * disabled on initvals !!! */
2218         case AR5K_EEPROM_MODE_11A:
2219                 if (enable)
2220                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222                 else
2223                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225                 break;
2226         case AR5K_EEPROM_MODE_11B:
2227                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229                 break;
2230         default:
2231                 return;
2232         }
2233 
2234         if (enable) {
2235                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236                                 AR5K_PHY_RESTART_DIV_GC, 4);
2237 
2238                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239                                         AR5K_PHY_FAST_ANT_DIV_EN);
2240         } else {
2241                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242                                 AR5K_PHY_RESTART_DIV_GC, 0);
2243 
2244                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245                                         AR5K_PHY_FAST_ANT_DIV_EN);
2246         }
2247 }
2248 
2249 /**
2250  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251  * @ah: The &struct ath5k_hw
2252  * @ee_mode: One of enum ath5k_driver_mode
2253  *
2254  * Switch table comes from EEPROM and includes information on controlling
2255  * the 2 antenna RX attenuators
2256  */
2257 void
2258 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259 {
2260         u8 ant0, ant1;
2261 
2262         /*
2263          * In case a fixed antenna was set as default
2264          * use the same switch table twice.
2265          */
2266         if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267                 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268         else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269                 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270         else {
2271                 ant0 = AR5K_ANT_SWTABLE_A;
2272                 ant1 = AR5K_ANT_SWTABLE_B;
2273         }
2274 
2275         /* Set antenna idle switch table */
2276         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277                         AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278                         (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279                         AR5K_PHY_ANT_CTL_TXRX_EN));
2280 
2281         /* Set antenna switch tables */
2282         ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283                 AR5K_PHY_ANT_SWITCH_TABLE_0);
2284         ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285                 AR5K_PHY_ANT_SWITCH_TABLE_1);
2286 }
2287 
2288 /**
2289  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290  * @ah: The &struct ath5k_hw
2291  * @ant_mode: One of enum ath5k_ant_mode
2292  */
2293 void
2294 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295 {
2296         struct ieee80211_channel *channel = ah->ah_current_channel;
2297         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298         bool use_def_for_sg;
2299         int ee_mode;
2300         u8 def_ant, tx_ant;
2301         u32 sta_id1 = 0;
2302 
2303         /* if channel is not initialized yet we can't set the antennas
2304          * so just store the mode. it will be set on the next reset */
2305         if (channel == NULL) {
2306                 ah->ah_ant_mode = ant_mode;
2307                 return;
2308         }
2309 
2310         def_ant = ah->ah_def_ant;
2311 
2312         ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313 
2314         switch (ant_mode) {
2315         case AR5K_ANTMODE_DEFAULT:
2316                 tx_ant = 0;
2317                 use_def_for_tx = false;
2318                 update_def_on_tx = false;
2319                 use_def_for_rts = false;
2320                 use_def_for_sg = false;
2321                 fast_div = true;
2322                 break;
2323         case AR5K_ANTMODE_FIXED_A:
2324                 def_ant = 1;
2325                 tx_ant = 1;
2326                 use_def_for_tx = true;
2327                 update_def_on_tx = false;
2328                 use_def_for_rts = true;
2329                 use_def_for_sg = true;
2330                 fast_div = false;
2331                 break;
2332         case AR5K_ANTMODE_FIXED_B:
2333                 def_ant = 2;
2334                 tx_ant = 2;
2335                 use_def_for_tx = true;
2336                 update_def_on_tx = false;
2337                 use_def_for_rts = true;
2338                 use_def_for_sg = true;
2339                 fast_div = false;
2340                 break;
2341         case AR5K_ANTMODE_SINGLE_AP:
2342                 def_ant = 1;    /* updated on tx */
2343                 tx_ant = 0;
2344                 use_def_for_tx = true;
2345                 update_def_on_tx = true;
2346                 use_def_for_rts = true;
2347                 use_def_for_sg = true;
2348                 fast_div = true;
2349                 break;
2350         case AR5K_ANTMODE_SECTOR_AP:
2351                 tx_ant = 1;     /* variable */
2352                 use_def_for_tx = false;
2353                 update_def_on_tx = false;
2354                 use_def_for_rts = true;
2355                 use_def_for_sg = false;
2356                 fast_div = false;
2357                 break;
2358         case AR5K_ANTMODE_SECTOR_STA:
2359                 tx_ant = 1;     /* variable */
2360                 use_def_for_tx = true;
2361                 update_def_on_tx = false;
2362                 use_def_for_rts = true;
2363                 use_def_for_sg = false;
2364                 fast_div = true;
2365                 break;
2366         case AR5K_ANTMODE_DEBUG:
2367                 def_ant = 1;
2368                 tx_ant = 2;
2369                 use_def_for_tx = false;
2370                 update_def_on_tx = false;
2371                 use_def_for_rts = false;
2372                 use_def_for_sg = false;
2373                 fast_div = false;
2374                 break;
2375         default:
2376                 return;
2377         }
2378 
2379         ah->ah_tx_ant = tx_ant;
2380         ah->ah_ant_mode = ant_mode;
2381         ah->ah_def_ant = def_ant;
2382 
2383         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387 
2388         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389 
2390         if (sta_id1)
2391                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392 
2393         ath5k_hw_set_antenna_switch(ah, ee_mode);
2394         /* Note: set diversity before default antenna
2395          * because it won't work correctly */
2396         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397         ath5k_hw_set_def_antenna(ah, def_ant);
2398 }
2399 
2400 
2401 /****************\
2402 * TX power setup *
2403 \****************/
2404 
2405 /*
2406  * Helper functions
2407  */
2408 
2409 /**
2410  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411  * @target: X value of the middle point
2412  * @x_left: X value of the left point
2413  * @x_right: X value of the right point
2414  * @y_left: Y value of the left point
2415  * @y_right: Y value of the right point
2416  */
2417 static s16
2418 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419                                         s16 y_left, s16 y_right)
2420 {
2421         s16 ratio, result;
2422 
2423         /* Avoid divide by zero and skip interpolation
2424          * if we have the same point */
2425         if ((x_left == x_right) || (y_left == y_right))
2426                 return y_left;
2427 
2428         /*
2429          * Since we use ints and not fps, we need to scale up in
2430          * order to get a sane ratio value (or else we 'll eg. get
2431          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432          * to have some accuracy both for 0.5 and 0.25 steps.
2433          */
2434         ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435 
2436         /* Now scale down to be in range */
2437         result = y_left + (ratio * (target - x_left) / 100);
2438 
2439         return result;
2440 }
2441 
2442 /**
2443  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444  * linear PCDAC curve
2445  * @stepL: Left array with y values (pcdac steps)
2446  * @stepR: Right array with y values (pcdac steps)
2447  * @pwrL: Left array with x values (power steps)
2448  * @pwrR: Right array with x values (power steps)
2449  *
2450  * Since we have the top of the curve and we draw the line below
2451  * until we reach 1 (1 pcdac step) we need to know which point
2452  * (x value) that is so that we don't go below x axis and have negative
2453  * pcdac values when creating the curve, or fill the table with zeros.
2454  */
2455 static s16
2456 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457                                 const s16 *pwrL, const s16 *pwrR)
2458 {
2459         s8 tmp;
2460         s16 min_pwrL, min_pwrR;
2461         s16 pwr_i;
2462 
2463         /* Some vendors write the same pcdac value twice !!! */
2464         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465                 return max(pwrL[0], pwrR[0]);
2466 
2467         if (pwrL[0] == pwrL[1])
2468                 min_pwrL = pwrL[0];
2469         else {
2470                 pwr_i = pwrL[0];
2471                 do {
2472                         pwr_i--;
2473                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474                                                         pwrL[0], pwrL[1],
2475                                                         stepL[0], stepL[1]);
2476                 } while (tmp > 1);
2477 
2478                 min_pwrL = pwr_i;
2479         }
2480 
2481         if (pwrR[0] == pwrR[1])
2482                 min_pwrR = pwrR[0];
2483         else {
2484                 pwr_i = pwrR[0];
2485                 do {
2486                         pwr_i--;
2487                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488                                                         pwrR[0], pwrR[1],
2489                                                         stepR[0], stepR[1]);
2490                 } while (tmp > 1);
2491 
2492                 min_pwrR = pwr_i;
2493         }
2494 
2495         /* Keep the right boundary so that it works for both curves */
2496         return max(min_pwrL, min_pwrR);
2497 }
2498 
2499 /**
2500  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501  * @pmin: Minimum power value (xmin)
2502  * @pmax: Maximum power value (xmax)
2503  * @pwr: Array of power steps (x values)
2504  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505  * @num_points: Number of provided points
2506  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507  * @type: One of enum ath5k_powertable_type (eeprom.h)
2508  *
2509  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510  * Power to PCDAC curve.
2511  *
2512  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514  * PCDAC/PDADC step for each curve is 64 but we can write more than
2515  * one curves on hw so we can go up to 128 (which is the max step we
2516  * can write on the final table).
2517  *
2518  * We write y values (PCDAC/PDADC steps) on hw.
2519  */
2520 static void
2521 ath5k_create_power_curve(s16 pmin, s16 pmax,
2522                         const s16 *pwr, const u8 *vpd,
2523                         u8 num_points,
2524                         u8 *vpd_table, u8 type)
2525 {
2526         u8 idx[2] = { 0, 1 };
2527         s16 pwr_i = 2 * pmin;
2528         int i;
2529 
2530         if (num_points < 2)
2531                 return;
2532 
2533         /* We want the whole line, so adjust boundaries
2534          * to cover the entire power range. Note that
2535          * power values are already 0.25dB so no need
2536          * to multiply pwr_i by 2 */
2537         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538                 pwr_i = pmin;
2539                 pmin = 0;
2540                 pmax = 63;
2541         }
2542 
2543         /* Find surrounding turning points (TPs)
2544          * and interpolate between them */
2545         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547 
2548                 /* We passed the right TP, move to the next set of TPs
2549                  * if we pass the last TP, extrapolate above using the last
2550                  * two TPs for ratio */
2551                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552                         idx[0]++;
2553                         idx[1]++;
2554                 }
2555 
2556                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557                                                 pwr[idx[0]], pwr[idx[1]],
2558                                                 vpd[idx[0]], vpd[idx[1]]);
2559 
2560                 /* Increase by 0.5dB
2561                  * (0.25 dB units) */
2562                 pwr_i += 2;
2563         }
2564 }
2565 
2566 /**
2567  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568  * for a given channel.
2569  * @ah: The &struct ath5k_hw
2570  * @channel: The &struct ieee80211_channel
2571  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573  *
2574  * Get the surrounding per-channel power calibration piers
2575  * for a given frequency so that we can interpolate between
2576  * them and come up with an appropriate dataset for our current
2577  * channel.
2578  */
2579 static void
2580 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581                         struct ieee80211_channel *channel,
2582                         struct ath5k_chan_pcal_info **pcinfo_l,
2583                         struct ath5k_chan_pcal_info **pcinfo_r)
2584 {
2585         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586         struct ath5k_chan_pcal_info *pcinfo;
2587         u8 idx_l, idx_r;
2588         u8 mode, max, i;
2589         u32 target = channel->center_freq;
2590 
2591         idx_l = 0;
2592         idx_r = 0;
2593 
2594         switch (channel->hw_value) {
2595         case AR5K_EEPROM_MODE_11A:
2596                 pcinfo = ee->ee_pwr_cal_a;
2597                 mode = AR5K_EEPROM_MODE_11A;
2598                 break;
2599         case AR5K_EEPROM_MODE_11B:
2600                 pcinfo = ee->ee_pwr_cal_b;
2601                 mode = AR5K_EEPROM_MODE_11B;
2602                 break;
2603         case AR5K_EEPROM_MODE_11G:
2604         default:
2605                 pcinfo = ee->ee_pwr_cal_g;
2606                 mode = AR5K_EEPROM_MODE_11G;
2607                 break;
2608         }
2609         max = ee->ee_n_piers[mode] - 1;
2610 
2611         /* Frequency is below our calibrated
2612          * range. Use the lowest power curve
2613          * we have */
2614         if (target < pcinfo[0].freq) {
2615                 idx_l = idx_r = 0;
2616                 goto done;
2617         }
2618 
2619         /* Frequency is above our calibrated
2620          * range. Use the highest power curve
2621          * we have */
2622         if (target > pcinfo[max].freq) {
2623                 idx_l = idx_r = max;
2624                 goto done;
2625         }
2626 
2627         /* Frequency is inside our calibrated
2628          * channel range. Pick the surrounding
2629          * calibration piers so that we can
2630          * interpolate */
2631         for (i = 0; i <= max; i++) {
2632 
2633                 /* Frequency matches one of our calibration
2634                  * piers, no need to interpolate, just use
2635                  * that calibration pier */
2636                 if (pcinfo[i].freq == target) {
2637                         idx_l = idx_r = i;
2638                         goto done;
2639                 }
2640 
2641                 /* We found a calibration pier that's above
2642                  * frequency, use this pier and the previous
2643                  * one to interpolate */
2644                 if (target < pcinfo[i].freq) {
2645                         idx_r = i;
2646                         idx_l = idx_r - 1;
2647                         goto done;
2648                 }
2649         }
2650 
2651 done:
2652         *pcinfo_l = &pcinfo[idx_l];
2653         *pcinfo_r = &pcinfo[idx_r];
2654 }
2655 
2656 /**
2657  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658  * calibration data
2659  * @ah: The &struct ath5k_hw *ah,
2660  * @channel: The &struct ieee80211_channel
2661  * @rates: The &struct ath5k_rate_pcal_info to fill
2662  *
2663  * Get the surrounding per-rate power calibration data
2664  * for a given frequency and interpolate between power
2665  * values to set max target power supported by hw for
2666  * each rate on this frequency.
2667  */
2668 static void
2669 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670                         struct ieee80211_channel *channel,
2671                         struct ath5k_rate_pcal_info *rates)
2672 {
2673         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674         struct ath5k_rate_pcal_info *rpinfo;
2675         u8 idx_l, idx_r;
2676         u8 mode, max, i;
2677         u32 target = channel->center_freq;
2678 
2679         idx_l = 0;
2680         idx_r = 0;
2681 
2682         switch (channel->hw_value) {
2683         case AR5K_MODE_11A:
2684                 rpinfo = ee->ee_rate_tpwr_a;
2685                 mode = AR5K_EEPROM_MODE_11A;
2686                 break;
2687         case AR5K_MODE_11B:
2688                 rpinfo = ee->ee_rate_tpwr_b;
2689                 mode = AR5K_EEPROM_MODE_11B;
2690                 break;
2691         case AR5K_MODE_11G:
2692         default:
2693                 rpinfo = ee->ee_rate_tpwr_g;
2694                 mode = AR5K_EEPROM_MODE_11G;
2695                 break;
2696         }
2697         max = ee->ee_rate_target_pwr_num[mode] - 1;
2698 
2699         /* Get the surrounding calibration
2700          * piers - same as above */
2701         if (target < rpinfo[0].freq) {
2702                 idx_l = idx_r = 0;
2703                 goto done;
2704         }
2705 
2706         if (target > rpinfo[max].freq) {
2707                 idx_l = idx_r = max;
2708                 goto done;
2709         }
2710 
2711         for (i = 0; i <= max; i++) {
2712 
2713                 if (rpinfo[i].freq == target) {
2714                         idx_l = idx_r = i;
2715                         goto done;
2716                 }
2717 
2718                 if (target < rpinfo[i].freq) {
2719                         idx_r = i;
2720                         idx_l = idx_r - 1;
2721                         goto done;
2722                 }
2723         }
2724 
2725 done:
2726         /* Now interpolate power value, based on the frequency */
2727         rates->freq = target;
2728 
2729         rates->target_power_6to24 =
2730                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731                                         rpinfo[idx_r].freq,
2732                                         rpinfo[idx_l].target_power_6to24,
2733                                         rpinfo[idx_r].target_power_6to24);
2734 
2735         rates->target_power_36 =
2736                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737                                         rpinfo[idx_r].freq,
2738                                         rpinfo[idx_l].target_power_36,
2739                                         rpinfo[idx_r].target_power_36);
2740 
2741         rates->target_power_48 =
2742                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743                                         rpinfo[idx_r].freq,
2744                                         rpinfo[idx_l].target_power_48,
2745                                         rpinfo[idx_r].target_power_48);
2746 
2747         rates->target_power_54 =
2748                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749                                         rpinfo[idx_r].freq,
2750                                         rpinfo[idx_l].target_power_54,
2751                                         rpinfo[idx_r].target_power_54);
2752 }
2753 
2754 /**
2755  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756  * @ah: the &struct ath5k_hw
2757  * @channel: The &struct ieee80211_channel
2758  *
2759  * Get the max edge power for this channel if
2760  * we have such data from EEPROM's Conformance Test
2761  * Limits (CTL), and limit max power if needed.
2762  */
2763 static void
2764 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765                         struct ieee80211_channel *channel)
2766 {
2767         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770         u8 *ctl_val = ee->ee_ctl;
2771         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772         s16 edge_pwr = 0;
2773         u8 rep_idx;
2774         u8 i, ctl_mode;
2775         u8 ctl_idx = 0xFF;
2776         u32 target = channel->center_freq;
2777 
2778         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779 
2780         switch (channel->hw_value) {
2781         case AR5K_MODE_11A:
2782                 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783                         ctl_mode |= AR5K_CTL_TURBO;
2784                 else
2785                         ctl_mode |= AR5K_CTL_11A;
2786                 break;
2787         case AR5K_MODE_11G:
2788                 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789                         ctl_mode |= AR5K_CTL_TURBOG;
2790                 else
2791                         ctl_mode |= AR5K_CTL_11G;
2792                 break;
2793         case AR5K_MODE_11B:
2794                 ctl_mode |= AR5K_CTL_11B;
2795                 break;
2796         default:
2797                 return;
2798         }
2799 
2800         for (i = 0; i < ee->ee_ctls; i++) {
2801                 if (ctl_val[i] == ctl_mode) {
2802                         ctl_idx = i;
2803                         break;
2804                 }
2805         }
2806 
2807         /* If we have a CTL dataset available grab it and find the
2808          * edge power for our frequency */
2809         if (ctl_idx == 0xFF)
2810                 return;
2811 
2812         /* Edge powers are sorted by frequency from lower
2813          * to higher. Each CTL corresponds to 8 edge power
2814          * measurements. */
2815         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816 
2817         /* Don't do boundaries check because we
2818          * might have more that one bands defined
2819          * for this mode */
2820 
2821         /* Get the edge power that's closer to our
2822          * frequency */
2823         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824                 rep_idx += i;
2825                 if (target <= rep[rep_idx].freq)
2826                         edge_pwr = (s16) rep[rep_idx].edge;
2827         }
2828 
2829         if (edge_pwr)
2830                 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831 }
2832 
2833 
2834 /*
2835  * Power to PCDAC table functions
2836  */
2837 
2838 /**
2839  * DOC: Power to PCDAC table functions
2840  *
2841  * For RF5111 we have an XPD -eXternal Power Detector- curve
2842  * for each calibrated channel. Each curve has 0,5dB Power steps
2843  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844  * exponential function. To recreate the curve we read 11 points
2845  * from eeprom (eeprom.c) and interpolate here.
2846  *
2847  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850  * power steps on x axis and PCDAC steps on y axis and looks like a
2851  * linear function. To recreate the curve and pass the power values
2852  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854  * and interpolate here.
2855  *
2856  * For a given channel we get the calibrated points (piers) for it or
2857  * -if we don't have calibration data for this specific channel- from the
2858  * available surrounding channels we have calibration data for, after we do a
2859  * linear interpolation between them. Then since we have our calibrated points
2860  * for this channel, we do again a linear interpolation between them to get the
2861  * whole curve.
2862  *
2863  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864  */
2865 
2866 /**
2867  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868  * @ah: The &struct ath5k_hw
2869  * @table_min: Minimum power (x min)
2870  * @table_max: Maximum power (x max)
2871  *
2872  * No further processing is needed for RF5111, the only thing we have to
2873  * do is fill the values below and above calibration range since eeprom data
2874  * may not cover the entire PCDAC table.
2875  */
2876 static void
2877 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878                                                         s16 *table_max)
2879 {
2880         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2881         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2882         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883         s16     min_pwr, max_pwr;
2884 
2885         /* Get table boundaries */
2886         min_pwr = table_min[0];
2887         pcdac_0 = pcdac_tmp[0];
2888 
2889         max_pwr = table_max[0];
2890         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891 
2892         /* Extrapolate below minimum using pcdac_0 */
2893         pcdac_i = 0;
2894         for (i = 0; i < min_pwr; i++)
2895                 pcdac_out[pcdac_i++] = pcdac_0;
2896 
2897         /* Copy values from pcdac_tmp */
2898         pwr_idx = min_pwr;
2899         for (i = 0; pwr_idx <= max_pwr &&
2900                     pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902                 pwr_idx++;
2903         }
2904 
2905         /* Extrapolate above maximum */
2906         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907                 pcdac_out[pcdac_i++] = pcdac_n;
2908 
2909 }
2910 
2911 /**
2912  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913  * @ah: The &struct ath5k_hw
2914  * @table_min: Minimum power (x min)
2915  * @table_max: Maximum power (x max)
2916  * @pdcurves: Number of pd curves
2917  *
2918  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919  * RFX112 can have up to 2 curves (one for low txpower range and one for
2920  * higher txpower range). We need to put them both on pcdac_out and place
2921  * them in the correct location. In case we only have one curve available
2922  * just fit it on pcdac_out (it's supposed to cover the entire range of
2923  * available pwr levels since it's always the higher power curve). Extrapolate
2924  * below and above final table if needed.
2925  */
2926 static void
2927 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928                                                 s16 *table_max, u8 pdcurves)
2929 {
2930         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2931         u8      *pcdac_low_pwr;
2932         u8      *pcdac_high_pwr;
2933         u8      *pcdac_tmp;
2934         u8      pwr;
2935         s16     max_pwr_idx;
2936         s16     min_pwr_idx;
2937         s16     mid_pwr_idx = 0;
2938         /* Edge flag turns on the 7nth bit on the PCDAC
2939          * to declare the higher power curve (force values
2940          * to be greater than 64). If we only have one curve
2941          * we don't need to set this, if we have 2 curves and
2942          * fill the table backwards this can also be used to
2943          * switch from higher power curve to lower power curve */
2944         u8      edge_flag;
2945         int     i;
2946 
2947         /* When we have only one curve available
2948          * that's the higher power curve. If we have
2949          * two curves the first is the high power curve
2950          * and the next is the low power curve. */
2951         if (pdcurves > 1) {
2952                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956 
2957                 /* If table size goes beyond 31.5dB, keep the
2958                  * upper 31.5dB range when setting tx power.
2959                  * Note: 126 = 31.5 dB in quarter dB steps */
2960                 if (table_max[0] - table_min[1] > 126)
2961                         min_pwr_idx = table_max[0] - 126;
2962                 else
2963                         min_pwr_idx = table_min[1];
2964 
2965                 /* Since we fill table backwards
2966                  * start from high power curve */
2967                 pcdac_tmp = pcdac_high_pwr;
2968 
2969                 edge_flag = 0x40;
2970         } else {
2971                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973                 min_pwr_idx = table_min[0];
2974                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975                 pcdac_tmp = pcdac_high_pwr;
2976                 edge_flag = 0;
2977         }
2978 
2979         /* This is used when setting tx power*/
2980         ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981 
2982         /* Fill Power to PCDAC table backwards */
2983         pwr = max_pwr_idx;
2984         for (i = 63; i >= 0; i--) {
2985                 /* Entering lower power range, reset
2986                  * edge flag and set pcdac_tmp to lower
2987                  * power curve.*/
2988                 if (edge_flag == 0x40 &&
2989                 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990                         edge_flag = 0x00;
2991                         pcdac_tmp = pcdac_low_pwr;
2992                         pwr = mid_pwr_idx / 2;
2993                 }
2994 
2995                 /* Don't go below 1, extrapolate below if we have
2996                  * already switched to the lower power curve -or
2997                  * we only have one curve and edge_flag is zero
2998                  * anyway */
2999                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000                         while (i >= 0) {
3001                                 pcdac_out[i] = pcdac_out[i + 1];
3002                                 i--;
3003                         }
3004                         break;
3005                 }
3006 
3007                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008 
3009                 /* Extrapolate above if pcdac is greater than
3010                  * 126 -this can happen because we OR pcdac_out
3011                  * value with edge_flag on high power curve */
3012                 if (pcdac_out[i] > 126)
3013                         pcdac_out[i] = 126;
3014 
3015                 /* Decrease by a 0.5dB step */
3016                 pwr--;
3017         }
3018 }
3019 
3020 /**
3021  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022  * @ah: The &struct ath5k_hw
3023  */
3024 static void
3025 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026 {
3027         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
3028         int     i;
3029 
3030         /*
3031          * Write TX power values
3032          */
3033         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034                 ath5k_hw_reg_write(ah,
3035                         (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036                         (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037                         AR5K_PHY_PCDAC_TXPOWER(i));
3038         }
3039 }
3040 
3041 
3042 /*
3043  * Power to PDADC table functions
3044  */
3045 
3046 /**
3047  * DOC: Power to PDADC table functions
3048  *
3049  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052  * PDADC steps on y axis and looks like an exponential function like the
3053  * RF5111 curve.
3054  *
3055  * To recreate the curves we read the points from eeprom (eeprom.c)
3056  * and interpolate here. Note that in most cases only 2 (higher and lower)
3057  * curves are used (like RF5112) but vendors have the opportunity to include
3058  * all 4 curves on eeprom. The final curve (higher power) has an extra
3059  * point for better accuracy like RF5112.
3060  *
3061  * The process is similar to what we do above for RF5111/5112
3062  */
3063 
3064 /**
3065  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066  * @ah: The &struct ath5k_hw
3067  * @pwr_min: Minimum power (x min)
3068  * @pwr_max: Maximum power (x max)
3069  * @pdcurves: Number of available curves
3070  *
3071  * Combine the various pd curves and create the final Power to PDADC table
3072  * We can have up to 4 pd curves, we need to do a similar process
3073  * as we do for RF5112. This time we don't have an edge_flag but we
3074  * set the gain boundaries on a separate register.
3075  */
3076 static void
3077 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079 {
3080         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082         u8 *pdadc_tmp;
3083         s16 pdadc_0;
3084         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085         u8 pd_gain_overlap;
3086 
3087         /* Note: Register value is initialized on initvals
3088          * there is no feedback from hw.
3089          * XXX: What about pd_gain_overlap from EEPROM ? */
3090         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092 
3093         /* Create final PDADC table */
3094         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096 
3097                 if (pdg == pdcurves - 1)
3098                         /* 2 dB boundary stretch for last
3099                          * (higher power) curve */
3100                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101                 else
3102                         /* Set gain boundary in the middle
3103                          * between this curve and the next one */
3104                         gain_boundaries[pdg] =
3105                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106 
3107                 /* Sanity check in case our 2 db stretch got out of
3108                  * range. */
3109                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111 
3112                 /* For the first curve (lower power)
3113                  * start from 0 dB */
3114                 if (pdg == 0)
3115                         pdadc_0 = 0;
3116                 else
3117                         /* For the other curves use the gain overlap */
3118                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119                                                         pd_gain_overlap;
3120 
3121                 /* Force each power step to be at least 0.5 dB */
3122                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124                 else
3125                         pwr_step = 1;
3126 
3127                 /* If pdadc_0 is negative, we need to extrapolate
3128                  * below this pdgain by a number of pwr_steps */
3129                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132                         pdadc_0++;
3133                 }
3134 
3135                 /* Set last pwr level, using gain boundaries */
3136                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137                 /* Limit it to be inside pwr range */
3138                 table_size = pwr_max[pdg] - pwr_min[pdg];
3139                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3140 
3141                 /* Fill pdadc_out table */
3142                 while (pdadc_0 < max_idx && pdadc_i < 128)
3143                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144 
3145                 /* Need to extrapolate above this pdgain? */
3146                 if (pdadc_n <= max_idx)
3147                         continue;
3148 
3149                 /* Force each power step to be at least 0.5 dB */
3150                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151                         pwr_step = pdadc_tmp[table_size - 1] -
3152                                                 pdadc_tmp[table_size - 2];
3153                 else
3154                         pwr_step = 1;
3155 
3156                 /* Extrapolate above */
3157                 while ((pdadc_0 < (s16) pdadc_n) &&
3158                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159                         s16 tmp = pdadc_tmp[table_size - 1] +
3160                                         (pdadc_0 - max_idx) * pwr_step;
3161                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162                         pdadc_0++;
3163                 }
3164         }
3165 
3166         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168                 pdg++;
3169         }
3170 
3171         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173                 pdadc_i++;
3174         }
3175 
3176         /* Set gain boundaries */
3177         ath5k_hw_reg_write(ah,
3178                 AR5K_REG_SM(pd_gain_overlap,
3179                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180                 AR5K_REG_SM(gain_boundaries[0],
3181                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182                 AR5K_REG_SM(gain_boundaries[1],
3183                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184                 AR5K_REG_SM(gain_boundaries[2],
3185                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186                 AR5K_REG_SM(gain_boundaries[3],
3187                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188                 AR5K_PHY_TPC_RG5);
3189 
3190         /* Used for setting rate power table */
3191         ah->ah_txpower.txp_min_idx = pwr_min[0];
3192 
3193 }
3194 
3195 /**
3196  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197  * @ah: The &struct ath5k_hw
3198  * @ee_mode: One of enum ath5k_driver_mode
3199  */
3200 static void
3201 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202 {
3203         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205         u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206         u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207         u32 reg;
3208         u8 i;
3209 
3210         /* Select the right pdgain curves */
3211 
3212         /* Clear current settings */
3213         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218 
3219         /*
3220          * Use pd_gains curve from eeprom
3221          *
3222          * This overrides the default setting from initvals
3223          * in case some vendors (e.g. Zcomax) don't use the default
3224          * curves. If we don't honor their settings we 'll get a
3225          * 5dB (1 * gain overlap ?) drop.
3226          */
3227         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228 
3229         switch (pdcurves) {
3230         case 3:
3231                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232                 /* Fall through */
3233         case 2:
3234                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235                 /* Fall through */
3236         case 1:
3237                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238                 break;
3239         }
3240         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241 
3242         /*
3243          * Write TX power values
3244          */
3245         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246                 u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247                 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248         }
3249 }
3250 
3251 
3252 /*
3253  * Common code for PCDAC/PDADC tables
3254  */
3255 
3256 /**
3257  * ath5k_setup_channel_powertable() - Set up power table for this channel
3258  * @ah: The &struct ath5k_hw
3259  * @channel: The &struct ieee80211_channel
3260  * @ee_mode: One of enum ath5k_driver_mode
3261  * @type: One of enum ath5k_powertable_type (eeprom.h)
3262  *
3263  * This is the main function that uses all of the above
3264  * to set PCDAC/PDADC table on hw for the current channel.
3265  * This table is used for tx power calibration on the baseband,
3266  * without it we get weird tx power levels and in some cases
3267  * distorted spectral mask
3268  */
3269 static int
3270 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271                         struct ieee80211_channel *channel,
3272                         u8 ee_mode, u8 type)
3273 {
3274         struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275         struct ath5k_chan_pcal_info *pcinfo_L;
3276         struct ath5k_chan_pcal_info *pcinfo_R;
3277         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281         u8 *tmpL;
3282         u8 *tmpR;
3283         u32 target = channel->center_freq;
3284         int pdg, i;
3285 
3286         /* Get surrounding freq piers for this channel */
3287         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288                                                 &pcinfo_L,
3289                                                 &pcinfo_R);
3290 
3291         /* Loop over pd gain curves on
3292          * surrounding freq piers by index */
3293         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294 
3295                 /* Fill curves in reverse order
3296                  * from lower power (max gain)
3297                  * to higher power. Use curve -> idx
3298                  * backmapping we did on eeprom init */
3299                 u8 idx = pdg_curve_to_idx[pdg];
3300 
3301                 /* Grab the needed curves by index */
3302                 pdg_L = &pcinfo_L->pd_curves[idx];
3303                 pdg_R = &pcinfo_R->pd_curves[idx];
3304 
3305                 /* Initialize the temp tables */
3306                 tmpL = ah->ah_txpower.tmpL[pdg];
3307                 tmpR = ah->ah_txpower.tmpR[pdg];
3308 
3309                 /* Set curve's x boundaries and create
3310                  * curves so that they cover the same
3311                  * range (if we don't do that one table
3312                  * will have values on some range and the
3313                  * other one won't have any so interpolation
3314                  * will fail) */
3315                 table_min[pdg] = min(pdg_L->pd_pwr[0],
3316                                         pdg_R->pd_pwr[0]) / 2;
3317 
3318                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320 
3321                 /* Now create the curves on surrounding channels
3322                  * and interpolate if needed to get the final
3323                  * curve for this gain on this channel */
3324                 switch (type) {
3325                 case AR5K_PWRTABLE_LINEAR_PCDAC:
3326                         /* Override min/max so that we don't loose
3327                          * accuracy (don't divide by 2) */
3328                         table_min[pdg] = min(pdg_L->pd_pwr[0],
3329                                                 pdg_R->pd_pwr[0]);
3330 
3331                         table_max[pdg] =
3332                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334 
3335                         /* Override minimum so that we don't get
3336                          * out of bounds while extrapolating
3337                          * below. Don't do this when we have 2
3338                          * curves and we are on the high power curve
3339                          * because table_min is ok in this case */
3340                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341 
3342                                 table_min[pdg] =
3343                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344                                                                 pdg_R->pd_step,
3345                                                                 pdg_L->pd_pwr,
3346                                                                 pdg_R->pd_pwr);
3347 
3348                                 /* Don't go too low because we will
3349                                  * miss the upper part of the curve.
3350                                  * Note: 126 = 31.5dB (max power supported)
3351                                  * in 0.25dB units */
3352                                 if (table_max[pdg] - table_min[pdg] > 126)
3353                                         table_min[pdg] = table_max[pdg] - 126;
3354                         }
3355 
3356                         /* Fall through */
3357                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358                 case AR5K_PWRTABLE_PWR_TO_PDADC:
3359 
3360                         ath5k_create_power_curve(table_min[pdg],
3361                                                 table_max[pdg],
3362                                                 pdg_L->pd_pwr,
3363                                                 pdg_L->pd_step,
3364                                                 pdg_L->pd_points, tmpL, type);
3365 
3366                         /* We are in a calibration
3367                          * pier, no need to interpolate
3368                          * between freq piers */
3369                         if (pcinfo_L == pcinfo_R)
3370                                 continue;
3371 
3372                         ath5k_create_power_curve(table_min[pdg],
3373                                                 table_max[pdg],
3374                                                 pdg_R->pd_pwr,
3375                                                 pdg_R->pd_step,
3376                                                 pdg_R->pd_points, tmpR, type);
3377                         break;
3378                 default:
3379                         return -EINVAL;
3380                 }
3381 
3382                 /* Interpolate between curves
3383                  * of surrounding freq piers to
3384                  * get the final curve for this
3385                  * pd gain. Re-use tmpL for interpolation
3386                  * output */
3387                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390                                                         (s16) pcinfo_L->freq,
3391                                                         (s16) pcinfo_R->freq,
3392                                                         (s16) tmpL[i],
3393                                                         (s16) tmpR[i]);
3394                 }
3395         }
3396 
3397         /* Now we have a set of curves for this
3398          * channel on tmpL (x range is table_max - table_min
3399          * and y values are tmpL[pdg][]) sorted in the same
3400          * order as EEPROM (because we've used the backmapping).
3401          * So for RF5112 it's from higher power to lower power
3402          * and for RF2413 it's from lower power to higher power.
3403          * For RF5111 we only have one curve. */
3404 
3405         /* Fill min and max power levels for this
3406          * channel by interpolating the values on
3407          * surrounding channels to complete the dataset */
3408         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409                                         (s16) pcinfo_L->freq,
3410                                         (s16) pcinfo_R->freq,
3411                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412 
3413         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414                                         (s16) pcinfo_L->freq,
3415                                         (s16) pcinfo_R->freq,
3416                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417 
3418         /* Fill PCDAC/PDADC table */
3419         switch (type) {
3420         case AR5K_PWRTABLE_LINEAR_PCDAC:
3421                 /* For RF5112 we can have one or two curves
3422                  * and each curve covers a certain power lvl
3423                  * range so we need to do some more processing */
3424                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425                                                 ee->ee_pd_gains[ee_mode]);
3426 
3427                 /* Set txp.offset so that we can
3428                  * match max power value with max
3429                  * table index */
3430                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431                 break;
3432         case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433                 /* We are done for RF5111 since it has only
3434                  * one curve, just fit the curve on the table */
3435                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436 
3437                 /* No rate powertable adjustment for RF5111 */
3438                 ah->ah_txpower.txp_min_idx = 0;
3439                 ah->ah_txpower.txp_offset = 0;
3440                 break;
3441         case AR5K_PWRTABLE_PWR_TO_PDADC:
3442                 /* Set PDADC boundaries and fill
3443                  * final PDADC table */
3444                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445                                                 ee->ee_pd_gains[ee_mode]);
3446 
3447                 /* Set txp.offset, note that table_min
3448                  * can be negative */
3449                 ah->ah_txpower.txp_offset = table_min[0];
3450                 break;
3451         default:
3452                 return -EINVAL;
3453         }
3454 
3455         ah->ah_txpower.txp_setup = true;
3456 
3457         return 0;
3458 }
3459 
3460 /**
3461  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462  * @ah: The &struct ath5k_hw
3463  * @ee_mode: One of enum ath5k_driver_mode
3464  * @type: One of enum ath5k_powertable_type (eeprom.h)
3465  */
3466 static void
3467 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468 {
3469         if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470                 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471         else
3472                 ath5k_write_pcdac_table(ah);
3473 }
3474 
3475 
3476 /**
3477  * DOC: Per-rate tx power setting
3478  *
3479  * This is the code that sets the desired tx power limit (below
3480  * maximum) on hw for each rate (we also have TPC that sets
3481  * power per packet type). We do that by providing an index on the
3482  * PCDAC/PDADC table we set up above, for each rate.
3483  *
3484  * For now we only limit txpower based on maximum tx power
3485  * supported by hw (what's inside rate_info) + conformance test
3486  * limits. We need to limit this even more, based on regulatory domain
3487  * etc to be safe. Normally this is done from above so we don't care
3488  * here, all we care is that the tx power we set will be O.K.
3489  * for the hw (e.g. won't create noise on PA etc).
3490  *
3491  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492  * x values) and is indexed as follows:
3493  * rates[0] - rates[7] -> OFDM rates
3494  * rates[8] - rates[14] -> CCK rates
3495  * rates[15] -> XR rates (they all have the same power)
3496  */
3497 
3498 /**
3499  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500  * @ah: The &struct ath5k_hw
3501  * @max_pwr: The maximum tx power requested in 0.5dB steps
3502  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503  * @ee_mode: One of enum ath5k_driver_mode
3504  */
3505 static void
3506 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507                         struct ath5k_rate_pcal_info *rate_info,
3508                         u8 ee_mode)
3509 {
3510         unsigned int i;
3511         u16 *rates;
3512         s16 rate_idx_scaled = 0;
3513 
3514         /* max_pwr is power level we got from driver/user in 0.5dB
3515          * units, switch to 0.25dB units so we can compare */
3516         max_pwr *= 2;
3517         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518 
3519         /* apply rate limits */
3520         rates = ah->ah_txpower.txp_rates_power_table;
3521 
3522         /* OFDM rates 6 to 24Mb/s */
3523         for (i = 0; i < 5; i++)
3524                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525 
3526         /* Rest OFDM rates */
3527         rates[5] = min(rates[0], rate_info->target_power_36);
3528         rates[6] = min(rates[0], rate_info->target_power_48);
3529         rates[7] = min(rates[0], rate_info->target_power_54);
3530 
3531         /* CCK rates */
3532         /* 1L */
3533         rates[8] = min(rates[0], rate_info->target_power_6to24);
3534         /* 2L */
3535         rates[9] = min(rates[0], rate_info->target_power_36);
3536         /* 2S */
3537         rates[10] = min(rates[0], rate_info->target_power_36);
3538         /* 5L */
3539         rates[11] = min(rates[0], rate_info->target_power_48);
3540         /* 5S */
3541         rates[12] = min(rates[0], rate_info->target_power_48);
3542         /* 11L */
3543         rates[13] = min(rates[0], rate_info->target_power_54);
3544         /* 11S */
3545         rates[14] = min(rates[0], rate_info->target_power_54);
3546 
3547         /* XR rates */
3548         rates[15] = min(rates[0], rate_info->target_power_6to24);
3549 
3550         /* CCK rates have different peak to average ratio
3551          * so we have to tweak their power so that gainf
3552          * correction works ok. For this we use OFDM to
3553          * CCK delta from eeprom */
3554         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556                 for (i = 8; i <= 15; i++)
3557                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558 
3559         /* Save min/max and current tx power for this channel
3560          * in 0.25dB units.
3561          *
3562          * Note: We use rates[0] for current tx power because
3563          * it covers most of the rates, in most cases. It's our
3564          * tx power limit and what the user expects to see. */
3565         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566         ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567 
3568         /* Set max txpower for correct OFDM operation on all rates
3569          * -that is the txpower for 54Mbit-, it's used for the PAPD
3570          * gain probe and it's in 0.5dB units */
3571         ah->ah_txpower.txp_ofdm = rates[7];
3572 
3573         /* Now that we have all rates setup use table offset to
3574          * match the power range set by user with the power indices
3575          * on PCDAC/PDADC table */
3576         for (i = 0; i < 16; i++) {
3577                 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578                 /* Don't get out of bounds */
3579                 if (rate_idx_scaled > 63)
3580                         rate_idx_scaled = 63;
3581                 if (rate_idx_scaled < 0)
3582                         rate_idx_scaled = 0;
3583                 rates[i] = rate_idx_scaled;
3584         }
3585 }
3586 
3587 
3588 /**
3589  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590  * @ah: The &struct ath5k_hw
3591  * @channel: The &struct ieee80211_channel
3592  * @txpower: Requested tx power in 0.5dB steps
3593  *
3594  * Combines all of the above to set the requested tx power limit
3595  * on hw.
3596  */
3597 static int
3598 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599                  u8 txpower)
3600 {
3601         struct ath5k_rate_pcal_info rate_info;
3602         struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603         int ee_mode;
3604         u8 type;
3605         int ret;
3606 
3607         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608                 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609                 return -EINVAL;
3610         }
3611 
3612         ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613 
3614         /* Initialize TX power table */
3615         switch (ah->ah_radio) {
3616         case AR5K_RF5110:
3617                 /* TODO */
3618                 return 0;
3619         case AR5K_RF5111:
3620                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621                 break;
3622         case AR5K_RF5112:
3623                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624                 break;
3625         case AR5K_RF2413:
3626         case AR5K_RF5413:
3627         case AR5K_RF2316:
3628         case AR5K_RF2317:
3629         case AR5K_RF2425:
3630                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631                 break;
3632         default:
3633                 return -EINVAL;
3634         }
3635 
3636         /*
3637          * If we don't change channel/mode skip tx powertable calculation
3638          * and use the cached one.
3639          */
3640         if (!ah->ah_txpower.txp_setup ||
3641             (channel->hw_value != curr_channel->hw_value) ||
3642             (channel->center_freq != curr_channel->center_freq)) {
3643                 /* Reset TX power values but preserve requested
3644                  * tx power from above */
3645                 int requested_txpower = ah->ah_txpower.txp_requested;
3646 
3647                 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648 
3649                 /* Restore TPC setting and requested tx power */
3650                 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651 
3652                 ah->ah_txpower.txp_requested = requested_txpower;
3653 
3654                 /* Calculate the powertable */
3655                 ret = ath5k_setup_channel_powertable(ah, channel,
3656                                                         ee_mode, type);
3657                 if (ret)
3658                         return ret;
3659         }
3660 
3661         /* Write table on hw */
3662         ath5k_write_channel_powertable(ah, ee_mode, type);
3663 
3664         /* Limit max power if we have a CTL available */
3665         ath5k_get_max_ctl_power(ah, channel);
3666 
3667         /* FIXME: Antenna reduction stuff */
3668 
3669         /* FIXME: Limit power on turbo modes */
3670 
3671         /* FIXME: TPC scale reduction */
3672 
3673         /* Get surrounding channels for per-rate power table
3674          * calibration */
3675         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676 
3677         /* Setup rate power table */
3678         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679 
3680         /* Write rate power table on hw */
3681         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684 
3685         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688 
3689         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692 
3693         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696 
3697         /* FIXME: TPC support */
3698         if (ah->ah_txpower.txp_tpc) {
3699                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701 
3702                 ath5k_hw_reg_write(ah,
3703                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706                         AR5K_TPC);
3707         } else {
3708                 ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709                         AR5K_PHY_TXPOWER_RATE_MAX);
3710         }
3711 
3712         return 0;
3713 }
3714 
3715 /**
3716  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717  * @ah: The &struct ath5k_hw
3718  * @txpower: The requested tx power limit in 0.5dB steps
3719  *
3720  * This function provides access to ath5k_hw_txpower to the driver in
3721  * case user or an application changes it while PHY is running.
3722  */
3723 int
3724 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725 {
3726         ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727                 "changing txpower to %d\n", txpower);
3728 
3729         return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730 }
3731 
3732 
3733 /*************\
3734  Init function
3735 \*************/
3736 
3737 /**
3738  * ath5k_hw_phy_init() - Initialize PHY
3739  * @ah: The &struct ath5k_hw
3740  * @channel: The @struct ieee80211_channel
3741  * @mode: One of enum ath5k_driver_mode
3742  * @fast: Try a fast channel switch instead
3743  *
3744  * This is the main function used during reset to initialize PHY
3745  * or do a fast channel change if possible.
3746  *
3747  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748  * warm reset state !
3749  */
3750 int
3751 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752                       u8 mode, bool fast)
3753 {
3754         struct ieee80211_channel *curr_channel;
3755         int ret, i;
3756         u32 phy_tst1;
3757         ret = 0;
3758 
3759         /*
3760          * Sanity check for fast flag
3761          * Don't try fast channel change when changing modulation
3762          * mode/band. We check for chip compatibility on
3763          * ath5k_hw_reset.
3764          */
3765         curr_channel = ah->ah_current_channel;
3766         if (fast && (channel->hw_value != curr_channel->hw_value))
3767                 return -EINVAL;
3768 
3769         /*
3770          * On fast channel change we only set the synth parameters
3771          * while PHY is running, enable calibration and skip the rest.
3772          */
3773         if (fast) {
3774                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775                                     AR5K_PHY_RFBUS_REQ_REQUEST);
3776                 for (i = 0; i < 100; i++) {
3777                         if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778                                 break;
3779                         udelay(5);
3780                 }
3781                 /* Failed */
3782                 if (i >= 100)
3783                         return -EIO;
3784 
3785                 /* Set channel and wait for synth */
3786                 ret = ath5k_hw_channel(ah, channel);
3787                 if (ret)
3788                         return ret;
3789 
3790                 ath5k_hw_wait_for_synth(ah, channel);
3791         }
3792 
3793         /*
3794          * Set TX power
3795          *
3796          * Note: We need to do that before we set
3797          * RF buffer settings on 5211/5212+ so that we
3798          * properly set curve indices.
3799          */
3800         ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801                                         ah->ah_txpower.txp_requested * 2 :
3802                                         AR5K_TUNE_MAX_TXPOWER);
3803         if (ret)
3804                 return ret;
3805 
3806         /* Write OFDM timings on 5212*/
3807         if (ah->ah_version == AR5K_AR5212 &&
3808                 channel->hw_value != AR5K_MODE_11B) {
3809 
3810                 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811                 if (ret)
3812                         return ret;
3813 
3814                 /* Spur info is available only from EEPROM versions
3815                  * greater than 5.3, but the EEPROM routines will use
3816                  * static values for older versions */
3817                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818                         ath5k_hw_set_spur_mitigation_filter(ah,
3819                                                             channel);
3820         }
3821 
3822         /* If we used fast channel switching
3823          * we are done, release RF bus and
3824          * fire up NF calibration.
3825          *
3826          * Note: Only NF calibration due to
3827          * channel change, not AGC calibration
3828          * since AGC is still running !
3829          */
3830         if (fast) {
3831                 /*
3832                  * Release RF Bus grant
3833                  */
3834                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835                                     AR5K_PHY_RFBUS_REQ_REQUEST);
3836 
3837                 /*
3838                  * Start NF calibration
3839                  */
3840                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841                                         AR5K_PHY_AGCCTL_NF);
3842 
3843                 return ret;
3844         }
3845 
3846         /*
3847          * For 5210 we do all initialization using
3848          * initvals, so we don't have to modify
3849          * any settings (5210 also only supports
3850          * a/aturbo modes)
3851          */
3852         if (ah->ah_version != AR5K_AR5210) {
3853 
3854                 /*
3855                  * Write initial RF gain settings
3856                  * This should work for both 5111/5112
3857                  */
3858                 ret = ath5k_hw_rfgain_init(ah, channel->band);
3859                 if (ret)
3860                         return ret;
3861 
3862                 usleep_range(1000, 1500);
3863 
3864                 /*
3865                  * Write RF buffer
3866                  */
3867                 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868                 if (ret)
3869                         return ret;
3870 
3871                 /*Enable/disable 802.11b mode on 5111
3872                 (enable 2111 frequency converter + CCK)*/
3873                 if (ah->ah_radio == AR5K_RF5111) {
3874                         if (mode == AR5K_MODE_11B)
3875                                 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876                                     AR5K_TXCFG_B_MODE);
3877                         else
3878                                 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879                                     AR5K_TXCFG_B_MODE);
3880                 }
3881 
3882         } else if (ah->ah_version == AR5K_AR5210) {
3883                 usleep_range(1000, 1500);
3884                 /* Disable phy and wait */
3885                 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886                 usleep_range(1000, 1500);
3887         }
3888 
3889         /* Set channel on PHY */
3890         ret = ath5k_hw_channel(ah, channel);
3891         if (ret)
3892                 return ret;
3893 
3894         /*
3895          * Enable the PHY and wait until completion
3896          * This includes BaseBand and Synthesizer
3897          * activation.
3898          */
3899         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900 
3901         ath5k_hw_wait_for_synth(ah, channel);
3902 
3903         /*
3904          * Perform ADC test to see if baseband is ready
3905          * Set tx hold and check adc test register
3906          */
3907         phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908         ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909         for (i = 0; i <= 20; i++) {
3910                 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911                         break;
3912                 usleep_range(200, 250);
3913         }
3914         ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915 
3916         /*
3917          * Start automatic gain control calibration
3918          *
3919          * During AGC calibration RX path is re-routed to
3920          * a power detector so we don't receive anything.
3921          *
3922          * This method is used to calibrate some static offsets
3923          * used together with on-the fly I/Q calibration (the
3924          * one performed via ath5k_hw_phy_calibrate), which doesn't
3925          * interrupt rx path.
3926          *
3927          * While rx path is re-routed to the power detector we also
3928          * start a noise floor calibration to measure the
3929          * card's noise floor (the noise we measure when we are not
3930          * transmitting or receiving anything).
3931          *
3932          * If we are in a noisy environment, AGC calibration may time
3933          * out and/or noise floor calibration might timeout.
3934          */
3935         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936                                 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937 
3938         /* At the same time start I/Q calibration for QAM constellation
3939          * -no need for CCK- */
3940         ah->ah_iq_cal_needed = false;
3941         if (!(mode == AR5K_MODE_11B)) {
3942                 ah->ah_iq_cal_needed = true;
3943                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944                                 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946                                 AR5K_PHY_IQ_RUN);
3947         }
3948 
3949         /* Wait for gain calibration to finish (we check for I/Q calibration
3950          * during ath5k_phy_calibrate) */
3951         if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952                         AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953                 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954                         channel->center_freq);
3955         }
3956 
3957         /* Restore antenna mode */
3958         ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959 
3960         return ret;
3961 }

/* [<][>][^][v][top][bottom][index][help] */