root/drivers/net/wireless/ath/ath5k/eeprom.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath5k_eeprom_bin2freq
  2. ath5k_eeprom_init_header
  3. ath5k_eeprom_read_ants
  4. ath5k_eeprom_read_modes
  5. ath5k_eeprom_init_modes
  6. ath5k_eeprom_read_freq_list
  7. ath5k_eeprom_init_11a_pcal_freq
  8. ath5k_eeprom_init_11bg_2413
  9. ath5k_get_pcdac_intercepts
  10. ath5k_eeprom_free_pcal_info
  11. ath5k_eeprom_convert_pcal_info_5111
  12. ath5k_eeprom_read_pcal_info_5111
  13. ath5k_eeprom_convert_pcal_info_5112
  14. ath5k_eeprom_read_pcal_info_5112
  15. ath5k_pdgains_size_2413
  16. ath5k_cal_data_offset_2413
  17. ath5k_eeprom_convert_pcal_info_2413
  18. ath5k_eeprom_read_pcal_info_2413
  19. ath5k_eeprom_read_target_rate_pwr_info
  20. ath5k_eeprom_read_pcal_info
  21. ath5k_eeprom_read_ctl_info
  22. ath5k_eeprom_read_spur_chans
  23. ath5k_eeprom_init
  24. ath5k_eeprom_detach
  25. ath5k_eeprom_mode_from_channel

   1 /*
   2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   5  *
   6  * Permission to use, copy, modify, and distribute this software for any
   7  * purpose with or without fee is hereby granted, provided that the above
   8  * copyright notice and this permission notice appear in all copies.
   9  *
  10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17  *
  18  */
  19 
  20 /*************************************\
  21 * EEPROM access functions and helpers *
  22 \*************************************/
  23 
  24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25 
  26 #include <linux/slab.h>
  27 
  28 #include "ath5k.h"
  29 #include "reg.h"
  30 #include "debug.h"
  31 
  32 
  33 /******************\
  34 * Helper functions *
  35 \******************/
  36 
  37 /*
  38  * Translate binary channel representation in EEPROM to frequency
  39  */
  40 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  41                                                         unsigned int mode)
  42 {
  43         u16 val;
  44 
  45         if (bin == AR5K_EEPROM_CHANNEL_DIS)
  46                 return bin;
  47 
  48         if (mode == AR5K_EEPROM_MODE_11A) {
  49                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  50                         val = (5 * bin) + 4800;
  51                 else
  52                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  53                                 (bin * 10) + 5100;
  54         } else {
  55                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  56                         val = bin + 2300;
  57                 else
  58                         val = bin + 2400;
  59         }
  60 
  61         return val;
  62 }
  63 
  64 
  65 /*********\
  66 * Parsers *
  67 \*********/
  68 
  69 /*
  70  * Initialize eeprom & capabilities structs
  71  */
  72 static int
  73 ath5k_eeprom_init_header(struct ath5k_hw *ah)
  74 {
  75         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  76         u16 val;
  77         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  78 
  79         /*
  80          * Read values from EEPROM and store them in the capability structure
  81          */
  82         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  83         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  84         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  85         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  86         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  87 
  88         /* Return if we have an old EEPROM */
  89         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  90                 return 0;
  91 
  92         /*
  93          * Validate the checksum of the EEPROM date. There are some
  94          * devices with invalid EEPROMs.
  95          */
  96         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  97         if (val) {
  98                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  99                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
 100                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
 101                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
 102 
 103                 /*
 104                  * Fail safe check to prevent stupid loops due
 105                  * to busted EEPROMs. XXX: This value is likely too
 106                  * big still, waiting on a better value.
 107                  */
 108                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
 109                         ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
 110                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
 111                                   eep_max, eep_max,
 112                                   3 * AR5K_EEPROM_INFO_MAX,
 113                                   3 * AR5K_EEPROM_INFO_MAX);
 114                         return -EIO;
 115                 }
 116         }
 117 
 118         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
 119                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
 120                 cksum ^= val;
 121         }
 122         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
 123                 ATH5K_ERR(ah, "Invalid EEPROM "
 124                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
 125                           cksum, eep_max,
 126                           eep_max == AR5K_EEPROM_INFO_MAX ?
 127                                 "default size" : "custom size");
 128                 return -EIO;
 129         }
 130 
 131         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
 132             ee_ant_gain);
 133 
 134         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
 135                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
 136                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
 137 
 138                 /* XXX: Don't know which versions include these two */
 139                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
 140 
 141                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
 142                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
 143 
 144                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
 145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
 146                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
 147                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
 148                 }
 149         }
 150 
 151         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
 152                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
 153                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
 154                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
 155 
 156                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
 157                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
 158                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
 159         }
 160 
 161         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
 162 
 163         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
 164                 ee->ee_is_hb63 = true;
 165         else
 166                 ee->ee_is_hb63 = false;
 167 
 168         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
 169         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
 170         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
 171 
 172         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
 173          * and enable serdes programming if needed.
 174          *
 175          * XXX: Serdes values seem to be fixed so
 176          * no need to read them here, we write them
 177          * during ath5k_hw_init */
 178         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
 179         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
 180                                                         true : false;
 181 
 182         return 0;
 183 }
 184 
 185 
 186 /*
 187  * Read antenna infos from eeprom
 188  */
 189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
 190                 unsigned int mode)
 191 {
 192         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 193         u32 o = *offset;
 194         u16 val;
 195         int i = 0;
 196 
 197         AR5K_EEPROM_READ(o++, val);
 198         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
 199         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
 200         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 201 
 202         AR5K_EEPROM_READ(o++, val);
 203         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 204         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 205         ee->ee_ant_control[mode][i++]   = val & 0x3f;
 206 
 207         AR5K_EEPROM_READ(o++, val);
 208         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
 209         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
 210         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
 211 
 212         AR5K_EEPROM_READ(o++, val);
 213         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
 214         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
 215         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
 216         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 217 
 218         AR5K_EEPROM_READ(o++, val);
 219         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 220         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 221         ee->ee_ant_control[mode][i++]   = val & 0x3f;
 222 
 223         /* Get antenna switch tables */
 224         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
 225             (ee->ee_ant_control[mode][0] << 4);
 226         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
 227              ee->ee_ant_control[mode][1]        |
 228             (ee->ee_ant_control[mode][2] << 6)  |
 229             (ee->ee_ant_control[mode][3] << 12) |
 230             (ee->ee_ant_control[mode][4] << 18) |
 231             (ee->ee_ant_control[mode][5] << 24);
 232         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
 233              ee->ee_ant_control[mode][6]        |
 234             (ee->ee_ant_control[mode][7] << 6)  |
 235             (ee->ee_ant_control[mode][8] << 12) |
 236             (ee->ee_ant_control[mode][9] << 18) |
 237             (ee->ee_ant_control[mode][10] << 24);
 238 
 239         /* return new offset */
 240         *offset = o;
 241 
 242         return 0;
 243 }
 244 
 245 /*
 246  * Read supported modes and some mode-specific calibration data
 247  * from eeprom
 248  */
 249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
 250                 unsigned int mode)
 251 {
 252         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 253         u32 o = *offset;
 254         u16 val;
 255 
 256         ee->ee_n_piers[mode] = 0;
 257         AR5K_EEPROM_READ(o++, val);
 258         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
 259         switch (mode) {
 260         case AR5K_EEPROM_MODE_11A:
 261                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
 262                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
 263                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
 264 
 265                 AR5K_EEPROM_READ(o++, val);
 266                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
 267                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
 268                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
 269                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
 270                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
 271                 ee->ee_db[mode][0]      = val & 0x7;
 272                 break;
 273         case AR5K_EEPROM_MODE_11G:
 274         case AR5K_EEPROM_MODE_11B:
 275                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
 276                 ee->ee_db[mode][1]      = val & 0x7;
 277                 break;
 278         }
 279 
 280         AR5K_EEPROM_READ(o++, val);
 281         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
 282         ee->ee_thr_62[mode]             = val & 0xff;
 283 
 284         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 285                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
 286 
 287         AR5K_EEPROM_READ(o++, val);
 288         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
 289         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
 290 
 291         AR5K_EEPROM_READ(o++, val);
 292         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
 293 
 294         if ((val & 0xff) & 0x80)
 295                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
 296         else
 297                 ee->ee_noise_floor_thr[mode] = val & 0xff;
 298 
 299         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 300                 ee->ee_noise_floor_thr[mode] =
 301                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
 302 
 303         AR5K_EEPROM_READ(o++, val);
 304         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
 305         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
 306         ee->ee_xpd[mode]                = val & 0x1;
 307 
 308         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 309             mode != AR5K_EEPROM_MODE_11B)
 310                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
 311 
 312         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
 313                 AR5K_EEPROM_READ(o++, val);
 314                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
 315 
 316                 if (mode == AR5K_EEPROM_MODE_11A)
 317                         ee->ee_xr_power[mode] = val & 0x3f;
 318                 else {
 319                         /* b_DB_11[bg] and b_OB_11[bg] */
 320                         ee->ee_ob[mode][0] = val & 0x7;
 321                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
 322                 }
 323         }
 324 
 325         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
 326                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
 327                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
 328         } else {
 329                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
 330 
 331                 AR5K_EEPROM_READ(o++, val);
 332                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
 333 
 334                 if (mode == AR5K_EEPROM_MODE_11G) {
 335                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
 336                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
 337                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
 338                 }
 339         }
 340 
 341         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 342                         mode == AR5K_EEPROM_MODE_11A) {
 343                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 344                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 345         }
 346 
 347         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
 348                 goto done;
 349 
 350         /* Note: >= v5 have bg freq piers on another location
 351          * so these freq piers are ignored for >= v5 (should be 0xff
 352          * anyway) */
 353         switch (mode) {
 354         case AR5K_EEPROM_MODE_11A:
 355                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
 356                         break;
 357 
 358                 AR5K_EEPROM_READ(o++, val);
 359                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
 360                 break;
 361         case AR5K_EEPROM_MODE_11B:
 362                 AR5K_EEPROM_READ(o++, val);
 363 
 364                 ee->ee_pwr_cal_b[0].freq =
 365                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 366                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 367                         ee->ee_n_piers[mode]++;
 368 
 369                 ee->ee_pwr_cal_b[1].freq =
 370                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 371                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 372                         ee->ee_n_piers[mode]++;
 373 
 374                 AR5K_EEPROM_READ(o++, val);
 375                 ee->ee_pwr_cal_b[2].freq =
 376                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 377                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 378                         ee->ee_n_piers[mode]++;
 379 
 380                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 381                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 382                 break;
 383         case AR5K_EEPROM_MODE_11G:
 384                 AR5K_EEPROM_READ(o++, val);
 385 
 386                 ee->ee_pwr_cal_g[0].freq =
 387                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 388                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 389                         ee->ee_n_piers[mode]++;
 390 
 391                 ee->ee_pwr_cal_g[1].freq =
 392                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 393                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 394                         ee->ee_n_piers[mode]++;
 395 
 396                 AR5K_EEPROM_READ(o++, val);
 397                 ee->ee_turbo_max_power[mode] = val & 0x7f;
 398                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
 399 
 400                 AR5K_EEPROM_READ(o++, val);
 401                 ee->ee_pwr_cal_g[2].freq =
 402                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 403                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 404                         ee->ee_n_piers[mode]++;
 405 
 406                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 407                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 408 
 409                 AR5K_EEPROM_READ(o++, val);
 410                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
 411                 ee->ee_q_cal[mode] = val & 0x1f;
 412 
 413                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
 414                         AR5K_EEPROM_READ(o++, val);
 415                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
 416                 }
 417                 break;
 418         }
 419 
 420         /*
 421          * Read turbo mode information on newer EEPROM versions
 422          */
 423         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
 424                 goto done;
 425 
 426         switch (mode) {
 427         case AR5K_EEPROM_MODE_11A:
 428                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
 429 
 430                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
 431                 AR5K_EEPROM_READ(o++, val);
 432                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
 433                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
 434 
 435                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
 436                 AR5K_EEPROM_READ(o++, val);
 437                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
 438                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
 439 
 440                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
 441                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
 442                 break;
 443         case AR5K_EEPROM_MODE_11G:
 444                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
 445 
 446                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
 447                 AR5K_EEPROM_READ(o++, val);
 448                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
 449                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
 450 
 451                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
 452                 AR5K_EEPROM_READ(o++, val);
 453                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
 454                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
 455                 break;
 456         }
 457 
 458 done:
 459         /* return new offset */
 460         *offset = o;
 461 
 462         return 0;
 463 }
 464 
 465 /* Read mode-specific data (except power calibration data) */
 466 static int
 467 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
 468 {
 469         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 470         u32 mode_offset[3];
 471         unsigned int mode;
 472         u32 offset;
 473         int ret;
 474 
 475         /*
 476          * Get values for all modes
 477          */
 478         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
 479         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
 480         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
 481 
 482         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
 483                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
 484 
 485         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
 486                 offset = mode_offset[mode];
 487 
 488                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
 489                 if (ret)
 490                         return ret;
 491 
 492                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
 493                 if (ret)
 494                         return ret;
 495         }
 496 
 497         /* override for older eeprom versions for better performance */
 498         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
 499                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
 500                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
 501                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
 502         }
 503 
 504         return 0;
 505 }
 506 
 507 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 508  * frequency mask) */
 509 static inline int
 510 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
 511                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
 512 {
 513         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 514         int o = *offset;
 515         int i = 0;
 516         u8 freq1, freq2;
 517         u16 val;
 518 
 519         ee->ee_n_piers[mode] = 0;
 520         while (i < max) {
 521                 AR5K_EEPROM_READ(o++, val);
 522 
 523                 freq1 = val & 0xff;
 524                 if (!freq1)
 525                         break;
 526 
 527                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 528                                 freq1, mode);
 529                 ee->ee_n_piers[mode]++;
 530 
 531                 freq2 = (val >> 8) & 0xff;
 532                 if (!freq2)
 533                         break;
 534 
 535                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 536                                 freq2, mode);
 537                 ee->ee_n_piers[mode]++;
 538         }
 539 
 540         /* return new offset */
 541         *offset = o;
 542 
 543         return 0;
 544 }
 545 
 546 /* Read frequency piers for 802.11a */
 547 static int
 548 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
 549 {
 550         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 551         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
 552         int i;
 553         u16 val;
 554         u8 mask;
 555 
 556         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 557                 ath5k_eeprom_read_freq_list(ah, &offset,
 558                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
 559                         AR5K_EEPROM_MODE_11A);
 560         } else {
 561                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
 562 
 563                 AR5K_EEPROM_READ(offset++, val);
 564                 pcal[0].freq  = (val >> 9) & mask;
 565                 pcal[1].freq  = (val >> 2) & mask;
 566                 pcal[2].freq  = (val << 5) & mask;
 567 
 568                 AR5K_EEPROM_READ(offset++, val);
 569                 pcal[2].freq |= (val >> 11) & 0x1f;
 570                 pcal[3].freq  = (val >> 4) & mask;
 571                 pcal[4].freq  = (val << 3) & mask;
 572 
 573                 AR5K_EEPROM_READ(offset++, val);
 574                 pcal[4].freq |= (val >> 13) & 0x7;
 575                 pcal[5].freq  = (val >> 6) & mask;
 576                 pcal[6].freq  = (val << 1) & mask;
 577 
 578                 AR5K_EEPROM_READ(offset++, val);
 579                 pcal[6].freq |= (val >> 15) & 0x1;
 580                 pcal[7].freq  = (val >> 8) & mask;
 581                 pcal[8].freq  = (val >> 1) & mask;
 582                 pcal[9].freq  = (val << 6) & mask;
 583 
 584                 AR5K_EEPROM_READ(offset++, val);
 585                 pcal[9].freq |= (val >> 10) & 0x3f;
 586 
 587                 /* Fixed number of piers */
 588                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
 589 
 590                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
 591                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
 592                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
 593                 }
 594         }
 595 
 596         return 0;
 597 }
 598 
 599 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
 600 static inline int
 601 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
 602 {
 603         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 604         struct ath5k_chan_pcal_info *pcal;
 605 
 606         switch (mode) {
 607         case AR5K_EEPROM_MODE_11B:
 608                 pcal = ee->ee_pwr_cal_b;
 609                 break;
 610         case AR5K_EEPROM_MODE_11G:
 611                 pcal = ee->ee_pwr_cal_g;
 612                 break;
 613         default:
 614                 return -EINVAL;
 615         }
 616 
 617         ath5k_eeprom_read_freq_list(ah, &offset,
 618                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
 619                 mode);
 620 
 621         return 0;
 622 }
 623 
 624 
 625 /*
 626  * Read power calibration for RF5111 chips
 627  *
 628  * For RF5111 we have an XPD -eXternal Power Detector- curve
 629  * for each calibrated channel. Each curve has 0,5dB Power steps
 630  * on x axis and PCDAC steps (offsets) on y axis and looks like an
 631  * exponential function. To recreate the curve we read 11 points
 632  * here and interpolate later.
 633  */
 634 
 635 /* Used to match PCDAC steps with power values on RF5111 chips
 636  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 637  * steps that match with the power values we read from eeprom. On
 638  * older eeprom versions (< 3.2) these steps are equally spaced at
 639  * 10% of the pcdac curve -until the curve reaches its maximum-
 640  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 641  * these 11 steps are spaced in a different way. This function returns
 642  * the pcdac steps based on eeprom version and curve min/max so that we
 643  * can have pcdac/pwr points.
 644  */
 645 static inline void
 646 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
 647 {
 648         static const u16 intercepts3[] = {
 649                 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
 650         };
 651         static const u16 intercepts3_2[] = {
 652                 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
 653         };
 654         const u16 *ip;
 655         int i;
 656 
 657         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
 658                 ip = intercepts3_2;
 659         else
 660                 ip = intercepts3;
 661 
 662         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
 663                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
 664 }
 665 
 666 static int
 667 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
 668 {
 669         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 670         struct ath5k_chan_pcal_info *chinfo;
 671         u8 pier, pdg;
 672 
 673         switch (mode) {
 674         case AR5K_EEPROM_MODE_11A:
 675                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 676                         return 0;
 677                 chinfo = ee->ee_pwr_cal_a;
 678                 break;
 679         case AR5K_EEPROM_MODE_11B:
 680                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
 681                         return 0;
 682                 chinfo = ee->ee_pwr_cal_b;
 683                 break;
 684         case AR5K_EEPROM_MODE_11G:
 685                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 686                         return 0;
 687                 chinfo = ee->ee_pwr_cal_g;
 688                 break;
 689         default:
 690                 return -EINVAL;
 691         }
 692 
 693         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 694                 if (!chinfo[pier].pd_curves)
 695                         continue;
 696 
 697                 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
 698                         struct ath5k_pdgain_info *pd =
 699                                         &chinfo[pier].pd_curves[pdg];
 700 
 701                         kfree(pd->pd_step);
 702                         kfree(pd->pd_pwr);
 703                 }
 704 
 705                 kfree(chinfo[pier].pd_curves);
 706         }
 707 
 708         return 0;
 709 }
 710 
 711 /* Convert RF5111 specific data to generic raw data
 712  * used by interpolation code */
 713 static int
 714 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
 715                                 struct ath5k_chan_pcal_info *chinfo)
 716 {
 717         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 718         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
 719         struct ath5k_pdgain_info *pd;
 720         u8 pier, point, idx;
 721         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 722 
 723         /* Fill raw data for each calibration pier */
 724         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 725 
 726                 pcinfo = &chinfo[pier].rf5111_info;
 727 
 728                 /* Allocate pd_curves for this cal pier */
 729                 chinfo[pier].pd_curves =
 730                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
 731                                 sizeof(struct ath5k_pdgain_info),
 732                                 GFP_KERNEL);
 733 
 734                 if (!chinfo[pier].pd_curves)
 735                         goto err_out;
 736 
 737                 /* Only one curve for RF5111
 738                  * find out which one and place
 739                  * in pd_curves.
 740                  * Note: ee_x_gain is reversed here */
 741                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
 742 
 743                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
 744                                 pdgain_idx[0] = idx;
 745                                 break;
 746                         }
 747                 }
 748 
 749                 ee->ee_pd_gains[mode] = 1;
 750 
 751                 pd = &chinfo[pier].pd_curves[idx];
 752 
 753                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
 754 
 755                 /* Allocate pd points for this curve */
 756                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 757                                         sizeof(u8), GFP_KERNEL);
 758                 if (!pd->pd_step)
 759                         goto err_out;
 760 
 761                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 762                                         sizeof(s16), GFP_KERNEL);
 763                 if (!pd->pd_pwr)
 764                         goto err_out;
 765 
 766                 /* Fill raw dataset
 767                  * (convert power to 0.25dB units
 768                  * for RF5112 compatibility) */
 769                 for (point = 0; point < pd->pd_points; point++) {
 770 
 771                         /* Absolute values */
 772                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
 773 
 774                         /* Already sorted */
 775                         pd->pd_step[point] = pcinfo->pcdac[point];
 776                 }
 777 
 778                 /* Set min/max pwr */
 779                 chinfo[pier].min_pwr = pd->pd_pwr[0];
 780                 chinfo[pier].max_pwr = pd->pd_pwr[10];
 781 
 782         }
 783 
 784         return 0;
 785 
 786 err_out:
 787         ath5k_eeprom_free_pcal_info(ah, mode);
 788         return -ENOMEM;
 789 }
 790 
 791 /* Parse EEPROM data */
 792 static int
 793 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
 794 {
 795         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 796         struct ath5k_chan_pcal_info *pcal;
 797         int offset, ret;
 798         int i;
 799         u16 val;
 800 
 801         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 802         switch (mode) {
 803         case AR5K_EEPROM_MODE_11A:
 804                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 805                         return 0;
 806 
 807                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
 808                         offset + AR5K_EEPROM_GROUP1_OFFSET);
 809                 if (ret < 0)
 810                         return ret;
 811 
 812                 offset += AR5K_EEPROM_GROUP2_OFFSET;
 813                 pcal = ee->ee_pwr_cal_a;
 814                 break;
 815         case AR5K_EEPROM_MODE_11B:
 816                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
 817                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
 818                         return 0;
 819 
 820                 pcal = ee->ee_pwr_cal_b;
 821                 offset += AR5K_EEPROM_GROUP3_OFFSET;
 822 
 823                 /* fixed piers */
 824                 pcal[0].freq = 2412;
 825                 pcal[1].freq = 2447;
 826                 pcal[2].freq = 2484;
 827                 ee->ee_n_piers[mode] = 3;
 828                 break;
 829         case AR5K_EEPROM_MODE_11G:
 830                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 831                         return 0;
 832 
 833                 pcal = ee->ee_pwr_cal_g;
 834                 offset += AR5K_EEPROM_GROUP4_OFFSET;
 835 
 836                 /* fixed piers */
 837                 pcal[0].freq = 2312;
 838                 pcal[1].freq = 2412;
 839                 pcal[2].freq = 2484;
 840                 ee->ee_n_piers[mode] = 3;
 841                 break;
 842         default:
 843                 return -EINVAL;
 844         }
 845 
 846         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 847                 struct ath5k_chan_pcal_info_rf5111 *cdata =
 848                         &pcal[i].rf5111_info;
 849 
 850                 AR5K_EEPROM_READ(offset++, val);
 851                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
 852                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
 853                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
 854 
 855                 AR5K_EEPROM_READ(offset++, val);
 856                 cdata->pwr[0] |= ((val >> 14) & 0x3);
 857                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 858                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 859                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
 860 
 861                 AR5K_EEPROM_READ(offset++, val);
 862                 cdata->pwr[3] |= ((val >> 12) & 0xf);
 863                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
 864                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
 865 
 866                 AR5K_EEPROM_READ(offset++, val);
 867                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
 868                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
 869                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
 870 
 871                 AR5K_EEPROM_READ(offset++, val);
 872                 cdata->pwr[8] |= ((val >> 14) & 0x3);
 873                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 874                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 875 
 876                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
 877                         cdata->pcdac_max, cdata->pcdac);
 878         }
 879 
 880         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
 881 }
 882 
 883 
 884 /*
 885  * Read power calibration for RF5112 chips
 886  *
 887  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 888  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
 889  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 890  * power steps on x axis and PCDAC steps on y axis and looks like a
 891  * linear function. To recreate the curve and pass the power values
 892  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 893  * and 3 points for xpd 3 (higher gain -> lower power) here and
 894  * interpolate later.
 895  *
 896  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 897  */
 898 
 899 /* Convert RF5112 specific data to generic raw data
 900  * used by interpolation code */
 901 static int
 902 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
 903                                 struct ath5k_chan_pcal_info *chinfo)
 904 {
 905         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 906         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
 907         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 908         unsigned int pier, pdg, point;
 909 
 910         /* Fill raw data for each calibration pier */
 911         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 912 
 913                 pcinfo = &chinfo[pier].rf5112_info;
 914 
 915                 /* Allocate pd_curves for this cal pier */
 916                 chinfo[pier].pd_curves =
 917                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
 918                                         sizeof(struct ath5k_pdgain_info),
 919                                         GFP_KERNEL);
 920 
 921                 if (!chinfo[pier].pd_curves)
 922                         goto err_out;
 923 
 924                 /* Fill pd_curves */
 925                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 926 
 927                         u8 idx = pdgain_idx[pdg];
 928                         struct ath5k_pdgain_info *pd =
 929                                         &chinfo[pier].pd_curves[idx];
 930 
 931                         /* Lowest gain curve (max power) */
 932                         if (pdg == 0) {
 933                                 /* One more point for better accuracy */
 934                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
 935 
 936                                 /* Allocate pd points for this curve */
 937                                 pd->pd_step = kcalloc(pd->pd_points,
 938                                                 sizeof(u8), GFP_KERNEL);
 939 
 940                                 if (!pd->pd_step)
 941                                         goto err_out;
 942 
 943                                 pd->pd_pwr = kcalloc(pd->pd_points,
 944                                                 sizeof(s16), GFP_KERNEL);
 945 
 946                                 if (!pd->pd_pwr)
 947                                         goto err_out;
 948 
 949                                 /* Fill raw dataset
 950                                  * (all power levels are in 0.25dB units) */
 951                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
 952                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
 953 
 954                                 for (point = 1; point < pd->pd_points;
 955                                 point++) {
 956                                         /* Absolute values */
 957                                         pd->pd_pwr[point] =
 958                                                 pcinfo->pwr_x0[point];
 959 
 960                                         /* Deltas */
 961                                         pd->pd_step[point] =
 962                                                 pd->pd_step[point - 1] +
 963                                                 pcinfo->pcdac_x0[point];
 964                                 }
 965 
 966                                 /* Set min power for this frequency */
 967                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
 968 
 969                         /* Highest gain curve (min power) */
 970                         } else if (pdg == 1) {
 971 
 972                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
 973 
 974                                 /* Allocate pd points for this curve */
 975                                 pd->pd_step = kcalloc(pd->pd_points,
 976                                                 sizeof(u8), GFP_KERNEL);
 977 
 978                                 if (!pd->pd_step)
 979                                         goto err_out;
 980 
 981                                 pd->pd_pwr = kcalloc(pd->pd_points,
 982                                                 sizeof(s16), GFP_KERNEL);
 983 
 984                                 if (!pd->pd_pwr)
 985                                         goto err_out;
 986 
 987                                 /* Fill raw dataset
 988                                  * (all power levels are in 0.25dB units) */
 989                                 for (point = 0; point < pd->pd_points;
 990                                 point++) {
 991                                         /* Absolute values */
 992                                         pd->pd_pwr[point] =
 993                                                 pcinfo->pwr_x3[point];
 994 
 995                                         /* Fixed points */
 996                                         pd->pd_step[point] =
 997                                                 pcinfo->pcdac_x3[point];
 998                                 }
 999 
1000                                 /* Since we have a higher gain curve
1001                                  * override min power */
1002                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1003                         }
1004                 }
1005         }
1006 
1007         return 0;
1008 
1009 err_out:
1010         ath5k_eeprom_free_pcal_info(ah, mode);
1011         return -ENOMEM;
1012 }
1013 
1014 /* Parse EEPROM data */
1015 static int
1016 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1017 {
1018         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1019         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1020         struct ath5k_chan_pcal_info *gen_chan_info;
1021         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1022         u32 offset;
1023         u8 i, c;
1024         u16 val;
1025         u8 pd_gains = 0;
1026 
1027         /* Count how many curves we have and
1028          * identify them (which one of the 4
1029          * available curves we have on each count).
1030          * Curves are stored from lower (x0) to
1031          * higher (x3) gain */
1032         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1033                 /* ee_x_gain[mode] is x gain mask */
1034                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1035                         pdgain_idx[pd_gains++] = i;
1036         }
1037         ee->ee_pd_gains[mode] = pd_gains;
1038 
1039         if (pd_gains == 0 || pd_gains > 2)
1040                 return -EINVAL;
1041 
1042         switch (mode) {
1043         case AR5K_EEPROM_MODE_11A:
1044                 /*
1045                  * Read 5GHz EEPROM channels
1046                  */
1047                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1048                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1049 
1050                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1051                 gen_chan_info = ee->ee_pwr_cal_a;
1052                 break;
1053         case AR5K_EEPROM_MODE_11B:
1054                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1055                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1056                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1057 
1058                 /* NB: frequency piers parsed during mode init */
1059                 gen_chan_info = ee->ee_pwr_cal_b;
1060                 break;
1061         case AR5K_EEPROM_MODE_11G:
1062                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1063                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1064                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1065                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1066                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1067 
1068                 /* NB: frequency piers parsed during mode init */
1069                 gen_chan_info = ee->ee_pwr_cal_g;
1070                 break;
1071         default:
1072                 return -EINVAL;
1073         }
1074 
1075         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1076                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1077 
1078                 /* Power values in quarter dB
1079                  * for the lower xpd gain curve
1080                  * (0 dBm -> higher output power) */
1081                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1082                         AR5K_EEPROM_READ(offset++, val);
1083                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1084                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1085                 }
1086 
1087                 /* PCDAC steps
1088                  * corresponding to the above power
1089                  * measurements */
1090                 AR5K_EEPROM_READ(offset++, val);
1091                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1092                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1093                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1094 
1095                 /* Power values in quarter dB
1096                  * for the higher xpd gain curve
1097                  * (18 dBm -> lower output power) */
1098                 AR5K_EEPROM_READ(offset++, val);
1099                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1100                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1101 
1102                 AR5K_EEPROM_READ(offset++, val);
1103                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1104 
1105                 /* PCDAC steps
1106                  * corresponding to the above power
1107                  * measurements (fixed) */
1108                 chan_pcal_info->pcdac_x3[0] = 20;
1109                 chan_pcal_info->pcdac_x3[1] = 35;
1110                 chan_pcal_info->pcdac_x3[2] = 63;
1111 
1112                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1113                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1114 
1115                         /* Last xpd0 power level is also channel maximum */
1116                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1117                 } else {
1118                         chan_pcal_info->pcdac_x0[0] = 1;
1119                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1120                 }
1121 
1122         }
1123 
1124         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1125 }
1126 
1127 
1128 /*
1129  * Read power calibration for RF2413 chips
1130  *
1131  * For RF2413 we have a Power to PDDAC table (Power Detector)
1132  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1133  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1134  * axis and looks like an exponential function like the RF5111 curve.
1135  *
1136  * To recreate the curves we read here the points and interpolate
1137  * later. Note that in most cases only 2 (higher and lower) curves are
1138  * used (like RF5112) but vendors have the opportunity to include all
1139  * 4 curves on eeprom. The final curve (higher power) has an extra
1140  * point for better accuracy like RF5112.
1141  */
1142 
1143 /* For RF2413 power calibration data doesn't start on a fixed location and
1144  * if a mode is not supported, its section is missing -not zeroed-.
1145  * So we need to calculate the starting offset for each section by using
1146  * these two functions */
1147 
1148 /* Return the size of each section based on the mode and the number of pd
1149  * gains available (maximum 4). */
1150 static inline unsigned int
1151 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1152 {
1153         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1154         unsigned int sz;
1155 
1156         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1157         sz *= ee->ee_n_piers[mode];
1158 
1159         return sz;
1160 }
1161 
1162 /* Return the starting offset for a section based on the modes supported
1163  * and each section's size. */
1164 static unsigned int
1165 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1166 {
1167         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1168 
1169         switch (mode) {
1170         case AR5K_EEPROM_MODE_11G:
1171                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1172                         offset += ath5k_pdgains_size_2413(ee,
1173                                         AR5K_EEPROM_MODE_11B) +
1174                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1175                 /* fall through */
1176         case AR5K_EEPROM_MODE_11B:
1177                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1178                         offset += ath5k_pdgains_size_2413(ee,
1179                                         AR5K_EEPROM_MODE_11A) +
1180                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1181                 /* fall through */
1182         case AR5K_EEPROM_MODE_11A:
1183                 break;
1184         default:
1185                 break;
1186         }
1187 
1188         return offset;
1189 }
1190 
1191 /* Convert RF2413 specific data to generic raw data
1192  * used by interpolation code */
1193 static int
1194 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1195                                 struct ath5k_chan_pcal_info *chinfo)
1196 {
1197         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1198         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1199         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1200         unsigned int pier, pdg, point;
1201 
1202         /* Fill raw data for each calibration pier */
1203         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1204 
1205                 pcinfo = &chinfo[pier].rf2413_info;
1206 
1207                 /* Allocate pd_curves for this cal pier */
1208                 chinfo[pier].pd_curves =
1209                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1210                                         sizeof(struct ath5k_pdgain_info),
1211                                         GFP_KERNEL);
1212 
1213                 if (!chinfo[pier].pd_curves)
1214                         goto err_out;
1215 
1216                 /* Fill pd_curves */
1217                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1218 
1219                         u8 idx = pdgain_idx[pdg];
1220                         struct ath5k_pdgain_info *pd =
1221                                         &chinfo[pier].pd_curves[idx];
1222 
1223                         /* One more point for the highest power
1224                          * curve (lowest gain) */
1225                         if (pdg == ee->ee_pd_gains[mode] - 1)
1226                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1227                         else
1228                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1229 
1230                         /* Allocate pd points for this curve */
1231                         pd->pd_step = kcalloc(pd->pd_points,
1232                                         sizeof(u8), GFP_KERNEL);
1233 
1234                         if (!pd->pd_step)
1235                                 goto err_out;
1236 
1237                         pd->pd_pwr = kcalloc(pd->pd_points,
1238                                         sizeof(s16), GFP_KERNEL);
1239 
1240                         if (!pd->pd_pwr)
1241                                 goto err_out;
1242 
1243                         /* Fill raw dataset
1244                          * convert all pwr levels to
1245                          * quarter dB for RF5112 compatibility */
1246                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1247                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1248 
1249                         for (point = 1; point < pd->pd_points; point++) {
1250 
1251                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1252                                         2 * pcinfo->pwr[pdg][point - 1];
1253 
1254                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1255                                                 pcinfo->pddac[pdg][point - 1];
1256 
1257                         }
1258 
1259                         /* Highest gain curve -> min power */
1260                         if (pdg == 0)
1261                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1262 
1263                         /* Lowest gain curve -> max power */
1264                         if (pdg == ee->ee_pd_gains[mode] - 1)
1265                                 chinfo[pier].max_pwr =
1266                                         pd->pd_pwr[pd->pd_points - 1];
1267                 }
1268         }
1269 
1270         return 0;
1271 
1272 err_out:
1273         ath5k_eeprom_free_pcal_info(ah, mode);
1274         return -ENOMEM;
1275 }
1276 
1277 /* Parse EEPROM data */
1278 static int
1279 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1280 {
1281         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1282         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1283         struct ath5k_chan_pcal_info *chinfo;
1284         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1285         u32 offset;
1286         int idx, i;
1287         u16 val;
1288         u8 pd_gains = 0;
1289 
1290         /* Count how many curves we have and
1291          * identify them (which one of the 4
1292          * available curves we have on each count).
1293          * Curves are stored from higher to
1294          * lower gain so we go backwards */
1295         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1296                 /* ee_x_gain[mode] is x gain mask */
1297                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1298                         pdgain_idx[pd_gains++] = idx;
1299 
1300         }
1301         ee->ee_pd_gains[mode] = pd_gains;
1302 
1303         if (pd_gains == 0)
1304                 return -EINVAL;
1305 
1306         offset = ath5k_cal_data_offset_2413(ee, mode);
1307         switch (mode) {
1308         case AR5K_EEPROM_MODE_11A:
1309                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1310                         return 0;
1311 
1312                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1313                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1314                 chinfo = ee->ee_pwr_cal_a;
1315                 break;
1316         case AR5K_EEPROM_MODE_11B:
1317                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1318                         return 0;
1319 
1320                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1321                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1322                 chinfo = ee->ee_pwr_cal_b;
1323                 break;
1324         case AR5K_EEPROM_MODE_11G:
1325                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1326                         return 0;
1327 
1328                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1329                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1330                 chinfo = ee->ee_pwr_cal_g;
1331                 break;
1332         default:
1333                 return -EINVAL;
1334         }
1335 
1336         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1337                 pcinfo = &chinfo[i].rf2413_info;
1338 
1339                 /*
1340                  * Read pwr_i, pddac_i and the first
1341                  * 2 pd points (pwr, pddac)
1342                  */
1343                 AR5K_EEPROM_READ(offset++, val);
1344                 pcinfo->pwr_i[0] = val & 0x1f;
1345                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1346                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1347 
1348                 AR5K_EEPROM_READ(offset++, val);
1349                 pcinfo->pddac[0][0] = val & 0x3f;
1350                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1351                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1352 
1353                 AR5K_EEPROM_READ(offset++, val);
1354                 pcinfo->pwr[0][2] = val & 0xf;
1355                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1356 
1357                 pcinfo->pwr[0][3] = 0;
1358                 pcinfo->pddac[0][3] = 0;
1359 
1360                 if (pd_gains > 1) {
1361                         /*
1362                          * Pd gain 0 is not the last pd gain
1363                          * so it only has 2 pd points.
1364                          * Continue with pd gain 1.
1365                          */
1366                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1367 
1368                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1369                         AR5K_EEPROM_READ(offset++, val);
1370                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1371 
1372                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1373                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1374 
1375                         AR5K_EEPROM_READ(offset++, val);
1376                         pcinfo->pwr[1][1] = val & 0xf;
1377                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1378                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1379 
1380                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1381                         AR5K_EEPROM_READ(offset++, val);
1382                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1383 
1384                         pcinfo->pwr[1][3] = 0;
1385                         pcinfo->pddac[1][3] = 0;
1386                 } else if (pd_gains == 1) {
1387                         /*
1388                          * Pd gain 0 is the last one so
1389                          * read the extra point.
1390                          */
1391                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1392 
1393                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1394                         AR5K_EEPROM_READ(offset++, val);
1395                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1396                 }
1397 
1398                 /*
1399                  * Proceed with the other pd_gains
1400                  * as above.
1401                  */
1402                 if (pd_gains > 2) {
1403                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1404                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1405 
1406                         AR5K_EEPROM_READ(offset++, val);
1407                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1408                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1409                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1410 
1411                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1412                         AR5K_EEPROM_READ(offset++, val);
1413                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1414 
1415                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1416                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1417 
1418                         pcinfo->pwr[2][3] = 0;
1419                         pcinfo->pddac[2][3] = 0;
1420                 } else if (pd_gains == 2) {
1421                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1422                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1423                 }
1424 
1425                 if (pd_gains > 3) {
1426                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1427                         AR5K_EEPROM_READ(offset++, val);
1428                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1429 
1430                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1431                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1432                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1433 
1434                         AR5K_EEPROM_READ(offset++, val);
1435                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1436                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1437                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1438 
1439                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1440                         AR5K_EEPROM_READ(offset++, val);
1441                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1442 
1443                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1444                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1445 
1446                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1447                         AR5K_EEPROM_READ(offset++, val);
1448                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1449                 } else if (pd_gains == 3) {
1450                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1451                         AR5K_EEPROM_READ(offset++, val);
1452                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1453 
1454                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1455                 }
1456         }
1457 
1458         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1459 }
1460 
1461 
1462 /*
1463  * Read per rate target power (this is the maximum tx power
1464  * supported by the card). This info is used when setting
1465  * tx power, no matter the channel.
1466  *
1467  * This also works for v5 EEPROMs.
1468  */
1469 static int
1470 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1471 {
1472         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1473         struct ath5k_rate_pcal_info *rate_pcal_info;
1474         u8 *rate_target_pwr_num;
1475         u32 offset;
1476         u16 val;
1477         int i;
1478 
1479         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1480         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1481         switch (mode) {
1482         case AR5K_EEPROM_MODE_11A:
1483                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1484                 rate_pcal_info = ee->ee_rate_tpwr_a;
1485                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1486                 break;
1487         case AR5K_EEPROM_MODE_11B:
1488                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1489                 rate_pcal_info = ee->ee_rate_tpwr_b;
1490                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1491                 break;
1492         case AR5K_EEPROM_MODE_11G:
1493                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1494                 rate_pcal_info = ee->ee_rate_tpwr_g;
1495                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1496                 break;
1497         default:
1498                 return -EINVAL;
1499         }
1500 
1501         /* Different freq mask for older eeproms (<= v3.2) */
1502         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1503                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1504                         AR5K_EEPROM_READ(offset++, val);
1505                         rate_pcal_info[i].freq =
1506                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1507 
1508                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1509                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1510 
1511                         AR5K_EEPROM_READ(offset++, val);
1512 
1513                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1514                             val == 0) {
1515                                 (*rate_target_pwr_num) = i;
1516                                 break;
1517                         }
1518 
1519                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1520                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1521                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1522                 }
1523         } else {
1524                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1525                         AR5K_EEPROM_READ(offset++, val);
1526                         rate_pcal_info[i].freq =
1527                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1528 
1529                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1530                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1531 
1532                         AR5K_EEPROM_READ(offset++, val);
1533 
1534                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1535                             val == 0) {
1536                                 (*rate_target_pwr_num) = i;
1537                                 break;
1538                         }
1539 
1540                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1541                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1542                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1543                 }
1544         }
1545 
1546         return 0;
1547 }
1548 
1549 
1550 /*
1551  * Read per channel calibration info from EEPROM
1552  *
1553  * This info is used to calibrate the baseband power table. Imagine
1554  * that for each channel there is a power curve that's hw specific
1555  * (depends on amplifier etc) and we try to "correct" this curve using
1556  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1557  * it can use accurate power values when setting tx power (takes amplifier's
1558  * performance on each channel into account).
1559  *
1560  * EEPROM provides us with the offsets for some pre-calibrated channels
1561  * and we have to interpolate to create the full table for these channels and
1562  * also the table for any channel.
1563  */
1564 static int
1565 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1566 {
1567         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1569         int mode;
1570         int err;
1571 
1572         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1573                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1574                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1575         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1576                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1577                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1578         else
1579                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1580 
1581 
1582         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1583         mode++) {
1584                 err = read_pcal(ah, mode);
1585                 if (err)
1586                         return err;
1587 
1588                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1589                 if (err < 0)
1590                         return err;
1591         }
1592 
1593         return 0;
1594 }
1595 
1596 /* Read conformance test limits used for regulatory control */
1597 static int
1598 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1599 {
1600         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601         struct ath5k_edge_power *rep;
1602         unsigned int fmask, pmask;
1603         unsigned int ctl_mode;
1604         int i, j;
1605         u32 offset;
1606         u16 val;
1607 
1608         pmask = AR5K_EEPROM_POWER_M;
1609         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1610         offset = AR5K_EEPROM_CTL(ee->ee_version);
1611         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1612         for (i = 0; i < ee->ee_ctls; i += 2) {
1613                 AR5K_EEPROM_READ(offset++, val);
1614                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1615                 ee->ee_ctl[i + 1] = val & 0xff;
1616         }
1617 
1618         offset = AR5K_EEPROM_GROUP8_OFFSET;
1619         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1620                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1621                         AR5K_EEPROM_GROUP5_OFFSET;
1622         else
1623                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1624 
1625         rep = ee->ee_ctl_pwr;
1626         for (i = 0; i < ee->ee_ctls; i++) {
1627                 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1628                 case AR5K_CTL_11A:
1629                 case AR5K_CTL_TURBO:
1630                         ctl_mode = AR5K_EEPROM_MODE_11A;
1631                         break;
1632                 default:
1633                         ctl_mode = AR5K_EEPROM_MODE_11G;
1634                         break;
1635                 }
1636                 if (ee->ee_ctl[i] == 0) {
1637                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1638                                 offset += 8;
1639                         else
1640                                 offset += 7;
1641                         rep += AR5K_EEPROM_N_EDGES;
1642                         continue;
1643                 }
1644                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1645                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646                                 AR5K_EEPROM_READ(offset++, val);
1647                                 rep[j].freq = (val >> 8) & fmask;
1648                                 rep[j + 1].freq = val & fmask;
1649                         }
1650                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1651                                 AR5K_EEPROM_READ(offset++, val);
1652                                 rep[j].edge = (val >> 8) & pmask;
1653                                 rep[j].flag = (val >> 14) & 1;
1654                                 rep[j + 1].edge = val & pmask;
1655                                 rep[j + 1].flag = (val >> 6) & 1;
1656                         }
1657                 } else {
1658                         AR5K_EEPROM_READ(offset++, val);
1659                         rep[0].freq = (val >> 9) & fmask;
1660                         rep[1].freq = (val >> 2) & fmask;
1661                         rep[2].freq = (val << 5) & fmask;
1662 
1663                         AR5K_EEPROM_READ(offset++, val);
1664                         rep[2].freq |= (val >> 11) & 0x1f;
1665                         rep[3].freq = (val >> 4) & fmask;
1666                         rep[4].freq = (val << 3) & fmask;
1667 
1668                         AR5K_EEPROM_READ(offset++, val);
1669                         rep[4].freq |= (val >> 13) & 0x7;
1670                         rep[5].freq = (val >> 6) & fmask;
1671                         rep[6].freq = (val << 1) & fmask;
1672 
1673                         AR5K_EEPROM_READ(offset++, val);
1674                         rep[6].freq |= (val >> 15) & 0x1;
1675                         rep[7].freq = (val >> 8) & fmask;
1676 
1677                         rep[0].edge = (val >> 2) & pmask;
1678                         rep[1].edge = (val << 4) & pmask;
1679 
1680                         AR5K_EEPROM_READ(offset++, val);
1681                         rep[1].edge |= (val >> 12) & 0xf;
1682                         rep[2].edge = (val >> 6) & pmask;
1683                         rep[3].edge = val & pmask;
1684 
1685                         AR5K_EEPROM_READ(offset++, val);
1686                         rep[4].edge = (val >> 10) & pmask;
1687                         rep[5].edge = (val >> 4) & pmask;
1688                         rep[6].edge = (val << 2) & pmask;
1689 
1690                         AR5K_EEPROM_READ(offset++, val);
1691                         rep[6].edge |= (val >> 14) & 0x3;
1692                         rep[7].edge = (val >> 8) & pmask;
1693                 }
1694                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1695                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1696                                 rep[j].freq, ctl_mode);
1697                 }
1698                 rep += AR5K_EEPROM_N_EDGES;
1699         }
1700 
1701         return 0;
1702 }
1703 
1704 static int
1705 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1706 {
1707         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1708         u32 offset;
1709         u16 val;
1710         int ret = 0, i;
1711 
1712         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1713                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1714 
1715         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1716                 /* No spur info for 5GHz */
1717                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1718                 /* 2 channels for 2GHz (2464/2420) */
1719                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1720                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1721                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1722         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1723                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1724                         AR5K_EEPROM_READ(offset, val);
1725                         ee->ee_spur_chans[i][0] = val;
1726                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1727                                                                         val);
1728                         ee->ee_spur_chans[i][1] = val;
1729                         offset++;
1730                 }
1731         }
1732 
1733         return ret;
1734 }
1735 
1736 
1737 /***********************\
1738 * Init/Detach functions *
1739 \***********************/
1740 
1741 /*
1742  * Initialize eeprom data structure
1743  */
1744 int
1745 ath5k_eeprom_init(struct ath5k_hw *ah)
1746 {
1747         int err;
1748 
1749         err = ath5k_eeprom_init_header(ah);
1750         if (err < 0)
1751                 return err;
1752 
1753         err = ath5k_eeprom_init_modes(ah);
1754         if (err < 0)
1755                 return err;
1756 
1757         err = ath5k_eeprom_read_pcal_info(ah);
1758         if (err < 0)
1759                 return err;
1760 
1761         err = ath5k_eeprom_read_ctl_info(ah);
1762         if (err < 0)
1763                 return err;
1764 
1765         err = ath5k_eeprom_read_spur_chans(ah);
1766         if (err < 0)
1767                 return err;
1768 
1769         return 0;
1770 }
1771 
1772 void
1773 ath5k_eeprom_detach(struct ath5k_hw *ah)
1774 {
1775         u8 mode;
1776 
1777         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1778                 ath5k_eeprom_free_pcal_info(ah, mode);
1779 }
1780 
1781 int
1782 ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1783                 struct ieee80211_channel *channel)
1784 {
1785         switch (channel->hw_value) {
1786         case AR5K_MODE_11A:
1787                 return AR5K_EEPROM_MODE_11A;
1788         case AR5K_MODE_11G:
1789                 return AR5K_EEPROM_MODE_11G;
1790         case AR5K_MODE_11B:
1791                 return AR5K_EEPROM_MODE_11B;
1792         default:
1793                 ATH5K_WARN(ah, "channel is not A/B/G!");
1794                 return AR5K_EEPROM_MODE_11A;
1795         }
1796 }

/* [<][>][^][v][top][bottom][index][help] */