root/drivers/net/wireless/ath/ath5k/base.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath5k_extend_tsf
  2. ath5k_chip_name
  3. ath5k_ioread32
  4. ath5k_iowrite32
  5. ath5k_reg_notifier
  6. ath5k_is_standard_channel
  7. ath5k_is_standard_channel
  8. ath5k_setup_channels
  9. ath5k_setup_rate_idx
  10. ath5k_setup_bands
  11. ath5k_chan_set
  12. ath5k_vif_iter
  13. ath5k_update_bssid_mask_and_opmode
  14. ath5k_hw_to_driver_rix
  15. ath5k_rx_skb_alloc
  16. ath5k_rxbuf_setup
  17. get_hw_packet_type
  18. ath5k_get_rate
  19. ath5k_get_rate_hw_value
  20. ath5k_txbuf_setup
  21. ath5k_desc_alloc
  22. ath5k_txbuf_free_skb
  23. ath5k_rxbuf_free_skb
  24. ath5k_desc_free
  25. ath5k_txq_setup
  26. ath5k_beaconq_setup
  27. ath5k_beaconq_config
  28. ath5k_drain_tx_buffs
  29. ath5k_txq_release
  30. ath5k_rx_start
  31. ath5k_rx_stop
  32. ath5k_rx_decrypted
  33. ath5k_check_ibss_tsf
  34. ath5k_common_padpos
  35. ath5k_add_padding
  36. ath5k_remove_padding
  37. ath5k_receive_frame
  38. ath5k_receive_frame_ok
  39. ath5k_set_current_imask
  40. ath5k_tasklet_rx
  41. ath5k_tx_queue
  42. ath5k_tx_frame_completed
  43. ath5k_tx_processq
  44. ath5k_tasklet_tx
  45. ath5k_beacon_setup
  46. ath5k_beacon_update
  47. ath5k_beacon_send
  48. ath5k_beacon_update_timers
  49. ath5k_beacon_config
  50. ath5k_tasklet_beacon
  51. ath5k_intr_calibration_poll
  52. ath5k_schedule_rx
  53. ath5k_schedule_tx
  54. ath5k_intr
  55. ath5k_calibrate_work
  56. ath5k_tasklet_ani
  57. ath5k_tx_complete_poll_work
  58. ath5k_init_ah
  59. ath5k_stop_locked
  60. ath5k_start
  61. ath5k_stop_tasklets
  62. ath5k_stop
  63. ath5k_reset
  64. ath5k_reset_work
  65. ath5k_init
  66. ath5k_deinit_ah
  67. ath5k_any_vif_assoc
  68. ath5k_set_beacon_filter
  69. _ath5k_printk

   1 /*-
   2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4  * Copyright (c) 2006 Devicescape Software, Inc.
   5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7  *
   8  * All rights reserved.
   9  *
  10  * Redistribution and use in source and binary forms, with or without
  11  * modification, are permitted provided that the following conditions
  12  * are met:
  13  * 1. Redistributions of source code must retain the above copyright
  14  *    notice, this list of conditions and the following disclaimer,
  15  *    without modification.
  16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18  *    redistribution must be conditioned upon including a substantially
  19  *    similar Disclaimer requirement for further binary redistribution.
  20  * 3. Neither the names of the above-listed copyright holders nor the names
  21  *    of any contributors may be used to endorse or promote products derived
  22  *    from this software without specific prior written permission.
  23  *
  24  * Alternatively, this software may be distributed under the terms of the
  25  * GNU General Public License ("GPL") version 2 as published by the Free
  26  * Software Foundation.
  27  *
  28  * NO WARRANTY
  29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39  * THE POSSIBILITY OF SUCH DAMAGES.
  40  *
  41  */
  42 
  43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  44 
  45 #include <linux/module.h>
  46 #include <linux/delay.h>
  47 #include <linux/dma-mapping.h>
  48 #include <linux/hardirq.h>
  49 #include <linux/if.h>
  50 #include <linux/io.h>
  51 #include <linux/netdevice.h>
  52 #include <linux/cache.h>
  53 #include <linux/ethtool.h>
  54 #include <linux/uaccess.h>
  55 #include <linux/slab.h>
  56 #include <linux/etherdevice.h>
  57 #include <linux/nl80211.h>
  58 
  59 #include <net/cfg80211.h>
  60 #include <net/ieee80211_radiotap.h>
  61 
  62 #include <asm/unaligned.h>
  63 
  64 #include <net/mac80211.h>
  65 #include "base.h"
  66 #include "reg.h"
  67 #include "debug.h"
  68 #include "ani.h"
  69 #include "ath5k.h"
  70 #include "../regd.h"
  71 
  72 #define CREATE_TRACE_POINTS
  73 #include "trace.h"
  74 
  75 bool ath5k_modparam_nohwcrypt;
  76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
  77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  78 
  79 static bool modparam_fastchanswitch;
  80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
  81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  82 
  83 static bool ath5k_modparam_no_hw_rfkill_switch;
  84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  85                    bool, 0444);
  86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  87 
  88 
  89 /* Module info */
  90 MODULE_AUTHOR("Jiri Slaby");
  91 MODULE_AUTHOR("Nick Kossifidis");
  92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  94 MODULE_LICENSE("Dual BSD/GPL");
  95 
  96 static int ath5k_init(struct ieee80211_hw *hw);
  97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  98                                                                 bool skip_pcu);
  99 
 100 /* Known SREVs */
 101 static const struct ath5k_srev_name srev_names[] = {
 102 #ifdef CONFIG_ATH5K_AHB
 103         { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R2 },
 104         { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R7 },
 105         { "2313",       AR5K_VERSION_MAC,       AR5K_SREV_AR2313_R8 },
 106         { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R6 },
 107         { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R7 },
 108         { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R1 },
 109         { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R2 },
 110 #else
 111         { "5210",       AR5K_VERSION_MAC,       AR5K_SREV_AR5210 },
 112         { "5311",       AR5K_VERSION_MAC,       AR5K_SREV_AR5311 },
 113         { "5311A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311A },
 114         { "5311B",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311B },
 115         { "5211",       AR5K_VERSION_MAC,       AR5K_SREV_AR5211 },
 116         { "5212",       AR5K_VERSION_MAC,       AR5K_SREV_AR5212 },
 117         { "5213",       AR5K_VERSION_MAC,       AR5K_SREV_AR5213 },
 118         { "5213A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5213A },
 119         { "2413",       AR5K_VERSION_MAC,       AR5K_SREV_AR2413 },
 120         { "2414",       AR5K_VERSION_MAC,       AR5K_SREV_AR2414 },
 121         { "5424",       AR5K_VERSION_MAC,       AR5K_SREV_AR5424 },
 122         { "5413",       AR5K_VERSION_MAC,       AR5K_SREV_AR5413 },
 123         { "5414",       AR5K_VERSION_MAC,       AR5K_SREV_AR5414 },
 124         { "2415",       AR5K_VERSION_MAC,       AR5K_SREV_AR2415 },
 125         { "5416",       AR5K_VERSION_MAC,       AR5K_SREV_AR5416 },
 126         { "5418",       AR5K_VERSION_MAC,       AR5K_SREV_AR5418 },
 127         { "2425",       AR5K_VERSION_MAC,       AR5K_SREV_AR2425 },
 128         { "2417",       AR5K_VERSION_MAC,       AR5K_SREV_AR2417 },
 129 #endif
 130         { "xxxxx",      AR5K_VERSION_MAC,       AR5K_SREV_UNKNOWN },
 131         { "5110",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5110 },
 132         { "5111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111 },
 133         { "5111A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111A },
 134         { "2111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2111 },
 135         { "5112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112 },
 136         { "5112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112A },
 137         { "5112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112B },
 138         { "2112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112 },
 139         { "2112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112A },
 140         { "2112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112B },
 141         { "2413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2413 },
 142         { "5413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5413 },
 143         { "5424",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5424 },
 144         { "5133",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5133 },
 145 #ifdef CONFIG_ATH5K_AHB
 146         { "2316",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2316 },
 147         { "2317",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2317 },
 148 #endif
 149         { "xxxxx",      AR5K_VERSION_RAD,       AR5K_SREV_UNKNOWN },
 150 };
 151 
 152 static const struct ieee80211_rate ath5k_rates[] = {
 153         { .bitrate = 10,
 154           .hw_value = ATH5K_RATE_CODE_1M, },
 155         { .bitrate = 20,
 156           .hw_value = ATH5K_RATE_CODE_2M,
 157           .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 158           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 159         { .bitrate = 55,
 160           .hw_value = ATH5K_RATE_CODE_5_5M,
 161           .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 162           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 163         { .bitrate = 110,
 164           .hw_value = ATH5K_RATE_CODE_11M,
 165           .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 166           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 167         { .bitrate = 60,
 168           .hw_value = ATH5K_RATE_CODE_6M,
 169           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 170                    IEEE80211_RATE_SUPPORTS_10MHZ },
 171         { .bitrate = 90,
 172           .hw_value = ATH5K_RATE_CODE_9M,
 173           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 174                    IEEE80211_RATE_SUPPORTS_10MHZ },
 175         { .bitrate = 120,
 176           .hw_value = ATH5K_RATE_CODE_12M,
 177           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 178                    IEEE80211_RATE_SUPPORTS_10MHZ },
 179         { .bitrate = 180,
 180           .hw_value = ATH5K_RATE_CODE_18M,
 181           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 182                    IEEE80211_RATE_SUPPORTS_10MHZ },
 183         { .bitrate = 240,
 184           .hw_value = ATH5K_RATE_CODE_24M,
 185           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 186                    IEEE80211_RATE_SUPPORTS_10MHZ },
 187         { .bitrate = 360,
 188           .hw_value = ATH5K_RATE_CODE_36M,
 189           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 190                    IEEE80211_RATE_SUPPORTS_10MHZ },
 191         { .bitrate = 480,
 192           .hw_value = ATH5K_RATE_CODE_48M,
 193           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 194                    IEEE80211_RATE_SUPPORTS_10MHZ },
 195         { .bitrate = 540,
 196           .hw_value = ATH5K_RATE_CODE_54M,
 197           .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
 198                    IEEE80211_RATE_SUPPORTS_10MHZ },
 199 };
 200 
 201 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 202 {
 203         u64 tsf = ath5k_hw_get_tsf64(ah);
 204 
 205         if ((tsf & 0x7fff) < rstamp)
 206                 tsf -= 0x8000;
 207 
 208         return (tsf & ~0x7fff) | rstamp;
 209 }
 210 
 211 const char *
 212 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 213 {
 214         const char *name = "xxxxx";
 215         unsigned int i;
 216 
 217         for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 218                 if (srev_names[i].sr_type != type)
 219                         continue;
 220 
 221                 if ((val & 0xf0) == srev_names[i].sr_val)
 222                         name = srev_names[i].sr_name;
 223 
 224                 if ((val & 0xff) == srev_names[i].sr_val) {
 225                         name = srev_names[i].sr_name;
 226                         break;
 227                 }
 228         }
 229 
 230         return name;
 231 }
 232 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 233 {
 234         struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 235         return ath5k_hw_reg_read(ah, reg_offset);
 236 }
 237 
 238 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 239 {
 240         struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 241         ath5k_hw_reg_write(ah, val, reg_offset);
 242 }
 243 
 244 static const struct ath_ops ath5k_common_ops = {
 245         .read = ath5k_ioread32,
 246         .write = ath5k_iowrite32,
 247 };
 248 
 249 /***********************\
 250 * Driver Initialization *
 251 \***********************/
 252 
 253 static void ath5k_reg_notifier(struct wiphy *wiphy,
 254                                struct regulatory_request *request)
 255 {
 256         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 257         struct ath5k_hw *ah = hw->priv;
 258         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
 259 
 260         ath_reg_notifier_apply(wiphy, request, regulatory);
 261 }
 262 
 263 /********************\
 264 * Channel/mode setup *
 265 \********************/
 266 
 267 /*
 268  * Returns true for the channel numbers used.
 269  */
 270 #ifdef CONFIG_ATH5K_TEST_CHANNELS
 271 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
 272 {
 273         return true;
 274 }
 275 
 276 #else
 277 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
 278 {
 279         if (band == NL80211_BAND_2GHZ && chan <= 14)
 280                 return true;
 281 
 282         return  /* UNII 1,2 */
 283                 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 284                 /* midband */
 285                 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 286                 /* UNII-3 */
 287                 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
 288                 /* 802.11j 5.030-5.080 GHz (20MHz) */
 289                 (chan == 8 || chan == 12 || chan == 16) ||
 290                 /* 802.11j 4.9GHz (20MHz) */
 291                 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
 292 }
 293 #endif
 294 
 295 static unsigned int
 296 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
 297                 unsigned int mode, unsigned int max)
 298 {
 299         unsigned int count, size, freq, ch;
 300         enum nl80211_band band;
 301 
 302         switch (mode) {
 303         case AR5K_MODE_11A:
 304                 /* 1..220, but 2GHz frequencies are filtered by check_channel */
 305                 size = 220;
 306                 band = NL80211_BAND_5GHZ;
 307                 break;
 308         case AR5K_MODE_11B:
 309         case AR5K_MODE_11G:
 310                 size = 26;
 311                 band = NL80211_BAND_2GHZ;
 312                 break;
 313         default:
 314                 ATH5K_WARN(ah, "bad mode, not copying channels\n");
 315                 return 0;
 316         }
 317 
 318         count = 0;
 319         for (ch = 1; ch <= size && count < max; ch++) {
 320                 freq = ieee80211_channel_to_frequency(ch, band);
 321 
 322                 if (freq == 0) /* mapping failed - not a standard channel */
 323                         continue;
 324 
 325                 /* Write channel info, needed for ath5k_channel_ok() */
 326                 channels[count].center_freq = freq;
 327                 channels[count].band = band;
 328                 channels[count].hw_value = mode;
 329 
 330                 /* Check if channel is supported by the chipset */
 331                 if (!ath5k_channel_ok(ah, &channels[count]))
 332                         continue;
 333 
 334                 if (!ath5k_is_standard_channel(ch, band))
 335                         continue;
 336 
 337                 count++;
 338         }
 339 
 340         return count;
 341 }
 342 
 343 static void
 344 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
 345 {
 346         u8 i;
 347 
 348         for (i = 0; i < AR5K_MAX_RATES; i++)
 349                 ah->rate_idx[b->band][i] = -1;
 350 
 351         for (i = 0; i < b->n_bitrates; i++) {
 352                 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 353                 if (b->bitrates[i].hw_value_short)
 354                         ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 355         }
 356 }
 357 
 358 static int
 359 ath5k_setup_bands(struct ieee80211_hw *hw)
 360 {
 361         struct ath5k_hw *ah = hw->priv;
 362         struct ieee80211_supported_band *sband;
 363         int max_c, count_c = 0;
 364         int i;
 365 
 366         BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
 367         max_c = ARRAY_SIZE(ah->channels);
 368 
 369         /* 2GHz band */
 370         sband = &ah->sbands[NL80211_BAND_2GHZ];
 371         sband->band = NL80211_BAND_2GHZ;
 372         sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
 373 
 374         if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
 375                 /* G mode */
 376                 memcpy(sband->bitrates, &ath5k_rates[0],
 377                        sizeof(struct ieee80211_rate) * 12);
 378                 sband->n_bitrates = 12;
 379 
 380                 sband->channels = ah->channels;
 381                 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 382                                         AR5K_MODE_11G, max_c);
 383 
 384                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
 385                 count_c = sband->n_channels;
 386                 max_c -= count_c;
 387         } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
 388                 /* B mode */
 389                 memcpy(sband->bitrates, &ath5k_rates[0],
 390                        sizeof(struct ieee80211_rate) * 4);
 391                 sband->n_bitrates = 4;
 392 
 393                 /* 5211 only supports B rates and uses 4bit rate codes
 394                  * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 395                  * fix them up here:
 396                  */
 397                 if (ah->ah_version == AR5K_AR5211) {
 398                         for (i = 0; i < 4; i++) {
 399                                 sband->bitrates[i].hw_value =
 400                                         sband->bitrates[i].hw_value & 0xF;
 401                                 sband->bitrates[i].hw_value_short =
 402                                         sband->bitrates[i].hw_value_short & 0xF;
 403                         }
 404                 }
 405 
 406                 sband->channels = ah->channels;
 407                 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 408                                         AR5K_MODE_11B, max_c);
 409 
 410                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
 411                 count_c = sband->n_channels;
 412                 max_c -= count_c;
 413         }
 414         ath5k_setup_rate_idx(ah, sband);
 415 
 416         /* 5GHz band, A mode */
 417         if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
 418                 sband = &ah->sbands[NL80211_BAND_5GHZ];
 419                 sband->band = NL80211_BAND_5GHZ;
 420                 sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
 421 
 422                 memcpy(sband->bitrates, &ath5k_rates[4],
 423                        sizeof(struct ieee80211_rate) * 8);
 424                 sband->n_bitrates = 8;
 425 
 426                 sband->channels = &ah->channels[count_c];
 427                 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
 428                                         AR5K_MODE_11A, max_c);
 429 
 430                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
 431         }
 432         ath5k_setup_rate_idx(ah, sband);
 433 
 434         ath5k_debug_dump_bands(ah);
 435 
 436         return 0;
 437 }
 438 
 439 /*
 440  * Set/change channels. We always reset the chip.
 441  * To accomplish this we must first cleanup any pending DMA,
 442  * then restart stuff after a la  ath5k_init.
 443  *
 444  * Called with ah->lock.
 445  */
 446 int
 447 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
 448 {
 449         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
 450                   "channel set, resetting (%u -> %u MHz)\n",
 451                   ah->curchan->center_freq, chandef->chan->center_freq);
 452 
 453         switch (chandef->width) {
 454         case NL80211_CHAN_WIDTH_20:
 455         case NL80211_CHAN_WIDTH_20_NOHT:
 456                 ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
 457                 break;
 458         case NL80211_CHAN_WIDTH_5:
 459                 ah->ah_bwmode = AR5K_BWMODE_5MHZ;
 460                 break;
 461         case NL80211_CHAN_WIDTH_10:
 462                 ah->ah_bwmode = AR5K_BWMODE_10MHZ;
 463                 break;
 464         default:
 465                 WARN_ON(1);
 466                 return -EINVAL;
 467         }
 468 
 469         /*
 470          * To switch channels clear any pending DMA operations;
 471          * wait long enough for the RX fifo to drain, reset the
 472          * hardware at the new frequency, and then re-enable
 473          * the relevant bits of the h/w.
 474          */
 475         return ath5k_reset(ah, chandef->chan, true);
 476 }
 477 
 478 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 479 {
 480         struct ath5k_vif_iter_data *iter_data = data;
 481         int i;
 482         struct ath5k_vif *avf = (void *)vif->drv_priv;
 483 
 484         if (iter_data->hw_macaddr)
 485                 for (i = 0; i < ETH_ALEN; i++)
 486                         iter_data->mask[i] &=
 487                                 ~(iter_data->hw_macaddr[i] ^ mac[i]);
 488 
 489         if (!iter_data->found_active) {
 490                 iter_data->found_active = true;
 491                 memcpy(iter_data->active_mac, mac, ETH_ALEN);
 492         }
 493 
 494         if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 495                 if (ether_addr_equal(iter_data->hw_macaddr, mac))
 496                         iter_data->need_set_hw_addr = false;
 497 
 498         if (!iter_data->any_assoc) {
 499                 if (avf->assoc)
 500                         iter_data->any_assoc = true;
 501         }
 502 
 503         /* Calculate combined mode - when APs are active, operate in AP mode.
 504          * Otherwise use the mode of the new interface. This can currently
 505          * only deal with combinations of APs and STAs. Only one ad-hoc
 506          * interfaces is allowed.
 507          */
 508         if (avf->opmode == NL80211_IFTYPE_AP)
 509                 iter_data->opmode = NL80211_IFTYPE_AP;
 510         else {
 511                 if (avf->opmode == NL80211_IFTYPE_STATION)
 512                         iter_data->n_stas++;
 513                 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 514                         iter_data->opmode = avf->opmode;
 515         }
 516 }
 517 
 518 void
 519 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
 520                                    struct ieee80211_vif *vif)
 521 {
 522         struct ath_common *common = ath5k_hw_common(ah);
 523         struct ath5k_vif_iter_data iter_data;
 524         u32 rfilt;
 525 
 526         /*
 527          * Use the hardware MAC address as reference, the hardware uses it
 528          * together with the BSSID mask when matching addresses.
 529          */
 530         iter_data.hw_macaddr = common->macaddr;
 531         eth_broadcast_addr(iter_data.mask);
 532         iter_data.found_active = false;
 533         iter_data.need_set_hw_addr = true;
 534         iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 535         iter_data.n_stas = 0;
 536 
 537         if (vif)
 538                 ath5k_vif_iter(&iter_data, vif->addr, vif);
 539 
 540         /* Get list of all active MAC addresses */
 541         ieee80211_iterate_active_interfaces_atomic(
 542                 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 543                 ath5k_vif_iter, &iter_data);
 544         memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
 545 
 546         ah->opmode = iter_data.opmode;
 547         if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
 548                 /* Nothing active, default to station mode */
 549                 ah->opmode = NL80211_IFTYPE_STATION;
 550 
 551         ath5k_hw_set_opmode(ah, ah->opmode);
 552         ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 553                   ah->opmode, ath_opmode_to_string(ah->opmode));
 554 
 555         if (iter_data.need_set_hw_addr && iter_data.found_active)
 556                 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
 557 
 558         if (ath5k_hw_hasbssidmask(ah))
 559                 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
 560 
 561         /* Set up RX Filter */
 562         if (iter_data.n_stas > 1) {
 563                 /* If you have multiple STA interfaces connected to
 564                  * different APs, ARPs are not received (most of the time?)
 565                  * Enabling PROMISC appears to fix that problem.
 566                  */
 567                 ah->filter_flags |= AR5K_RX_FILTER_PROM;
 568         }
 569 
 570         rfilt = ah->filter_flags;
 571         ath5k_hw_set_rx_filter(ah, rfilt);
 572         ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 573 }
 574 
 575 static inline int
 576 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
 577 {
 578         int rix;
 579 
 580         /* return base rate on errors */
 581         if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 582                         "hw_rix out of bounds: %x\n", hw_rix))
 583                 return 0;
 584 
 585         rix = ah->rate_idx[ah->curchan->band][hw_rix];
 586         if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 587                 rix = 0;
 588 
 589         return rix;
 590 }
 591 
 592 /***************\
 593 * Buffers setup *
 594 \***************/
 595 
 596 static
 597 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
 598 {
 599         struct ath_common *common = ath5k_hw_common(ah);
 600         struct sk_buff *skb;
 601 
 602         /*
 603          * Allocate buffer with headroom_needed space for the
 604          * fake physical layer header at the start.
 605          */
 606         skb = ath_rxbuf_alloc(common,
 607                               common->rx_bufsize,
 608                               GFP_ATOMIC);
 609 
 610         if (!skb) {
 611                 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
 612                                 common->rx_bufsize);
 613                 return NULL;
 614         }
 615 
 616         *skb_addr = dma_map_single(ah->dev,
 617                                    skb->data, common->rx_bufsize,
 618                                    DMA_FROM_DEVICE);
 619 
 620         if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
 621                 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
 622                 dev_kfree_skb(skb);
 623                 return NULL;
 624         }
 625         return skb;
 626 }
 627 
 628 static int
 629 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
 630 {
 631         struct sk_buff *skb = bf->skb;
 632         struct ath5k_desc *ds;
 633         int ret;
 634 
 635         if (!skb) {
 636                 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
 637                 if (!skb)
 638                         return -ENOMEM;
 639                 bf->skb = skb;
 640         }
 641 
 642         /*
 643          * Setup descriptors.  For receive we always terminate
 644          * the descriptor list with a self-linked entry so we'll
 645          * not get overrun under high load (as can happen with a
 646          * 5212 when ANI processing enables PHY error frames).
 647          *
 648          * To ensure the last descriptor is self-linked we create
 649          * each descriptor as self-linked and add it to the end.  As
 650          * each additional descriptor is added the previous self-linked
 651          * entry is "fixed" naturally.  This should be safe even
 652          * if DMA is happening.  When processing RX interrupts we
 653          * never remove/process the last, self-linked, entry on the
 654          * descriptor list.  This ensures the hardware always has
 655          * someplace to write a new frame.
 656          */
 657         ds = bf->desc;
 658         ds->ds_link = bf->daddr;        /* link to self */
 659         ds->ds_data = bf->skbaddr;
 660         ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 661         if (ret) {
 662                 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
 663                 return ret;
 664         }
 665 
 666         if (ah->rxlink != NULL)
 667                 *ah->rxlink = bf->daddr;
 668         ah->rxlink = &ds->ds_link;
 669         return 0;
 670 }
 671 
 672 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 673 {
 674         struct ieee80211_hdr *hdr;
 675         enum ath5k_pkt_type htype;
 676         __le16 fc;
 677 
 678         hdr = (struct ieee80211_hdr *)skb->data;
 679         fc = hdr->frame_control;
 680 
 681         if (ieee80211_is_beacon(fc))
 682                 htype = AR5K_PKT_TYPE_BEACON;
 683         else if (ieee80211_is_probe_resp(fc))
 684                 htype = AR5K_PKT_TYPE_PROBE_RESP;
 685         else if (ieee80211_is_atim(fc))
 686                 htype = AR5K_PKT_TYPE_ATIM;
 687         else if (ieee80211_is_pspoll(fc))
 688                 htype = AR5K_PKT_TYPE_PSPOLL;
 689         else
 690                 htype = AR5K_PKT_TYPE_NORMAL;
 691 
 692         return htype;
 693 }
 694 
 695 static struct ieee80211_rate *
 696 ath5k_get_rate(const struct ieee80211_hw *hw,
 697                const struct ieee80211_tx_info *info,
 698                struct ath5k_buf *bf, int idx)
 699 {
 700         /*
 701         * convert a ieee80211_tx_rate RC-table entry to
 702         * the respective ieee80211_rate struct
 703         */
 704         if (bf->rates[idx].idx < 0) {
 705                 return NULL;
 706         }
 707 
 708         return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
 709 }
 710 
 711 static u16
 712 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
 713                         const struct ieee80211_tx_info *info,
 714                         struct ath5k_buf *bf, int idx)
 715 {
 716         struct ieee80211_rate *rate;
 717         u16 hw_rate;
 718         u8 rc_flags;
 719 
 720         rate = ath5k_get_rate(hw, info, bf, idx);
 721         if (!rate)
 722                 return 0;
 723 
 724         rc_flags = bf->rates[idx].flags;
 725         hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 726                    rate->hw_value_short : rate->hw_value;
 727 
 728         return hw_rate;
 729 }
 730 
 731 static int
 732 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
 733                   struct ath5k_txq *txq, int padsize,
 734                   struct ieee80211_tx_control *control)
 735 {
 736         struct ath5k_desc *ds = bf->desc;
 737         struct sk_buff *skb = bf->skb;
 738         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 739         unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 740         struct ieee80211_rate *rate;
 741         unsigned int mrr_rate[3], mrr_tries[3];
 742         int i, ret;
 743         u16 hw_rate;
 744         u16 cts_rate = 0;
 745         u16 duration = 0;
 746         u8 rc_flags;
 747 
 748         flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 749 
 750         /* XXX endianness */
 751         bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
 752                         DMA_TO_DEVICE);
 753 
 754         if (dma_mapping_error(ah->dev, bf->skbaddr))
 755                 return -ENOSPC;
 756 
 757         ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
 758                                ARRAY_SIZE(bf->rates));
 759 
 760         rate = ath5k_get_rate(ah->hw, info, bf, 0);
 761 
 762         if (!rate) {
 763                 ret = -EINVAL;
 764                 goto err_unmap;
 765         }
 766 
 767         if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 768                 flags |= AR5K_TXDESC_NOACK;
 769 
 770         rc_flags = bf->rates[0].flags;
 771 
 772         hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
 773 
 774         pktlen = skb->len;
 775 
 776         /* FIXME: If we are in g mode and rate is a CCK rate
 777          * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 778          * from tx power (value is in dB units already) */
 779         if (info->control.hw_key) {
 780                 keyidx = info->control.hw_key->hw_key_idx;
 781                 pktlen += info->control.hw_key->icv_len;
 782         }
 783         if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 784                 flags |= AR5K_TXDESC_RTSENA;
 785                 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 786                 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
 787                         info->control.vif, pktlen, info));
 788         }
 789         if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 790                 flags |= AR5K_TXDESC_CTSENA;
 791                 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
 792                 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
 793                         info->control.vif, pktlen, info));
 794         }
 795 
 796         ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 797                 ieee80211_get_hdrlen_from_skb(skb), padsize,
 798                 get_hw_packet_type(skb),
 799                 (ah->ah_txpower.txp_requested * 2),
 800                 hw_rate,
 801                 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
 802                 cts_rate, duration);
 803         if (ret)
 804                 goto err_unmap;
 805 
 806         /* Set up MRR descriptor */
 807         if (ah->ah_capabilities.cap_has_mrr_support) {
 808                 memset(mrr_rate, 0, sizeof(mrr_rate));
 809                 memset(mrr_tries, 0, sizeof(mrr_tries));
 810 
 811                 for (i = 0; i < 3; i++) {
 812 
 813                         rate = ath5k_get_rate(ah->hw, info, bf, i);
 814                         if (!rate)
 815                                 break;
 816 
 817                         mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
 818                         mrr_tries[i] = bf->rates[i].count;
 819                 }
 820 
 821                 ath5k_hw_setup_mrr_tx_desc(ah, ds,
 822                         mrr_rate[0], mrr_tries[0],
 823                         mrr_rate[1], mrr_tries[1],
 824                         mrr_rate[2], mrr_tries[2]);
 825         }
 826 
 827         ds->ds_link = 0;
 828         ds->ds_data = bf->skbaddr;
 829 
 830         spin_lock_bh(&txq->lock);
 831         list_add_tail(&bf->list, &txq->q);
 832         txq->txq_len++;
 833         if (txq->link == NULL) /* is this first packet? */
 834                 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 835         else /* no, so only link it */
 836                 *txq->link = bf->daddr;
 837 
 838         txq->link = &ds->ds_link;
 839         ath5k_hw_start_tx_dma(ah, txq->qnum);
 840         spin_unlock_bh(&txq->lock);
 841 
 842         return 0;
 843 err_unmap:
 844         dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 845         return ret;
 846 }
 847 
 848 /*******************\
 849 * Descriptors setup *
 850 \*******************/
 851 
 852 static int
 853 ath5k_desc_alloc(struct ath5k_hw *ah)
 854 {
 855         struct ath5k_desc *ds;
 856         struct ath5k_buf *bf;
 857         dma_addr_t da;
 858         unsigned int i;
 859         int ret;
 860 
 861         /* allocate descriptors */
 862         ah->desc_len = sizeof(struct ath5k_desc) *
 863                         (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 864 
 865         ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
 866                                 &ah->desc_daddr, GFP_KERNEL);
 867         if (ah->desc == NULL) {
 868                 ATH5K_ERR(ah, "can't allocate descriptors\n");
 869                 ret = -ENOMEM;
 870                 goto err;
 871         }
 872         ds = ah->desc;
 873         da = ah->desc_daddr;
 874         ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 875                 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
 876 
 877         bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 878                         sizeof(struct ath5k_buf), GFP_KERNEL);
 879         if (bf == NULL) {
 880                 ATH5K_ERR(ah, "can't allocate bufptr\n");
 881                 ret = -ENOMEM;
 882                 goto err_free;
 883         }
 884         ah->bufptr = bf;
 885 
 886         INIT_LIST_HEAD(&ah->rxbuf);
 887         for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 888                 bf->desc = ds;
 889                 bf->daddr = da;
 890                 list_add_tail(&bf->list, &ah->rxbuf);
 891         }
 892 
 893         INIT_LIST_HEAD(&ah->txbuf);
 894         ah->txbuf_len = ATH_TXBUF;
 895         for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 896                 bf->desc = ds;
 897                 bf->daddr = da;
 898                 list_add_tail(&bf->list, &ah->txbuf);
 899         }
 900 
 901         /* beacon buffers */
 902         INIT_LIST_HEAD(&ah->bcbuf);
 903         for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 904                 bf->desc = ds;
 905                 bf->daddr = da;
 906                 list_add_tail(&bf->list, &ah->bcbuf);
 907         }
 908 
 909         return 0;
 910 err_free:
 911         dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 912 err:
 913         ah->desc = NULL;
 914         return ret;
 915 }
 916 
 917 void
 918 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 919 {
 920         BUG_ON(!bf);
 921         if (!bf->skb)
 922                 return;
 923         dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
 924                         DMA_TO_DEVICE);
 925         ieee80211_free_txskb(ah->hw, bf->skb);
 926         bf->skb = NULL;
 927         bf->skbaddr = 0;
 928         bf->desc->ds_data = 0;
 929 }
 930 
 931 void
 932 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
 933 {
 934         struct ath_common *common = ath5k_hw_common(ah);
 935 
 936         BUG_ON(!bf);
 937         if (!bf->skb)
 938                 return;
 939         dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
 940                         DMA_FROM_DEVICE);
 941         dev_kfree_skb_any(bf->skb);
 942         bf->skb = NULL;
 943         bf->skbaddr = 0;
 944         bf->desc->ds_data = 0;
 945 }
 946 
 947 static void
 948 ath5k_desc_free(struct ath5k_hw *ah)
 949 {
 950         struct ath5k_buf *bf;
 951 
 952         list_for_each_entry(bf, &ah->txbuf, list)
 953                 ath5k_txbuf_free_skb(ah, bf);
 954         list_for_each_entry(bf, &ah->rxbuf, list)
 955                 ath5k_rxbuf_free_skb(ah, bf);
 956         list_for_each_entry(bf, &ah->bcbuf, list)
 957                 ath5k_txbuf_free_skb(ah, bf);
 958 
 959         /* Free memory associated with all descriptors */
 960         dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
 961         ah->desc = NULL;
 962         ah->desc_daddr = 0;
 963 
 964         kfree(ah->bufptr);
 965         ah->bufptr = NULL;
 966 }
 967 
 968 
 969 /**************\
 970 * Queues setup *
 971 \**************/
 972 
 973 static struct ath5k_txq *
 974 ath5k_txq_setup(struct ath5k_hw *ah,
 975                 int qtype, int subtype)
 976 {
 977         struct ath5k_txq *txq;
 978         struct ath5k_txq_info qi = {
 979                 .tqi_subtype = subtype,
 980                 /* XXX: default values not correct for B and XR channels,
 981                  * but who cares? */
 982                 .tqi_aifs = AR5K_TUNE_AIFS,
 983                 .tqi_cw_min = AR5K_TUNE_CWMIN,
 984                 .tqi_cw_max = AR5K_TUNE_CWMAX
 985         };
 986         int qnum;
 987 
 988         /*
 989          * Enable interrupts only for EOL and DESC conditions.
 990          * We mark tx descriptors to receive a DESC interrupt
 991          * when a tx queue gets deep; otherwise we wait for the
 992          * EOL to reap descriptors.  Note that this is done to
 993          * reduce interrupt load and this only defers reaping
 994          * descriptors, never transmitting frames.  Aside from
 995          * reducing interrupts this also permits more concurrency.
 996          * The only potential downside is if the tx queue backs
 997          * up in which case the top half of the kernel may backup
 998          * due to a lack of tx descriptors.
 999          */
1000         qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1001                                 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1002         qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1003         if (qnum < 0) {
1004                 /*
1005                  * NB: don't print a message, this happens
1006                  * normally on parts with too few tx queues
1007                  */
1008                 return ERR_PTR(qnum);
1009         }
1010         txq = &ah->txqs[qnum];
1011         if (!txq->setup) {
1012                 txq->qnum = qnum;
1013                 txq->link = NULL;
1014                 INIT_LIST_HEAD(&txq->q);
1015                 spin_lock_init(&txq->lock);
1016                 txq->setup = true;
1017                 txq->txq_len = 0;
1018                 txq->txq_max = ATH5K_TXQ_LEN_MAX;
1019                 txq->txq_poll_mark = false;
1020                 txq->txq_stuck = 0;
1021         }
1022         return &ah->txqs[qnum];
1023 }
1024 
1025 static int
1026 ath5k_beaconq_setup(struct ath5k_hw *ah)
1027 {
1028         struct ath5k_txq_info qi = {
1029                 /* XXX: default values not correct for B and XR channels,
1030                  * but who cares? */
1031                 .tqi_aifs = AR5K_TUNE_AIFS,
1032                 .tqi_cw_min = AR5K_TUNE_CWMIN,
1033                 .tqi_cw_max = AR5K_TUNE_CWMAX,
1034                 /* NB: for dynamic turbo, don't enable any other interrupts */
1035                 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1036         };
1037 
1038         return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1039 }
1040 
1041 static int
1042 ath5k_beaconq_config(struct ath5k_hw *ah)
1043 {
1044         struct ath5k_txq_info qi;
1045         int ret;
1046 
1047         ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1048         if (ret)
1049                 goto err;
1050 
1051         if (ah->opmode == NL80211_IFTYPE_AP ||
1052             ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1053                 /*
1054                  * Always burst out beacon and CAB traffic
1055                  * (aifs = cwmin = cwmax = 0)
1056                  */
1057                 qi.tqi_aifs = 0;
1058                 qi.tqi_cw_min = 0;
1059                 qi.tqi_cw_max = 0;
1060         } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1061                 /*
1062                  * Adhoc mode; backoff between 0 and (2 * cw_min).
1063                  */
1064                 qi.tqi_aifs = 0;
1065                 qi.tqi_cw_min = 0;
1066                 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1067         }
1068 
1069         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1070                 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1071                 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1072 
1073         ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1074         if (ret) {
1075                 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1076                         "hardware queue!\n", __func__);
1077                 goto err;
1078         }
1079         ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1080         if (ret)
1081                 goto err;
1082 
1083         /* reconfigure cabq with ready time to 80% of beacon_interval */
1084         ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1085         if (ret)
1086                 goto err;
1087 
1088         qi.tqi_ready_time = (ah->bintval * 80) / 100;
1089         ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1090         if (ret)
1091                 goto err;
1092 
1093         ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1094 err:
1095         return ret;
1096 }
1097 
1098 /**
1099  * ath5k_drain_tx_buffs - Empty tx buffers
1100  *
1101  * @ah The &struct ath5k_hw
1102  *
1103  * Empty tx buffers from all queues in preparation
1104  * of a reset or during shutdown.
1105  *
1106  * NB:  this assumes output has been stopped and
1107  *      we do not need to block ath5k_tx_tasklet
1108  */
1109 static void
1110 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1111 {
1112         struct ath5k_txq *txq;
1113         struct ath5k_buf *bf, *bf0;
1114         int i;
1115 
1116         for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1117                 if (ah->txqs[i].setup) {
1118                         txq = &ah->txqs[i];
1119                         spin_lock_bh(&txq->lock);
1120                         list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1121                                 ath5k_debug_printtxbuf(ah, bf);
1122 
1123                                 ath5k_txbuf_free_skb(ah, bf);
1124 
1125                                 spin_lock(&ah->txbuflock);
1126                                 list_move_tail(&bf->list, &ah->txbuf);
1127                                 ah->txbuf_len++;
1128                                 txq->txq_len--;
1129                                 spin_unlock(&ah->txbuflock);
1130                         }
1131                         txq->link = NULL;
1132                         txq->txq_poll_mark = false;
1133                         spin_unlock_bh(&txq->lock);
1134                 }
1135         }
1136 }
1137 
1138 static void
1139 ath5k_txq_release(struct ath5k_hw *ah)
1140 {
1141         struct ath5k_txq *txq = ah->txqs;
1142         unsigned int i;
1143 
1144         for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1145                 if (txq->setup) {
1146                         ath5k_hw_release_tx_queue(ah, txq->qnum);
1147                         txq->setup = false;
1148                 }
1149 }
1150 
1151 
1152 /*************\
1153 * RX Handling *
1154 \*************/
1155 
1156 /*
1157  * Enable the receive h/w following a reset.
1158  */
1159 static int
1160 ath5k_rx_start(struct ath5k_hw *ah)
1161 {
1162         struct ath_common *common = ath5k_hw_common(ah);
1163         struct ath5k_buf *bf;
1164         int ret;
1165 
1166         common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1167 
1168         ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1169                   common->cachelsz, common->rx_bufsize);
1170 
1171         spin_lock_bh(&ah->rxbuflock);
1172         ah->rxlink = NULL;
1173         list_for_each_entry(bf, &ah->rxbuf, list) {
1174                 ret = ath5k_rxbuf_setup(ah, bf);
1175                 if (ret != 0) {
1176                         spin_unlock_bh(&ah->rxbuflock);
1177                         goto err;
1178                 }
1179         }
1180         bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1181         ath5k_hw_set_rxdp(ah, bf->daddr);
1182         spin_unlock_bh(&ah->rxbuflock);
1183 
1184         ath5k_hw_start_rx_dma(ah);      /* enable recv descriptors */
1185         ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1186         ath5k_hw_start_rx_pcu(ah);      /* re-enable PCU/DMA engine */
1187 
1188         return 0;
1189 err:
1190         return ret;
1191 }
1192 
1193 /*
1194  * Disable the receive logic on PCU (DRU)
1195  * In preparation for a shutdown.
1196  *
1197  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1198  * does.
1199  */
1200 static void
1201 ath5k_rx_stop(struct ath5k_hw *ah)
1202 {
1203 
1204         ath5k_hw_set_rx_filter(ah, 0);  /* clear recv filter */
1205         ath5k_hw_stop_rx_pcu(ah);       /* disable PCU */
1206 
1207         ath5k_debug_printrxbuffs(ah);
1208 }
1209 
1210 static unsigned int
1211 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1212                    struct ath5k_rx_status *rs)
1213 {
1214         struct ath_common *common = ath5k_hw_common(ah);
1215         struct ieee80211_hdr *hdr = (void *)skb->data;
1216         unsigned int keyix, hlen;
1217 
1218         if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1219                         rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1220                 return RX_FLAG_DECRYPTED;
1221 
1222         /* Apparently when a default key is used to decrypt the packet
1223            the hw does not set the index used to decrypt.  In such cases
1224            get the index from the packet. */
1225         hlen = ieee80211_hdrlen(hdr->frame_control);
1226         if (ieee80211_has_protected(hdr->frame_control) &&
1227             !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1228             skb->len >= hlen + 4) {
1229                 keyix = skb->data[hlen + 3] >> 6;
1230 
1231                 if (test_bit(keyix, common->keymap))
1232                         return RX_FLAG_DECRYPTED;
1233         }
1234 
1235         return 0;
1236 }
1237 
1238 
1239 static void
1240 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1241                      struct ieee80211_rx_status *rxs)
1242 {
1243         u64 tsf, bc_tstamp;
1244         u32 hw_tu;
1245         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1246 
1247         if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1248                 /*
1249                  * Received an IBSS beacon with the same BSSID. Hardware *must*
1250                  * have updated the local TSF. We have to work around various
1251                  * hardware bugs, though...
1252                  */
1253                 tsf = ath5k_hw_get_tsf64(ah);
1254                 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1255                 hw_tu = TSF_TO_TU(tsf);
1256 
1257                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1258                         "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1259                         (unsigned long long)bc_tstamp,
1260                         (unsigned long long)rxs->mactime,
1261                         (unsigned long long)(rxs->mactime - bc_tstamp),
1262                         (unsigned long long)tsf);
1263 
1264                 /*
1265                  * Sometimes the HW will give us a wrong tstamp in the rx
1266                  * status, causing the timestamp extension to go wrong.
1267                  * (This seems to happen especially with beacon frames bigger
1268                  * than 78 byte (incl. FCS))
1269                  * But we know that the receive timestamp must be later than the
1270                  * timestamp of the beacon since HW must have synced to that.
1271                  *
1272                  * NOTE: here we assume mactime to be after the frame was
1273                  * received, not like mac80211 which defines it at the start.
1274                  */
1275                 if (bc_tstamp > rxs->mactime) {
1276                         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1277                                 "fixing mactime from %llx to %llx\n",
1278                                 (unsigned long long)rxs->mactime,
1279                                 (unsigned long long)tsf);
1280                         rxs->mactime = tsf;
1281                 }
1282 
1283                 /*
1284                  * Local TSF might have moved higher than our beacon timers,
1285                  * in that case we have to update them to continue sending
1286                  * beacons. This also takes care of synchronizing beacon sending
1287                  * times with other stations.
1288                  */
1289                 if (hw_tu >= ah->nexttbtt)
1290                         ath5k_beacon_update_timers(ah, bc_tstamp);
1291 
1292                 /* Check if the beacon timers are still correct, because a TSF
1293                  * update might have created a window between them - for a
1294                  * longer description see the comment of this function: */
1295                 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1296                         ath5k_beacon_update_timers(ah, bc_tstamp);
1297                         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1298                                 "fixed beacon timers after beacon receive\n");
1299                 }
1300         }
1301 }
1302 
1303 /*
1304  * Compute padding position. skb must contain an IEEE 802.11 frame
1305  */
1306 static int ath5k_common_padpos(struct sk_buff *skb)
1307 {
1308         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1309         __le16 frame_control = hdr->frame_control;
1310         int padpos = 24;
1311 
1312         if (ieee80211_has_a4(frame_control))
1313                 padpos += ETH_ALEN;
1314 
1315         if (ieee80211_is_data_qos(frame_control))
1316                 padpos += IEEE80211_QOS_CTL_LEN;
1317 
1318         return padpos;
1319 }
1320 
1321 /*
1322  * This function expects an 802.11 frame and returns the number of
1323  * bytes added, or -1 if we don't have enough header room.
1324  */
1325 static int ath5k_add_padding(struct sk_buff *skb)
1326 {
1327         int padpos = ath5k_common_padpos(skb);
1328         int padsize = padpos & 3;
1329 
1330         if (padsize && skb->len > padpos) {
1331 
1332                 if (skb_headroom(skb) < padsize)
1333                         return -1;
1334 
1335                 skb_push(skb, padsize);
1336                 memmove(skb->data, skb->data + padsize, padpos);
1337                 return padsize;
1338         }
1339 
1340         return 0;
1341 }
1342 
1343 /*
1344  * The MAC header is padded to have 32-bit boundary if the
1345  * packet payload is non-zero. The general calculation for
1346  * padsize would take into account odd header lengths:
1347  * padsize = 4 - (hdrlen & 3); however, since only
1348  * even-length headers are used, padding can only be 0 or 2
1349  * bytes and we can optimize this a bit.  We must not try to
1350  * remove padding from short control frames that do not have a
1351  * payload.
1352  *
1353  * This function expects an 802.11 frame and returns the number of
1354  * bytes removed.
1355  */
1356 static int ath5k_remove_padding(struct sk_buff *skb)
1357 {
1358         int padpos = ath5k_common_padpos(skb);
1359         int padsize = padpos & 3;
1360 
1361         if (padsize && skb->len >= padpos + padsize) {
1362                 memmove(skb->data + padsize, skb->data, padpos);
1363                 skb_pull(skb, padsize);
1364                 return padsize;
1365         }
1366 
1367         return 0;
1368 }
1369 
1370 static void
1371 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1372                     struct ath5k_rx_status *rs)
1373 {
1374         struct ieee80211_rx_status *rxs;
1375         struct ath_common *common = ath5k_hw_common(ah);
1376 
1377         ath5k_remove_padding(skb);
1378 
1379         rxs = IEEE80211_SKB_RXCB(skb);
1380 
1381         rxs->flag = 0;
1382         if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1383                 rxs->flag |= RX_FLAG_MMIC_ERROR;
1384         if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1385                 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1386 
1387 
1388         /*
1389          * always extend the mac timestamp, since this information is
1390          * also needed for proper IBSS merging.
1391          *
1392          * XXX: it might be too late to do it here, since rs_tstamp is
1393          * 15bit only. that means TSF extension has to be done within
1394          * 32768usec (about 32ms). it might be necessary to move this to
1395          * the interrupt handler, like it is done in madwifi.
1396          */
1397         rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1398         rxs->flag |= RX_FLAG_MACTIME_END;
1399 
1400         rxs->freq = ah->curchan->center_freq;
1401         rxs->band = ah->curchan->band;
1402 
1403         rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1404 
1405         rxs->antenna = rs->rs_antenna;
1406 
1407         if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1408                 ah->stats.antenna_rx[rs->rs_antenna]++;
1409         else
1410                 ah->stats.antenna_rx[0]++; /* invalid */
1411 
1412         rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1413         rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1414         switch (ah->ah_bwmode) {
1415         case AR5K_BWMODE_5MHZ:
1416                 rxs->bw = RATE_INFO_BW_5;
1417                 break;
1418         case AR5K_BWMODE_10MHZ:
1419                 rxs->bw = RATE_INFO_BW_10;
1420                 break;
1421         default:
1422                 break;
1423         }
1424 
1425         if (rs->rs_rate ==
1426             ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1427                 rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1428 
1429         trace_ath5k_rx(ah, skb);
1430 
1431         if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1432                 ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1433 
1434                 /* check beacons in IBSS mode */
1435                 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1436                         ath5k_check_ibss_tsf(ah, skb, rxs);
1437         }
1438 
1439         ieee80211_rx(ah->hw, skb);
1440 }
1441 
1442 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1443  *
1444  * Check if we want to further process this frame or not. Also update
1445  * statistics. Return true if we want this frame, false if not.
1446  */
1447 static bool
1448 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1449 {
1450         ah->stats.rx_all_count++;
1451         ah->stats.rx_bytes_count += rs->rs_datalen;
1452 
1453         if (unlikely(rs->rs_status)) {
1454                 unsigned int filters;
1455 
1456                 if (rs->rs_status & AR5K_RXERR_CRC)
1457                         ah->stats.rxerr_crc++;
1458                 if (rs->rs_status & AR5K_RXERR_FIFO)
1459                         ah->stats.rxerr_fifo++;
1460                 if (rs->rs_status & AR5K_RXERR_PHY) {
1461                         ah->stats.rxerr_phy++;
1462                         if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1463                                 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1464 
1465                         /*
1466                          * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1467                          * These restarts happen when the radio resynchronizes to a stronger frame
1468                          * while receiving a weaker frame. Here we receive the prefix of the weak
1469                          * frame. Since these are incomplete packets, mark their CRC as invalid.
1470                          */
1471                         if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1472                             rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1473                                 rs->rs_status |= AR5K_RXERR_CRC;
1474                                 rs->rs_status &= ~AR5K_RXERR_PHY;
1475                         } else {
1476                                 return false;
1477                         }
1478                 }
1479                 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1480                         /*
1481                          * Decrypt error.  If the error occurred
1482                          * because there was no hardware key, then
1483                          * let the frame through so the upper layers
1484                          * can process it.  This is necessary for 5210
1485                          * parts which have no way to setup a ``clear''
1486                          * key cache entry.
1487                          *
1488                          * XXX do key cache faulting
1489                          */
1490                         ah->stats.rxerr_decrypt++;
1491                         if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1492                             !(rs->rs_status & AR5K_RXERR_CRC))
1493                                 return true;
1494                 }
1495                 if (rs->rs_status & AR5K_RXERR_MIC) {
1496                         ah->stats.rxerr_mic++;
1497                         return true;
1498                 }
1499 
1500                 /*
1501                  * Reject any frames with non-crypto errors, and take into account the
1502                  * current FIF_* filters.
1503                  */
1504                 filters = AR5K_RXERR_DECRYPT;
1505                 if (ah->fif_filter_flags & FIF_FCSFAIL)
1506                         filters |= AR5K_RXERR_CRC;
1507 
1508                 if (rs->rs_status & ~filters)
1509                         return false;
1510         }
1511 
1512         if (unlikely(rs->rs_more)) {
1513                 ah->stats.rxerr_jumbo++;
1514                 return false;
1515         }
1516         return true;
1517 }
1518 
1519 static void
1520 ath5k_set_current_imask(struct ath5k_hw *ah)
1521 {
1522         enum ath5k_int imask;
1523         unsigned long flags;
1524 
1525         if (test_bit(ATH_STAT_RESET, ah->status))
1526                 return;
1527 
1528         spin_lock_irqsave(&ah->irqlock, flags);
1529         imask = ah->imask;
1530         if (ah->rx_pending)
1531                 imask &= ~AR5K_INT_RX_ALL;
1532         if (ah->tx_pending)
1533                 imask &= ~AR5K_INT_TX_ALL;
1534         ath5k_hw_set_imr(ah, imask);
1535         spin_unlock_irqrestore(&ah->irqlock, flags);
1536 }
1537 
1538 static void
1539 ath5k_tasklet_rx(unsigned long data)
1540 {
1541         struct ath5k_rx_status rs = {};
1542         struct sk_buff *skb, *next_skb;
1543         dma_addr_t next_skb_addr;
1544         struct ath5k_hw *ah = (void *)data;
1545         struct ath_common *common = ath5k_hw_common(ah);
1546         struct ath5k_buf *bf;
1547         struct ath5k_desc *ds;
1548         int ret;
1549 
1550         spin_lock(&ah->rxbuflock);
1551         if (list_empty(&ah->rxbuf)) {
1552                 ATH5K_WARN(ah, "empty rx buf pool\n");
1553                 goto unlock;
1554         }
1555         do {
1556                 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1557                 BUG_ON(bf->skb == NULL);
1558                 skb = bf->skb;
1559                 ds = bf->desc;
1560 
1561                 /* bail if HW is still using self-linked descriptor */
1562                 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1563                         break;
1564 
1565                 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1566                 if (unlikely(ret == -EINPROGRESS))
1567                         break;
1568                 else if (unlikely(ret)) {
1569                         ATH5K_ERR(ah, "error in processing rx descriptor\n");
1570                         ah->stats.rxerr_proc++;
1571                         break;
1572                 }
1573 
1574                 if (ath5k_receive_frame_ok(ah, &rs)) {
1575                         next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1576 
1577                         /*
1578                          * If we can't replace bf->skb with a new skb under
1579                          * memory pressure, just skip this packet
1580                          */
1581                         if (!next_skb)
1582                                 goto next;
1583 
1584                         dma_unmap_single(ah->dev, bf->skbaddr,
1585                                          common->rx_bufsize,
1586                                          DMA_FROM_DEVICE);
1587 
1588                         skb_put(skb, rs.rs_datalen);
1589 
1590                         ath5k_receive_frame(ah, skb, &rs);
1591 
1592                         bf->skb = next_skb;
1593                         bf->skbaddr = next_skb_addr;
1594                 }
1595 next:
1596                 list_move_tail(&bf->list, &ah->rxbuf);
1597         } while (ath5k_rxbuf_setup(ah, bf) == 0);
1598 unlock:
1599         spin_unlock(&ah->rxbuflock);
1600         ah->rx_pending = false;
1601         ath5k_set_current_imask(ah);
1602 }
1603 
1604 
1605 /*************\
1606 * TX Handling *
1607 \*************/
1608 
1609 void
1610 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1611                struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1612 {
1613         struct ath5k_hw *ah = hw->priv;
1614         struct ath5k_buf *bf;
1615         unsigned long flags;
1616         int padsize;
1617 
1618         trace_ath5k_tx(ah, skb, txq);
1619 
1620         /*
1621          * The hardware expects the header padded to 4 byte boundaries.
1622          * If this is not the case, we add the padding after the header.
1623          */
1624         padsize = ath5k_add_padding(skb);
1625         if (padsize < 0) {
1626                 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1627                           " headroom to pad");
1628                 goto drop_packet;
1629         }
1630 
1631         if (txq->txq_len >= txq->txq_max &&
1632             txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1633                 ieee80211_stop_queue(hw, txq->qnum);
1634 
1635         spin_lock_irqsave(&ah->txbuflock, flags);
1636         if (list_empty(&ah->txbuf)) {
1637                 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1638                 spin_unlock_irqrestore(&ah->txbuflock, flags);
1639                 ieee80211_stop_queues(hw);
1640                 goto drop_packet;
1641         }
1642         bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1643         list_del(&bf->list);
1644         ah->txbuf_len--;
1645         if (list_empty(&ah->txbuf))
1646                 ieee80211_stop_queues(hw);
1647         spin_unlock_irqrestore(&ah->txbuflock, flags);
1648 
1649         bf->skb = skb;
1650 
1651         if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1652                 bf->skb = NULL;
1653                 spin_lock_irqsave(&ah->txbuflock, flags);
1654                 list_add_tail(&bf->list, &ah->txbuf);
1655                 ah->txbuf_len++;
1656                 spin_unlock_irqrestore(&ah->txbuflock, flags);
1657                 goto drop_packet;
1658         }
1659         return;
1660 
1661 drop_packet:
1662         ieee80211_free_txskb(hw, skb);
1663 }
1664 
1665 static void
1666 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1667                          struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1668                          struct ath5k_buf *bf)
1669 {
1670         struct ieee80211_tx_info *info;
1671         u8 tries[3];
1672         int i;
1673         int size = 0;
1674 
1675         ah->stats.tx_all_count++;
1676         ah->stats.tx_bytes_count += skb->len;
1677         info = IEEE80211_SKB_CB(skb);
1678 
1679         size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1680         memcpy(info->status.rates, bf->rates, size);
1681 
1682         tries[0] = info->status.rates[0].count;
1683         tries[1] = info->status.rates[1].count;
1684         tries[2] = info->status.rates[2].count;
1685 
1686         ieee80211_tx_info_clear_status(info);
1687 
1688         for (i = 0; i < ts->ts_final_idx; i++) {
1689                 struct ieee80211_tx_rate *r =
1690                         &info->status.rates[i];
1691 
1692                 r->count = tries[i];
1693         }
1694 
1695         info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1696         info->status.rates[ts->ts_final_idx + 1].idx = -1;
1697 
1698         if (unlikely(ts->ts_status)) {
1699                 ah->stats.ack_fail++;
1700                 if (ts->ts_status & AR5K_TXERR_FILT) {
1701                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1702                         ah->stats.txerr_filt++;
1703                 }
1704                 if (ts->ts_status & AR5K_TXERR_XRETRY)
1705                         ah->stats.txerr_retry++;
1706                 if (ts->ts_status & AR5K_TXERR_FIFO)
1707                         ah->stats.txerr_fifo++;
1708         } else {
1709                 info->flags |= IEEE80211_TX_STAT_ACK;
1710                 info->status.ack_signal = ts->ts_rssi;
1711 
1712                 /* count the successful attempt as well */
1713                 info->status.rates[ts->ts_final_idx].count++;
1714         }
1715 
1716         /*
1717         * Remove MAC header padding before giving the frame
1718         * back to mac80211.
1719         */
1720         ath5k_remove_padding(skb);
1721 
1722         if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1723                 ah->stats.antenna_tx[ts->ts_antenna]++;
1724         else
1725                 ah->stats.antenna_tx[0]++; /* invalid */
1726 
1727         trace_ath5k_tx_complete(ah, skb, txq, ts);
1728         ieee80211_tx_status(ah->hw, skb);
1729 }
1730 
1731 static void
1732 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1733 {
1734         struct ath5k_tx_status ts = {};
1735         struct ath5k_buf *bf, *bf0;
1736         struct ath5k_desc *ds;
1737         struct sk_buff *skb;
1738         int ret;
1739 
1740         spin_lock(&txq->lock);
1741         list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1742 
1743                 txq->txq_poll_mark = false;
1744 
1745                 /* skb might already have been processed last time. */
1746                 if (bf->skb != NULL) {
1747                         ds = bf->desc;
1748 
1749                         ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1750                         if (unlikely(ret == -EINPROGRESS))
1751                                 break;
1752                         else if (unlikely(ret)) {
1753                                 ATH5K_ERR(ah,
1754                                         "error %d while processing "
1755                                         "queue %u\n", ret, txq->qnum);
1756                                 break;
1757                         }
1758 
1759                         skb = bf->skb;
1760                         bf->skb = NULL;
1761 
1762                         dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1763                                         DMA_TO_DEVICE);
1764                         ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1765                 }
1766 
1767                 /*
1768                  * It's possible that the hardware can say the buffer is
1769                  * completed when it hasn't yet loaded the ds_link from
1770                  * host memory and moved on.
1771                  * Always keep the last descriptor to avoid HW races...
1772                  */
1773                 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1774                         spin_lock(&ah->txbuflock);
1775                         list_move_tail(&bf->list, &ah->txbuf);
1776                         ah->txbuf_len++;
1777                         txq->txq_len--;
1778                         spin_unlock(&ah->txbuflock);
1779                 }
1780         }
1781         spin_unlock(&txq->lock);
1782         if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1783                 ieee80211_wake_queue(ah->hw, txq->qnum);
1784 }
1785 
1786 static void
1787 ath5k_tasklet_tx(unsigned long data)
1788 {
1789         int i;
1790         struct ath5k_hw *ah = (void *)data;
1791 
1792         for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1793                 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1794                         ath5k_tx_processq(ah, &ah->txqs[i]);
1795 
1796         ah->tx_pending = false;
1797         ath5k_set_current_imask(ah);
1798 }
1799 
1800 
1801 /*****************\
1802 * Beacon handling *
1803 \*****************/
1804 
1805 /*
1806  * Setup the beacon frame for transmit.
1807  */
1808 static int
1809 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1810 {
1811         struct sk_buff *skb = bf->skb;
1812         struct  ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1813         struct ath5k_desc *ds;
1814         int ret = 0;
1815         u8 antenna;
1816         u32 flags;
1817         const int padsize = 0;
1818 
1819         bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1820                         DMA_TO_DEVICE);
1821         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1822                         "skbaddr %llx\n", skb, skb->data, skb->len,
1823                         (unsigned long long)bf->skbaddr);
1824 
1825         if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1826                 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1827                 dev_kfree_skb_any(skb);
1828                 bf->skb = NULL;
1829                 return -EIO;
1830         }
1831 
1832         ds = bf->desc;
1833         antenna = ah->ah_tx_ant;
1834 
1835         flags = AR5K_TXDESC_NOACK;
1836         if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1837                 ds->ds_link = bf->daddr;        /* self-linked */
1838                 flags |= AR5K_TXDESC_VEOL;
1839         } else
1840                 ds->ds_link = 0;
1841 
1842         /*
1843          * If we use multiple antennas on AP and use
1844          * the Sectored AP scenario, switch antenna every
1845          * 4 beacons to make sure everybody hears our AP.
1846          * When a client tries to associate, hw will keep
1847          * track of the tx antenna to be used for this client
1848          * automatically, based on ACKed packets.
1849          *
1850          * Note: AP still listens and transmits RTS on the
1851          * default antenna which is supposed to be an omni.
1852          *
1853          * Note2: On sectored scenarios it's possible to have
1854          * multiple antennas (1 omni -- the default -- and 14
1855          * sectors), so if we choose to actually support this
1856          * mode, we need to allow the user to set how many antennas
1857          * we have and tweak the code below to send beacons
1858          * on all of them.
1859          */
1860         if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1861                 antenna = ah->bsent & 4 ? 2 : 1;
1862 
1863 
1864         /* FIXME: If we are in g mode and rate is a CCK rate
1865          * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1866          * from tx power (value is in dB units already) */
1867         ds->ds_data = bf->skbaddr;
1868         ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1869                         ieee80211_get_hdrlen_from_skb(skb), padsize,
1870                         AR5K_PKT_TYPE_BEACON,
1871                         (ah->ah_txpower.txp_requested * 2),
1872                         ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1873                         1, AR5K_TXKEYIX_INVALID,
1874                         antenna, flags, 0, 0);
1875         if (ret)
1876                 goto err_unmap;
1877 
1878         return 0;
1879 err_unmap:
1880         dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1881         return ret;
1882 }
1883 
1884 /*
1885  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1886  * this is called only once at config_bss time, for AP we do it every
1887  * SWBA interrupt so that the TIM will reflect buffered frames.
1888  *
1889  * Called with the beacon lock.
1890  */
1891 int
1892 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1893 {
1894         int ret;
1895         struct ath5k_hw *ah = hw->priv;
1896         struct ath5k_vif *avf;
1897         struct sk_buff *skb;
1898 
1899         if (WARN_ON(!vif)) {
1900                 ret = -EINVAL;
1901                 goto out;
1902         }
1903 
1904         skb = ieee80211_beacon_get(hw, vif);
1905 
1906         if (!skb) {
1907                 ret = -ENOMEM;
1908                 goto out;
1909         }
1910 
1911         avf = (void *)vif->drv_priv;
1912         ath5k_txbuf_free_skb(ah, avf->bbuf);
1913         avf->bbuf->skb = skb;
1914         ret = ath5k_beacon_setup(ah, avf->bbuf);
1915 out:
1916         return ret;
1917 }
1918 
1919 /*
1920  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1921  * frame contents are done as needed and the slot time is
1922  * also adjusted based on current state.
1923  *
1924  * This is called from software irq context (beacontq tasklets)
1925  * or user context from ath5k_beacon_config.
1926  */
1927 static void
1928 ath5k_beacon_send(struct ath5k_hw *ah)
1929 {
1930         struct ieee80211_vif *vif;
1931         struct ath5k_vif *avf;
1932         struct ath5k_buf *bf;
1933         struct sk_buff *skb;
1934         int err;
1935 
1936         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1937 
1938         /*
1939          * Check if the previous beacon has gone out.  If
1940          * not, don't don't try to post another: skip this
1941          * period and wait for the next.  Missed beacons
1942          * indicate a problem and should not occur.  If we
1943          * miss too many consecutive beacons reset the device.
1944          */
1945         if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1946                 ah->bmisscount++;
1947                 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1948                         "missed %u consecutive beacons\n", ah->bmisscount);
1949                 if (ah->bmisscount > 10) {      /* NB: 10 is a guess */
1950                         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1951                                 "stuck beacon time (%u missed)\n",
1952                                 ah->bmisscount);
1953                         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1954                                   "stuck beacon, resetting\n");
1955                         ieee80211_queue_work(ah->hw, &ah->reset_work);
1956                 }
1957                 return;
1958         }
1959         if (unlikely(ah->bmisscount != 0)) {
1960                 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1961                         "resume beacon xmit after %u misses\n",
1962                         ah->bmisscount);
1963                 ah->bmisscount = 0;
1964         }
1965 
1966         if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1967                         ah->num_mesh_vifs > 1) ||
1968                         ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1969                 u64 tsf = ath5k_hw_get_tsf64(ah);
1970                 u32 tsftu = TSF_TO_TU(tsf);
1971                 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1972                 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1973                 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1974                         "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1975                         (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1976         } else /* only one interface */
1977                 vif = ah->bslot[0];
1978 
1979         if (!vif)
1980                 return;
1981 
1982         avf = (void *)vif->drv_priv;
1983         bf = avf->bbuf;
1984 
1985         /*
1986          * Stop any current dma and put the new frame on the queue.
1987          * This should never fail since we check above that no frames
1988          * are still pending on the queue.
1989          */
1990         if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1991                 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1992                 /* NB: hw still stops DMA, so proceed */
1993         }
1994 
1995         /* refresh the beacon for AP or MESH mode */
1996         if (ah->opmode == NL80211_IFTYPE_AP ||
1997             ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1998                 err = ath5k_beacon_update(ah->hw, vif);
1999                 if (err)
2000                         return;
2001         }
2002 
2003         if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2004                      ah->opmode == NL80211_IFTYPE_MONITOR)) {
2005                 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2006                 return;
2007         }
2008 
2009         trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2010 
2011         ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2012         ath5k_hw_start_tx_dma(ah, ah->bhalq);
2013         ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2014                 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2015 
2016         skb = ieee80211_get_buffered_bc(ah->hw, vif);
2017         while (skb) {
2018                 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2019 
2020                 if (ah->cabq->txq_len >= ah->cabq->txq_max)
2021                         break;
2022 
2023                 skb = ieee80211_get_buffered_bc(ah->hw, vif);
2024         }
2025 
2026         ah->bsent++;
2027 }
2028 
2029 /**
2030  * ath5k_beacon_update_timers - update beacon timers
2031  *
2032  * @ah: struct ath5k_hw pointer we are operating on
2033  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2034  *          beacon timer update based on the current HW TSF.
2035  *
2036  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2037  * of a received beacon or the current local hardware TSF and write it to the
2038  * beacon timer registers.
2039  *
2040  * This is called in a variety of situations, e.g. when a beacon is received,
2041  * when a TSF update has been detected, but also when an new IBSS is created or
2042  * when we otherwise know we have to update the timers, but we keep it in this
2043  * function to have it all together in one place.
2044  */
2045 void
2046 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2047 {
2048         u32 nexttbtt, intval, hw_tu, bc_tu;
2049         u64 hw_tsf;
2050 
2051         intval = ah->bintval & AR5K_BEACON_PERIOD;
2052         if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2053                 + ah->num_mesh_vifs > 1) {
2054                 intval /= ATH_BCBUF;    /* staggered multi-bss beacons */
2055                 if (intval < 15)
2056                         ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2057                                    intval);
2058         }
2059         if (WARN_ON(!intval))
2060                 return;
2061 
2062         /* beacon TSF converted to TU */
2063         bc_tu = TSF_TO_TU(bc_tsf);
2064 
2065         /* current TSF converted to TU */
2066         hw_tsf = ath5k_hw_get_tsf64(ah);
2067         hw_tu = TSF_TO_TU(hw_tsf);
2068 
2069 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2070         /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2071          * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2072          * configuration we need to make sure it is bigger than that. */
2073 
2074         if (bc_tsf == -1) {
2075                 /*
2076                  * no beacons received, called internally.
2077                  * just need to refresh timers based on HW TSF.
2078                  */
2079                 nexttbtt = roundup(hw_tu + FUDGE, intval);
2080         } else if (bc_tsf == 0) {
2081                 /*
2082                  * no beacon received, probably called by ath5k_reset_tsf().
2083                  * reset TSF to start with 0.
2084                  */
2085                 nexttbtt = intval;
2086                 intval |= AR5K_BEACON_RESET_TSF;
2087         } else if (bc_tsf > hw_tsf) {
2088                 /*
2089                  * beacon received, SW merge happened but HW TSF not yet updated.
2090                  * not possible to reconfigure timers yet, but next time we
2091                  * receive a beacon with the same BSSID, the hardware will
2092                  * automatically update the TSF and then we need to reconfigure
2093                  * the timers.
2094                  */
2095                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2096                         "need to wait for HW TSF sync\n");
2097                 return;
2098         } else {
2099                 /*
2100                  * most important case for beacon synchronization between STA.
2101                  *
2102                  * beacon received and HW TSF has been already updated by HW.
2103                  * update next TBTT based on the TSF of the beacon, but make
2104                  * sure it is ahead of our local TSF timer.
2105                  */
2106                 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2107         }
2108 #undef FUDGE
2109 
2110         ah->nexttbtt = nexttbtt;
2111 
2112         intval |= AR5K_BEACON_ENA;
2113         ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2114 
2115         /*
2116          * debugging output last in order to preserve the time critical aspect
2117          * of this function
2118          */
2119         if (bc_tsf == -1)
2120                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2121                         "reconfigured timers based on HW TSF\n");
2122         else if (bc_tsf == 0)
2123                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2124                         "reset HW TSF and timers\n");
2125         else
2126                 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2127                         "updated timers based on beacon TSF\n");
2128 
2129         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2130                           "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2131                           (unsigned long long) bc_tsf,
2132                           (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2133         ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2134                 intval & AR5K_BEACON_PERIOD,
2135                 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2136                 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2137 }
2138 
2139 /**
2140  * ath5k_beacon_config - Configure the beacon queues and interrupts
2141  *
2142  * @ah: struct ath5k_hw pointer we are operating on
2143  *
2144  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2145  * interrupts to detect TSF updates only.
2146  */
2147 void
2148 ath5k_beacon_config(struct ath5k_hw *ah)
2149 {
2150         spin_lock_bh(&ah->block);
2151         ah->bmisscount = 0;
2152         ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2153 
2154         if (ah->enable_beacon) {
2155                 /*
2156                  * In IBSS mode we use a self-linked tx descriptor and let the
2157                  * hardware send the beacons automatically. We have to load it
2158                  * only once here.
2159                  * We use the SWBA interrupt only to keep track of the beacon
2160                  * timers in order to detect automatic TSF updates.
2161                  */
2162                 ath5k_beaconq_config(ah);
2163 
2164                 ah->imask |= AR5K_INT_SWBA;
2165 
2166                 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2167                         if (ath5k_hw_hasveol(ah))
2168                                 ath5k_beacon_send(ah);
2169                 } else
2170                         ath5k_beacon_update_timers(ah, -1);
2171         } else {
2172                 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2173         }
2174 
2175         ath5k_hw_set_imr(ah, ah->imask);
2176         spin_unlock_bh(&ah->block);
2177 }
2178 
2179 static void ath5k_tasklet_beacon(unsigned long data)
2180 {
2181         struct ath5k_hw *ah = (struct ath5k_hw *) data;
2182 
2183         /*
2184          * Software beacon alert--time to send a beacon.
2185          *
2186          * In IBSS mode we use this interrupt just to
2187          * keep track of the next TBTT (target beacon
2188          * transmission time) in order to detect whether
2189          * automatic TSF updates happened.
2190          */
2191         if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2192                 /* XXX: only if VEOL supported */
2193                 u64 tsf = ath5k_hw_get_tsf64(ah);
2194                 ah->nexttbtt += ah->bintval;
2195                 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2196                                 "SWBA nexttbtt: %x hw_tu: %x "
2197                                 "TSF: %llx\n",
2198                                 ah->nexttbtt,
2199                                 TSF_TO_TU(tsf),
2200                                 (unsigned long long) tsf);
2201         } else {
2202                 spin_lock(&ah->block);
2203                 ath5k_beacon_send(ah);
2204                 spin_unlock(&ah->block);
2205         }
2206 }
2207 
2208 
2209 /********************\
2210 * Interrupt handling *
2211 \********************/
2212 
2213 static void
2214 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2215 {
2216         if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2217            !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2218            !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2219 
2220                 /* Run ANI only when calibration is not active */
2221 
2222                 ah->ah_cal_next_ani = jiffies +
2223                         msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2224                 tasklet_schedule(&ah->ani_tasklet);
2225 
2226         } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2227                 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2228                 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2229 
2230                 /* Run calibration only when another calibration
2231                  * is not running.
2232                  *
2233                  * Note: This is for both full/short calibration,
2234                  * if it's time for a full one, ath5k_calibrate_work will deal
2235                  * with it. */
2236 
2237                 ah->ah_cal_next_short = jiffies +
2238                         msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2239                 ieee80211_queue_work(ah->hw, &ah->calib_work);
2240         }
2241         /* we could use SWI to generate enough interrupts to meet our
2242          * calibration interval requirements, if necessary:
2243          * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2244 }
2245 
2246 static void
2247 ath5k_schedule_rx(struct ath5k_hw *ah)
2248 {
2249         ah->rx_pending = true;
2250         tasklet_schedule(&ah->rxtq);
2251 }
2252 
2253 static void
2254 ath5k_schedule_tx(struct ath5k_hw *ah)
2255 {
2256         ah->tx_pending = true;
2257         tasklet_schedule(&ah->txtq);
2258 }
2259 
2260 static irqreturn_t
2261 ath5k_intr(int irq, void *dev_id)
2262 {
2263         struct ath5k_hw *ah = dev_id;
2264         enum ath5k_int status;
2265         unsigned int counter = 1000;
2266 
2267 
2268         /*
2269          * If hw is not ready (or detached) and we get an
2270          * interrupt, or if we have no interrupts pending
2271          * (that means it's not for us) skip it.
2272          *
2273          * NOTE: Group 0/1 PCI interface registers are not
2274          * supported on WiSOCs, so we can't check for pending
2275          * interrupts (ISR belongs to another register group
2276          * so we are ok).
2277          */
2278         if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2279                         ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2280                         !ath5k_hw_is_intr_pending(ah))))
2281                 return IRQ_NONE;
2282 
2283         /** Main loop **/
2284         do {
2285                 ath5k_hw_get_isr(ah, &status);  /* NB: clears IRQ too */
2286 
2287                 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2288                                 status, ah->imask);
2289 
2290                 /*
2291                  * Fatal hw error -> Log and reset
2292                  *
2293                  * Fatal errors are unrecoverable so we have to
2294                  * reset the card. These errors include bus and
2295                  * dma errors.
2296                  */
2297                 if (unlikely(status & AR5K_INT_FATAL)) {
2298 
2299                         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2300                                   "fatal int, resetting\n");
2301                         ieee80211_queue_work(ah->hw, &ah->reset_work);
2302 
2303                 /*
2304                  * RX Overrun -> Count and reset if needed
2305                  *
2306                  * Receive buffers are full. Either the bus is busy or
2307                  * the CPU is not fast enough to process all received
2308                  * frames.
2309                  */
2310                 } else if (unlikely(status & AR5K_INT_RXORN)) {
2311 
2312                         /*
2313                          * Older chipsets need a reset to come out of this
2314                          * condition, but we treat it as RX for newer chips.
2315                          * We don't know exactly which versions need a reset
2316                          * this guess is copied from the HAL.
2317                          */
2318                         ah->stats.rxorn_intr++;
2319 
2320                         if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2321                                 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2322                                           "rx overrun, resetting\n");
2323                                 ieee80211_queue_work(ah->hw, &ah->reset_work);
2324                         } else
2325                                 ath5k_schedule_rx(ah);
2326 
2327                 } else {
2328 
2329                         /* Software Beacon Alert -> Schedule beacon tasklet */
2330                         if (status & AR5K_INT_SWBA)
2331                                 tasklet_hi_schedule(&ah->beacontq);
2332 
2333                         /*
2334                          * No more RX descriptors -> Just count
2335                          *
2336                          * NB: the hardware should re-read the link when
2337                          *     RXE bit is written, but it doesn't work at
2338                          *     least on older hardware revs.
2339                          */
2340                         if (status & AR5K_INT_RXEOL)
2341                                 ah->stats.rxeol_intr++;
2342 
2343 
2344                         /* TX Underrun -> Bump tx trigger level */
2345                         if (status & AR5K_INT_TXURN)
2346                                 ath5k_hw_update_tx_triglevel(ah, true);
2347 
2348                         /* RX -> Schedule rx tasklet */
2349                         if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2350                                 ath5k_schedule_rx(ah);
2351 
2352                         /* TX -> Schedule tx tasklet */
2353                         if (status & (AR5K_INT_TXOK
2354                                         | AR5K_INT_TXDESC
2355                                         | AR5K_INT_TXERR
2356                                         | AR5K_INT_TXEOL))
2357                                 ath5k_schedule_tx(ah);
2358 
2359                         /* Missed beacon -> TODO
2360                         if (status & AR5K_INT_BMISS)
2361                         */
2362 
2363                         /* MIB event -> Update counters and notify ANI */
2364                         if (status & AR5K_INT_MIB) {
2365                                 ah->stats.mib_intr++;
2366                                 ath5k_hw_update_mib_counters(ah);
2367                                 ath5k_ani_mib_intr(ah);
2368                         }
2369 
2370                         /* GPIO -> Notify RFKill layer */
2371                         if (status & AR5K_INT_GPIO)
2372                                 tasklet_schedule(&ah->rf_kill.toggleq);
2373 
2374                 }
2375 
2376                 if (ath5k_get_bus_type(ah) == ATH_AHB)
2377                         break;
2378 
2379         } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2380 
2381         /*
2382          * Until we handle rx/tx interrupts mask them on IMR
2383          *
2384          * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2385          * and unset after we 've handled the interrupts.
2386          */
2387         if (ah->rx_pending || ah->tx_pending)
2388                 ath5k_set_current_imask(ah);
2389 
2390         if (unlikely(!counter))
2391                 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2392 
2393         /* Fire up calibration poll */
2394         ath5k_intr_calibration_poll(ah);
2395 
2396         return IRQ_HANDLED;
2397 }
2398 
2399 /*
2400  * Periodically recalibrate the PHY to account
2401  * for temperature/environment changes.
2402  */
2403 static void
2404 ath5k_calibrate_work(struct work_struct *work)
2405 {
2406         struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2407                 calib_work);
2408 
2409         /* Should we run a full calibration ? */
2410         if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2411 
2412                 ah->ah_cal_next_full = jiffies +
2413                         msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2414                 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2415 
2416                 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2417                                 "running full calibration\n");
2418 
2419                 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2420                         /*
2421                          * Rfgain is out of bounds, reset the chip
2422                          * to load new gain values.
2423                          */
2424                         ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2425                                         "got new rfgain, resetting\n");
2426                         ieee80211_queue_work(ah->hw, &ah->reset_work);
2427                 }
2428         } else
2429                 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2430 
2431 
2432         ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2433                 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2434                 ah->curchan->hw_value);
2435 
2436         if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2437                 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2438                         ieee80211_frequency_to_channel(
2439                                 ah->curchan->center_freq));
2440 
2441         /* Clear calibration flags */
2442         if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2443                 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2444         else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2445                 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2446 }
2447 
2448 
2449 static void
2450 ath5k_tasklet_ani(unsigned long data)
2451 {
2452         struct ath5k_hw *ah = (void *)data;
2453 
2454         ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2455         ath5k_ani_calibration(ah);
2456         ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2457 }
2458 
2459 
2460 static void
2461 ath5k_tx_complete_poll_work(struct work_struct *work)
2462 {
2463         struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2464                         tx_complete_work.work);
2465         struct ath5k_txq *txq;
2466         int i;
2467         bool needreset = false;
2468 
2469         if (!test_bit(ATH_STAT_STARTED, ah->status))
2470                 return;
2471 
2472         mutex_lock(&ah->lock);
2473 
2474         for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2475                 if (ah->txqs[i].setup) {
2476                         txq = &ah->txqs[i];
2477                         spin_lock_bh(&txq->lock);
2478                         if (txq->txq_len > 1) {
2479                                 if (txq->txq_poll_mark) {
2480                                         ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2481                                                   "TX queue stuck %d\n",
2482                                                   txq->qnum);
2483                                         needreset = true;
2484                                         txq->txq_stuck++;
2485                                         spin_unlock_bh(&txq->lock);
2486                                         break;
2487                                 } else {
2488                                         txq->txq_poll_mark = true;
2489                                 }
2490                         }
2491                         spin_unlock_bh(&txq->lock);
2492                 }
2493         }
2494 
2495         if (needreset) {
2496                 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2497                           "TX queues stuck, resetting\n");
2498                 ath5k_reset(ah, NULL, true);
2499         }
2500 
2501         mutex_unlock(&ah->lock);
2502 
2503         ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2504                 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2505 }
2506 
2507 
2508 /*************************\
2509 * Initialization routines *
2510 \*************************/
2511 
2512 static const struct ieee80211_iface_limit if_limits[] = {
2513         { .max = 2048,  .types = BIT(NL80211_IFTYPE_STATION) },
2514         { .max = 4,     .types =
2515 #ifdef CONFIG_MAC80211_MESH
2516                                  BIT(NL80211_IFTYPE_MESH_POINT) |
2517 #endif
2518                                  BIT(NL80211_IFTYPE_AP) },
2519 };
2520 
2521 static const struct ieee80211_iface_combination if_comb = {
2522         .limits = if_limits,
2523         .n_limits = ARRAY_SIZE(if_limits),
2524         .max_interfaces = 2048,
2525         .num_different_channels = 1,
2526 };
2527 
2528 int
2529 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2530 {
2531         struct ieee80211_hw *hw = ah->hw;
2532         struct ath_common *common;
2533         int ret;
2534         int csz;
2535 
2536         /* Initialize driver private data */
2537         SET_IEEE80211_DEV(hw, ah->dev);
2538         ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2539         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2540         ieee80211_hw_set(hw, MFP_CAPABLE);
2541         ieee80211_hw_set(hw, SIGNAL_DBM);
2542         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2543         ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2544 
2545         hw->wiphy->interface_modes =
2546                 BIT(NL80211_IFTYPE_AP) |
2547                 BIT(NL80211_IFTYPE_STATION) |
2548                 BIT(NL80211_IFTYPE_ADHOC) |
2549                 BIT(NL80211_IFTYPE_MESH_POINT);
2550 
2551         hw->wiphy->iface_combinations = &if_comb;
2552         hw->wiphy->n_iface_combinations = 1;
2553 
2554         /* SW support for IBSS_RSN is provided by mac80211 */
2555         hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2556 
2557         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2558 
2559         /* both antennas can be configured as RX or TX */
2560         hw->wiphy->available_antennas_tx = 0x3;
2561         hw->wiphy->available_antennas_rx = 0x3;
2562 
2563         hw->extra_tx_headroom = 2;
2564 
2565         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2566 
2567         /*
2568          * Mark the device as detached to avoid processing
2569          * interrupts until setup is complete.
2570          */
2571         __set_bit(ATH_STAT_INVALID, ah->status);
2572 
2573         ah->opmode = NL80211_IFTYPE_STATION;
2574         ah->bintval = 1000;
2575         mutex_init(&ah->lock);
2576         spin_lock_init(&ah->rxbuflock);
2577         spin_lock_init(&ah->txbuflock);
2578         spin_lock_init(&ah->block);
2579         spin_lock_init(&ah->irqlock);
2580 
2581         /* Setup interrupt handler */
2582         ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2583         if (ret) {
2584                 ATH5K_ERR(ah, "request_irq failed\n");
2585                 goto err;
2586         }
2587 
2588         common = ath5k_hw_common(ah);
2589         common->ops = &ath5k_common_ops;
2590         common->bus_ops = bus_ops;
2591         common->ah = ah;
2592         common->hw = hw;
2593         common->priv = ah;
2594         common->clockrate = 40;
2595 
2596         /*
2597          * Cache line size is used to size and align various
2598          * structures used to communicate with the hardware.
2599          */
2600         ath5k_read_cachesize(common, &csz);
2601         common->cachelsz = csz << 2; /* convert to bytes */
2602 
2603         spin_lock_init(&common->cc_lock);
2604 
2605         /* Initialize device */
2606         ret = ath5k_hw_init(ah);
2607         if (ret)
2608                 goto err_irq;
2609 
2610         /* Set up multi-rate retry capabilities */
2611         if (ah->ah_capabilities.cap_has_mrr_support) {
2612                 hw->max_rates = 4;
2613                 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2614                                          AR5K_INIT_RETRY_LONG);
2615         }
2616 
2617         hw->vif_data_size = sizeof(struct ath5k_vif);
2618 
2619         /* Finish private driver data initialization */
2620         ret = ath5k_init(hw);
2621         if (ret)
2622                 goto err_ah;
2623 
2624         ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2625                         ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2626                                         ah->ah_mac_srev,
2627                                         ah->ah_phy_revision);
2628 
2629         if (!ah->ah_single_chip) {
2630                 /* Single chip radio (!RF5111) */
2631                 if (ah->ah_radio_5ghz_revision &&
2632                         !ah->ah_radio_2ghz_revision) {
2633                         /* No 5GHz support -> report 2GHz radio */
2634                         if (!test_bit(AR5K_MODE_11A,
2635                                 ah->ah_capabilities.cap_mode)) {
2636                                 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2637                                         ath5k_chip_name(AR5K_VERSION_RAD,
2638                                                 ah->ah_radio_5ghz_revision),
2639                                                 ah->ah_radio_5ghz_revision);
2640                         /* No 2GHz support (5110 and some
2641                          * 5GHz only cards) -> report 5GHz radio */
2642                         } else if (!test_bit(AR5K_MODE_11B,
2643                                 ah->ah_capabilities.cap_mode)) {
2644                                 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2645                                         ath5k_chip_name(AR5K_VERSION_RAD,
2646                                                 ah->ah_radio_5ghz_revision),
2647                                                 ah->ah_radio_5ghz_revision);
2648                         /* Multiband radio */
2649                         } else {
2650                                 ATH5K_INFO(ah, "RF%s multiband radio found"
2651                                         " (0x%x)\n",
2652                                         ath5k_chip_name(AR5K_VERSION_RAD,
2653                                                 ah->ah_radio_5ghz_revision),
2654                                                 ah->ah_radio_5ghz_revision);
2655                         }
2656                 }
2657                 /* Multi chip radio (RF5111 - RF2111) ->
2658                  * report both 2GHz/5GHz radios */
2659                 else if (ah->ah_radio_5ghz_revision &&
2660                                 ah->ah_radio_2ghz_revision) {
2661                         ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2662                                 ath5k_chip_name(AR5K_VERSION_RAD,
2663                                         ah->ah_radio_5ghz_revision),
2664                                         ah->ah_radio_5ghz_revision);
2665                         ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2666                                 ath5k_chip_name(AR5K_VERSION_RAD,
2667                                         ah->ah_radio_2ghz_revision),
2668                                         ah->ah_radio_2ghz_revision);
2669                 }
2670         }
2671 
2672         ath5k_debug_init_device(ah);
2673 
2674         /* ready to process interrupts */
2675         __clear_bit(ATH_STAT_INVALID, ah->status);
2676 
2677         return 0;
2678 err_ah:
2679         ath5k_hw_deinit(ah);
2680 err_irq:
2681         free_irq(ah->irq, ah);
2682 err:
2683         return ret;
2684 }
2685 
2686 static int
2687 ath5k_stop_locked(struct ath5k_hw *ah)
2688 {
2689 
2690         ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2691                         test_bit(ATH_STAT_INVALID, ah->status));
2692 
2693         /*
2694          * Shutdown the hardware and driver:
2695          *    stop output from above
2696          *    disable interrupts
2697          *    turn off timers
2698          *    turn off the radio
2699          *    clear transmit machinery
2700          *    clear receive machinery
2701          *    drain and release tx queues
2702          *    reclaim beacon resources
2703          *    power down hardware
2704          *
2705          * Note that some of this work is not possible if the
2706          * hardware is gone (invalid).
2707          */
2708         ieee80211_stop_queues(ah->hw);
2709 
2710         if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2711                 ath5k_led_off(ah);
2712                 ath5k_hw_set_imr(ah, 0);
2713                 synchronize_irq(ah->irq);
2714                 ath5k_rx_stop(ah);
2715                 ath5k_hw_dma_stop(ah);
2716                 ath5k_drain_tx_buffs(ah);
2717                 ath5k_hw_phy_disable(ah);
2718         }
2719 
2720         return 0;
2721 }
2722 
2723 int ath5k_start(struct ieee80211_hw *hw)
2724 {
2725         struct ath5k_hw *ah = hw->priv;
2726         struct ath_common *common = ath5k_hw_common(ah);
2727         int ret, i;
2728 
2729         mutex_lock(&ah->lock);
2730 
2731         ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2732 
2733         /*
2734          * Stop anything previously setup.  This is safe
2735          * no matter this is the first time through or not.
2736          */
2737         ath5k_stop_locked(ah);
2738 
2739         /*
2740          * The basic interface to setting the hardware in a good
2741          * state is ``reset''.  On return the hardware is known to
2742          * be powered up and with interrupts disabled.  This must
2743          * be followed by initialization of the appropriate bits
2744          * and then setup of the interrupt mask.
2745          */
2746         ah->curchan = ah->hw->conf.chandef.chan;
2747         ah->imask = AR5K_INT_RXOK
2748                 | AR5K_INT_RXERR
2749                 | AR5K_INT_RXEOL
2750                 | AR5K_INT_RXORN
2751                 | AR5K_INT_TXDESC
2752                 | AR5K_INT_TXEOL
2753                 | AR5K_INT_FATAL
2754                 | AR5K_INT_GLOBAL
2755                 | AR5K_INT_MIB;
2756 
2757         ret = ath5k_reset(ah, NULL, false);
2758         if (ret)
2759                 goto done;
2760 
2761         if (!ath5k_modparam_no_hw_rfkill_switch)
2762                 ath5k_rfkill_hw_start(ah);
2763 
2764         /*
2765          * Reset the key cache since some parts do not reset the
2766          * contents on initial power up or resume from suspend.
2767          */
2768         for (i = 0; i < common->keymax; i++)
2769                 ath_hw_keyreset(common, (u16) i);
2770 
2771         /* Use higher rates for acks instead of base
2772          * rate */
2773         ah->ah_ack_bitrate_high = true;
2774 
2775         for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2776                 ah->bslot[i] = NULL;
2777 
2778         ret = 0;
2779 done:
2780         mutex_unlock(&ah->lock);
2781 
2782         set_bit(ATH_STAT_STARTED, ah->status);
2783         ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2784                         msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2785 
2786         return ret;
2787 }
2788 
2789 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2790 {
2791         ah->rx_pending = false;
2792         ah->tx_pending = false;
2793         tasklet_kill(&ah->rxtq);
2794         tasklet_kill(&ah->txtq);
2795         tasklet_kill(&ah->beacontq);
2796         tasklet_kill(&ah->ani_tasklet);
2797 }
2798 
2799 /*
2800  * Stop the device, grabbing the top-level lock to protect
2801  * against concurrent entry through ath5k_init (which can happen
2802  * if another thread does a system call and the thread doing the
2803  * stop is preempted).
2804  */
2805 void ath5k_stop(struct ieee80211_hw *hw)
2806 {
2807         struct ath5k_hw *ah = hw->priv;
2808         int ret;
2809 
2810         mutex_lock(&ah->lock);
2811         ret = ath5k_stop_locked(ah);
2812         if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2813                 /*
2814                  * Don't set the card in full sleep mode!
2815                  *
2816                  * a) When the device is in this state it must be carefully
2817                  * woken up or references to registers in the PCI clock
2818                  * domain may freeze the bus (and system).  This varies
2819                  * by chip and is mostly an issue with newer parts
2820                  * (madwifi sources mentioned srev >= 0x78) that go to
2821                  * sleep more quickly.
2822                  *
2823                  * b) On older chips full sleep results a weird behaviour
2824                  * during wakeup. I tested various cards with srev < 0x78
2825                  * and they don't wake up after module reload, a second
2826                  * module reload is needed to bring the card up again.
2827                  *
2828                  * Until we figure out what's going on don't enable
2829                  * full chip reset on any chip (this is what Legacy HAL
2830                  * and Sam's HAL do anyway). Instead Perform a full reset
2831                  * on the device (same as initial state after attach) and
2832                  * leave it idle (keep MAC/BB on warm reset) */
2833                 ret = ath5k_hw_on_hold(ah);
2834 
2835                 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2836                                 "putting device to sleep\n");
2837         }
2838 
2839         mutex_unlock(&ah->lock);
2840 
2841         ath5k_stop_tasklets(ah);
2842 
2843         clear_bit(ATH_STAT_STARTED, ah->status);
2844         cancel_delayed_work_sync(&ah->tx_complete_work);
2845 
2846         if (!ath5k_modparam_no_hw_rfkill_switch)
2847                 ath5k_rfkill_hw_stop(ah);
2848 }
2849 
2850 /*
2851  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2852  * and change to the given channel.
2853  *
2854  * This should be called with ah->lock.
2855  */
2856 static int
2857 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2858                                                         bool skip_pcu)
2859 {
2860         struct ath_common *common = ath5k_hw_common(ah);
2861         int ret, ani_mode;
2862         bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2863 
2864         ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2865 
2866         __set_bit(ATH_STAT_RESET, ah->status);
2867 
2868         ath5k_hw_set_imr(ah, 0);
2869         synchronize_irq(ah->irq);
2870         ath5k_stop_tasklets(ah);
2871 
2872         /* Save ani mode and disable ANI during
2873          * reset. If we don't we might get false
2874          * PHY error interrupts. */
2875         ani_mode = ah->ani_state.ani_mode;
2876         ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2877 
2878         /* We are going to empty hw queues
2879          * so we should also free any remaining
2880          * tx buffers */
2881         ath5k_drain_tx_buffs(ah);
2882 
2883         /* Stop PCU */
2884         ath5k_hw_stop_rx_pcu(ah);
2885 
2886         /* Stop DMA
2887          *
2888          * Note: If DMA didn't stop continue
2889          * since only a reset will fix it.
2890          */
2891         ret = ath5k_hw_dma_stop(ah);
2892 
2893         /* RF Bus grant won't work if we have pending
2894          * frames
2895          */
2896         if (ret && fast) {
2897                 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2898                           "DMA didn't stop, falling back to normal reset\n");
2899                 fast = false;
2900         }
2901 
2902         if (chan)
2903                 ah->curchan = chan;
2904 
2905         ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2906         if (ret) {
2907                 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2908                 goto err;
2909         }
2910 
2911         ret = ath5k_rx_start(ah);
2912         if (ret) {
2913                 ATH5K_ERR(ah, "can't start recv logic\n");
2914                 goto err;
2915         }
2916 
2917         ath5k_ani_init(ah, ani_mode);
2918 
2919         /*
2920          * Set calibration intervals
2921          *
2922          * Note: We don't need to run calibration imediately
2923          * since some initial calibration is done on reset
2924          * even for fast channel switching. Also on scanning
2925          * this will get set again and again and it won't get
2926          * executed unless we connect somewhere and spend some
2927          * time on the channel (that's what calibration needs
2928          * anyway to be accurate).
2929          */
2930         ah->ah_cal_next_full = jiffies +
2931                 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2932         ah->ah_cal_next_ani = jiffies +
2933                 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2934         ah->ah_cal_next_short = jiffies +
2935                 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2936 
2937         ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2938 
2939         /* clear survey data and cycle counters */
2940         memset(&ah->survey, 0, sizeof(ah->survey));
2941         spin_lock_bh(&common->cc_lock);
2942         ath_hw_cycle_counters_update(common);
2943         memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2944         memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2945         spin_unlock_bh(&common->cc_lock);
2946 
2947         /*
2948          * Change channels and update the h/w rate map if we're switching;
2949          * e.g. 11a to 11b/g.
2950          *
2951          * We may be doing a reset in response to an ioctl that changes the
2952          * channel so update any state that might change as a result.
2953          *
2954          * XXX needed?
2955          */
2956 /*      ath5k_chan_change(ah, c); */
2957 
2958         __clear_bit(ATH_STAT_RESET, ah->status);
2959 
2960         ath5k_beacon_config(ah);
2961         /* intrs are enabled by ath5k_beacon_config */
2962 
2963         ieee80211_wake_queues(ah->hw);
2964 
2965         return 0;
2966 err:
2967         return ret;
2968 }
2969 
2970 static void ath5k_reset_work(struct work_struct *work)
2971 {
2972         struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2973                 reset_work);
2974 
2975         mutex_lock(&ah->lock);
2976         ath5k_reset(ah, NULL, true);
2977         mutex_unlock(&ah->lock);
2978 }
2979 
2980 static int
2981 ath5k_init(struct ieee80211_hw *hw)
2982 {
2983 
2984         struct ath5k_hw *ah = hw->priv;
2985         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2986         struct ath5k_txq *txq;
2987         u8 mac[ETH_ALEN] = {};
2988         int ret;
2989 
2990 
2991         /*
2992          * Collect the channel list.  The 802.11 layer
2993          * is responsible for filtering this list based
2994          * on settings like the phy mode and regulatory
2995          * domain restrictions.
2996          */
2997         ret = ath5k_setup_bands(hw);
2998         if (ret) {
2999                 ATH5K_ERR(ah, "can't get channels\n");
3000                 goto err;
3001         }
3002 
3003         /*
3004          * Allocate tx+rx descriptors and populate the lists.
3005          */
3006         ret = ath5k_desc_alloc(ah);
3007         if (ret) {
3008                 ATH5K_ERR(ah, "can't allocate descriptors\n");
3009                 goto err;
3010         }
3011 
3012         /*
3013          * Allocate hardware transmit queues: one queue for
3014          * beacon frames and one data queue for each QoS
3015          * priority.  Note that hw functions handle resetting
3016          * these queues at the needed time.
3017          */
3018         ret = ath5k_beaconq_setup(ah);
3019         if (ret < 0) {
3020                 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3021                 goto err_desc;
3022         }
3023         ah->bhalq = ret;
3024         ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3025         if (IS_ERR(ah->cabq)) {
3026                 ATH5K_ERR(ah, "can't setup cab queue\n");
3027                 ret = PTR_ERR(ah->cabq);
3028                 goto err_bhal;
3029         }
3030 
3031         /* 5211 and 5212 usually support 10 queues but we better rely on the
3032          * capability information */
3033         if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3034                 /* This order matches mac80211's queue priority, so we can
3035                 * directly use the mac80211 queue number without any mapping */
3036                 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3037                 if (IS_ERR(txq)) {
3038                         ATH5K_ERR(ah, "can't setup xmit queue\n");
3039                         ret = PTR_ERR(txq);
3040                         goto err_queues;
3041                 }
3042                 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3043                 if (IS_ERR(txq)) {
3044                         ATH5K_ERR(ah, "can't setup xmit queue\n");
3045                         ret = PTR_ERR(txq);
3046                         goto err_queues;
3047                 }
3048                 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3049                 if (IS_ERR(txq)) {
3050                         ATH5K_ERR(ah, "can't setup xmit queue\n");
3051                         ret = PTR_ERR(txq);
3052                         goto err_queues;
3053                 }
3054                 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3055                 if (IS_ERR(txq)) {
3056                         ATH5K_ERR(ah, "can't setup xmit queue\n");
3057                         ret = PTR_ERR(txq);
3058                         goto err_queues;
3059                 }
3060                 hw->queues = 4;
3061         } else {
3062                 /* older hardware (5210) can only support one data queue */
3063                 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3064                 if (IS_ERR(txq)) {
3065                         ATH5K_ERR(ah, "can't setup xmit queue\n");
3066                         ret = PTR_ERR(txq);
3067                         goto err_queues;
3068                 }
3069                 hw->queues = 1;
3070         }
3071 
3072         tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
3073         tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
3074         tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
3075         tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
3076 
3077         INIT_WORK(&ah->reset_work, ath5k_reset_work);
3078         INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3079         INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3080 
3081         ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3082         if (ret) {
3083                 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3084                 goto err_queues;
3085         }
3086 
3087         SET_IEEE80211_PERM_ADDR(hw, mac);
3088         /* All MAC address bits matter for ACKs */
3089         ath5k_update_bssid_mask_and_opmode(ah, NULL);
3090 
3091         regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3092         ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3093         if (ret) {
3094                 ATH5K_ERR(ah, "can't initialize regulatory system\n");
3095                 goto err_queues;
3096         }
3097 
3098         ret = ieee80211_register_hw(hw);
3099         if (ret) {
3100                 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3101                 goto err_queues;
3102         }
3103 
3104         if (!ath_is_world_regd(regulatory))
3105                 regulatory_hint(hw->wiphy, regulatory->alpha2);
3106 
3107         ath5k_init_leds(ah);
3108 
3109         ath5k_sysfs_register(ah);
3110 
3111         return 0;
3112 err_queues:
3113         ath5k_txq_release(ah);
3114 err_bhal:
3115         ath5k_hw_release_tx_queue(ah, ah->bhalq);
3116 err_desc:
3117         ath5k_desc_free(ah);
3118 err:
3119         return ret;
3120 }
3121 
3122 void
3123 ath5k_deinit_ah(struct ath5k_hw *ah)
3124 {
3125         struct ieee80211_hw *hw = ah->hw;
3126 
3127         /*
3128          * NB: the order of these is important:
3129          * o call the 802.11 layer before detaching ath5k_hw to
3130          *   ensure callbacks into the driver to delete global
3131          *   key cache entries can be handled
3132          * o reclaim the tx queue data structures after calling
3133          *   the 802.11 layer as we'll get called back to reclaim
3134          *   node state and potentially want to use them
3135          * o to cleanup the tx queues the hal is called, so detach
3136          *   it last
3137          * XXX: ??? detach ath5k_hw ???
3138          * Other than that, it's straightforward...
3139          */
3140         ieee80211_unregister_hw(hw);
3141         ath5k_desc_free(ah);
3142         ath5k_txq_release(ah);
3143         ath5k_hw_release_tx_queue(ah, ah->bhalq);
3144         ath5k_unregister_leds(ah);
3145 
3146         ath5k_sysfs_unregister(ah);
3147         /*
3148          * NB: can't reclaim these until after ieee80211_ifdetach
3149          * returns because we'll get called back to reclaim node
3150          * state and potentially want to use them.
3151          */
3152         ath5k_hw_deinit(ah);
3153         free_irq(ah->irq, ah);
3154 }
3155 
3156 bool
3157 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3158 {
3159         struct ath5k_vif_iter_data iter_data;
3160         iter_data.hw_macaddr = NULL;
3161         iter_data.any_assoc = false;
3162         iter_data.need_set_hw_addr = false;
3163         iter_data.found_active = true;
3164 
3165         ieee80211_iterate_active_interfaces_atomic(
3166                 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3167                 ath5k_vif_iter, &iter_data);
3168         return iter_data.any_assoc;
3169 }
3170 
3171 void
3172 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3173 {
3174         struct ath5k_hw *ah = hw->priv;
3175         u32 rfilt;
3176         rfilt = ath5k_hw_get_rx_filter(ah);
3177         if (enable)
3178                 rfilt |= AR5K_RX_FILTER_BEACON;
3179         else
3180                 rfilt &= ~AR5K_RX_FILTER_BEACON;
3181         ath5k_hw_set_rx_filter(ah, rfilt);
3182         ah->filter_flags = rfilt;
3183 }
3184 
3185 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3186                    const char *fmt, ...)
3187 {
3188         struct va_format vaf;
3189         va_list args;
3190 
3191         va_start(args, fmt);
3192 
3193         vaf.fmt = fmt;
3194         vaf.va = &args;
3195 
3196         if (ah && ah->hw)
3197                 printk("%s" pr_fmt("%s: %pV"),
3198                        level, wiphy_name(ah->hw->wiphy), &vaf);
3199         else
3200                 printk("%s" pr_fmt("%pV"), level, &vaf);
3201 
3202         va_end(args);
3203 }

/* [<][>][^][v][top][bottom][index][help] */