root/drivers/net/wireless/ath/wil6210/main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mtu_max_set
  2. ring_order_set
  3. wil_memcpy_fromio_32
  4. wil_memcpy_toio_32
  5. wil_mem_access_lock
  6. wil_mem_access_unlock
  7. wil_ring_fini_tx
  8. wil_vif_is_connected
  9. wil_disconnect_cid_complete
  10. _wil6210_disconnect_complete
  11. wil_disconnect_cid
  12. _wil6210_disconnect
  13. wil_disconnect_worker
  14. wil_wait_for_recovery
  15. wil_set_recovery_state
  16. wil_is_recovery_blocked
  17. wil_fw_error_worker
  18. wil_find_free_ring
  19. wil_ring_init_tx
  20. wil_bcast_init
  21. wil_bcast_fini
  22. wil_bcast_fini_all
  23. wil_priv_init
  24. wil6210_bus_request
  25. wil6210_disconnect
  26. wil6210_disconnect_complete
  27. wil_priv_deinit
  28. wil_shutdown_bl
  29. ARC_me_imm32
  30. wil_freeze_bl
  31. wil_bl_prepare_halt
  32. wil_halt_cpu
  33. wil_release_cpu
  34. wil_set_oob_mode
  35. wil_wait_device_ready
  36. wil_wait_device_ready_talyn_mb
  37. wil_target_reset
  38. wil_collect_fw_info
  39. wil_refresh_fw_capabilities
  40. wil_mbox_ring_le2cpus
  41. wil_get_board_file
  42. wil_get_bl_info
  43. wil_bl_crash_info
  44. wil_get_otp_info
  45. wil_wait_for_fw_ready
  46. wil_abort_scan
  47. wil_abort_scan_all_vifs
  48. wil_ps_update
  49. wil_pre_fw_config
  50. wil_restore_vifs
  51. wil_clear_fw_log_addr
  52. wil_reset
  53. wil_fw_error_recovery
  54. __wil_up
  55. wil_up
  56. __wil_down
  57. wil_down
  58. wil_find_cid
  59. wil_halp_vote
  60. wil_halp_unvote
  61. wil_init_txrx_ops

   1 /*
   2  * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   3  * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   4  *
   5  * Permission to use, copy, modify, and/or distribute this software for any
   6  * purpose with or without fee is hereby granted, provided that the above
   7  * copyright notice and this permission notice appear in all copies.
   8  *
   9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16  */
  17 
  18 #include <linux/moduleparam.h>
  19 #include <linux/if_arp.h>
  20 #include <linux/etherdevice.h>
  21 #include <linux/rtnetlink.h>
  22 
  23 #include "wil6210.h"
  24 #include "txrx.h"
  25 #include "txrx_edma.h"
  26 #include "wmi.h"
  27 #include "boot_loader.h"
  28 
  29 #define WAIT_FOR_HALP_VOTE_MS 100
  30 #define WAIT_FOR_SCAN_ABORT_MS 1000
  31 #define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
  32 #define WIL_BOARD_FILE_MAX_NAMELEN 128
  33 
  34 bool debug_fw; /* = false; */
  35 module_param(debug_fw, bool, 0444);
  36 MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  37 
  38 static u8 oob_mode;
  39 module_param(oob_mode, byte, 0444);
  40 MODULE_PARM_DESC(oob_mode,
  41                  " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  42 
  43 bool no_fw_recovery;
  44 module_param(no_fw_recovery, bool, 0644);
  45 MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  46 
  47 /* if not set via modparam, will be set to default value of 1/8 of
  48  * rx ring size during init flow
  49  */
  50 unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  51 module_param(rx_ring_overflow_thrsh, ushort, 0444);
  52 MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  53                  " RX ring overflow threshold in descriptors.");
  54 
  55 /* We allow allocation of more than 1 page buffers to support large packets.
  56  * It is suboptimal behavior performance wise in case MTU above page size.
  57  */
  58 unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  59 static int mtu_max_set(const char *val, const struct kernel_param *kp)
  60 {
  61         int ret;
  62 
  63         /* sets mtu_max directly. no need to restore it in case of
  64          * illegal value since we assume this will fail insmod
  65          */
  66         ret = param_set_uint(val, kp);
  67         if (ret)
  68                 return ret;
  69 
  70         if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  71                 ret = -EINVAL;
  72 
  73         return ret;
  74 }
  75 
  76 static const struct kernel_param_ops mtu_max_ops = {
  77         .set = mtu_max_set,
  78         .get = param_get_uint,
  79 };
  80 
  81 module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  82 MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  83 
  84 static uint rx_ring_order;
  85 static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  86 static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  87 
  88 static int ring_order_set(const char *val, const struct kernel_param *kp)
  89 {
  90         int ret;
  91         uint x;
  92 
  93         ret = kstrtouint(val, 0, &x);
  94         if (ret)
  95                 return ret;
  96 
  97         if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  98                 return -EINVAL;
  99 
 100         *((uint *)kp->arg) = x;
 101 
 102         return 0;
 103 }
 104 
 105 static const struct kernel_param_ops ring_order_ops = {
 106         .set = ring_order_set,
 107         .get = param_get_uint,
 108 };
 109 
 110 module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 111 MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 112 module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 113 MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 114 module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 115 MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 116 
 117 enum {
 118         WIL_BOOT_ERR,
 119         WIL_BOOT_VANILLA,
 120         WIL_BOOT_PRODUCTION,
 121         WIL_BOOT_DEVELOPMENT,
 122 };
 123 
 124 enum {
 125         WIL_SIG_STATUS_VANILLA = 0x0,
 126         WIL_SIG_STATUS_DEVELOPMENT = 0x1,
 127         WIL_SIG_STATUS_PRODUCTION = 0x2,
 128         WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
 129 };
 130 
 131 #define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
 132 #define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 133 
 134 #define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
 135 
 136 #define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
 137 /* round up to be above 2 ms total */
 138 #define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
 139 
 140 /*
 141  * Due to a hardware issue,
 142  * one has to read/write to/from NIC in 32-bit chunks;
 143  * regular memcpy_fromio and siblings will
 144  * not work on 64-bit platform - it uses 64-bit transactions
 145  *
 146  * Force 32-bit transactions to enable NIC on 64-bit platforms
 147  *
 148  * To avoid byte swap on big endian host, __raw_{read|write}l
 149  * should be used - {read|write}l would swap bytes to provide
 150  * little endian on PCI value in host endianness.
 151  */
 152 void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 153                           size_t count)
 154 {
 155         u32 *d = dst;
 156         const volatile u32 __iomem *s = src;
 157 
 158         for (; count >= 4; count -= 4)
 159                 *d++ = __raw_readl(s++);
 160 
 161         if (unlikely(count)) {
 162                 /* count can be 1..3 */
 163                 u32 tmp = __raw_readl(s);
 164 
 165                 memcpy(d, &tmp, count);
 166         }
 167 }
 168 
 169 void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 170                         size_t count)
 171 {
 172         volatile u32 __iomem *d = dst;
 173         const u32 *s = src;
 174 
 175         for (; count >= 4; count -= 4)
 176                 __raw_writel(*s++, d++);
 177 
 178         if (unlikely(count)) {
 179                 /* count can be 1..3 */
 180                 u32 tmp = 0;
 181 
 182                 memcpy(&tmp, s, count);
 183                 __raw_writel(tmp, d);
 184         }
 185 }
 186 
 187 /* Device memory access is prohibited while reset or suspend.
 188  * wil_mem_access_lock protects accessing device memory in these cases
 189  */
 190 int wil_mem_access_lock(struct wil6210_priv *wil)
 191 {
 192         if (!down_read_trylock(&wil->mem_lock))
 193                 return -EBUSY;
 194 
 195         if (test_bit(wil_status_suspending, wil->status) ||
 196             test_bit(wil_status_suspended, wil->status)) {
 197                 up_read(&wil->mem_lock);
 198                 return -EBUSY;
 199         }
 200 
 201         return 0;
 202 }
 203 
 204 void wil_mem_access_unlock(struct wil6210_priv *wil)
 205 {
 206         up_read(&wil->mem_lock);
 207 }
 208 
 209 static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
 210 {
 211         struct wil_ring *ring = &wil->ring_tx[id];
 212         struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
 213 
 214         lockdep_assert_held(&wil->mutex);
 215 
 216         if (!ring->va)
 217                 return;
 218 
 219         wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
 220 
 221         spin_lock_bh(&txdata->lock);
 222         txdata->dot1x_open = false;
 223         txdata->mid = U8_MAX;
 224         txdata->enabled = 0; /* no Tx can be in progress or start anew */
 225         spin_unlock_bh(&txdata->lock);
 226         /* napi_synchronize waits for completion of the current NAPI but will
 227          * not prevent the next NAPI run.
 228          * Add a memory barrier to guarantee that txdata->enabled is zeroed
 229          * before napi_synchronize so that the next scheduled NAPI will not
 230          * handle this vring
 231          */
 232         wmb();
 233         /* make sure NAPI won't touch this vring */
 234         if (test_bit(wil_status_napi_en, wil->status))
 235                 napi_synchronize(&wil->napi_tx);
 236 
 237         wil->txrx_ops.ring_fini_tx(wil, ring);
 238 }
 239 
 240 static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 241 {
 242         int i;
 243 
 244         for (i = 0; i < wil->max_assoc_sta; i++) {
 245                 if (wil->sta[i].mid == mid &&
 246                     wil->sta[i].status == wil_sta_connected)
 247                         return true;
 248         }
 249 
 250         return false;
 251 }
 252 
 253 static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
 254                                         u16 reason_code)
 255 __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 256 {
 257         uint i;
 258         struct wil6210_priv *wil = vif_to_wil(vif);
 259         struct net_device *ndev = vif_to_ndev(vif);
 260         struct wireless_dev *wdev = vif_to_wdev(vif);
 261         struct wil_sta_info *sta = &wil->sta[cid];
 262         int min_ring_id = wil_get_min_tx_ring_id(wil);
 263 
 264         might_sleep();
 265         wil_dbg_misc(wil,
 266                      "disconnect_cid_complete: CID %d, MID %d, status %d\n",
 267                      cid, sta->mid, sta->status);
 268         /* inform upper layers */
 269         if (sta->status != wil_sta_unused) {
 270                 if (vif->mid != sta->mid) {
 271                         wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 272                                 vif->mid);
 273                 }
 274 
 275                 switch (wdev->iftype) {
 276                 case NL80211_IFTYPE_AP:
 277                 case NL80211_IFTYPE_P2P_GO:
 278                         /* AP-like interface */
 279                         cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 280                         break;
 281                 default:
 282                         break;
 283                 }
 284                 sta->status = wil_sta_unused;
 285                 sta->mid = U8_MAX;
 286         }
 287         /* reorder buffers */
 288         for (i = 0; i < WIL_STA_TID_NUM; i++) {
 289                 struct wil_tid_ampdu_rx *r;
 290 
 291                 spin_lock_bh(&sta->tid_rx_lock);
 292 
 293                 r = sta->tid_rx[i];
 294                 sta->tid_rx[i] = NULL;
 295                 wil_tid_ampdu_rx_free(wil, r);
 296 
 297                 spin_unlock_bh(&sta->tid_rx_lock);
 298         }
 299         /* crypto context */
 300         memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 301         memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 302         /* release vrings */
 303         for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
 304                 if (wil->ring2cid_tid[i][0] == cid)
 305                         wil_ring_fini_tx(wil, i);
 306         }
 307         /* statistics */
 308         memset(&sta->stats, 0, sizeof(sta->stats));
 309         sta->stats.tx_latency_min_us = U32_MAX;
 310 }
 311 
 312 static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
 313                                          const u8 *bssid, u16 reason_code)
 314 {
 315         struct wil6210_priv *wil = vif_to_wil(vif);
 316         int cid = -ENOENT;
 317         struct net_device *ndev;
 318         struct wireless_dev *wdev;
 319 
 320         ndev = vif_to_ndev(vif);
 321         wdev = vif_to_wdev(vif);
 322 
 323         might_sleep();
 324         wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
 325                  bssid, reason_code);
 326 
 327         /* Cases are:
 328          * - disconnect single STA, still connected
 329          * - disconnect single STA, already disconnected
 330          * - disconnect all
 331          *
 332          * For "disconnect all", there are 3 options:
 333          * - bssid == NULL
 334          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 335          * - bssid is our MAC address
 336          */
 337         if (bssid && !is_broadcast_ether_addr(bssid) &&
 338             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 339                 cid = wil_find_cid(wil, vif->mid, bssid);
 340                 wil_dbg_misc(wil,
 341                              "Disconnect complete %pM, CID=%d, reason=%d\n",
 342                              bssid, cid, reason_code);
 343                 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 344                         wil_disconnect_cid_complete(vif, cid, reason_code);
 345         } else { /* all */
 346                 wil_dbg_misc(wil, "Disconnect complete all\n");
 347                 for (cid = 0; cid < wil->max_assoc_sta; cid++)
 348                         wil_disconnect_cid_complete(vif, cid, reason_code);
 349         }
 350 
 351         /* link state */
 352         switch (wdev->iftype) {
 353         case NL80211_IFTYPE_STATION:
 354         case NL80211_IFTYPE_P2P_CLIENT:
 355                 wil_bcast_fini(vif);
 356                 wil_update_net_queues_bh(wil, vif, NULL, true);
 357                 netif_carrier_off(ndev);
 358                 if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 359                         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 360 
 361                 if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 362                         atomic_dec(&wil->connected_vifs);
 363                         cfg80211_disconnected(ndev, reason_code,
 364                                               NULL, 0,
 365                                               vif->locally_generated_disc,
 366                                               GFP_KERNEL);
 367                         vif->locally_generated_disc = false;
 368                 } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 369                         cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 370                                                 WLAN_STATUS_UNSPECIFIED_FAILURE,
 371                                                 GFP_KERNEL);
 372                         vif->bss = NULL;
 373                 }
 374                 clear_bit(wil_vif_fwconnecting, vif->status);
 375                 clear_bit(wil_vif_ft_roam, vif->status);
 376                 vif->ptk_rekey_state = WIL_REKEY_IDLE;
 377 
 378                 break;
 379         case NL80211_IFTYPE_AP:
 380         case NL80211_IFTYPE_P2P_GO:
 381                 if (!wil_vif_is_connected(wil, vif->mid)) {
 382                         wil_update_net_queues_bh(wil, vif, NULL, true);
 383                         if (test_and_clear_bit(wil_vif_fwconnected,
 384                                                vif->status))
 385                                 atomic_dec(&wil->connected_vifs);
 386                 } else {
 387                         wil_update_net_queues_bh(wil, vif, NULL, false);
 388                 }
 389                 break;
 390         default:
 391                 break;
 392         }
 393 }
 394 
 395 static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 396                               u16 reason_code)
 397 {
 398         struct wil6210_priv *wil = vif_to_wil(vif);
 399         struct wireless_dev *wdev = vif_to_wdev(vif);
 400         struct wil_sta_info *sta = &wil->sta[cid];
 401         bool del_sta = false;
 402 
 403         might_sleep();
 404         wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 405                      cid, sta->mid, sta->status);
 406 
 407         if (sta->status == wil_sta_unused)
 408                 return 0;
 409 
 410         if (vif->mid != sta->mid) {
 411                 wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
 412                 return -EINVAL;
 413         }
 414 
 415         /* inform lower layers */
 416         if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
 417                 del_sta = true;
 418 
 419         /* disconnect by sending command disconnect/del_sta and wait
 420          * synchronously for WMI_DISCONNECT_EVENTID event.
 421          */
 422         return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
 423 }
 424 
 425 static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 426                                 u16 reason_code)
 427 {
 428         struct wil6210_priv *wil;
 429         struct net_device *ndev;
 430         int cid = -ENOENT;
 431 
 432         if (unlikely(!vif))
 433                 return;
 434 
 435         wil = vif_to_wil(vif);
 436         ndev = vif_to_ndev(vif);
 437 
 438         might_sleep();
 439         wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
 440 
 441         /* Cases are:
 442          * - disconnect single STA, still connected
 443          * - disconnect single STA, already disconnected
 444          * - disconnect all
 445          *
 446          * For "disconnect all", there are 3 options:
 447          * - bssid == NULL
 448          * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 449          * - bssid is our MAC address
 450          */
 451         if (bssid && !is_broadcast_ether_addr(bssid) &&
 452             !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 453                 cid = wil_find_cid(wil, vif->mid, bssid);
 454                 wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 455                              bssid, cid, reason_code);
 456                 if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 457                         wil_disconnect_cid(vif, cid, reason_code);
 458         } else { /* all */
 459                 wil_dbg_misc(wil, "Disconnect all\n");
 460                 for (cid = 0; cid < wil->max_assoc_sta; cid++)
 461                         wil_disconnect_cid(vif, cid, reason_code);
 462         }
 463 
 464         /* call event handler manually after processing wmi_call,
 465          * to avoid deadlock - disconnect event handler acquires
 466          * wil->mutex while it is already held here
 467          */
 468         _wil6210_disconnect_complete(vif, bssid, reason_code);
 469 }
 470 
 471 void wil_disconnect_worker(struct work_struct *work)
 472 {
 473         struct wil6210_vif *vif = container_of(work,
 474                         struct wil6210_vif, disconnect_worker);
 475         struct wil6210_priv *wil = vif_to_wil(vif);
 476         struct net_device *ndev = vif_to_ndev(vif);
 477         int rc;
 478         struct {
 479                 struct wmi_cmd_hdr wmi;
 480                 struct wmi_disconnect_event evt;
 481         } __packed reply;
 482 
 483         if (test_bit(wil_vif_fwconnected, vif->status))
 484                 /* connect succeeded after all */
 485                 return;
 486 
 487         if (!test_bit(wil_vif_fwconnecting, vif->status))
 488                 /* already disconnected */
 489                 return;
 490 
 491         memset(&reply, 0, sizeof(reply));
 492 
 493         rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 494                       WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 495                       WIL6210_DISCONNECT_TO_MS);
 496         if (rc) {
 497                 wil_err(wil, "disconnect error %d\n", rc);
 498                 return;
 499         }
 500 
 501         wil_update_net_queues_bh(wil, vif, NULL, true);
 502         netif_carrier_off(ndev);
 503         cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 504                                 WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 505         clear_bit(wil_vif_fwconnecting, vif->status);
 506 }
 507 
 508 static int wil_wait_for_recovery(struct wil6210_priv *wil)
 509 {
 510         if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 511                                      fw_recovery_pending)) {
 512                 wil_err(wil, "Interrupt, canceling recovery\n");
 513                 return -ERESTARTSYS;
 514         }
 515         if (wil->recovery_state != fw_recovery_running) {
 516                 wil_info(wil, "Recovery cancelled\n");
 517                 return -EINTR;
 518         }
 519         wil_info(wil, "Proceed with recovery\n");
 520         return 0;
 521 }
 522 
 523 void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 524 {
 525         wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 526                      wil->recovery_state, state);
 527 
 528         wil->recovery_state = state;
 529         wake_up_interruptible(&wil->wq);
 530 }
 531 
 532 bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 533 {
 534         return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 535 }
 536 
 537 static void wil_fw_error_worker(struct work_struct *work)
 538 {
 539         struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 540                                                 fw_error_worker);
 541         struct net_device *ndev = wil->main_ndev;
 542         struct wireless_dev *wdev;
 543 
 544         wil_dbg_misc(wil, "fw error worker\n");
 545 
 546         if (!ndev || !(ndev->flags & IFF_UP)) {
 547                 wil_info(wil, "No recovery - interface is down\n");
 548                 return;
 549         }
 550         wdev = ndev->ieee80211_ptr;
 551 
 552         /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 553          * passed since last recovery attempt
 554          */
 555         if (time_is_after_jiffies(wil->last_fw_recovery +
 556                                   WIL6210_FW_RECOVERY_TO))
 557                 wil->recovery_count++;
 558         else
 559                 wil->recovery_count = 1; /* fw was alive for a long time */
 560 
 561         if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 562                 wil_err(wil, "too many recovery attempts (%d), giving up\n",
 563                         wil->recovery_count);
 564                 return;
 565         }
 566 
 567         wil->last_fw_recovery = jiffies;
 568 
 569         wil_info(wil, "fw error recovery requested (try %d)...\n",
 570                  wil->recovery_count);
 571         if (!no_fw_recovery)
 572                 wil->recovery_state = fw_recovery_running;
 573         if (wil_wait_for_recovery(wil) != 0)
 574                 return;
 575 
 576         rtnl_lock();
 577         mutex_lock(&wil->mutex);
 578         /* Needs adaptation for multiple VIFs
 579          * need to go over all VIFs and consider the appropriate
 580          * recovery because each one can have different iftype.
 581          */
 582         switch (wdev->iftype) {
 583         case NL80211_IFTYPE_STATION:
 584         case NL80211_IFTYPE_P2P_CLIENT:
 585         case NL80211_IFTYPE_MONITOR:
 586                 /* silent recovery, upper layers will see disconnect */
 587                 __wil_down(wil);
 588                 __wil_up(wil);
 589                 break;
 590         case NL80211_IFTYPE_AP:
 591         case NL80211_IFTYPE_P2P_GO:
 592                 if (no_fw_recovery) /* upper layers do recovery */
 593                         break;
 594                 /* silent recovery, upper layers will see disconnect */
 595                 __wil_down(wil);
 596                 __wil_up(wil);
 597                 mutex_unlock(&wil->mutex);
 598                 wil_cfg80211_ap_recovery(wil);
 599                 mutex_lock(&wil->mutex);
 600                 wil_info(wil, "... completed\n");
 601                 break;
 602         default:
 603                 wil_err(wil, "No recovery - unknown interface type %d\n",
 604                         wdev->iftype);
 605                 break;
 606         }
 607 
 608         mutex_unlock(&wil->mutex);
 609         rtnl_unlock();
 610 }
 611 
 612 static int wil_find_free_ring(struct wil6210_priv *wil)
 613 {
 614         int i;
 615         int min_ring_id = wil_get_min_tx_ring_id(wil);
 616 
 617         for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
 618                 if (!wil->ring_tx[i].va)
 619                         return i;
 620         }
 621         return -EINVAL;
 622 }
 623 
 624 int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
 625 {
 626         struct wil6210_priv *wil = vif_to_wil(vif);
 627         int rc = -EINVAL, ringid;
 628 
 629         if (cid < 0) {
 630                 wil_err(wil, "No connection pending\n");
 631                 goto out;
 632         }
 633         ringid = wil_find_free_ring(wil);
 634         if (ringid < 0) {
 635                 wil_err(wil, "No free vring found\n");
 636                 goto out;
 637         }
 638 
 639         wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
 640                     cid, vif->mid, ringid);
 641 
 642         rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
 643                                         cid, 0);
 644         if (rc)
 645                 wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 646                         cid, vif->mid, ringid);
 647 
 648 out:
 649         return rc;
 650 }
 651 
 652 int wil_bcast_init(struct wil6210_vif *vif)
 653 {
 654         struct wil6210_priv *wil = vif_to_wil(vif);
 655         int ri = vif->bcast_ring, rc;
 656 
 657         if (ri >= 0 && wil->ring_tx[ri].va)
 658                 return 0;
 659 
 660         ri = wil_find_free_ring(wil);
 661         if (ri < 0)
 662                 return ri;
 663 
 664         vif->bcast_ring = ri;
 665         rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
 666         if (rc)
 667                 vif->bcast_ring = -1;
 668 
 669         return rc;
 670 }
 671 
 672 void wil_bcast_fini(struct wil6210_vif *vif)
 673 {
 674         struct wil6210_priv *wil = vif_to_wil(vif);
 675         int ri = vif->bcast_ring;
 676 
 677         if (ri < 0)
 678                 return;
 679 
 680         vif->bcast_ring = -1;
 681         wil_ring_fini_tx(wil, ri);
 682 }
 683 
 684 void wil_bcast_fini_all(struct wil6210_priv *wil)
 685 {
 686         int i;
 687         struct wil6210_vif *vif;
 688 
 689         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
 690                 vif = wil->vifs[i];
 691                 if (vif)
 692                         wil_bcast_fini(vif);
 693         }
 694 }
 695 
 696 int wil_priv_init(struct wil6210_priv *wil)
 697 {
 698         uint i;
 699 
 700         wil_dbg_misc(wil, "priv_init\n");
 701 
 702         memset(wil->sta, 0, sizeof(wil->sta));
 703         for (i = 0; i < WIL6210_MAX_CID; i++) {
 704                 spin_lock_init(&wil->sta[i].tid_rx_lock);
 705                 wil->sta[i].mid = U8_MAX;
 706         }
 707 
 708         for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 709                 spin_lock_init(&wil->ring_tx_data[i].lock);
 710                 wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
 711         }
 712 
 713         mutex_init(&wil->mutex);
 714         mutex_init(&wil->vif_mutex);
 715         mutex_init(&wil->wmi_mutex);
 716         mutex_init(&wil->halp.lock);
 717 
 718         init_completion(&wil->wmi_ready);
 719         init_completion(&wil->wmi_call);
 720         init_completion(&wil->halp.comp);
 721 
 722         INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 723         INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 724 
 725         INIT_LIST_HEAD(&wil->pending_wmi_ev);
 726         spin_lock_init(&wil->wmi_ev_lock);
 727         spin_lock_init(&wil->net_queue_lock);
 728         spin_lock_init(&wil->eap_lock);
 729 
 730         init_waitqueue_head(&wil->wq);
 731         init_rwsem(&wil->mem_lock);
 732 
 733         wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 734         if (!wil->wmi_wq)
 735                 return -EAGAIN;
 736 
 737         wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 738         if (!wil->wq_service)
 739                 goto out_wmi_wq;
 740 
 741         wil->last_fw_recovery = jiffies;
 742         wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 743         wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 744         wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 745         wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 746 
 747         if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 748                 rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 749 
 750         wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 751 
 752         wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 753                               WMI_WAKEUP_TRIGGER_BCAST;
 754         memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 755         wil->ring_idle_trsh = 16;
 756 
 757         wil->reply_mid = U8_MAX;
 758         wil->max_vifs = 1;
 759         wil->max_assoc_sta = max_assoc_sta;
 760 
 761         /* edma configuration can be updated via debugfs before allocation */
 762         wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
 763         wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
 764 
 765         /* Rx status ring size should be bigger than the number of RX buffers
 766          * in order to prevent backpressure on the status ring, which may
 767          * cause HW freeze.
 768          */
 769         wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
 770         /* Number of RX buffer IDs should be bigger than the RX descriptor
 771          * ring size as in HW reorder flow, the HW can consume additional
 772          * buffers before releasing the previous ones.
 773          */
 774         wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
 775 
 776         wil->amsdu_en = 1;
 777 
 778         return 0;
 779 
 780 out_wmi_wq:
 781         destroy_workqueue(wil->wmi_wq);
 782 
 783         return -EAGAIN;
 784 }
 785 
 786 void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 787 {
 788         if (wil->platform_ops.bus_request) {
 789                 wil->bus_request_kbps = kbps;
 790                 wil->platform_ops.bus_request(wil->platform_handle, kbps);
 791         }
 792 }
 793 
 794 /**
 795  * wil6210_disconnect - disconnect one connection
 796  * @vif: virtual interface context
 797  * @bssid: peer to disconnect, NULL to disconnect all
 798  * @reason_code: Reason code for the Disassociation frame
 799  *
 800  * Disconnect and release associated resources. Issue WMI
 801  * command(s) to trigger MAC disconnect. When command was issued
 802  * successfully, call the wil6210_disconnect_complete function
 803  * to handle the event synchronously
 804  */
 805 void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 806                         u16 reason_code)
 807 {
 808         struct wil6210_priv *wil = vif_to_wil(vif);
 809 
 810         wil_dbg_misc(wil, "disconnecting\n");
 811 
 812         del_timer_sync(&vif->connect_timer);
 813         _wil6210_disconnect(vif, bssid, reason_code);
 814 }
 815 
 816 /**
 817  * wil6210_disconnect_complete - handle disconnect event
 818  * @vif: virtual interface context
 819  * @bssid: peer to disconnect, NULL to disconnect all
 820  * @reason_code: Reason code for the Disassociation frame
 821  *
 822  * Release associated resources and indicate upper layers the
 823  * connection is terminated.
 824  */
 825 void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
 826                                  u16 reason_code)
 827 {
 828         struct wil6210_priv *wil = vif_to_wil(vif);
 829 
 830         wil_dbg_misc(wil, "got disconnect\n");
 831 
 832         del_timer_sync(&vif->connect_timer);
 833         _wil6210_disconnect_complete(vif, bssid, reason_code);
 834 }
 835 
 836 void wil_priv_deinit(struct wil6210_priv *wil)
 837 {
 838         wil_dbg_misc(wil, "priv_deinit\n");
 839 
 840         wil_set_recovery_state(wil, fw_recovery_idle);
 841         cancel_work_sync(&wil->fw_error_worker);
 842         wmi_event_flush(wil);
 843         destroy_workqueue(wil->wq_service);
 844         destroy_workqueue(wil->wmi_wq);
 845         kfree(wil->brd_info);
 846 }
 847 
 848 static void wil_shutdown_bl(struct wil6210_priv *wil)
 849 {
 850         u32 val;
 851 
 852         wil_s(wil, RGF_USER_BL +
 853               offsetof(struct bl_dedicated_registers_v1,
 854                        bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 855 
 856         usleep_range(100, 150);
 857 
 858         val = wil_r(wil, RGF_USER_BL +
 859                     offsetof(struct bl_dedicated_registers_v1,
 860                              bl_shutdown_handshake));
 861         if (val & BL_SHUTDOWN_HS_RTD) {
 862                 wil_dbg_misc(wil, "BL is ready for halt\n");
 863                 return;
 864         }
 865 
 866         wil_err(wil, "BL did not report ready for halt\n");
 867 }
 868 
 869 /* this format is used by ARC embedded CPU for instruction memory */
 870 static inline u32 ARC_me_imm32(u32 d)
 871 {
 872         return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 873 }
 874 
 875 /* defines access to interrupt vectors for wil_freeze_bl */
 876 #define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
 877 /* ARC long jump instruction */
 878 #define ARC_JAL_INST                    (0x20200f80)
 879 
 880 static void wil_freeze_bl(struct wil6210_priv *wil)
 881 {
 882         u32 jal, upc, saved;
 883         u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 884 
 885         jal = wil_r(wil, wil->iccm_base + ivt3);
 886         if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 887                 wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 888                 return;
 889         }
 890 
 891         /* prevent the target from entering deep sleep
 892          * and disabling memory access
 893          */
 894         saved = wil_r(wil, RGF_USER_USAGE_8);
 895         wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 896         usleep_range(20, 25); /* let the BL process the bit */
 897 
 898         /* redirect to endless loop in the INT_L1 context and let it trap */
 899         wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 900         usleep_range(20, 25); /* let the BL get into the trap */
 901 
 902         /* verify the BL is frozen */
 903         upc = wil_r(wil, RGF_USER_CPU_PC);
 904         if (upc < ivt3 || (upc > (ivt3 + 8)))
 905                 wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 906 
 907         wil_w(wil, RGF_USER_USAGE_8, saved);
 908 }
 909 
 910 static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 911 {
 912         u32 tmp, ver;
 913 
 914         /* before halting device CPU driver must make sure BL is not accessing
 915          * host memory. This is done differently depending on BL version:
 916          * 1. For very old BL versions the procedure is skipped
 917          * (not supported).
 918          * 2. For old BL version we use a special trick to freeze the BL
 919          * 3. For new BL versions we shutdown the BL using handshake procedure.
 920          */
 921         tmp = wil_r(wil, RGF_USER_BL +
 922                     offsetof(struct bl_dedicated_registers_v0,
 923                              boot_loader_struct_version));
 924         if (!tmp) {
 925                 wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 926                 return;
 927         }
 928 
 929         tmp = wil_r(wil, RGF_USER_BL +
 930                     offsetof(struct bl_dedicated_registers_v1,
 931                              bl_shutdown_handshake));
 932         ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 933 
 934         if (ver > 0)
 935                 wil_shutdown_bl(wil);
 936         else
 937                 wil_freeze_bl(wil);
 938 }
 939 
 940 static inline void wil_halt_cpu(struct wil6210_priv *wil)
 941 {
 942         if (wil->hw_version >= HW_VER_TALYN_MB) {
 943                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
 944                       BIT_USER_USER_CPU_MAN_RST);
 945                 wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
 946                       BIT_USER_MAC_CPU_MAN_RST);
 947         } else {
 948                 wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 949                 wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 950         }
 951 }
 952 
 953 static inline void wil_release_cpu(struct wil6210_priv *wil)
 954 {
 955         /* Start CPU */
 956         if (wil->hw_version >= HW_VER_TALYN_MB)
 957                 wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
 958         else
 959                 wil_w(wil, RGF_USER_USER_CPU_0, 1);
 960 }
 961 
 962 static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 963 {
 964         wil_info(wil, "oob_mode to %d\n", mode);
 965         switch (mode) {
 966         case 0:
 967                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 968                       BIT_USER_OOB_R2_MODE);
 969                 break;
 970         case 1:
 971                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 972                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 973                 break;
 974         case 2:
 975                 wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 976                 wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 977                 break;
 978         default:
 979                 wil_err(wil, "invalid oob_mode: %d\n", mode);
 980         }
 981 }
 982 
 983 static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
 984 {
 985         int delay = 0;
 986         u32 x, x1 = 0;
 987 
 988         /* wait until device ready. */
 989         if (no_flash) {
 990                 msleep(PMU_READY_DELAY_MS);
 991 
 992                 wil_dbg_misc(wil, "Reset completed\n");
 993         } else {
 994                 do {
 995                         msleep(RST_DELAY);
 996                         x = wil_r(wil, RGF_USER_BL +
 997                                   offsetof(struct bl_dedicated_registers_v0,
 998                                            boot_loader_ready));
 999                         if (x1 != x) {
1000                                 wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
1001                                              x1, x);
1002                                 x1 = x;
1003                         }
1004                         if (delay++ > RST_COUNT) {
1005                                 wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
1006                                         x);
1007                                 return -ETIME;
1008                         }
1009                 } while (x != BL_READY);
1010 
1011                 wil_dbg_misc(wil, "Reset completed in %d ms\n",
1012                              delay * RST_DELAY);
1013         }
1014 
1015         return 0;
1016 }
1017 
1018 static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1019 {
1020         u32 otp_hw;
1021         u8 signature_status;
1022         bool otp_signature_err;
1023         bool hw_section_done;
1024         u32 otp_qc_secured;
1025         int delay = 0;
1026 
1027         /* Wait for OTP signature test to complete */
1028         usleep_range(2000, 2200);
1029 
1030         wil->boot_config = WIL_BOOT_ERR;
1031 
1032         /* Poll until OTP signature status is valid.
1033          * In vanilla and development modes, when signature test is complete
1034          * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1035          * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1036          * for signature status change to 2 or 3.
1037          */
1038         do {
1039                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1040                 signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1041                 otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1042 
1043                 if (otp_signature_err &&
1044                     signature_status == WIL_SIG_STATUS_VANILLA) {
1045                         wil->boot_config = WIL_BOOT_VANILLA;
1046                         break;
1047                 }
1048                 if (otp_signature_err &&
1049                     signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1050                         wil->boot_config = WIL_BOOT_DEVELOPMENT;
1051                         break;
1052                 }
1053                 if (!otp_signature_err &&
1054                     signature_status == WIL_SIG_STATUS_PRODUCTION) {
1055                         wil->boot_config = WIL_BOOT_PRODUCTION;
1056                         break;
1057                 }
1058                 if  (!otp_signature_err &&
1059                      signature_status ==
1060                      WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1061                         /* Unrecognized OTP signature found. Possibly a
1062                          * corrupted production signature, access control
1063                          * is applied as in production mode, therefore
1064                          * do not fail
1065                          */
1066                         wil->boot_config = WIL_BOOT_PRODUCTION;
1067                         break;
1068                 }
1069                 if (delay++ > OTP_HW_COUNT)
1070                         break;
1071 
1072                 usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1073         } while (!otp_signature_err && signature_status == 0);
1074 
1075         if (wil->boot_config == WIL_BOOT_ERR) {
1076                 wil_err(wil,
1077                         "invalid boot config, signature_status %d otp_signature_err %d\n",
1078                         signature_status, otp_signature_err);
1079                 return -ETIME;
1080         }
1081 
1082         wil_dbg_misc(wil,
1083                      "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1084                      delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1085 
1086         if (wil->boot_config == WIL_BOOT_VANILLA)
1087                 /* Assuming not SPI boot (currently not supported) */
1088                 goto out;
1089 
1090         hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1091         delay = 0;
1092 
1093         while (!hw_section_done) {
1094                 msleep(RST_DELAY);
1095 
1096                 otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1097                 hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1098 
1099                 if (delay++ > RST_COUNT) {
1100                         wil_err(wil, "TO waiting for hw_section_done\n");
1101                         return -ETIME;
1102                 }
1103         }
1104 
1105         wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1106 
1107         otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1108         wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1109         wil_dbg_misc(wil, "secured boot is %sabled\n",
1110                      wil->secured_boot ? "en" : "dis");
1111 
1112 out:
1113         wil_dbg_misc(wil, "Reset completed\n");
1114 
1115         return 0;
1116 }
1117 
1118 static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1119 {
1120         u32 x;
1121         int rc;
1122 
1123         wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1124 
1125         if (wil->hw_version < HW_VER_TALYN) {
1126                 /* Clear MAC link up */
1127                 wil_s(wil, RGF_HP_CTRL, BIT(15));
1128                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1129                       BIT_HPAL_PERST_FROM_PAD);
1130                 wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1131         }
1132 
1133         wil_halt_cpu(wil);
1134 
1135         if (!no_flash) {
1136                 /* clear all boot loader "ready" bits */
1137                 wil_w(wil, RGF_USER_BL +
1138                       offsetof(struct bl_dedicated_registers_v0,
1139                                boot_loader_ready), 0);
1140                 /* this should be safe to write even with old BLs */
1141                 wil_w(wil, RGF_USER_BL +
1142                       offsetof(struct bl_dedicated_registers_v1,
1143                                bl_shutdown_handshake), 0);
1144         }
1145         /* Clear Fw Download notification */
1146         wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1147 
1148         wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1149         /* XTAL stabilization should take about 3ms */
1150         usleep_range(5000, 7000);
1151         x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1152         if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1153                 wil_err(wil, "Xtal stabilization timeout\n"
1154                         "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1155                 return -ETIME;
1156         }
1157         /* switch 10k to XTAL*/
1158         wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1159         /* 40 MHz */
1160         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1161 
1162         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1163         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1164 
1165         if (wil->hw_version >= HW_VER_TALYN_MB) {
1166                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1167                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1168                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1169                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1170         } else {
1171                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1172                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1173                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1174                 wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1175         }
1176 
1177         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1178         wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1179 
1180         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1181         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1182         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1183         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1184 
1185         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1186         /* reset A2 PCIE AHB */
1187         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1188 
1189         wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1190 
1191         if (wil->hw_version == HW_VER_TALYN_MB)
1192                 rc = wil_wait_device_ready_talyn_mb(wil);
1193         else
1194                 rc = wil_wait_device_ready(wil, no_flash);
1195         if (rc)
1196                 return rc;
1197 
1198         wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1199 
1200         /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1201         wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1202               BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1203 
1204         if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1205                 /* Reset OTP HW vectors to fit 40MHz */
1206                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1207                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1208                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1209                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1210                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1211                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1212                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1213                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1214                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1215                 wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1216                 wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1217         }
1218 
1219         return 0;
1220 }
1221 
1222 static void wil_collect_fw_info(struct wil6210_priv *wil)
1223 {
1224         struct wiphy *wiphy = wil_to_wiphy(wil);
1225         u8 retry_short;
1226         int rc;
1227 
1228         wil_refresh_fw_capabilities(wil);
1229 
1230         rc = wmi_get_mgmt_retry(wil, &retry_short);
1231         if (!rc) {
1232                 wiphy->retry_short = retry_short;
1233                 wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1234         }
1235 }
1236 
1237 void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1238 {
1239         struct wiphy *wiphy = wil_to_wiphy(wil);
1240         int features;
1241 
1242         wil->keep_radio_on_during_sleep =
1243                 test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1244                          wil->platform_capa) &&
1245                 test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1246 
1247         wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1248                  wil->keep_radio_on_during_sleep);
1249 
1250         if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1251                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1252         else
1253                 wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1254 
1255         if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1256                 wiphy->max_sched_scan_reqs = 1;
1257                 wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1258                 wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1259                 wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1260                 wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1261         }
1262 
1263         if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1264                 wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1265 
1266         if (wil->platform_ops.set_features) {
1267                 features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1268                                      wil->fw_capabilities) &&
1269                             test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1270                                      wil->platform_capa)) ?
1271                         BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1272 
1273                 if (wil->n_msi == 3)
1274                         features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1275 
1276                 wil->platform_ops.set_features(wil->platform_handle, features);
1277         }
1278 
1279         if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1280                      wil->fw_capabilities)) {
1281                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1282                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1283         } else {
1284                 wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1285                 wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1286         }
1287 
1288         update_supported_bands(wil);
1289 }
1290 
1291 void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1292 {
1293         le32_to_cpus(&r->base);
1294         le16_to_cpus(&r->entry_size);
1295         le16_to_cpus(&r->size);
1296         le32_to_cpus(&r->tail);
1297         le32_to_cpus(&r->head);
1298 }
1299 
1300 /* construct actual board file name to use */
1301 void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1302 {
1303         const char *board_file;
1304         const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1305                               WIL_FW_NAME_TALYN;
1306 
1307         if (wil->board_file) {
1308                 board_file = wil->board_file;
1309         } else {
1310                 /* If specific FW file is used for Talyn,
1311                  * use specific board file
1312                  */
1313                 if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1314                         board_file = WIL_BRD_NAME_TALYN;
1315                 else
1316                         board_file = WIL_BOARD_FILE_NAME;
1317         }
1318 
1319         strlcpy(buf, board_file, len);
1320 }
1321 
1322 static int wil_get_bl_info(struct wil6210_priv *wil)
1323 {
1324         struct net_device *ndev = wil->main_ndev;
1325         struct wiphy *wiphy = wil_to_wiphy(wil);
1326         union {
1327                 struct bl_dedicated_registers_v0 bl0;
1328                 struct bl_dedicated_registers_v1 bl1;
1329         } bl;
1330         u32 bl_ver;
1331         u8 *mac;
1332         u16 rf_status;
1333 
1334         wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1335                              sizeof(bl));
1336         bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1337         mac = bl.bl0.mac_address;
1338 
1339         if (bl_ver == 0) {
1340                 le32_to_cpus(&bl.bl0.rf_type);
1341                 le32_to_cpus(&bl.bl0.baseband_type);
1342                 rf_status = 0; /* actually, unknown */
1343                 wil_info(wil,
1344                          "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1345                          bl_ver, mac,
1346                          bl.bl0.rf_type, bl.bl0.baseband_type);
1347                 wil_info(wil, "Boot Loader build unknown for struct v0\n");
1348         } else {
1349                 le16_to_cpus(&bl.bl1.rf_type);
1350                 rf_status = le16_to_cpu(bl.bl1.rf_status);
1351                 le32_to_cpus(&bl.bl1.baseband_type);
1352                 le16_to_cpus(&bl.bl1.bl_version_subminor);
1353                 le16_to_cpus(&bl.bl1.bl_version_build);
1354                 wil_info(wil,
1355                          "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1356                          bl_ver, mac,
1357                          bl.bl1.rf_type, rf_status,
1358                          bl.bl1.baseband_type);
1359                 wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1360                          bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1361                          bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1362         }
1363 
1364         if (!is_valid_ether_addr(mac)) {
1365                 wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1366                 return -EINVAL;
1367         }
1368 
1369         ether_addr_copy(ndev->perm_addr, mac);
1370         ether_addr_copy(wiphy->perm_addr, mac);
1371         if (!is_valid_ether_addr(ndev->dev_addr))
1372                 ether_addr_copy(ndev->dev_addr, mac);
1373 
1374         if (rf_status) {/* bad RF cable? */
1375                 wil_err(wil, "RF communication error 0x%04x",
1376                         rf_status);
1377                 return -EAGAIN;
1378         }
1379 
1380         return 0;
1381 }
1382 
1383 static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1384 {
1385         u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1386         u32 bl_ver = wil_r(wil, RGF_USER_BL +
1387                            offsetof(struct bl_dedicated_registers_v0,
1388                                     boot_loader_struct_version));
1389 
1390         if (bl_ver < 2)
1391                 return;
1392 
1393         bl_assert_code = wil_r(wil, RGF_USER_BL +
1394                                offsetof(struct bl_dedicated_registers_v1,
1395                                         bl_assert_code));
1396         bl_assert_blink = wil_r(wil, RGF_USER_BL +
1397                                 offsetof(struct bl_dedicated_registers_v1,
1398                                          bl_assert_blink));
1399         bl_magic_number = wil_r(wil, RGF_USER_BL +
1400                                 offsetof(struct bl_dedicated_registers_v1,
1401                                          bl_magic_number));
1402 
1403         if (is_err) {
1404                 wil_err(wil,
1405                         "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1406                         bl_assert_code, bl_assert_blink, bl_magic_number);
1407         } else {
1408                 wil_dbg_misc(wil,
1409                              "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1410                              bl_assert_code, bl_assert_blink, bl_magic_number);
1411         }
1412 }
1413 
1414 static int wil_get_otp_info(struct wil6210_priv *wil)
1415 {
1416         struct net_device *ndev = wil->main_ndev;
1417         struct wiphy *wiphy = wil_to_wiphy(wil);
1418         u8 mac[8];
1419         int mac_addr;
1420 
1421         /* OEM MAC has precedence */
1422         mac_addr = RGF_OTP_OEM_MAC;
1423         wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1424 
1425         if (is_valid_ether_addr(mac)) {
1426                 wil_info(wil, "using OEM MAC %pM\n", mac);
1427         } else {
1428                 if (wil->hw_version >= HW_VER_TALYN_MB)
1429                         mac_addr = RGF_OTP_MAC_TALYN_MB;
1430                 else
1431                         mac_addr = RGF_OTP_MAC;
1432 
1433                 wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1434                                      sizeof(mac));
1435         }
1436 
1437         if (!is_valid_ether_addr(mac)) {
1438                 wil_err(wil, "Invalid MAC %pM\n", mac);
1439                 return -EINVAL;
1440         }
1441 
1442         ether_addr_copy(ndev->perm_addr, mac);
1443         ether_addr_copy(wiphy->perm_addr, mac);
1444         if (!is_valid_ether_addr(ndev->dev_addr))
1445                 ether_addr_copy(ndev->dev_addr, mac);
1446 
1447         return 0;
1448 }
1449 
1450 static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1451 {
1452         ulong to = msecs_to_jiffies(2000);
1453         ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1454 
1455         if (0 == left) {
1456                 wil_err(wil, "Firmware not ready\n");
1457                 return -ETIME;
1458         } else {
1459                 wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1460                          jiffies_to_msecs(to-left), wil->hw_version);
1461         }
1462         return 0;
1463 }
1464 
1465 void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1466 {
1467         struct wil6210_priv *wil = vif_to_wil(vif);
1468         int rc;
1469         struct cfg80211_scan_info info = {
1470                 .aborted = true,
1471         };
1472 
1473         lockdep_assert_held(&wil->vif_mutex);
1474 
1475         if (!vif->scan_request)
1476                 return;
1477 
1478         wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1479         del_timer_sync(&vif->scan_timer);
1480         mutex_unlock(&wil->vif_mutex);
1481         rc = wmi_abort_scan(vif);
1482         if (!rc && sync)
1483                 wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1484                                                  msecs_to_jiffies(
1485                                                  WAIT_FOR_SCAN_ABORT_MS));
1486 
1487         mutex_lock(&wil->vif_mutex);
1488         if (vif->scan_request) {
1489                 cfg80211_scan_done(vif->scan_request, &info);
1490                 vif->scan_request = NULL;
1491         }
1492 }
1493 
1494 void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1495 {
1496         int i;
1497 
1498         lockdep_assert_held(&wil->vif_mutex);
1499 
1500         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1501                 struct wil6210_vif *vif = wil->vifs[i];
1502 
1503                 if (vif)
1504                         wil_abort_scan(vif, sync);
1505         }
1506 }
1507 
1508 int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1509 {
1510         int rc;
1511 
1512         if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1513                 wil_err(wil, "set_power_mgmt not supported\n");
1514                 return -EOPNOTSUPP;
1515         }
1516 
1517         rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1518         if (rc)
1519                 wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1520         else
1521                 wil->ps_profile = ps_profile;
1522 
1523         return rc;
1524 }
1525 
1526 static void wil_pre_fw_config(struct wil6210_priv *wil)
1527 {
1528         wil_clear_fw_log_addr(wil);
1529         /* Mark FW as loaded from host */
1530         wil_s(wil, RGF_USER_USAGE_6, 1);
1531 
1532         /* clear any interrupts which on-card-firmware
1533          * may have set
1534          */
1535         wil6210_clear_irq(wil);
1536         /* CAF_ICR - clear and mask */
1537         /* it is W1C, clear by writing back same value */
1538         if (wil->hw_version < HW_VER_TALYN_MB) {
1539                 wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1540                 wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1541         }
1542         /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1543          * In Talyn-MB host cannot access this register due to
1544          * access control, hence PAL_UNIT_ICR is cleared by the FW
1545          */
1546         if (wil->hw_version < HW_VER_TALYN_MB)
1547                 wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1548                       0);
1549 
1550         if (wil->fw_calib_result > 0) {
1551                 __le32 val = cpu_to_le32(wil->fw_calib_result |
1552                                                 (CALIB_RESULT_SIGNATURE << 8));
1553                 wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1554         }
1555 }
1556 
1557 static int wil_restore_vifs(struct wil6210_priv *wil)
1558 {
1559         struct wil6210_vif *vif;
1560         struct net_device *ndev;
1561         struct wireless_dev *wdev;
1562         int i, rc;
1563 
1564         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1565                 vif = wil->vifs[i];
1566                 if (!vif)
1567                         continue;
1568                 vif->ap_isolate = 0;
1569                 if (vif->mid) {
1570                         ndev = vif_to_ndev(vif);
1571                         wdev = vif_to_wdev(vif);
1572                         rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1573                                                wdev->iftype);
1574                         if (rc) {
1575                                 wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1576                                         i, wdev->iftype, rc);
1577                                 return rc;
1578                         }
1579                 }
1580         }
1581 
1582         return 0;
1583 }
1584 
1585 /*
1586  * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1587  * driver clears the addresses before FW starts and FW initializes the address
1588  * when it is ready to send logs.
1589  */
1590 void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1591 {
1592         /* FW log addr */
1593         wil_w(wil, RGF_USER_USAGE_1, 0);
1594         /* ucode log addr */
1595         wil_w(wil, RGF_USER_USAGE_2, 0);
1596         wil_dbg_misc(wil, "Cleared FW and ucode log address");
1597 }
1598 
1599 /*
1600  * We reset all the structures, and we reset the UMAC.
1601  * After calling this routine, you're expected to reload
1602  * the firmware.
1603  */
1604 int wil_reset(struct wil6210_priv *wil, bool load_fw)
1605 {
1606         int rc, i;
1607         unsigned long status_flags = BIT(wil_status_resetting);
1608         int no_flash;
1609         struct wil6210_vif *vif;
1610 
1611         wil_dbg_misc(wil, "reset\n");
1612 
1613         WARN_ON(!mutex_is_locked(&wil->mutex));
1614         WARN_ON(test_bit(wil_status_napi_en, wil->status));
1615 
1616         if (debug_fw) {
1617                 static const u8 mac[ETH_ALEN] = {
1618                         0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1619                 };
1620                 struct net_device *ndev = wil->main_ndev;
1621 
1622                 ether_addr_copy(ndev->perm_addr, mac);
1623                 ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1624                 return 0;
1625         }
1626 
1627         if (wil->hw_version == HW_VER_UNKNOWN)
1628                 return -ENODEV;
1629 
1630         if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1631             wil->hw_version < HW_VER_TALYN_MB) {
1632                 wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1633                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1634         }
1635 
1636         if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1637                 wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1638                 wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1639         }
1640 
1641         if (wil->platform_ops.notify) {
1642                 rc = wil->platform_ops.notify(wil->platform_handle,
1643                                               WIL_PLATFORM_EVT_PRE_RESET);
1644                 if (rc)
1645                         wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1646                                 rc);
1647         }
1648 
1649         set_bit(wil_status_resetting, wil->status);
1650         mutex_lock(&wil->vif_mutex);
1651         wil_abort_scan_all_vifs(wil, false);
1652         mutex_unlock(&wil->vif_mutex);
1653 
1654         for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1655                 vif = wil->vifs[i];
1656                 if (vif) {
1657                         cancel_work_sync(&vif->disconnect_worker);
1658                         wil6210_disconnect(vif, NULL,
1659                                            WLAN_REASON_DEAUTH_LEAVING);
1660                         vif->ptk_rekey_state = WIL_REKEY_IDLE;
1661                 }
1662         }
1663         wil_bcast_fini_all(wil);
1664 
1665         /* Disable device led before reset*/
1666         wmi_led_cfg(wil, false);
1667 
1668         /* prevent NAPI from being scheduled and prevent wmi commands */
1669         mutex_lock(&wil->wmi_mutex);
1670         if (test_bit(wil_status_suspending, wil->status))
1671                 status_flags |= BIT(wil_status_suspending);
1672         bitmap_and(wil->status, wil->status, &status_flags,
1673                    wil_status_last);
1674         wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1675         mutex_unlock(&wil->wmi_mutex);
1676 
1677         wil_mask_irq(wil);
1678 
1679         wmi_event_flush(wil);
1680 
1681         flush_workqueue(wil->wq_service);
1682         flush_workqueue(wil->wmi_wq);
1683 
1684         no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1685         if (!no_flash)
1686                 wil_bl_crash_info(wil, false);
1687         wil_disable_irq(wil);
1688         rc = wil_target_reset(wil, no_flash);
1689         wil6210_clear_irq(wil);
1690         wil_enable_irq(wil);
1691         wil->txrx_ops.rx_fini(wil);
1692         wil->txrx_ops.tx_fini(wil);
1693         if (rc) {
1694                 if (!no_flash)
1695                         wil_bl_crash_info(wil, true);
1696                 goto out;
1697         }
1698 
1699         if (no_flash) {
1700                 rc = wil_get_otp_info(wil);
1701         } else {
1702                 rc = wil_get_bl_info(wil);
1703                 if (rc == -EAGAIN && !load_fw)
1704                         /* ignore RF error if not going up */
1705                         rc = 0;
1706         }
1707         if (rc)
1708                 goto out;
1709 
1710         wil_set_oob_mode(wil, oob_mode);
1711         if (load_fw) {
1712                 char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1713 
1714                 if  (wil->secured_boot) {
1715                         wil_err(wil, "secured boot is not supported\n");
1716                         return -ENOTSUPP;
1717                 }
1718 
1719                 board_file[0] = '\0';
1720                 wil_get_board_file(wil, board_file, sizeof(board_file));
1721                 wil_info(wil, "Use firmware <%s> + board <%s>\n",
1722                          wil->wil_fw_name, board_file);
1723 
1724                 if (!no_flash)
1725                         wil_bl_prepare_halt(wil);
1726 
1727                 wil_halt_cpu(wil);
1728                 memset(wil->fw_version, 0, sizeof(wil->fw_version));
1729                 /* Loading f/w from the file */
1730                 rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1731                 if (rc)
1732                         goto out;
1733                 if (wil->num_of_brd_entries)
1734                         rc = wil_request_board(wil, board_file);
1735                 else
1736                         rc = wil_request_firmware(wil, board_file, true);
1737                 if (rc)
1738                         goto out;
1739 
1740                 wil_pre_fw_config(wil);
1741                 wil_release_cpu(wil);
1742         }
1743 
1744         /* init after reset */
1745         reinit_completion(&wil->wmi_ready);
1746         reinit_completion(&wil->wmi_call);
1747         reinit_completion(&wil->halp.comp);
1748 
1749         clear_bit(wil_status_resetting, wil->status);
1750 
1751         if (load_fw) {
1752                 wil_unmask_irq(wil);
1753 
1754                 /* we just started MAC, wait for FW ready */
1755                 rc = wil_wait_for_fw_ready(wil);
1756                 if (rc)
1757                         return rc;
1758 
1759                 /* check FW is responsive */
1760                 rc = wmi_echo(wil);
1761                 if (rc) {
1762                         wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1763                         return rc;
1764                 }
1765 
1766                 wil->txrx_ops.configure_interrupt_moderation(wil);
1767 
1768                 /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1769                  * while there is back-pressure from Host during RX
1770                  */
1771                 if (wil->hw_version >= HW_VER_TALYN_MB)
1772                         wil_s(wil, RGF_DMA_MISC_CTL,
1773                               BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1774 
1775                 rc = wil_restore_vifs(wil);
1776                 if (rc) {
1777                         wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1778                         return rc;
1779                 }
1780 
1781                 wil_collect_fw_info(wil);
1782 
1783                 if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1784                         wil_ps_update(wil, wil->ps_profile);
1785 
1786                 if (wil->platform_ops.notify) {
1787                         rc = wil->platform_ops.notify(wil->platform_handle,
1788                                                       WIL_PLATFORM_EVT_FW_RDY);
1789                         if (rc) {
1790                                 wil_err(wil, "FW_RDY notify failed, rc %d\n",
1791                                         rc);
1792                                 rc = 0;
1793                         }
1794                 }
1795         }
1796 
1797         return rc;
1798 
1799 out:
1800         clear_bit(wil_status_resetting, wil->status);
1801         return rc;
1802 }
1803 
1804 void wil_fw_error_recovery(struct wil6210_priv *wil)
1805 {
1806         wil_dbg_misc(wil, "starting fw error recovery\n");
1807 
1808         if (test_bit(wil_status_resetting, wil->status)) {
1809                 wil_info(wil, "Reset already in progress\n");
1810                 return;
1811         }
1812 
1813         wil->recovery_state = fw_recovery_pending;
1814         schedule_work(&wil->fw_error_worker);
1815 }
1816 
1817 int __wil_up(struct wil6210_priv *wil)
1818 {
1819         struct net_device *ndev = wil->main_ndev;
1820         struct wireless_dev *wdev = ndev->ieee80211_ptr;
1821         int rc;
1822 
1823         WARN_ON(!mutex_is_locked(&wil->mutex));
1824 
1825         down_write(&wil->mem_lock);
1826         rc = wil_reset(wil, true);
1827         up_write(&wil->mem_lock);
1828         if (rc)
1829                 return rc;
1830 
1831         /* Rx RING. After MAC and beacon */
1832         if (rx_ring_order == 0)
1833                 rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1834                         WIL_RX_RING_SIZE_ORDER_DEFAULT :
1835                         WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1836 
1837         rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1838         if (rc)
1839                 return rc;
1840 
1841         rc = wil->txrx_ops.tx_init(wil);
1842         if (rc)
1843                 return rc;
1844 
1845         switch (wdev->iftype) {
1846         case NL80211_IFTYPE_STATION:
1847                 wil_dbg_misc(wil, "type: STATION\n");
1848                 ndev->type = ARPHRD_ETHER;
1849                 break;
1850         case NL80211_IFTYPE_AP:
1851                 wil_dbg_misc(wil, "type: AP\n");
1852                 ndev->type = ARPHRD_ETHER;
1853                 break;
1854         case NL80211_IFTYPE_P2P_CLIENT:
1855                 wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1856                 ndev->type = ARPHRD_ETHER;
1857                 break;
1858         case NL80211_IFTYPE_P2P_GO:
1859                 wil_dbg_misc(wil, "type: P2P_GO\n");
1860                 ndev->type = ARPHRD_ETHER;
1861                 break;
1862         case NL80211_IFTYPE_MONITOR:
1863                 wil_dbg_misc(wil, "type: Monitor\n");
1864                 ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1865                 /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1866                 break;
1867         default:
1868                 return -EOPNOTSUPP;
1869         }
1870 
1871         /* MAC address - pre-requisite for other commands */
1872         wmi_set_mac_address(wil, ndev->dev_addr);
1873 
1874         wil_dbg_misc(wil, "NAPI enable\n");
1875         napi_enable(&wil->napi_rx);
1876         napi_enable(&wil->napi_tx);
1877         set_bit(wil_status_napi_en, wil->status);
1878 
1879         wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1880 
1881         return 0;
1882 }
1883 
1884 int wil_up(struct wil6210_priv *wil)
1885 {
1886         int rc;
1887 
1888         wil_dbg_misc(wil, "up\n");
1889 
1890         mutex_lock(&wil->mutex);
1891         rc = __wil_up(wil);
1892         mutex_unlock(&wil->mutex);
1893 
1894         return rc;
1895 }
1896 
1897 int __wil_down(struct wil6210_priv *wil)
1898 {
1899         int rc;
1900         WARN_ON(!mutex_is_locked(&wil->mutex));
1901 
1902         set_bit(wil_status_resetting, wil->status);
1903 
1904         wil6210_bus_request(wil, 0);
1905 
1906         wil_disable_irq(wil);
1907         if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1908                 napi_disable(&wil->napi_rx);
1909                 napi_disable(&wil->napi_tx);
1910                 wil_dbg_misc(wil, "NAPI disable\n");
1911         }
1912         wil_enable_irq(wil);
1913 
1914         mutex_lock(&wil->vif_mutex);
1915         wil_p2p_stop_radio_operations(wil);
1916         wil_abort_scan_all_vifs(wil, false);
1917         mutex_unlock(&wil->vif_mutex);
1918 
1919         down_write(&wil->mem_lock);
1920         rc = wil_reset(wil, false);
1921         up_write(&wil->mem_lock);
1922 
1923         return rc;
1924 }
1925 
1926 int wil_down(struct wil6210_priv *wil)
1927 {
1928         int rc;
1929 
1930         wil_dbg_misc(wil, "down\n");
1931 
1932         wil_set_recovery_state(wil, fw_recovery_idle);
1933         mutex_lock(&wil->mutex);
1934         rc = __wil_down(wil);
1935         mutex_unlock(&wil->mutex);
1936 
1937         return rc;
1938 }
1939 
1940 int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1941 {
1942         int i;
1943         int rc = -ENOENT;
1944 
1945         for (i = 0; i < wil->max_assoc_sta; i++) {
1946                 if (wil->sta[i].mid == mid &&
1947                     wil->sta[i].status != wil_sta_unused &&
1948                     ether_addr_equal(wil->sta[i].addr, mac)) {
1949                         rc = i;
1950                         break;
1951                 }
1952         }
1953 
1954         return rc;
1955 }
1956 
1957 void wil_halp_vote(struct wil6210_priv *wil)
1958 {
1959         unsigned long rc;
1960         unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1961 
1962         if (wil->hw_version >= HW_VER_TALYN_MB)
1963                 return;
1964 
1965         mutex_lock(&wil->halp.lock);
1966 
1967         wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1968                     wil->halp.ref_cnt);
1969 
1970         if (++wil->halp.ref_cnt == 1) {
1971                 reinit_completion(&wil->halp.comp);
1972                 /* mark to IRQ context to handle HALP ICR */
1973                 wil->halp.handle_icr = true;
1974                 wil6210_set_halp(wil);
1975                 rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1976                 if (!rc) {
1977                         wil_err(wil, "HALP vote timed out\n");
1978                         /* Mask HALP as done in case the interrupt is raised */
1979                         wil->halp.handle_icr = false;
1980                         wil6210_mask_halp(wil);
1981                 } else {
1982                         wil_dbg_irq(wil,
1983                                     "halp_vote: HALP vote completed after %d ms\n",
1984                                     jiffies_to_msecs(to_jiffies - rc));
1985                 }
1986         }
1987 
1988         wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1989                     wil->halp.ref_cnt);
1990 
1991         mutex_unlock(&wil->halp.lock);
1992 }
1993 
1994 void wil_halp_unvote(struct wil6210_priv *wil)
1995 {
1996         if (wil->hw_version >= HW_VER_TALYN_MB)
1997                 return;
1998 
1999         WARN_ON(wil->halp.ref_cnt == 0);
2000 
2001         mutex_lock(&wil->halp.lock);
2002 
2003         wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
2004                     wil->halp.ref_cnt);
2005 
2006         if (--wil->halp.ref_cnt == 0) {
2007                 wil6210_clear_halp(wil);
2008                 wil_dbg_irq(wil, "HALP unvote\n");
2009         }
2010 
2011         wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2012                     wil->halp.ref_cnt);
2013 
2014         mutex_unlock(&wil->halp.lock);
2015 }
2016 
2017 void wil_init_txrx_ops(struct wil6210_priv *wil)
2018 {
2019         if (wil->use_enhanced_dma_hw)
2020                 wil_init_txrx_ops_edma(wil);
2021         else
2022                 wil_init_txrx_ops_legacy_dma(wil);
2023 }

/* [<][>][^][v][top][bottom][index][help] */