root/drivers/net/wireless/ath/ath6kl/sdio.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath6kl_sdio_priv
  2. buf_needs_bounce
  3. ath6kl_sdio_set_mbox_info
  4. ath6kl_sdio_set_cmd53_arg
  5. ath6kl_sdio_set_cmd52_arg
  6. ath6kl_sdio_func0_cmd52_wr_byte
  7. ath6kl_sdio_io
  8. ath6kl_sdio_alloc_busreq
  9. ath6kl_sdio_free_bus_req
  10. ath6kl_sdio_setup_scat_data
  11. ath6kl_sdio_scat_rw
  12. ath6kl_sdio_alloc_prep_scat_req
  13. ath6kl_sdio_read_write_sync
  14. __ath6kl_sdio_write_async
  15. ath6kl_sdio_write_async_work
  16. ath6kl_sdio_irq_handler
  17. ath6kl_sdio_power_on
  18. ath6kl_sdio_power_off
  19. ath6kl_sdio_write_async
  20. ath6kl_sdio_irq_enable
  21. ath6kl_sdio_is_on_irq
  22. ath6kl_sdio_irq_disable
  23. ath6kl_sdio_scatter_req_get
  24. ath6kl_sdio_scatter_req_add
  25. ath6kl_sdio_async_rw_scatter
  26. ath6kl_sdio_cleanup_scatter
  27. ath6kl_sdio_enable_scatter
  28. ath6kl_sdio_config
  29. ath6kl_set_sdio_pm_caps
  30. ath6kl_sdio_suspend
  31. ath6kl_sdio_resume
  32. ath6kl_set_addrwin_reg
  33. ath6kl_sdio_diag_read32
  34. ath6kl_sdio_diag_write32
  35. ath6kl_sdio_bmi_credits
  36. ath6kl_bmi_get_rx_lkahd
  37. ath6kl_sdio_bmi_write
  38. ath6kl_sdio_bmi_read
  39. ath6kl_sdio_stop
  40. ath6kl_sdio_pm_suspend
  41. ath6kl_sdio_pm_resume
  42. ath6kl_sdio_probe
  43. ath6kl_sdio_remove
  44. ath6kl_sdio_init
  45. ath6kl_sdio_exit

   1 /*
   2  * Copyright (c) 2004-2011 Atheros Communications Inc.
   3  * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
   4  *
   5  * Permission to use, copy, modify, and/or distribute this software for any
   6  * purpose with or without fee is hereby granted, provided that the above
   7  * copyright notice and this permission notice appear in all copies.
   8  *
   9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16  */
  17 
  18 #include <linux/module.h>
  19 #include <linux/mmc/card.h>
  20 #include <linux/mmc/mmc.h>
  21 #include <linux/mmc/host.h>
  22 #include <linux/mmc/sdio_func.h>
  23 #include <linux/mmc/sdio_ids.h>
  24 #include <linux/mmc/sdio.h>
  25 #include <linux/mmc/sd.h>
  26 #include "hif.h"
  27 #include "hif-ops.h"
  28 #include "target.h"
  29 #include "debug.h"
  30 #include "cfg80211.h"
  31 #include "trace.h"
  32 
  33 struct ath6kl_sdio {
  34         struct sdio_func *func;
  35 
  36         /* protects access to bus_req_freeq */
  37         spinlock_t lock;
  38 
  39         /* free list */
  40         struct list_head bus_req_freeq;
  41 
  42         /* available bus requests */
  43         struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
  44 
  45         struct ath6kl *ar;
  46 
  47         u8 *dma_buffer;
  48 
  49         /* protects access to dma_buffer */
  50         struct mutex dma_buffer_mutex;
  51 
  52         /* scatter request list head */
  53         struct list_head scat_req;
  54 
  55         atomic_t irq_handling;
  56         wait_queue_head_t irq_wq;
  57 
  58         /* protects access to scat_req */
  59         spinlock_t scat_lock;
  60 
  61         bool scatter_enabled;
  62 
  63         bool is_disabled;
  64         const struct sdio_device_id *id;
  65         struct work_struct wr_async_work;
  66         struct list_head wr_asyncq;
  67 
  68         /* protects access to wr_asyncq */
  69         spinlock_t wr_async_lock;
  70 };
  71 
  72 #define CMD53_ARG_READ          0
  73 #define CMD53_ARG_WRITE         1
  74 #define CMD53_ARG_BLOCK_BASIS   1
  75 #define CMD53_ARG_FIXED_ADDRESS 0
  76 #define CMD53_ARG_INCR_ADDRESS  1
  77 
  78 static int ath6kl_sdio_config(struct ath6kl *ar);
  79 
  80 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
  81 {
  82         return ar->hif_priv;
  83 }
  84 
  85 /*
  86  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
  87  * Most host controllers assume the buffer is DMA'able and will
  88  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
  89  * check fails on stack memory.
  90  */
  91 static inline bool buf_needs_bounce(u8 *buf)
  92 {
  93         return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
  94 }
  95 
  96 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
  97 {
  98         struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
  99 
 100         /* EP1 has an extended range */
 101         mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
 102         mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
 103         mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
 104         mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
 105         mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
 106         mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
 107 }
 108 
 109 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
 110                                              u8 mode, u8 opcode, u32 addr,
 111                                              u16 blksz)
 112 {
 113         *arg = (((rw & 1) << 31) |
 114                 ((func & 0x7) << 28) |
 115                 ((mode & 1) << 27) |
 116                 ((opcode & 1) << 26) |
 117                 ((addr & 0x1FFFF) << 9) |
 118                 (blksz & 0x1FF));
 119 }
 120 
 121 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
 122                                              unsigned int address,
 123                                              unsigned char val)
 124 {
 125         const u8 func = 0;
 126 
 127         *arg = ((write & 1) << 31) |
 128                ((func & 0x7) << 28) |
 129                ((raw & 1) << 27) |
 130                (1 << 26) |
 131                ((address & 0x1FFFF) << 9) |
 132                (1 << 8) |
 133                (val & 0xFF);
 134 }
 135 
 136 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
 137                                            unsigned int address,
 138                                            unsigned char byte)
 139 {
 140         struct mmc_command io_cmd;
 141 
 142         memset(&io_cmd, 0, sizeof(io_cmd));
 143         ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
 144         io_cmd.opcode = SD_IO_RW_DIRECT;
 145         io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
 146 
 147         return mmc_wait_for_cmd(card->host, &io_cmd, 0);
 148 }
 149 
 150 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
 151                           u8 *buf, u32 len)
 152 {
 153         int ret = 0;
 154 
 155         sdio_claim_host(func);
 156 
 157         if (request & HIF_WRITE) {
 158                 /* FIXME: looks like ugly workaround for something */
 159                 if (addr >= HIF_MBOX_BASE_ADDR &&
 160                     addr <= HIF_MBOX_END_ADDR)
 161                         addr += (HIF_MBOX_WIDTH - len);
 162 
 163                 /* FIXME: this also looks like ugly workaround */
 164                 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
 165                         addr += HIF_MBOX0_EXT_WIDTH - len;
 166 
 167                 if (request & HIF_FIXED_ADDRESS)
 168                         ret = sdio_writesb(func, addr, buf, len);
 169                 else
 170                         ret = sdio_memcpy_toio(func, addr, buf, len);
 171         } else {
 172                 if (request & HIF_FIXED_ADDRESS)
 173                         ret = sdio_readsb(func, buf, addr, len);
 174                 else
 175                         ret = sdio_memcpy_fromio(func, buf, addr, len);
 176         }
 177 
 178         sdio_release_host(func);
 179 
 180         ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
 181                    request & HIF_WRITE ? "wr" : "rd", addr,
 182                    request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
 183         ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
 184 
 185         trace_ath6kl_sdio(addr, request, buf, len);
 186 
 187         return ret;
 188 }
 189 
 190 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
 191 {
 192         struct bus_request *bus_req;
 193 
 194         spin_lock_bh(&ar_sdio->lock);
 195 
 196         if (list_empty(&ar_sdio->bus_req_freeq)) {
 197                 spin_unlock_bh(&ar_sdio->lock);
 198                 return NULL;
 199         }
 200 
 201         bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
 202                                    struct bus_request, list);
 203         list_del(&bus_req->list);
 204 
 205         spin_unlock_bh(&ar_sdio->lock);
 206         ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
 207                    __func__, bus_req);
 208 
 209         return bus_req;
 210 }
 211 
 212 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
 213                                      struct bus_request *bus_req)
 214 {
 215         ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
 216                    __func__, bus_req);
 217 
 218         spin_lock_bh(&ar_sdio->lock);
 219         list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
 220         spin_unlock_bh(&ar_sdio->lock);
 221 }
 222 
 223 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
 224                                         struct mmc_data *data)
 225 {
 226         struct scatterlist *sg;
 227         int i;
 228 
 229         data->blksz = HIF_MBOX_BLOCK_SIZE;
 230         data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
 231 
 232         ath6kl_dbg(ATH6KL_DBG_SCATTER,
 233                    "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
 234                    (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
 235                    data->blksz, data->blocks, scat_req->len,
 236                    scat_req->scat_entries);
 237 
 238         data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
 239                                                     MMC_DATA_READ;
 240 
 241         /* fill SG entries */
 242         sg = scat_req->sgentries;
 243         sg_init_table(sg, scat_req->scat_entries);
 244 
 245         /* assemble SG list */
 246         for (i = 0; i < scat_req->scat_entries; i++, sg++) {
 247                 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
 248                            i, scat_req->scat_list[i].buf,
 249                            scat_req->scat_list[i].len);
 250 
 251                 sg_set_buf(sg, scat_req->scat_list[i].buf,
 252                            scat_req->scat_list[i].len);
 253         }
 254 
 255         /* set scatter-gather table for request */
 256         data->sg = scat_req->sgentries;
 257         data->sg_len = scat_req->scat_entries;
 258 }
 259 
 260 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
 261                                struct bus_request *req)
 262 {
 263         struct mmc_request mmc_req;
 264         struct mmc_command cmd;
 265         struct mmc_data data;
 266         struct hif_scatter_req *scat_req;
 267         u8 opcode, rw;
 268         int status, len;
 269 
 270         scat_req = req->scat_req;
 271 
 272         if (scat_req->virt_scat) {
 273                 len = scat_req->len;
 274                 if (scat_req->req & HIF_BLOCK_BASIS)
 275                         len = round_down(len, HIF_MBOX_BLOCK_SIZE);
 276 
 277                 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
 278                                         scat_req->addr, scat_req->virt_dma_buf,
 279                                         len);
 280                 goto scat_complete;
 281         }
 282 
 283         memset(&mmc_req, 0, sizeof(struct mmc_request));
 284         memset(&cmd, 0, sizeof(struct mmc_command));
 285         memset(&data, 0, sizeof(struct mmc_data));
 286 
 287         ath6kl_sdio_setup_scat_data(scat_req, &data);
 288 
 289         opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
 290                   CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
 291 
 292         rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
 293 
 294         /* Fixup the address so that the last byte will fall on MBOX EOM */
 295         if (scat_req->req & HIF_WRITE) {
 296                 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
 297                         scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
 298                 else
 299                         /* Uses extended address range */
 300                         scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
 301         }
 302 
 303         /* set command argument */
 304         ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
 305                                   CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
 306                                   data.blocks);
 307 
 308         cmd.opcode = SD_IO_RW_EXTENDED;
 309         cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
 310 
 311         mmc_req.cmd = &cmd;
 312         mmc_req.data = &data;
 313 
 314         sdio_claim_host(ar_sdio->func);
 315 
 316         mmc_set_data_timeout(&data, ar_sdio->func->card);
 317 
 318         trace_ath6kl_sdio_scat(scat_req->addr,
 319                                scat_req->req,
 320                                scat_req->len,
 321                                scat_req->scat_entries,
 322                                scat_req->scat_list);
 323 
 324         /* synchronous call to process request */
 325         mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
 326 
 327         sdio_release_host(ar_sdio->func);
 328 
 329         status = cmd.error ? cmd.error : data.error;
 330 
 331 scat_complete:
 332         scat_req->status = status;
 333 
 334         if (scat_req->status)
 335                 ath6kl_err("Scatter write request failed:%d\n",
 336                            scat_req->status);
 337 
 338         if (scat_req->req & HIF_ASYNCHRONOUS)
 339                 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
 340 
 341         return status;
 342 }
 343 
 344 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
 345                                            int n_scat_entry, int n_scat_req,
 346                                            bool virt_scat)
 347 {
 348         struct hif_scatter_req *s_req;
 349         struct bus_request *bus_req;
 350         int i, scat_req_sz, scat_list_sz, size;
 351         u8 *virt_buf;
 352 
 353         scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
 354         scat_req_sz = sizeof(*s_req) + scat_list_sz;
 355 
 356         if (!virt_scat)
 357                 size = sizeof(struct scatterlist) * n_scat_entry;
 358         else
 359                 size =  2 * L1_CACHE_BYTES +
 360                         ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
 361 
 362         for (i = 0; i < n_scat_req; i++) {
 363                 /* allocate the scatter request */
 364                 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
 365                 if (!s_req)
 366                         return -ENOMEM;
 367 
 368                 if (virt_scat) {
 369                         virt_buf = kzalloc(size, GFP_KERNEL);
 370                         if (!virt_buf) {
 371                                 kfree(s_req);
 372                                 return -ENOMEM;
 373                         }
 374 
 375                         s_req->virt_dma_buf =
 376                                 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
 377                 } else {
 378                         /* allocate sglist */
 379                         s_req->sgentries = kzalloc(size, GFP_KERNEL);
 380 
 381                         if (!s_req->sgentries) {
 382                                 kfree(s_req);
 383                                 return -ENOMEM;
 384                         }
 385                 }
 386 
 387                 /* allocate a bus request for this scatter request */
 388                 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
 389                 if (!bus_req) {
 390                         kfree(s_req->sgentries);
 391                         kfree(s_req->virt_dma_buf);
 392                         kfree(s_req);
 393                         return -ENOMEM;
 394                 }
 395 
 396                 /* assign the scatter request to this bus request */
 397                 bus_req->scat_req = s_req;
 398                 s_req->busrequest = bus_req;
 399 
 400                 s_req->virt_scat = virt_scat;
 401 
 402                 /* add it to the scatter pool */
 403                 hif_scatter_req_add(ar_sdio->ar, s_req);
 404         }
 405 
 406         return 0;
 407 }
 408 
 409 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
 410                                        u32 len, u32 request)
 411 {
 412         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 413         u8  *tbuf = NULL;
 414         int ret;
 415         bool bounced = false;
 416 
 417         if (request & HIF_BLOCK_BASIS)
 418                 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
 419 
 420         if (buf_needs_bounce(buf)) {
 421                 if (!ar_sdio->dma_buffer)
 422                         return -ENOMEM;
 423                 mutex_lock(&ar_sdio->dma_buffer_mutex);
 424                 tbuf = ar_sdio->dma_buffer;
 425 
 426                 if (request & HIF_WRITE)
 427                         memcpy(tbuf, buf, len);
 428 
 429                 bounced = true;
 430         } else {
 431                 tbuf = buf;
 432         }
 433 
 434         ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
 435         if ((request & HIF_READ) && bounced)
 436                 memcpy(buf, tbuf, len);
 437 
 438         if (bounced)
 439                 mutex_unlock(&ar_sdio->dma_buffer_mutex);
 440 
 441         return ret;
 442 }
 443 
 444 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
 445                                       struct bus_request *req)
 446 {
 447         if (req->scat_req) {
 448                 ath6kl_sdio_scat_rw(ar_sdio, req);
 449         } else {
 450                 void *context;
 451                 int status;
 452 
 453                 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
 454                                                      req->buffer, req->length,
 455                                                      req->request);
 456                 context = req->packet;
 457                 ath6kl_sdio_free_bus_req(ar_sdio, req);
 458                 ath6kl_hif_rw_comp_handler(context, status);
 459         }
 460 }
 461 
 462 static void ath6kl_sdio_write_async_work(struct work_struct *work)
 463 {
 464         struct ath6kl_sdio *ar_sdio;
 465         struct bus_request *req, *tmp_req;
 466 
 467         ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
 468 
 469         spin_lock_bh(&ar_sdio->wr_async_lock);
 470         list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
 471                 list_del(&req->list);
 472                 spin_unlock_bh(&ar_sdio->wr_async_lock);
 473                 __ath6kl_sdio_write_async(ar_sdio, req);
 474                 spin_lock_bh(&ar_sdio->wr_async_lock);
 475         }
 476         spin_unlock_bh(&ar_sdio->wr_async_lock);
 477 }
 478 
 479 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
 480 {
 481         int status;
 482         struct ath6kl_sdio *ar_sdio;
 483 
 484         ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
 485 
 486         ar_sdio = sdio_get_drvdata(func);
 487         atomic_set(&ar_sdio->irq_handling, 1);
 488         /*
 489          * Release the host during interrups so we can pick it back up when
 490          * we process commands.
 491          */
 492         sdio_release_host(ar_sdio->func);
 493 
 494         status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
 495         sdio_claim_host(ar_sdio->func);
 496 
 497         atomic_set(&ar_sdio->irq_handling, 0);
 498         wake_up(&ar_sdio->irq_wq);
 499 
 500         WARN_ON(status && status != -ECANCELED);
 501 }
 502 
 503 static int ath6kl_sdio_power_on(struct ath6kl *ar)
 504 {
 505         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 506         struct sdio_func *func = ar_sdio->func;
 507         int ret = 0;
 508 
 509         if (!ar_sdio->is_disabled)
 510                 return 0;
 511 
 512         ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
 513 
 514         sdio_claim_host(func);
 515 
 516         ret = sdio_enable_func(func);
 517         if (ret) {
 518                 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
 519                 sdio_release_host(func);
 520                 return ret;
 521         }
 522 
 523         sdio_release_host(func);
 524 
 525         /*
 526          * Wait for hardware to initialise. It should take a lot less than
 527          * 10 ms but let's be conservative here.
 528          */
 529         msleep(10);
 530 
 531         ret = ath6kl_sdio_config(ar);
 532         if (ret) {
 533                 ath6kl_err("Failed to config sdio: %d\n", ret);
 534                 goto out;
 535         }
 536 
 537         ar_sdio->is_disabled = false;
 538 
 539 out:
 540         return ret;
 541 }
 542 
 543 static int ath6kl_sdio_power_off(struct ath6kl *ar)
 544 {
 545         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 546         int ret;
 547 
 548         if (ar_sdio->is_disabled)
 549                 return 0;
 550 
 551         ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
 552 
 553         /* Disable the card */
 554         sdio_claim_host(ar_sdio->func);
 555         ret = sdio_disable_func(ar_sdio->func);
 556         sdio_release_host(ar_sdio->func);
 557 
 558         if (ret)
 559                 return ret;
 560 
 561         ar_sdio->is_disabled = true;
 562 
 563         return ret;
 564 }
 565 
 566 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
 567                                    u32 length, u32 request,
 568                                    struct htc_packet *packet)
 569 {
 570         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 571         struct bus_request *bus_req;
 572 
 573         bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
 574 
 575         if (WARN_ON_ONCE(!bus_req))
 576                 return -ENOMEM;
 577 
 578         bus_req->address = address;
 579         bus_req->buffer = buffer;
 580         bus_req->length = length;
 581         bus_req->request = request;
 582         bus_req->packet = packet;
 583 
 584         spin_lock_bh(&ar_sdio->wr_async_lock);
 585         list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
 586         spin_unlock_bh(&ar_sdio->wr_async_lock);
 587         queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
 588 
 589         return 0;
 590 }
 591 
 592 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
 593 {
 594         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 595         int ret;
 596 
 597         sdio_claim_host(ar_sdio->func);
 598 
 599         /* Register the isr */
 600         ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
 601         if (ret)
 602                 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
 603 
 604         sdio_release_host(ar_sdio->func);
 605 }
 606 
 607 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
 608 {
 609         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 610 
 611         return !atomic_read(&ar_sdio->irq_handling);
 612 }
 613 
 614 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
 615 {
 616         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 617         int ret;
 618 
 619         sdio_claim_host(ar_sdio->func);
 620 
 621         if (atomic_read(&ar_sdio->irq_handling)) {
 622                 sdio_release_host(ar_sdio->func);
 623 
 624                 ret = wait_event_interruptible(ar_sdio->irq_wq,
 625                                                ath6kl_sdio_is_on_irq(ar));
 626                 if (ret)
 627                         return;
 628 
 629                 sdio_claim_host(ar_sdio->func);
 630         }
 631 
 632         ret = sdio_release_irq(ar_sdio->func);
 633         if (ret)
 634                 ath6kl_err("Failed to release sdio irq: %d\n", ret);
 635 
 636         sdio_release_host(ar_sdio->func);
 637 }
 638 
 639 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
 640 {
 641         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 642         struct hif_scatter_req *node = NULL;
 643 
 644         spin_lock_bh(&ar_sdio->scat_lock);
 645 
 646         if (!list_empty(&ar_sdio->scat_req)) {
 647                 node = list_first_entry(&ar_sdio->scat_req,
 648                                         struct hif_scatter_req, list);
 649                 list_del(&node->list);
 650 
 651                 node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
 652         }
 653 
 654         spin_unlock_bh(&ar_sdio->scat_lock);
 655 
 656         return node;
 657 }
 658 
 659 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
 660                                         struct hif_scatter_req *s_req)
 661 {
 662         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 663 
 664         spin_lock_bh(&ar_sdio->scat_lock);
 665 
 666         list_add_tail(&s_req->list, &ar_sdio->scat_req);
 667 
 668         spin_unlock_bh(&ar_sdio->scat_lock);
 669 }
 670 
 671 /* scatter gather read write request */
 672 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
 673                                         struct hif_scatter_req *scat_req)
 674 {
 675         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 676         u32 request = scat_req->req;
 677         int status = 0;
 678 
 679         if (!scat_req->len)
 680                 return -EINVAL;
 681 
 682         ath6kl_dbg(ATH6KL_DBG_SCATTER,
 683                    "hif-scatter: total len: %d scatter entries: %d\n",
 684                    scat_req->len, scat_req->scat_entries);
 685 
 686         if (request & HIF_SYNCHRONOUS) {
 687                 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
 688         } else {
 689                 spin_lock_bh(&ar_sdio->wr_async_lock);
 690                 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
 691                 spin_unlock_bh(&ar_sdio->wr_async_lock);
 692                 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
 693         }
 694 
 695         return status;
 696 }
 697 
 698 /* clean up scatter support */
 699 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
 700 {
 701         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 702         struct hif_scatter_req *s_req, *tmp_req;
 703 
 704         /* empty the free list */
 705         spin_lock_bh(&ar_sdio->scat_lock);
 706         list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
 707                 list_del(&s_req->list);
 708                 spin_unlock_bh(&ar_sdio->scat_lock);
 709 
 710                 /*
 711                  * FIXME: should we also call completion handler with
 712                  * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
 713                  * that the packet is properly freed?
 714                  */
 715                 if (s_req->busrequest) {
 716                         s_req->busrequest->scat_req = NULL;
 717                         ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
 718                 }
 719                 kfree(s_req->virt_dma_buf);
 720                 kfree(s_req->sgentries);
 721                 kfree(s_req);
 722 
 723                 spin_lock_bh(&ar_sdio->scat_lock);
 724         }
 725         spin_unlock_bh(&ar_sdio->scat_lock);
 726 
 727         ar_sdio->scatter_enabled = false;
 728 }
 729 
 730 /* setup of HIF scatter resources */
 731 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
 732 {
 733         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 734         struct htc_target *target = ar->htc_target;
 735         int ret = 0;
 736         bool virt_scat = false;
 737 
 738         if (ar_sdio->scatter_enabled)
 739                 return 0;
 740 
 741         ar_sdio->scatter_enabled = true;
 742 
 743         /* check if host supports scatter and it meets our requirements */
 744         if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
 745                 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
 746                            ar_sdio->func->card->host->max_segs,
 747                            MAX_SCATTER_ENTRIES_PER_REQ);
 748                 virt_scat = true;
 749         }
 750 
 751         if (!virt_scat) {
 752                 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
 753                                 MAX_SCATTER_ENTRIES_PER_REQ,
 754                                 MAX_SCATTER_REQUESTS, virt_scat);
 755 
 756                 if (!ret) {
 757                         ath6kl_dbg(ATH6KL_DBG_BOOT,
 758                                    "hif-scatter enabled requests %d entries %d\n",
 759                                    MAX_SCATTER_REQUESTS,
 760                                    MAX_SCATTER_ENTRIES_PER_REQ);
 761 
 762                         target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
 763                         target->max_xfer_szper_scatreq =
 764                                                 MAX_SCATTER_REQ_TRANSFER_SIZE;
 765                 } else {
 766                         ath6kl_sdio_cleanup_scatter(ar);
 767                         ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
 768                 }
 769         }
 770 
 771         if (virt_scat || ret) {
 772                 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
 773                                 ATH6KL_SCATTER_ENTRIES_PER_REQ,
 774                                 ATH6KL_SCATTER_REQS, virt_scat);
 775 
 776                 if (ret) {
 777                         ath6kl_err("failed to alloc virtual scatter resources !\n");
 778                         ath6kl_sdio_cleanup_scatter(ar);
 779                         return ret;
 780                 }
 781 
 782                 ath6kl_dbg(ATH6KL_DBG_BOOT,
 783                            "virtual scatter enabled requests %d entries %d\n",
 784                            ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
 785 
 786                 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
 787                 target->max_xfer_szper_scatreq =
 788                                         ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
 789         }
 790 
 791         return 0;
 792 }
 793 
 794 static int ath6kl_sdio_config(struct ath6kl *ar)
 795 {
 796         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 797         struct sdio_func *func = ar_sdio->func;
 798         int ret;
 799 
 800         sdio_claim_host(func);
 801 
 802         if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
 803             MANUFACTURER_ID_AR6003_BASE) {
 804                 /* enable 4-bit ASYNC interrupt on AR6003 or later */
 805                 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
 806                                                 CCCR_SDIO_IRQ_MODE_REG,
 807                                                 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
 808                 if (ret) {
 809                         ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
 810                                    ret);
 811                         goto out;
 812                 }
 813 
 814                 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
 815         }
 816 
 817         /* give us some time to enable, in ms */
 818         func->enable_timeout = 100;
 819 
 820         ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
 821         if (ret) {
 822                 ath6kl_err("Set sdio block size %d failed: %d)\n",
 823                            HIF_MBOX_BLOCK_SIZE, ret);
 824                 goto out;
 825         }
 826 
 827 out:
 828         sdio_release_host(func);
 829 
 830         return ret;
 831 }
 832 
 833 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
 834 {
 835         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 836         struct sdio_func *func = ar_sdio->func;
 837         mmc_pm_flag_t flags;
 838         int ret;
 839 
 840         flags = sdio_get_host_pm_caps(func);
 841 
 842         ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
 843 
 844         if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
 845             !(flags & MMC_PM_KEEP_POWER))
 846                 return -EINVAL;
 847 
 848         ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
 849         if (ret) {
 850                 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
 851                 return ret;
 852         }
 853 
 854         /* sdio irq wakes up host */
 855         ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
 856         if (ret)
 857                 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
 858 
 859         return ret;
 860 }
 861 
 862 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
 863 {
 864         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
 865         struct sdio_func *func = ar_sdio->func;
 866         mmc_pm_flag_t flags;
 867         bool try_deepsleep = false;
 868         int ret;
 869 
 870         if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
 871             (!ar->suspend_mode && wow)) {
 872                 ret = ath6kl_set_sdio_pm_caps(ar);
 873                 if (ret)
 874                         goto cut_pwr;
 875 
 876                 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
 877                 if (ret && ret != -ENOTCONN)
 878                         ath6kl_err("wow suspend failed: %d\n", ret);
 879 
 880                 if (ret &&
 881                     (!ar->wow_suspend_mode ||
 882                      ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
 883                         try_deepsleep = true;
 884                 else if (ret &&
 885                          ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
 886                         goto cut_pwr;
 887                 if (!ret)
 888                         return 0;
 889         }
 890 
 891         if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
 892             !ar->suspend_mode || try_deepsleep) {
 893                 flags = sdio_get_host_pm_caps(func);
 894                 if (!(flags & MMC_PM_KEEP_POWER))
 895                         goto cut_pwr;
 896 
 897                 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
 898                 if (ret)
 899                         goto cut_pwr;
 900 
 901                 /*
 902                  * Workaround to support Deep Sleep with MSM, set the host pm
 903                  * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
 904                  * the sdc2_clock and internally allows MSM to enter
 905                  * TCXO shutdown properly.
 906                  */
 907                 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
 908                         ret = sdio_set_host_pm_flags(func,
 909                                                 MMC_PM_WAKE_SDIO_IRQ);
 910                         if (ret)
 911                                 goto cut_pwr;
 912                 }
 913 
 914                 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
 915                                               NULL);
 916                 if (ret)
 917                         goto cut_pwr;
 918 
 919                 return 0;
 920         }
 921 
 922 cut_pwr:
 923         if (func->card && func->card->host)
 924                 func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
 925 
 926         return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
 927 }
 928 
 929 static int ath6kl_sdio_resume(struct ath6kl *ar)
 930 {
 931         switch (ar->state) {
 932         case ATH6KL_STATE_OFF:
 933         case ATH6KL_STATE_CUTPOWER:
 934                 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
 935                            "sdio resume configuring sdio\n");
 936 
 937                 /* need to set sdio settings after power is cut from sdio */
 938                 ath6kl_sdio_config(ar);
 939                 break;
 940 
 941         case ATH6KL_STATE_ON:
 942                 break;
 943 
 944         case ATH6KL_STATE_DEEPSLEEP:
 945                 break;
 946 
 947         case ATH6KL_STATE_WOW:
 948                 break;
 949 
 950         case ATH6KL_STATE_SUSPENDING:
 951                 break;
 952 
 953         case ATH6KL_STATE_RESUMING:
 954                 break;
 955 
 956         case ATH6KL_STATE_RECOVERY:
 957                 break;
 958         }
 959 
 960         ath6kl_cfg80211_resume(ar);
 961 
 962         return 0;
 963 }
 964 
 965 /* set the window address register (using 4-byte register access ). */
 966 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
 967 {
 968         int status;
 969         u8 addr_val[4];
 970         s32 i;
 971 
 972         /*
 973          * Write bytes 1,2,3 of the register to set the upper address bytes,
 974          * the LSB is written last to initiate the access cycle
 975          */
 976 
 977         for (i = 1; i <= 3; i++) {
 978                 /*
 979                  * Fill the buffer with the address byte value we want to
 980                  * hit 4 times.
 981                  */
 982                 memset(addr_val, ((u8 *)&addr)[i], 4);
 983 
 984                 /*
 985                  * Hit each byte of the register address with a 4-byte
 986                  * write operation to the same address, this is a harmless
 987                  * operation.
 988                  */
 989                 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
 990                                              4, HIF_WR_SYNC_BYTE_FIX);
 991                 if (status)
 992                         break;
 993         }
 994 
 995         if (status) {
 996                 ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
 997                            __func__, addr, reg_addr);
 998                 return status;
 999         }
1000 
1001         /*
1002          * Write the address register again, this time write the whole
1003          * 4-byte value. The effect here is that the LSB write causes the
1004          * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1005          * effect since we are writing the same values again
1006          */
1007         status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1008                                      4, HIF_WR_SYNC_BYTE_INC);
1009 
1010         if (status) {
1011                 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1012                            __func__, addr, reg_addr);
1013                 return status;
1014         }
1015 
1016         return 0;
1017 }
1018 
1019 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1020 {
1021         int status;
1022 
1023         /* set window register to start read cycle */
1024         status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1025                                         address);
1026 
1027         if (status)
1028                 return status;
1029 
1030         /* read the data */
1031         status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1032                                 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1033         if (status) {
1034                 ath6kl_err("%s: failed to read from window data addr\n",
1035                            __func__);
1036                 return status;
1037         }
1038 
1039         return status;
1040 }
1041 
1042 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1043                                     __le32 data)
1044 {
1045         int status;
1046         u32 val = (__force u32) data;
1047 
1048         /* set write data */
1049         status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1050                                 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1051         if (status) {
1052                 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1053                            __func__, data);
1054                 return status;
1055         }
1056 
1057         /* set window register, which starts the write cycle */
1058         return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1059                                       address);
1060 }
1061 
1062 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1063 {
1064         u32 addr;
1065         unsigned long timeout;
1066         int ret;
1067 
1068         ar->bmi.cmd_credits = 0;
1069 
1070         /* Read the counter register to get the command credits */
1071         addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1072 
1073         timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1074         while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1075                 /*
1076                  * Hit the credit counter with a 4-byte access, the first byte
1077                  * read will hit the counter and cause a decrement, while the
1078                  * remaining 3 bytes has no effect. The rationale behind this
1079                  * is to make all HIF accesses 4-byte aligned.
1080                  */
1081                 ret = ath6kl_sdio_read_write_sync(ar, addr,
1082                                          (u8 *)&ar->bmi.cmd_credits, 4,
1083                                          HIF_RD_SYNC_BYTE_INC);
1084                 if (ret) {
1085                         ath6kl_err("Unable to decrement the command credit count register: %d\n",
1086                                    ret);
1087                         return ret;
1088                 }
1089 
1090                 /* The counter is only 8 bits.
1091                  * Ignore anything in the upper 3 bytes
1092                  */
1093                 ar->bmi.cmd_credits &= 0xFF;
1094         }
1095 
1096         if (!ar->bmi.cmd_credits) {
1097                 ath6kl_err("bmi communication timeout\n");
1098                 return -ETIMEDOUT;
1099         }
1100 
1101         return 0;
1102 }
1103 
1104 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1105 {
1106         unsigned long timeout;
1107         u32 rx_word = 0;
1108         int ret = 0;
1109 
1110         timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1111         while ((time_before(jiffies, timeout)) && !rx_word) {
1112                 ret = ath6kl_sdio_read_write_sync(ar,
1113                                         RX_LOOKAHEAD_VALID_ADDRESS,
1114                                         (u8 *)&rx_word, sizeof(rx_word),
1115                                         HIF_RD_SYNC_BYTE_INC);
1116                 if (ret) {
1117                         ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1118                         return ret;
1119                 }
1120 
1121                  /* all we really want is one bit */
1122                 rx_word &= (1 << ENDPOINT1);
1123         }
1124 
1125         if (!rx_word) {
1126                 ath6kl_err("bmi_recv_buf FIFO empty\n");
1127                 return -EINVAL;
1128         }
1129 
1130         return ret;
1131 }
1132 
1133 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1134 {
1135         int ret;
1136         u32 addr;
1137 
1138         ret = ath6kl_sdio_bmi_credits(ar);
1139         if (ret)
1140                 return ret;
1141 
1142         addr = ar->mbox_info.htc_addr;
1143 
1144         ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1145                                           HIF_WR_SYNC_BYTE_INC);
1146         if (ret) {
1147                 ath6kl_err("unable to send the bmi data to the device\n");
1148                 return ret;
1149         }
1150 
1151         return 0;
1152 }
1153 
1154 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1155 {
1156         int ret;
1157         u32 addr;
1158 
1159         /*
1160          * During normal bootup, small reads may be required.
1161          * Rather than issue an HIF Read and then wait as the Target
1162          * adds successive bytes to the FIFO, we wait here until
1163          * we know that response data is available.
1164          *
1165          * This allows us to cleanly timeout on an unexpected
1166          * Target failure rather than risk problems at the HIF level.
1167          * In particular, this avoids SDIO timeouts and possibly garbage
1168          * data on some host controllers.  And on an interconnect
1169          * such as Compact Flash (as well as some SDIO masters) which
1170          * does not provide any indication on data timeout, it avoids
1171          * a potential hang or garbage response.
1172          *
1173          * Synchronization is more difficult for reads larger than the
1174          * size of the MBOX FIFO (128B), because the Target is unable
1175          * to push the 129th byte of data until AFTER the Host posts an
1176          * HIF Read and removes some FIFO data.  So for large reads the
1177          * Host proceeds to post an HIF Read BEFORE all the data is
1178          * actually available to read.  Fortunately, large BMI reads do
1179          * not occur in practice -- they're supported for debug/development.
1180          *
1181          * So Host/Target BMI synchronization is divided into these cases:
1182          *  CASE 1: length < 4
1183          *        Should not happen
1184          *
1185          *  CASE 2: 4 <= length <= 128
1186          *        Wait for first 4 bytes to be in FIFO
1187          *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1188          *        a BMI command credit, which indicates that the ENTIRE
1189          *        response is available in the the FIFO
1190          *
1191          *  CASE 3: length > 128
1192          *        Wait for the first 4 bytes to be in FIFO
1193          *
1194          * For most uses, a small timeout should be sufficient and we will
1195          * usually see a response quickly; but there may be some unusual
1196          * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1197          * For now, we use an unbounded busy loop while waiting for
1198          * BMI_EXECUTE.
1199          *
1200          * If BMI_EXECUTE ever needs to support longer-latency execution,
1201          * especially in production, this code needs to be enhanced to sleep
1202          * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1203          * a function of Host processor speed.
1204          */
1205         if (len >= 4) { /* NB: Currently, always true */
1206                 ret = ath6kl_bmi_get_rx_lkahd(ar);
1207                 if (ret)
1208                         return ret;
1209         }
1210 
1211         addr = ar->mbox_info.htc_addr;
1212         ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1213                                   HIF_RD_SYNC_BYTE_INC);
1214         if (ret) {
1215                 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1216                            ret);
1217                 return ret;
1218         }
1219 
1220         return 0;
1221 }
1222 
1223 static void ath6kl_sdio_stop(struct ath6kl *ar)
1224 {
1225         struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1226         struct bus_request *req, *tmp_req;
1227         void *context;
1228 
1229         /* FIXME: make sure that wq is not queued again */
1230 
1231         cancel_work_sync(&ar_sdio->wr_async_work);
1232 
1233         spin_lock_bh(&ar_sdio->wr_async_lock);
1234 
1235         list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1236                 list_del(&req->list);
1237 
1238                 if (req->scat_req) {
1239                         /* this is a scatter gather request */
1240                         req->scat_req->status = -ECANCELED;
1241                         req->scat_req->complete(ar_sdio->ar->htc_target,
1242                                                 req->scat_req);
1243                 } else {
1244                         context = req->packet;
1245                         ath6kl_sdio_free_bus_req(ar_sdio, req);
1246                         ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1247                 }
1248         }
1249 
1250         spin_unlock_bh(&ar_sdio->wr_async_lock);
1251 
1252         WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1253 }
1254 
1255 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1256         .read_write_sync = ath6kl_sdio_read_write_sync,
1257         .write_async = ath6kl_sdio_write_async,
1258         .irq_enable = ath6kl_sdio_irq_enable,
1259         .irq_disable = ath6kl_sdio_irq_disable,
1260         .scatter_req_get = ath6kl_sdio_scatter_req_get,
1261         .scatter_req_add = ath6kl_sdio_scatter_req_add,
1262         .enable_scatter = ath6kl_sdio_enable_scatter,
1263         .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1264         .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1265         .suspend = ath6kl_sdio_suspend,
1266         .resume = ath6kl_sdio_resume,
1267         .diag_read32 = ath6kl_sdio_diag_read32,
1268         .diag_write32 = ath6kl_sdio_diag_write32,
1269         .bmi_read = ath6kl_sdio_bmi_read,
1270         .bmi_write = ath6kl_sdio_bmi_write,
1271         .power_on = ath6kl_sdio_power_on,
1272         .power_off = ath6kl_sdio_power_off,
1273         .stop = ath6kl_sdio_stop,
1274 };
1275 
1276 #ifdef CONFIG_PM_SLEEP
1277 
1278 /*
1279  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1280  * suspend. We instead follow cfg80211 suspend/resume handlers.
1281  */
1282 static int ath6kl_sdio_pm_suspend(struct device *device)
1283 {
1284         ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1285 
1286         return 0;
1287 }
1288 
1289 static int ath6kl_sdio_pm_resume(struct device *device)
1290 {
1291         ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1292 
1293         return 0;
1294 }
1295 
1296 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1297                          ath6kl_sdio_pm_resume);
1298 
1299 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1300 
1301 #else
1302 
1303 #define ATH6KL_SDIO_PM_OPS NULL
1304 
1305 #endif /* CONFIG_PM_SLEEP */
1306 
1307 static int ath6kl_sdio_probe(struct sdio_func *func,
1308                              const struct sdio_device_id *id)
1309 {
1310         int ret;
1311         struct ath6kl_sdio *ar_sdio;
1312         struct ath6kl *ar;
1313         int count;
1314 
1315         ath6kl_dbg(ATH6KL_DBG_BOOT,
1316                    "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1317                    func->num, func->vendor, func->device,
1318                    func->max_blksize, func->cur_blksize);
1319 
1320         ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1321         if (!ar_sdio)
1322                 return -ENOMEM;
1323 
1324         ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1325         if (!ar_sdio->dma_buffer) {
1326                 ret = -ENOMEM;
1327                 goto err_hif;
1328         }
1329 
1330         ar_sdio->func = func;
1331         sdio_set_drvdata(func, ar_sdio);
1332 
1333         ar_sdio->id = id;
1334         ar_sdio->is_disabled = true;
1335 
1336         spin_lock_init(&ar_sdio->lock);
1337         spin_lock_init(&ar_sdio->scat_lock);
1338         spin_lock_init(&ar_sdio->wr_async_lock);
1339         mutex_init(&ar_sdio->dma_buffer_mutex);
1340 
1341         INIT_LIST_HEAD(&ar_sdio->scat_req);
1342         INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1343         INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1344 
1345         INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1346 
1347         init_waitqueue_head(&ar_sdio->irq_wq);
1348 
1349         for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1350                 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1351 
1352         ar = ath6kl_core_create(&ar_sdio->func->dev);
1353         if (!ar) {
1354                 ath6kl_err("Failed to alloc ath6kl core\n");
1355                 ret = -ENOMEM;
1356                 goto err_dma;
1357         }
1358 
1359         ar_sdio->ar = ar;
1360         ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1361         ar->hif_priv = ar_sdio;
1362         ar->hif_ops = &ath6kl_sdio_ops;
1363         ar->bmi.max_data_size = 256;
1364 
1365         ath6kl_sdio_set_mbox_info(ar);
1366 
1367         ret = ath6kl_sdio_config(ar);
1368         if (ret) {
1369                 ath6kl_err("Failed to config sdio: %d\n", ret);
1370                 goto err_core_alloc;
1371         }
1372 
1373         ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1374         if (ret) {
1375                 ath6kl_err("Failed to init ath6kl core\n");
1376                 goto err_core_alloc;
1377         }
1378 
1379         return ret;
1380 
1381 err_core_alloc:
1382         ath6kl_core_destroy(ar_sdio->ar);
1383 err_dma:
1384         kfree(ar_sdio->dma_buffer);
1385 err_hif:
1386         kfree(ar_sdio);
1387 
1388         return ret;
1389 }
1390 
1391 static void ath6kl_sdio_remove(struct sdio_func *func)
1392 {
1393         struct ath6kl_sdio *ar_sdio;
1394 
1395         ath6kl_dbg(ATH6KL_DBG_BOOT,
1396                    "sdio removed func %d vendor 0x%x device 0x%x\n",
1397                    func->num, func->vendor, func->device);
1398 
1399         ar_sdio = sdio_get_drvdata(func);
1400 
1401         ath6kl_stop_txrx(ar_sdio->ar);
1402         cancel_work_sync(&ar_sdio->wr_async_work);
1403 
1404         ath6kl_core_cleanup(ar_sdio->ar);
1405         ath6kl_core_destroy(ar_sdio->ar);
1406 
1407         kfree(ar_sdio->dma_buffer);
1408         kfree(ar_sdio);
1409 }
1410 
1411 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1412         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1413         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1414         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1415         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1416         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))},
1417         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x18))},
1418         {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x19))},
1419         {},
1420 };
1421 
1422 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1423 
1424 static struct sdio_driver ath6kl_sdio_driver = {
1425         .name = "ath6kl_sdio",
1426         .id_table = ath6kl_sdio_devices,
1427         .probe = ath6kl_sdio_probe,
1428         .remove = ath6kl_sdio_remove,
1429         .drv.pm = ATH6KL_SDIO_PM_OPS,
1430 };
1431 
1432 static int __init ath6kl_sdio_init(void)
1433 {
1434         int ret;
1435 
1436         ret = sdio_register_driver(&ath6kl_sdio_driver);
1437         if (ret)
1438                 ath6kl_err("sdio driver registration failed: %d\n", ret);
1439 
1440         return ret;
1441 }
1442 
1443 static void __exit ath6kl_sdio_exit(void)
1444 {
1445         sdio_unregister_driver(&ath6kl_sdio_driver);
1446 }
1447 
1448 module_init(ath6kl_sdio_init);
1449 module_exit(ath6kl_sdio_exit);
1450 
1451 MODULE_AUTHOR("Atheros Communications, Inc.");
1452 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1453 MODULE_LICENSE("Dual BSD/GPL");
1454 
1455 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1456 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1457 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1458 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1459 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1460 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1461 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1462 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1463 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1464 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1465 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1466 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1467 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1468 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1469 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1470 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1471 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1472 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1473 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1474 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1475 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1476 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);

/* [<][>][^][v][top][bottom][index][help] */