root/drivers/net/wireless/ath/ath9k/recv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath9k_check_auto_sleep
  2. ath_rx_buf_link
  3. ath_rx_buf_relink
  4. ath_setdefantenna
  5. ath_opmode_init
  6. ath_rx_edma_buf_link
  7. ath_rx_addbuffer_edma
  8. ath_rx_remove_buffer
  9. ath_rx_edma_cleanup
  10. ath_rx_edma_init_queue
  11. ath_rx_edma_init
  12. ath_edma_start_recv
  13. ath_edma_stop_recv
  14. ath_rx_init
  15. ath_rx_cleanup
  16. ath_calcrxfilter
  17. ath_startrecv
  18. ath_flushrecv
  19. ath_stoprecv
  20. ath_beacon_dtim_pending_cab
  21. ath_rx_ps_beacon
  22. ath_rx_ps
  23. ath_edma_get_buffers
  24. ath_edma_get_next_rx_buf
  25. ath_get_next_rx_buf
  26. ath9k_process_tsf
  27. ath9k_rx_skb_preprocess
  28. ath9k_antenna_check
  29. ath9k_apply_ampdu_details
  30. ath_rx_count_airtime
  31. ath_rx_tasklet

   1 /*
   2  * Copyright (c) 2008-2011 Atheros Communications Inc.
   3  *
   4  * Permission to use, copy, modify, and/or distribute this software for any
   5  * purpose with or without fee is hereby granted, provided that the above
   6  * copyright notice and this permission notice appear in all copies.
   7  *
   8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15  */
  16 
  17 #include <linux/dma-mapping.h>
  18 #include "ath9k.h"
  19 #include "ar9003_mac.h"
  20 
  21 #define SKB_CB_ATHBUF(__skb)    (*((struct ath_rxbuf **)__skb->cb))
  22 
  23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
  24 {
  25         return sc->ps_enabled &&
  26                (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
  27 }
  28 
  29 /*
  30  * Setup and link descriptors.
  31  *
  32  * 11N: we can no longer afford to self link the last descriptor.
  33  * MAC acknowledges BA status as long as it copies frames to host
  34  * buffer (or rx fifo). This can incorrectly acknowledge packets
  35  * to a sender if last desc is self-linked.
  36  */
  37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
  38                             bool flush)
  39 {
  40         struct ath_hw *ah = sc->sc_ah;
  41         struct ath_common *common = ath9k_hw_common(ah);
  42         struct ath_desc *ds;
  43         struct sk_buff *skb;
  44 
  45         ds = bf->bf_desc;
  46         ds->ds_link = 0; /* link to null */
  47         ds->ds_data = bf->bf_buf_addr;
  48 
  49         /* virtual addr of the beginning of the buffer. */
  50         skb = bf->bf_mpdu;
  51         BUG_ON(skb == NULL);
  52         ds->ds_vdata = skb->data;
  53 
  54         /*
  55          * setup rx descriptors. The rx_bufsize here tells the hardware
  56          * how much data it can DMA to us and that we are prepared
  57          * to process
  58          */
  59         ath9k_hw_setuprxdesc(ah, ds,
  60                              common->rx_bufsize,
  61                              0);
  62 
  63         if (sc->rx.rxlink)
  64                 *sc->rx.rxlink = bf->bf_daddr;
  65         else if (!flush)
  66                 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  67 
  68         sc->rx.rxlink = &ds->ds_link;
  69 }
  70 
  71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
  72                               bool flush)
  73 {
  74         if (sc->rx.buf_hold)
  75                 ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
  76 
  77         sc->rx.buf_hold = bf;
  78 }
  79 
  80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
  81 {
  82         /* XXX block beacon interrupts */
  83         ath9k_hw_setantenna(sc->sc_ah, antenna);
  84         sc->rx.defant = antenna;
  85         sc->rx.rxotherant = 0;
  86 }
  87 
  88 static void ath_opmode_init(struct ath_softc *sc)
  89 {
  90         struct ath_hw *ah = sc->sc_ah;
  91         struct ath_common *common = ath9k_hw_common(ah);
  92 
  93         u32 rfilt, mfilt[2];
  94 
  95         /* configure rx filter */
  96         rfilt = ath_calcrxfilter(sc);
  97         ath9k_hw_setrxfilter(ah, rfilt);
  98 
  99         /* configure bssid mask */
 100         ath_hw_setbssidmask(common);
 101 
 102         /* configure operational mode */
 103         ath9k_hw_setopmode(ah);
 104 
 105         /* calculate and install multicast filter */
 106         mfilt[0] = mfilt[1] = ~0;
 107         ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
 108 }
 109 
 110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
 111                                  enum ath9k_rx_qtype qtype)
 112 {
 113         struct ath_hw *ah = sc->sc_ah;
 114         struct ath_rx_edma *rx_edma;
 115         struct sk_buff *skb;
 116         struct ath_rxbuf *bf;
 117 
 118         rx_edma = &sc->rx.rx_edma[qtype];
 119         if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
 120                 return false;
 121 
 122         bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 123         list_del_init(&bf->list);
 124 
 125         skb = bf->bf_mpdu;
 126 
 127         memset(skb->data, 0, ah->caps.rx_status_len);
 128         dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 129                                 ah->caps.rx_status_len, DMA_TO_DEVICE);
 130 
 131         SKB_CB_ATHBUF(skb) = bf;
 132         ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
 133         __skb_queue_tail(&rx_edma->rx_fifo, skb);
 134 
 135         return true;
 136 }
 137 
 138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
 139                                   enum ath9k_rx_qtype qtype)
 140 {
 141         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 142         struct ath_rxbuf *bf, *tbf;
 143 
 144         if (list_empty(&sc->rx.rxbuf)) {
 145                 ath_dbg(common, QUEUE, "No free rx buf available\n");
 146                 return;
 147         }
 148 
 149         list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
 150                 if (!ath_rx_edma_buf_link(sc, qtype))
 151                         break;
 152 
 153 }
 154 
 155 static void ath_rx_remove_buffer(struct ath_softc *sc,
 156                                  enum ath9k_rx_qtype qtype)
 157 {
 158         struct ath_rxbuf *bf;
 159         struct ath_rx_edma *rx_edma;
 160         struct sk_buff *skb;
 161 
 162         rx_edma = &sc->rx.rx_edma[qtype];
 163 
 164         while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
 165                 bf = SKB_CB_ATHBUF(skb);
 166                 BUG_ON(!bf);
 167                 list_add_tail(&bf->list, &sc->rx.rxbuf);
 168         }
 169 }
 170 
 171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
 172 {
 173         struct ath_hw *ah = sc->sc_ah;
 174         struct ath_common *common = ath9k_hw_common(ah);
 175         struct ath_rxbuf *bf;
 176 
 177         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 178         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 179 
 180         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 181                 if (bf->bf_mpdu) {
 182                         dma_unmap_single(sc->dev, bf->bf_buf_addr,
 183                                         common->rx_bufsize,
 184                                         DMA_BIDIRECTIONAL);
 185                         dev_kfree_skb_any(bf->bf_mpdu);
 186                         bf->bf_buf_addr = 0;
 187                         bf->bf_mpdu = NULL;
 188                 }
 189         }
 190 }
 191 
 192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
 193 {
 194         __skb_queue_head_init(&rx_edma->rx_fifo);
 195         rx_edma->rx_fifo_hwsize = size;
 196 }
 197 
 198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
 199 {
 200         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 201         struct ath_hw *ah = sc->sc_ah;
 202         struct sk_buff *skb;
 203         struct ath_rxbuf *bf;
 204         int error = 0, i;
 205         u32 size;
 206 
 207         ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
 208                                     ah->caps.rx_status_len);
 209 
 210         ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
 211                                ah->caps.rx_lp_qdepth);
 212         ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
 213                                ah->caps.rx_hp_qdepth);
 214 
 215         size = sizeof(struct ath_rxbuf) * nbufs;
 216         bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
 217         if (!bf)
 218                 return -ENOMEM;
 219 
 220         INIT_LIST_HEAD(&sc->rx.rxbuf);
 221 
 222         for (i = 0; i < nbufs; i++, bf++) {
 223                 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
 224                 if (!skb) {
 225                         error = -ENOMEM;
 226                         goto rx_init_fail;
 227                 }
 228 
 229                 memset(skb->data, 0, common->rx_bufsize);
 230                 bf->bf_mpdu = skb;
 231 
 232                 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 233                                                  common->rx_bufsize,
 234                                                  DMA_BIDIRECTIONAL);
 235                 if (unlikely(dma_mapping_error(sc->dev,
 236                                                 bf->bf_buf_addr))) {
 237                                 dev_kfree_skb_any(skb);
 238                                 bf->bf_mpdu = NULL;
 239                                 bf->bf_buf_addr = 0;
 240                                 ath_err(common,
 241                                         "dma_mapping_error() on RX init\n");
 242                                 error = -ENOMEM;
 243                                 goto rx_init_fail;
 244                 }
 245 
 246                 list_add_tail(&bf->list, &sc->rx.rxbuf);
 247         }
 248 
 249         return 0;
 250 
 251 rx_init_fail:
 252         ath_rx_edma_cleanup(sc);
 253         return error;
 254 }
 255 
 256 static void ath_edma_start_recv(struct ath_softc *sc)
 257 {
 258         ath9k_hw_rxena(sc->sc_ah);
 259         ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
 260         ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
 261         ath_opmode_init(sc);
 262         ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
 263 }
 264 
 265 static void ath_edma_stop_recv(struct ath_softc *sc)
 266 {
 267         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 268         ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 269 }
 270 
 271 int ath_rx_init(struct ath_softc *sc, int nbufs)
 272 {
 273         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 274         struct sk_buff *skb;
 275         struct ath_rxbuf *bf;
 276         int error = 0;
 277 
 278         spin_lock_init(&sc->sc_pcu_lock);
 279 
 280         common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
 281                              sc->sc_ah->caps.rx_status_len;
 282 
 283         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 284                 return ath_rx_edma_init(sc, nbufs);
 285 
 286         ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
 287                 common->cachelsz, common->rx_bufsize);
 288 
 289         /* Initialize rx descriptors */
 290 
 291         error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
 292                                   "rx", nbufs, 1, 0);
 293         if (error != 0) {
 294                 ath_err(common,
 295                         "failed to allocate rx descriptors: %d\n",
 296                         error);
 297                 goto err;
 298         }
 299 
 300         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 301                 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
 302                                       GFP_KERNEL);
 303                 if (skb == NULL) {
 304                         error = -ENOMEM;
 305                         goto err;
 306                 }
 307 
 308                 bf->bf_mpdu = skb;
 309                 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 310                                                  common->rx_bufsize,
 311                                                  DMA_FROM_DEVICE);
 312                 if (unlikely(dma_mapping_error(sc->dev,
 313                                                bf->bf_buf_addr))) {
 314                         dev_kfree_skb_any(skb);
 315                         bf->bf_mpdu = NULL;
 316                         bf->bf_buf_addr = 0;
 317                         ath_err(common,
 318                                 "dma_mapping_error() on RX init\n");
 319                         error = -ENOMEM;
 320                         goto err;
 321                 }
 322         }
 323         sc->rx.rxlink = NULL;
 324 err:
 325         if (error)
 326                 ath_rx_cleanup(sc);
 327 
 328         return error;
 329 }
 330 
 331 void ath_rx_cleanup(struct ath_softc *sc)
 332 {
 333         struct ath_hw *ah = sc->sc_ah;
 334         struct ath_common *common = ath9k_hw_common(ah);
 335         struct sk_buff *skb;
 336         struct ath_rxbuf *bf;
 337 
 338         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 339                 ath_rx_edma_cleanup(sc);
 340                 return;
 341         }
 342 
 343         list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 344                 skb = bf->bf_mpdu;
 345                 if (skb) {
 346                         dma_unmap_single(sc->dev, bf->bf_buf_addr,
 347                                          common->rx_bufsize,
 348                                          DMA_FROM_DEVICE);
 349                         dev_kfree_skb(skb);
 350                         bf->bf_buf_addr = 0;
 351                         bf->bf_mpdu = NULL;
 352                 }
 353         }
 354 }
 355 
 356 /*
 357  * Calculate the receive filter according to the
 358  * operating mode and state:
 359  *
 360  * o always accept unicast, broadcast, and multicast traffic
 361  * o maintain current state of phy error reception (the hal
 362  *   may enable phy error frames for noise immunity work)
 363  * o probe request frames are accepted only when operating in
 364  *   hostap, adhoc, or monitor modes
 365  * o enable promiscuous mode according to the interface state
 366  * o accept beacons:
 367  *   - when operating in adhoc mode so the 802.11 layer creates
 368  *     node table entries for peers,
 369  *   - when operating in station mode for collecting rssi data when
 370  *     the station is otherwise quiet, or
 371  *   - when operating as a repeater so we see repeater-sta beacons
 372  *   - when scanning
 373  */
 374 
 375 u32 ath_calcrxfilter(struct ath_softc *sc)
 376 {
 377         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 378         u32 rfilt;
 379 
 380         if (IS_ENABLED(CONFIG_ATH9K_TX99))
 381                 return 0;
 382 
 383         rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
 384                 | ATH9K_RX_FILTER_MCAST;
 385 
 386         /* if operating on a DFS channel, enable radar pulse detection */
 387         if (sc->hw->conf.radar_enabled)
 388                 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
 389 
 390         spin_lock_bh(&sc->chan_lock);
 391 
 392         if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
 393                 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
 394 
 395         if (sc->sc_ah->is_monitoring)
 396                 rfilt |= ATH9K_RX_FILTER_PROM;
 397 
 398         if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
 399             sc->sc_ah->dynack.enabled)
 400                 rfilt |= ATH9K_RX_FILTER_CONTROL;
 401 
 402         if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
 403             (sc->cur_chan->nvifs <= 1) &&
 404             !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
 405                 rfilt |= ATH9K_RX_FILTER_MYBEACON;
 406         else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
 407                 rfilt |= ATH9K_RX_FILTER_BEACON;
 408 
 409         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
 410             (sc->cur_chan->rxfilter & FIF_PSPOLL))
 411                 rfilt |= ATH9K_RX_FILTER_PSPOLL;
 412 
 413         if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
 414                 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
 415 
 416         if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) {
 417                 /* This is needed for older chips */
 418                 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
 419                         rfilt |= ATH9K_RX_FILTER_PROM;
 420                 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
 421         }
 422 
 423         if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
 424             AR_SREV_9561(sc->sc_ah))
 425                 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
 426 
 427         if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
 428                 rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
 429 
 430         if (ath9k_is_chanctx_enabled() &&
 431             test_bit(ATH_OP_SCANNING, &common->op_flags))
 432                 rfilt |= ATH9K_RX_FILTER_BEACON;
 433 
 434         spin_unlock_bh(&sc->chan_lock);
 435 
 436         return rfilt;
 437 
 438 }
 439 
 440 void ath_startrecv(struct ath_softc *sc)
 441 {
 442         struct ath_hw *ah = sc->sc_ah;
 443         struct ath_rxbuf *bf, *tbf;
 444 
 445         if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 446                 ath_edma_start_recv(sc);
 447                 return;
 448         }
 449 
 450         if (list_empty(&sc->rx.rxbuf))
 451                 goto start_recv;
 452 
 453         sc->rx.buf_hold = NULL;
 454         sc->rx.rxlink = NULL;
 455         list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
 456                 ath_rx_buf_link(sc, bf, false);
 457         }
 458 
 459         /* We could have deleted elements so the list may be empty now */
 460         if (list_empty(&sc->rx.rxbuf))
 461                 goto start_recv;
 462 
 463         bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 464         ath9k_hw_putrxbuf(ah, bf->bf_daddr);
 465         ath9k_hw_rxena(ah);
 466 
 467 start_recv:
 468         ath_opmode_init(sc);
 469         ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
 470 }
 471 
 472 static void ath_flushrecv(struct ath_softc *sc)
 473 {
 474         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 475                 ath_rx_tasklet(sc, 1, true);
 476         ath_rx_tasklet(sc, 1, false);
 477 }
 478 
 479 bool ath_stoprecv(struct ath_softc *sc)
 480 {
 481         struct ath_hw *ah = sc->sc_ah;
 482         bool stopped, reset = false;
 483 
 484         ath9k_hw_abortpcurecv(ah);
 485         ath9k_hw_setrxfilter(ah, 0);
 486         stopped = ath9k_hw_stopdmarecv(ah, &reset);
 487 
 488         ath_flushrecv(sc);
 489 
 490         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 491                 ath_edma_stop_recv(sc);
 492         else
 493                 sc->rx.rxlink = NULL;
 494 
 495         if (!(ah->ah_flags & AH_UNPLUGGED) &&
 496             unlikely(!stopped)) {
 497                 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
 498                         "Failed to stop Rx DMA\n");
 499                 RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
 500         }
 501         return stopped && !reset;
 502 }
 503 
 504 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
 505 {
 506         /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
 507         struct ieee80211_mgmt *mgmt;
 508         u8 *pos, *end, id, elen;
 509         struct ieee80211_tim_ie *tim;
 510 
 511         mgmt = (struct ieee80211_mgmt *)skb->data;
 512         pos = mgmt->u.beacon.variable;
 513         end = skb->data + skb->len;
 514 
 515         while (pos + 2 < end) {
 516                 id = *pos++;
 517                 elen = *pos++;
 518                 if (pos + elen > end)
 519                         break;
 520 
 521                 if (id == WLAN_EID_TIM) {
 522                         if (elen < sizeof(*tim))
 523                                 break;
 524                         tim = (struct ieee80211_tim_ie *) pos;
 525                         if (tim->dtim_count != 0)
 526                                 break;
 527                         return tim->bitmap_ctrl & 0x01;
 528                 }
 529 
 530                 pos += elen;
 531         }
 532 
 533         return false;
 534 }
 535 
 536 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
 537 {
 538         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 539         bool skip_beacon = false;
 540 
 541         if (skb->len < 24 + 8 + 2 + 2)
 542                 return;
 543 
 544         sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
 545 
 546         if (sc->ps_flags & PS_BEACON_SYNC) {
 547                 sc->ps_flags &= ~PS_BEACON_SYNC;
 548                 ath_dbg(common, PS,
 549                         "Reconfigure beacon timers based on synchronized timestamp\n");
 550 
 551 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
 552                 if (ath9k_is_chanctx_enabled()) {
 553                         if (sc->cur_chan == &sc->offchannel.chan)
 554                                 skip_beacon = true;
 555                 }
 556 #endif
 557 
 558                 if (!skip_beacon &&
 559                     !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
 560                         ath9k_set_beacon(sc);
 561 
 562                 ath9k_p2p_beacon_sync(sc);
 563         }
 564 
 565         if (ath_beacon_dtim_pending_cab(skb)) {
 566                 /*
 567                  * Remain awake waiting for buffered broadcast/multicast
 568                  * frames. If the last broadcast/multicast frame is not
 569                  * received properly, the next beacon frame will work as
 570                  * a backup trigger for returning into NETWORK SLEEP state,
 571                  * so we are waiting for it as well.
 572                  */
 573                 ath_dbg(common, PS,
 574                         "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
 575                 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
 576                 return;
 577         }
 578 
 579         if (sc->ps_flags & PS_WAIT_FOR_CAB) {
 580                 /*
 581                  * This can happen if a broadcast frame is dropped or the AP
 582                  * fails to send a frame indicating that all CAB frames have
 583                  * been delivered.
 584                  */
 585                 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
 586                 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
 587         }
 588 }
 589 
 590 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
 591 {
 592         struct ieee80211_hdr *hdr;
 593         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 594 
 595         hdr = (struct ieee80211_hdr *)skb->data;
 596 
 597         /* Process Beacon and CAB receive in PS state */
 598         if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
 599             && mybeacon) {
 600                 ath_rx_ps_beacon(sc, skb);
 601         } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
 602                    (ieee80211_is_data(hdr->frame_control) ||
 603                     ieee80211_is_action(hdr->frame_control)) &&
 604                    is_multicast_ether_addr(hdr->addr1) &&
 605                    !ieee80211_has_moredata(hdr->frame_control)) {
 606                 /*
 607                  * No more broadcast/multicast frames to be received at this
 608                  * point.
 609                  */
 610                 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
 611                 ath_dbg(common, PS,
 612                         "All PS CAB frames received, back to sleep\n");
 613         } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
 614                    !is_multicast_ether_addr(hdr->addr1) &&
 615                    !ieee80211_has_morefrags(hdr->frame_control)) {
 616                 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
 617                 ath_dbg(common, PS,
 618                         "Going back to sleep after having received PS-Poll data (0x%lx)\n",
 619                         sc->ps_flags & (PS_WAIT_FOR_BEACON |
 620                                         PS_WAIT_FOR_CAB |
 621                                         PS_WAIT_FOR_PSPOLL_DATA |
 622                                         PS_WAIT_FOR_TX_ACK));
 623         }
 624 }
 625 
 626 static bool ath_edma_get_buffers(struct ath_softc *sc,
 627                                  enum ath9k_rx_qtype qtype,
 628                                  struct ath_rx_status *rs,
 629                                  struct ath_rxbuf **dest)
 630 {
 631         struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
 632         struct ath_hw *ah = sc->sc_ah;
 633         struct ath_common *common = ath9k_hw_common(ah);
 634         struct sk_buff *skb;
 635         struct ath_rxbuf *bf;
 636         int ret;
 637 
 638         skb = skb_peek(&rx_edma->rx_fifo);
 639         if (!skb)
 640                 return false;
 641 
 642         bf = SKB_CB_ATHBUF(skb);
 643         BUG_ON(!bf);
 644 
 645         dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 646                                 common->rx_bufsize, DMA_FROM_DEVICE);
 647 
 648         ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
 649         if (ret == -EINPROGRESS) {
 650                 /*let device gain the buffer again*/
 651                 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 652                                 common->rx_bufsize, DMA_FROM_DEVICE);
 653                 return false;
 654         }
 655 
 656         __skb_unlink(skb, &rx_edma->rx_fifo);
 657         if (ret == -EINVAL) {
 658                 /* corrupt descriptor, skip this one and the following one */
 659                 list_add_tail(&bf->list, &sc->rx.rxbuf);
 660                 ath_rx_edma_buf_link(sc, qtype);
 661 
 662                 skb = skb_peek(&rx_edma->rx_fifo);
 663                 if (skb) {
 664                         bf = SKB_CB_ATHBUF(skb);
 665                         BUG_ON(!bf);
 666 
 667                         __skb_unlink(skb, &rx_edma->rx_fifo);
 668                         list_add_tail(&bf->list, &sc->rx.rxbuf);
 669                         ath_rx_edma_buf_link(sc, qtype);
 670                 }
 671 
 672                 bf = NULL;
 673         }
 674 
 675         *dest = bf;
 676         return true;
 677 }
 678 
 679 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
 680                                                 struct ath_rx_status *rs,
 681                                                 enum ath9k_rx_qtype qtype)
 682 {
 683         struct ath_rxbuf *bf = NULL;
 684 
 685         while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
 686                 if (!bf)
 687                         continue;
 688 
 689                 return bf;
 690         }
 691         return NULL;
 692 }
 693 
 694 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
 695                                            struct ath_rx_status *rs)
 696 {
 697         struct ath_hw *ah = sc->sc_ah;
 698         struct ath_common *common = ath9k_hw_common(ah);
 699         struct ath_desc *ds;
 700         struct ath_rxbuf *bf;
 701         int ret;
 702 
 703         if (list_empty(&sc->rx.rxbuf)) {
 704                 sc->rx.rxlink = NULL;
 705                 return NULL;
 706         }
 707 
 708         bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 709         if (bf == sc->rx.buf_hold)
 710                 return NULL;
 711 
 712         ds = bf->bf_desc;
 713 
 714         /*
 715          * Must provide the virtual address of the current
 716          * descriptor, the physical address, and the virtual
 717          * address of the next descriptor in the h/w chain.
 718          * This allows the HAL to look ahead to see if the
 719          * hardware is done with a descriptor by checking the
 720          * done bit in the following descriptor and the address
 721          * of the current descriptor the DMA engine is working
 722          * on.  All this is necessary because of our use of
 723          * a self-linked list to avoid rx overruns.
 724          */
 725         ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 726         if (ret == -EINPROGRESS) {
 727                 struct ath_rx_status trs;
 728                 struct ath_rxbuf *tbf;
 729                 struct ath_desc *tds;
 730 
 731                 memset(&trs, 0, sizeof(trs));
 732                 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
 733                         sc->rx.rxlink = NULL;
 734                         return NULL;
 735                 }
 736 
 737                 tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
 738 
 739                 /*
 740                  * On some hardware the descriptor status words could
 741                  * get corrupted, including the done bit. Because of
 742                  * this, check if the next descriptor's done bit is
 743                  * set or not.
 744                  *
 745                  * If the next descriptor's done bit is set, the current
 746                  * descriptor has been corrupted. Force s/w to discard
 747                  * this descriptor and continue...
 748                  */
 749 
 750                 tds = tbf->bf_desc;
 751                 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
 752                 if (ret == -EINPROGRESS)
 753                         return NULL;
 754 
 755                 /*
 756                  * Re-check previous descriptor, in case it has been filled
 757                  * in the mean time.
 758                  */
 759                 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 760                 if (ret == -EINPROGRESS) {
 761                         /*
 762                          * mark descriptor as zero-length and set the 'more'
 763                          * flag to ensure that both buffers get discarded
 764                          */
 765                         rs->rs_datalen = 0;
 766                         rs->rs_more = true;
 767                 }
 768         }
 769 
 770         list_del(&bf->list);
 771         if (!bf->bf_mpdu)
 772                 return bf;
 773 
 774         /*
 775          * Synchronize the DMA transfer with CPU before
 776          * 1. accessing the frame
 777          * 2. requeueing the same buffer to h/w
 778          */
 779         dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 780                         common->rx_bufsize,
 781                         DMA_FROM_DEVICE);
 782 
 783         return bf;
 784 }
 785 
 786 static void ath9k_process_tsf(struct ath_rx_status *rs,
 787                               struct ieee80211_rx_status *rxs,
 788                               u64 tsf)
 789 {
 790         u32 tsf_lower = tsf & 0xffffffff;
 791 
 792         rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
 793         if (rs->rs_tstamp > tsf_lower &&
 794             unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
 795                 rxs->mactime -= 0x100000000ULL;
 796 
 797         if (rs->rs_tstamp < tsf_lower &&
 798             unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
 799                 rxs->mactime += 0x100000000ULL;
 800 }
 801 
 802 /*
 803  * For Decrypt or Demic errors, we only mark packet status here and always push
 804  * up the frame up to let mac80211 handle the actual error case, be it no
 805  * decryption key or real decryption error. This let us keep statistics there.
 806  */
 807 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
 808                                    struct sk_buff *skb,
 809                                    struct ath_rx_status *rx_stats,
 810                                    struct ieee80211_rx_status *rx_status,
 811                                    bool *decrypt_error, u64 tsf)
 812 {
 813         struct ieee80211_hw *hw = sc->hw;
 814         struct ath_hw *ah = sc->sc_ah;
 815         struct ath_common *common = ath9k_hw_common(ah);
 816         struct ieee80211_hdr *hdr;
 817         bool discard_current = sc->rx.discard_next;
 818         bool is_phyerr;
 819 
 820         /*
 821          * Discard corrupt descriptors which are marked in
 822          * ath_get_next_rx_buf().
 823          */
 824         if (discard_current)
 825                 goto corrupt;
 826 
 827         sc->rx.discard_next = false;
 828 
 829         /*
 830          * Discard zero-length packets and packets smaller than an ACK
 831          * which are not PHY_ERROR (short radar pulses have a length of 3)
 832          */
 833         is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY;
 834         if (!rx_stats->rs_datalen ||
 835             (rx_stats->rs_datalen < 10 && !is_phyerr)) {
 836                 RX_STAT_INC(sc, rx_len_err);
 837                 goto corrupt;
 838         }
 839 
 840         /*
 841          * rs_status follows rs_datalen so if rs_datalen is too large
 842          * we can take a hint that hardware corrupted it, so ignore
 843          * those frames.
 844          */
 845         if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
 846                 RX_STAT_INC(sc, rx_len_err);
 847                 goto corrupt;
 848         }
 849 
 850         /* Only use status info from the last fragment */
 851         if (rx_stats->rs_more)
 852                 return 0;
 853 
 854         /*
 855          * Return immediately if the RX descriptor has been marked
 856          * as corrupt based on the various error bits.
 857          *
 858          * This is different from the other corrupt descriptor
 859          * condition handled above.
 860          */
 861         if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
 862                 goto corrupt;
 863 
 864         hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
 865 
 866         ath9k_process_tsf(rx_stats, rx_status, tsf);
 867         ath_debug_stat_rx(sc, rx_stats);
 868 
 869         /*
 870          * Process PHY errors and return so that the packet
 871          * can be dropped.
 872          */
 873         if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
 874                 /*
 875                  * DFS and spectral are mutually exclusive
 876                  *
 877                  * Since some chips use PHYERR_RADAR as indication for both, we
 878                  * need to double check which feature is enabled to prevent
 879                  * feeding spectral or dfs-detector with wrong frames.
 880                  */
 881                 if (hw->conf.radar_enabled) {
 882                         ath9k_dfs_process_phyerr(sc, hdr, rx_stats,
 883                                                  rx_status->mactime);
 884                 } else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED &&
 885                            ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats,
 886                                                rx_status->mactime)) {
 887                         RX_STAT_INC(sc, rx_spectral);
 888                 }
 889                 return -EINVAL;
 890         }
 891 
 892         /*
 893          * everything but the rate is checked here, the rate check is done
 894          * separately to avoid doing two lookups for a rate for each frame.
 895          */
 896         spin_lock_bh(&sc->chan_lock);
 897         if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
 898                                  sc->cur_chan->rxfilter)) {
 899                 spin_unlock_bh(&sc->chan_lock);
 900                 return -EINVAL;
 901         }
 902         spin_unlock_bh(&sc->chan_lock);
 903 
 904         if (ath_is_mybeacon(common, hdr)) {
 905                 RX_STAT_INC(sc, rx_beacons);
 906                 rx_stats->is_mybeacon = true;
 907         }
 908 
 909         /*
 910          * This shouldn't happen, but have a safety check anyway.
 911          */
 912         if (WARN_ON(!ah->curchan))
 913                 return -EINVAL;
 914 
 915         if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
 916                 /*
 917                  * No valid hardware bitrate found -- we should not get here
 918                  * because hardware has already validated this frame as OK.
 919                  */
 920                 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
 921                         rx_stats->rs_rate);
 922                 RX_STAT_INC(sc, rx_rate_err);
 923                 return -EINVAL;
 924         }
 925 
 926         if (ath9k_is_chanctx_enabled()) {
 927                 if (rx_stats->is_mybeacon)
 928                         ath_chanctx_beacon_recv_ev(sc,
 929                                            ATH_CHANCTX_EVENT_BEACON_RECEIVED);
 930         }
 931 
 932         ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
 933 
 934         rx_status->band = ah->curchan->chan->band;
 935         rx_status->freq = ah->curchan->chan->center_freq;
 936         rx_status->antenna = rx_stats->rs_antenna;
 937         rx_status->flag |= RX_FLAG_MACTIME_END;
 938 
 939 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
 940         if (ieee80211_is_data_present(hdr->frame_control) &&
 941             !ieee80211_is_qos_nullfunc(hdr->frame_control))
 942                 sc->rx.num_pkts++;
 943 #endif
 944 
 945         return 0;
 946 
 947 corrupt:
 948         sc->rx.discard_next = rx_stats->rs_more;
 949         return -EINVAL;
 950 }
 951 
 952 /*
 953  * Run the LNA combining algorithm only in these cases:
 954  *
 955  * Standalone WLAN cards with both LNA/Antenna diversity
 956  * enabled in the EEPROM.
 957  *
 958  * WLAN+BT cards which are in the supported card list
 959  * in ath_pci_id_table and the user has loaded the
 960  * driver with "bt_ant_diversity" set to true.
 961  */
 962 static void ath9k_antenna_check(struct ath_softc *sc,
 963                                 struct ath_rx_status *rs)
 964 {
 965         struct ath_hw *ah = sc->sc_ah;
 966         struct ath9k_hw_capabilities *pCap = &ah->caps;
 967         struct ath_common *common = ath9k_hw_common(ah);
 968 
 969         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
 970                 return;
 971 
 972         /*
 973          * Change the default rx antenna if rx diversity
 974          * chooses the other antenna 3 times in a row.
 975          */
 976         if (sc->rx.defant != rs->rs_antenna) {
 977                 if (++sc->rx.rxotherant >= 3)
 978                         ath_setdefantenna(sc, rs->rs_antenna);
 979         } else {
 980                 sc->rx.rxotherant = 0;
 981         }
 982 
 983         if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
 984                 if (common->bt_ant_diversity)
 985                         ath_ant_comb_scan(sc, rs);
 986         } else {
 987                 ath_ant_comb_scan(sc, rs);
 988         }
 989 }
 990 
 991 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
 992         struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
 993 {
 994         if (rs->rs_isaggr) {
 995                 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
 996 
 997                 rxs->ampdu_reference = sc->rx.ampdu_ref;
 998 
 999                 if (!rs->rs_moreaggr) {
1000                         rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1001                         sc->rx.ampdu_ref++;
1002                 }
1003 
1004                 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1005                         rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1006         }
1007 }
1008 
1009 static void ath_rx_count_airtime(struct ath_softc *sc,
1010                                  struct ath_rx_status *rs,
1011                                  struct sk_buff *skb)
1012 {
1013         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1014         struct ath_hw *ah = sc->sc_ah;
1015         struct ath_common *common = ath9k_hw_common(ah);
1016         struct ieee80211_sta *sta;
1017         struct ieee80211_rx_status *rxs;
1018         const struct ieee80211_rate *rate;
1019         bool is_sgi, is_40, is_sp;
1020         int phy;
1021         u16 len = rs->rs_datalen;
1022         u32 airtime = 0;
1023         u8 tidno;
1024 
1025         if (!ieee80211_is_data(hdr->frame_control))
1026                 return;
1027 
1028         rcu_read_lock();
1029 
1030         sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL);
1031         if (!sta)
1032                 goto exit;
1033         tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
1034 
1035         rxs = IEEE80211_SKB_RXCB(skb);
1036 
1037         is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI);
1038         is_40 = !!(rxs->bw == RATE_INFO_BW_40);
1039         is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE);
1040 
1041         if (!!(rxs->encoding == RX_ENC_HT)) {
1042                 /* MCS rates */
1043 
1044                 airtime += ath_pkt_duration(sc, rxs->rate_idx, len,
1045                                         is_40, is_sgi, is_sp);
1046         } else {
1047 
1048                 phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM;
1049                 rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx];
1050                 airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100,
1051                                                 len, rxs->rate_idx, is_sp);
1052         }
1053 
1054         ieee80211_sta_register_airtime(sta, tidno, 0, airtime);
1055 exit:
1056         rcu_read_unlock();
1057 }
1058 
1059 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1060 {
1061         struct ath_rxbuf *bf;
1062         struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1063         struct ieee80211_rx_status *rxs;
1064         struct ath_hw *ah = sc->sc_ah;
1065         struct ath_common *common = ath9k_hw_common(ah);
1066         struct ieee80211_hw *hw = sc->hw;
1067         int retval;
1068         struct ath_rx_status rs;
1069         enum ath9k_rx_qtype qtype;
1070         bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1071         int dma_type;
1072         u64 tsf = 0;
1073         unsigned long flags;
1074         dma_addr_t new_buf_addr;
1075         unsigned int budget = 512;
1076         struct ieee80211_hdr *hdr;
1077 
1078         if (edma)
1079                 dma_type = DMA_BIDIRECTIONAL;
1080         else
1081                 dma_type = DMA_FROM_DEVICE;
1082 
1083         qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1084 
1085         tsf = ath9k_hw_gettsf64(ah);
1086 
1087         do {
1088                 bool decrypt_error = false;
1089 
1090                 memset(&rs, 0, sizeof(rs));
1091                 if (edma)
1092                         bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1093                 else
1094                         bf = ath_get_next_rx_buf(sc, &rs);
1095 
1096                 if (!bf)
1097                         break;
1098 
1099                 skb = bf->bf_mpdu;
1100                 if (!skb)
1101                         continue;
1102 
1103                 /*
1104                  * Take frame header from the first fragment and RX status from
1105                  * the last one.
1106                  */
1107                 if (sc->rx.frag)
1108                         hdr_skb = sc->rx.frag;
1109                 else
1110                         hdr_skb = skb;
1111 
1112                 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1113                 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1114 
1115                 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1116                                                  &decrypt_error, tsf);
1117                 if (retval)
1118                         goto requeue_drop_frag;
1119 
1120                 /* Ensure we always have an skb to requeue once we are done
1121                  * processing the current buffer's skb */
1122                 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1123 
1124                 /* If there is no memory we ignore the current RX'd frame,
1125                  * tell hardware it can give us a new frame using the old
1126                  * skb and put it at the tail of the sc->rx.rxbuf list for
1127                  * processing. */
1128                 if (!requeue_skb) {
1129                         RX_STAT_INC(sc, rx_oom_err);
1130                         goto requeue_drop_frag;
1131                 }
1132 
1133                 /* We will now give hardware our shiny new allocated skb */
1134                 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1135                                               common->rx_bufsize, dma_type);
1136                 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1137                         dev_kfree_skb_any(requeue_skb);
1138                         goto requeue_drop_frag;
1139                 }
1140 
1141                 /* Unmap the frame */
1142                 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1143                                  common->rx_bufsize, dma_type);
1144 
1145                 bf->bf_mpdu = requeue_skb;
1146                 bf->bf_buf_addr = new_buf_addr;
1147 
1148                 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1149                 if (ah->caps.rx_status_len)
1150                         skb_pull(skb, ah->caps.rx_status_len);
1151 
1152                 if (!rs.rs_more)
1153                         ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1154                                                      rxs, decrypt_error);
1155 
1156                 if (rs.rs_more) {
1157                         RX_STAT_INC(sc, rx_frags);
1158                         /*
1159                          * rs_more indicates chained descriptors which can be
1160                          * used to link buffers together for a sort of
1161                          * scatter-gather operation.
1162                          */
1163                         if (sc->rx.frag) {
1164                                 /* too many fragments - cannot handle frame */
1165                                 dev_kfree_skb_any(sc->rx.frag);
1166                                 dev_kfree_skb_any(skb);
1167                                 RX_STAT_INC(sc, rx_too_many_frags_err);
1168                                 skb = NULL;
1169                         }
1170                         sc->rx.frag = skb;
1171                         goto requeue;
1172                 }
1173 
1174                 if (sc->rx.frag) {
1175                         int space = skb->len - skb_tailroom(hdr_skb);
1176 
1177                         if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1178                                 dev_kfree_skb(skb);
1179                                 RX_STAT_INC(sc, rx_oom_err);
1180                                 goto requeue_drop_frag;
1181                         }
1182 
1183                         sc->rx.frag = NULL;
1184 
1185                         skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1186                                                   skb->len);
1187                         dev_kfree_skb_any(skb);
1188                         skb = hdr_skb;
1189                 }
1190 
1191                 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1192                         skb_trim(skb, skb->len - 8);
1193 
1194                 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1195                 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1196                                      PS_WAIT_FOR_CAB |
1197                                      PS_WAIT_FOR_PSPOLL_DATA)) ||
1198                     ath9k_check_auto_sleep(sc))
1199                         ath_rx_ps(sc, skb, rs.is_mybeacon);
1200                 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1201 
1202                 ath9k_antenna_check(sc, &rs);
1203                 ath9k_apply_ampdu_details(sc, &rs, rxs);
1204                 ath_debug_rate_stats(sc, &rs, skb);
1205                 ath_rx_count_airtime(sc, &rs, skb);
1206 
1207                 hdr = (struct ieee80211_hdr *)skb->data;
1208                 if (ieee80211_is_ack(hdr->frame_control))
1209                         ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1210 
1211                 ieee80211_rx(hw, skb);
1212 
1213 requeue_drop_frag:
1214                 if (sc->rx.frag) {
1215                         dev_kfree_skb_any(sc->rx.frag);
1216                         sc->rx.frag = NULL;
1217                 }
1218 requeue:
1219                 list_add_tail(&bf->list, &sc->rx.rxbuf);
1220 
1221                 if (!edma) {
1222                         ath_rx_buf_relink(sc, bf, flush);
1223                         if (!flush)
1224                                 ath9k_hw_rxena(ah);
1225                 } else if (!flush) {
1226                         ath_rx_edma_buf_link(sc, qtype);
1227                 }
1228 
1229                 if (!budget--)
1230                         break;
1231         } while (1);
1232 
1233         if (!(ah->imask & ATH9K_INT_RXEOL)) {
1234                 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1235                 ath9k_hw_set_interrupts(ah);
1236         }
1237 
1238         return 0;
1239 }

/* [<][>][^][v][top][bottom][index][help] */