root/drivers/net/wireless/ath/ath9k/hw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath9k_hw_set_clockrate
  2. ath9k_hw_mac_to_clks
  3. ath9k_hw_wait
  4. ath9k_hw_synth_delay
  5. ath9k_hw_write_array
  6. ath9k_hw_read_array
  7. ath9k_hw_reverse_bits
  8. ath9k_hw_computetxtime
  9. ath9k_hw_get_channel_centers
  10. ath9k_hw_read_revisions
  11. ath9k_hw_disablepcie
  12. ath9k_hw_chip_test
  13. ath9k_hw_init_config
  14. ath9k_hw_init_defaults
  15. ath9k_hw_init_macaddr
  16. ath9k_hw_post_init
  17. ath9k_hw_attach_ops
  18. __ath9k_hw_init
  19. ath9k_hw_init
  20. ath9k_hw_init_qos
  21. ar9003_get_pll_sqsum_dvc
  22. ath9k_hw_init_pll
  23. ath9k_hw_init_interrupt_masks
  24. ath9k_hw_set_sifs_time
  25. ath9k_hw_setslottime
  26. ath9k_hw_set_ack_timeout
  27. ath9k_hw_set_cts_timeout
  28. ath9k_hw_set_global_txtimeout
  29. ath9k_hw_init_global_settings
  30. ath9k_hw_deinit
  31. ath9k_regd_get_ctl
  32. ath9k_hw_set_dma
  33. ath9k_hw_set_operating_mode
  34. ath9k_hw_get_delta_slope_vals
  35. ath9k_hw_ar9330_reset_war
  36. ath9k_hw_set_reset
  37. ath9k_hw_set_reset_power_on
  38. ath9k_hw_set_reset_reg
  39. ath9k_hw_chip_reset
  40. ath9k_hw_channel_change
  41. ath9k_hw_apply_gpio_override
  42. ath9k_hw_check_nav
  43. ath9k_hw_check_alive
  44. ath9k_hw_init_mfp
  45. ath9k_hw_reset_opmode
  46. ath9k_hw_init_queues
  47. ath9k_hw_init_desc
  48. ath9k_hw_do_fastcc
  49. ath9k_hw_get_tsf_offset
  50. ath9k_hw_reset
  51. ath9k_set_power_sleep
  52. ath9k_set_power_network_sleep
  53. ath9k_hw_set_power_awake
  54. ath9k_hw_setpower
  55. ath9k_hw_beaconinit
  56. ath9k_hw_set_sta_beacon_timers
  57. fixup_chainmask
  58. ath9k_hw_dfs_tested
  59. ath9k_gpio_cap_init
  60. ath9k_hw_fill_cap_info
  61. ath9k_hw_gpio_cfg_output_mux
  62. ath9k_hw_gpio_cfg_soc
  63. ath9k_hw_gpio_cfg_wmac
  64. ath9k_hw_gpio_request
  65. ath9k_hw_gpio_request_in
  66. ath9k_hw_gpio_request_out
  67. ath9k_hw_gpio_free
  68. ath9k_hw_gpio_get
  69. ath9k_hw_set_gpio
  70. ath9k_hw_setantenna
  71. ath9k_hw_getrxfilter
  72. ath9k_hw_setrxfilter
  73. ath9k_hw_phy_disable
  74. ath9k_hw_disable
  75. get_antenna_gain
  76. ath9k_hw_apply_txpower
  77. ath9k_hw_set_txpowerlimit
  78. ath9k_hw_setopmode
  79. ath9k_hw_setmcastfilter
  80. ath9k_hw_write_associd
  81. ath9k_hw_gettsf64
  82. ath9k_hw_settsf64
  83. ath9k_hw_reset_tsf
  84. ath9k_hw_set_tsfadjust
  85. ath9k_hw_set11nmac2040
  86. ath9k_hw_gettsf32
  87. ath9k_hw_gen_timer_start_tsf2
  88. ath_gen_timer_alloc
  89. ath9k_hw_gen_timer_start
  90. ath9k_hw_gen_timer_stop
  91. ath_gen_timer_free
  92. ath_gen_timer_isr
  93. ath9k_hw_mac_bb_name
  94. ath9k_hw_rf_name
  95. ath9k_hw_name

   1 /*
   2  * Copyright (c) 2008-2011 Atheros Communications Inc.
   3  *
   4  * Permission to use, copy, modify, and/or distribute this software for any
   5  * purpose with or without fee is hereby granted, provided that the above
   6  * copyright notice and this permission notice appear in all copies.
   7  *
   8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15  */
  16 
  17 #include <linux/io.h>
  18 #include <linux/slab.h>
  19 #include <linux/module.h>
  20 #include <linux/time.h>
  21 #include <linux/bitops.h>
  22 #include <linux/etherdevice.h>
  23 #include <linux/gpio.h>
  24 #include <asm/unaligned.h>
  25 
  26 #include "hw.h"
  27 #include "hw-ops.h"
  28 #include "ar9003_mac.h"
  29 #include "ar9003_mci.h"
  30 #include "ar9003_phy.h"
  31 #include "ath9k.h"
  32 
  33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34 
  35 MODULE_AUTHOR("Atheros Communications");
  36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38 MODULE_LICENSE("Dual BSD/GPL");
  39 
  40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41 {
  42         struct ath_common *common = ath9k_hw_common(ah);
  43         struct ath9k_channel *chan = ah->curchan;
  44         unsigned int clockrate;
  45 
  46         /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47         if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48                 clockrate = 117;
  49         else if (!chan) /* should really check for CCK instead */
  50                 clockrate = ATH9K_CLOCK_RATE_CCK;
  51         else if (IS_CHAN_2GHZ(chan))
  52                 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53         else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54                 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55         else
  56                 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57 
  58         if (chan) {
  59                 if (IS_CHAN_HT40(chan))
  60                         clockrate *= 2;
  61                 if (IS_CHAN_HALF_RATE(chan))
  62                         clockrate /= 2;
  63                 if (IS_CHAN_QUARTER_RATE(chan))
  64                         clockrate /= 4;
  65         }
  66 
  67         common->clockrate = clockrate;
  68 }
  69 
  70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71 {
  72         struct ath_common *common = ath9k_hw_common(ah);
  73 
  74         return usecs * common->clockrate;
  75 }
  76 
  77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78 {
  79         int i;
  80 
  81         BUG_ON(timeout < AH_TIME_QUANTUM);
  82 
  83         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84                 if ((REG_READ(ah, reg) & mask) == val)
  85                         return true;
  86 
  87                 udelay(AH_TIME_QUANTUM);
  88         }
  89 
  90         ath_dbg(ath9k_hw_common(ah), ANY,
  91                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92                 timeout, reg, REG_READ(ah, reg), mask, val);
  93 
  94         return false;
  95 }
  96 EXPORT_SYMBOL(ath9k_hw_wait);
  97 
  98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99                           int hw_delay)
 100 {
 101         hw_delay /= 10;
 102 
 103         if (IS_CHAN_HALF_RATE(chan))
 104                 hw_delay *= 2;
 105         else if (IS_CHAN_QUARTER_RATE(chan))
 106                 hw_delay *= 4;
 107 
 108         udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109 }
 110 
 111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112                           int column, unsigned int *writecnt)
 113 {
 114         int r;
 115 
 116         ENABLE_REGWRITE_BUFFER(ah);
 117         for (r = 0; r < array->ia_rows; r++) {
 118                 REG_WRITE(ah, INI_RA(array, r, 0),
 119                           INI_RA(array, r, column));
 120                 DO_DELAY(*writecnt);
 121         }
 122         REGWRITE_BUFFER_FLUSH(ah);
 123 }
 124 
 125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126 {
 127         u32 *tmp_reg_list, *tmp_data;
 128         int i;
 129 
 130         tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 131         if (!tmp_reg_list) {
 132                 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133                 return;
 134         }
 135 
 136         tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 137         if (!tmp_data) {
 138                 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139                 goto error_tmp_data;
 140         }
 141 
 142         for (i = 0; i < size; i++)
 143                 tmp_reg_list[i] = array[i][0];
 144 
 145         REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146 
 147         for (i = 0; i < size; i++)
 148                 array[i][1] = tmp_data[i];
 149 
 150         kfree(tmp_data);
 151 error_tmp_data:
 152         kfree(tmp_reg_list);
 153 }
 154 
 155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156 {
 157         u32 retval;
 158         int i;
 159 
 160         for (i = 0, retval = 0; i < n; i++) {
 161                 retval = (retval << 1) | (val & 1);
 162                 val >>= 1;
 163         }
 164         return retval;
 165 }
 166 
 167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168                            u8 phy, int kbps,
 169                            u32 frameLen, u16 rateix,
 170                            bool shortPreamble)
 171 {
 172         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173 
 174         if (kbps == 0)
 175                 return 0;
 176 
 177         switch (phy) {
 178         case WLAN_RC_PHY_CCK:
 179                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180                 if (shortPreamble)
 181                         phyTime >>= 1;
 182                 numBits = frameLen << 3;
 183                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184                 break;
 185         case WLAN_RC_PHY_OFDM:
 186                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187                         bitsPerSymbol =
 188                                 ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 189                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
 190                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 191                         txTime = OFDM_SIFS_TIME_QUARTER
 192                                 + OFDM_PREAMBLE_TIME_QUARTER
 193                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 194                 } else if (ah->curchan &&
 195                            IS_CHAN_HALF_RATE(ah->curchan)) {
 196                         bitsPerSymbol =
 197                                 ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 198                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200                         txTime = OFDM_SIFS_TIME_HALF +
 201                                 OFDM_PREAMBLE_TIME_HALF
 202                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203                 } else {
 204                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208                                 + (numSymbols * OFDM_SYMBOL_TIME);
 209                 }
 210                 break;
 211         default:
 212                 ath_err(ath9k_hw_common(ah),
 213                         "Unknown phy %u (rate ix %u)\n", phy, rateix);
 214                 txTime = 0;
 215                 break;
 216         }
 217 
 218         return txTime;
 219 }
 220 EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221 
 222 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223                                   struct ath9k_channel *chan,
 224                                   struct chan_centers *centers)
 225 {
 226         int8_t extoff;
 227 
 228         if (!IS_CHAN_HT40(chan)) {
 229                 centers->ctl_center = centers->ext_center =
 230                         centers->synth_center = chan->channel;
 231                 return;
 232         }
 233 
 234         if (IS_CHAN_HT40PLUS(chan)) {
 235                 centers->synth_center =
 236                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 237                 extoff = 1;
 238         } else {
 239                 centers->synth_center =
 240                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 241                 extoff = -1;
 242         }
 243 
 244         centers->ctl_center =
 245                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 246         /* 25 MHz spacing is supported by hw but not on upper layers */
 247         centers->ext_center =
 248                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 249 }
 250 
 251 /******************/
 252 /* Chip Revisions */
 253 /******************/
 254 
 255 static bool ath9k_hw_read_revisions(struct ath_hw *ah)
 256 {
 257         u32 srev;
 258         u32 val;
 259 
 260         if (ah->get_mac_revision)
 261                 ah->hw_version.macRev = ah->get_mac_revision();
 262 
 263         switch (ah->hw_version.devid) {
 264         case AR5416_AR9100_DEVID:
 265                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 266                 break;
 267         case AR9300_DEVID_AR9330:
 268                 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 269                 if (!ah->get_mac_revision) {
 270                         val = REG_READ(ah, AR_SREV);
 271                         ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 272                 }
 273                 return true;
 274         case AR9300_DEVID_AR9340:
 275                 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 276                 return true;
 277         case AR9300_DEVID_QCA955X:
 278                 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 279                 return true;
 280         case AR9300_DEVID_AR953X:
 281                 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 282                 return true;
 283         case AR9300_DEVID_QCA956X:
 284                 ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 285                 return true;
 286         }
 287 
 288         srev = REG_READ(ah, AR_SREV);
 289 
 290         if (srev == -EIO) {
 291                 ath_err(ath9k_hw_common(ah),
 292                         "Failed to read SREV register");
 293                 return false;
 294         }
 295 
 296         val = srev & AR_SREV_ID;
 297 
 298         if (val == 0xFF) {
 299                 val = srev;
 300                 ah->hw_version.macVersion =
 301                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 302                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 303 
 304                 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 305                         ah->is_pciexpress = true;
 306                 else
 307                         ah->is_pciexpress = (val &
 308                                              AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 309         } else {
 310                 if (!AR_SREV_9100(ah))
 311                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 312 
 313                 ah->hw_version.macRev = val & AR_SREV_REVISION;
 314 
 315                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 316                         ah->is_pciexpress = true;
 317         }
 318 
 319         return true;
 320 }
 321 
 322 /************************************/
 323 /* HW Attach, Detach, Init Routines */
 324 /************************************/
 325 
 326 static void ath9k_hw_disablepcie(struct ath_hw *ah)
 327 {
 328         if (!AR_SREV_5416(ah))
 329                 return;
 330 
 331         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 332         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 333         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 334         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 335         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 336         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 337         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 338         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 339         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 340 
 341         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 342 }
 343 
 344 /* This should work for all families including legacy */
 345 static bool ath9k_hw_chip_test(struct ath_hw *ah)
 346 {
 347         struct ath_common *common = ath9k_hw_common(ah);
 348         u32 regAddr[2] = { AR_STA_ID0 };
 349         u32 regHold[2];
 350         static const u32 patternData[4] = {
 351                 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 352         };
 353         int i, j, loop_max;
 354 
 355         if (!AR_SREV_9300_20_OR_LATER(ah)) {
 356                 loop_max = 2;
 357                 regAddr[1] = AR_PHY_BASE + (8 << 2);
 358         } else
 359                 loop_max = 1;
 360 
 361         for (i = 0; i < loop_max; i++) {
 362                 u32 addr = regAddr[i];
 363                 u32 wrData, rdData;
 364 
 365                 regHold[i] = REG_READ(ah, addr);
 366                 for (j = 0; j < 0x100; j++) {
 367                         wrData = (j << 16) | j;
 368                         REG_WRITE(ah, addr, wrData);
 369                         rdData = REG_READ(ah, addr);
 370                         if (rdData != wrData) {
 371                                 ath_err(common,
 372                                         "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 373                                         addr, wrData, rdData);
 374                                 return false;
 375                         }
 376                 }
 377                 for (j = 0; j < 4; j++) {
 378                         wrData = patternData[j];
 379                         REG_WRITE(ah, addr, wrData);
 380                         rdData = REG_READ(ah, addr);
 381                         if (wrData != rdData) {
 382                                 ath_err(common,
 383                                         "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 384                                         addr, wrData, rdData);
 385                                 return false;
 386                         }
 387                 }
 388                 REG_WRITE(ah, regAddr[i], regHold[i]);
 389         }
 390         udelay(100);
 391 
 392         return true;
 393 }
 394 
 395 static void ath9k_hw_init_config(struct ath_hw *ah)
 396 {
 397         struct ath_common *common = ath9k_hw_common(ah);
 398 
 399         ah->config.dma_beacon_response_time = 1;
 400         ah->config.sw_beacon_response_time = 6;
 401         ah->config.cwm_ignore_extcca = false;
 402         ah->config.analog_shiftreg = 1;
 403 
 404         ah->config.rx_intr_mitigation = true;
 405 
 406         if (AR_SREV_9300_20_OR_LATER(ah)) {
 407                 ah->config.rimt_last = 500;
 408                 ah->config.rimt_first = 2000;
 409         } else {
 410                 ah->config.rimt_last = 250;
 411                 ah->config.rimt_first = 700;
 412         }
 413 
 414         if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 415                 ah->config.pll_pwrsave = 7;
 416 
 417         /*
 418          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 419          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 420          * This means we use it for all AR5416 devices, and the few
 421          * minor PCI AR9280 devices out there.
 422          *
 423          * Serialization is required because these devices do not handle
 424          * well the case of two concurrent reads/writes due to the latency
 425          * involved. During one read/write another read/write can be issued
 426          * on another CPU while the previous read/write may still be working
 427          * on our hardware, if we hit this case the hardware poops in a loop.
 428          * We prevent this by serializing reads and writes.
 429          *
 430          * This issue is not present on PCI-Express devices or pre-AR5416
 431          * devices (legacy, 802.11abg).
 432          */
 433         if (num_possible_cpus() > 1)
 434                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 435 
 436         if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 437                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 438                     ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 439                      !ah->is_pciexpress)) {
 440                         ah->config.serialize_regmode = SER_REG_MODE_ON;
 441                 } else {
 442                         ah->config.serialize_regmode = SER_REG_MODE_OFF;
 443                 }
 444         }
 445 
 446         ath_dbg(common, RESET, "serialize_regmode is %d\n",
 447                 ah->config.serialize_regmode);
 448 
 449         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 450                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 451         else
 452                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 453 }
 454 
 455 static void ath9k_hw_init_defaults(struct ath_hw *ah)
 456 {
 457         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 458 
 459         regulatory->country_code = CTRY_DEFAULT;
 460         regulatory->power_limit = MAX_COMBINED_POWER;
 461 
 462         ah->hw_version.magic = AR5416_MAGIC;
 463         ah->hw_version.subvendorid = 0;
 464 
 465         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 466                                AR_STA_ID1_MCAST_KSRCH;
 467         if (AR_SREV_9100(ah))
 468                 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 469 
 470         ah->slottime = 9;
 471         ah->globaltxtimeout = (u32) -1;
 472         ah->power_mode = ATH9K_PM_UNDEFINED;
 473         ah->htc_reset_init = true;
 474 
 475         ah->tpc_enabled = false;
 476 
 477         ah->ani_function = ATH9K_ANI_ALL;
 478         if (!AR_SREV_9300_20_OR_LATER(ah))
 479                 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 480 
 481         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 482                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 483         else
 484                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 485 }
 486 
 487 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 488 {
 489         struct ath_common *common = ath9k_hw_common(ah);
 490         int i;
 491         u16 eeval;
 492         static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 493 
 494         /* MAC address may already be loaded via ath9k_platform_data */
 495         if (is_valid_ether_addr(common->macaddr))
 496                 return;
 497 
 498         for (i = 0; i < 3; i++) {
 499                 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 500                 common->macaddr[2 * i] = eeval >> 8;
 501                 common->macaddr[2 * i + 1] = eeval & 0xff;
 502         }
 503 
 504         if (is_valid_ether_addr(common->macaddr))
 505                 return;
 506 
 507         ath_err(common, "eeprom contains invalid mac address: %pM\n",
 508                 common->macaddr);
 509 
 510         eth_random_addr(common->macaddr);
 511         ath_err(common, "random mac address will be used: %pM\n",
 512                 common->macaddr);
 513 
 514         return;
 515 }
 516 
 517 static int ath9k_hw_post_init(struct ath_hw *ah)
 518 {
 519         struct ath_common *common = ath9k_hw_common(ah);
 520         int ecode;
 521 
 522         if (common->bus_ops->ath_bus_type != ATH_USB) {
 523                 if (!ath9k_hw_chip_test(ah))
 524                         return -ENODEV;
 525         }
 526 
 527         if (!AR_SREV_9300_20_OR_LATER(ah)) {
 528                 ecode = ar9002_hw_rf_claim(ah);
 529                 if (ecode != 0)
 530                         return ecode;
 531         }
 532 
 533         ecode = ath9k_hw_eeprom_init(ah);
 534         if (ecode != 0)
 535                 return ecode;
 536 
 537         ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 538                 ah->eep_ops->get_eeprom_ver(ah),
 539                 ah->eep_ops->get_eeprom_rev(ah));
 540 
 541         ath9k_hw_ani_init(ah);
 542 
 543         /*
 544          * EEPROM needs to be initialized before we do this.
 545          * This is required for regulatory compliance.
 546          */
 547         if (AR_SREV_9300_20_OR_LATER(ah)) {
 548                 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 549                 if ((regdmn & 0xF0) == CTL_FCC) {
 550                         ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 551                         ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 552                 }
 553         }
 554 
 555         return 0;
 556 }
 557 
 558 static int ath9k_hw_attach_ops(struct ath_hw *ah)
 559 {
 560         if (!AR_SREV_9300_20_OR_LATER(ah))
 561                 return ar9002_hw_attach_ops(ah);
 562 
 563         ar9003_hw_attach_ops(ah);
 564         return 0;
 565 }
 566 
 567 /* Called for all hardware families */
 568 static int __ath9k_hw_init(struct ath_hw *ah)
 569 {
 570         struct ath_common *common = ath9k_hw_common(ah);
 571         int r = 0;
 572 
 573         if (!ath9k_hw_read_revisions(ah)) {
 574                 ath_err(common, "Could not read hardware revisions");
 575                 return -EOPNOTSUPP;
 576         }
 577 
 578         switch (ah->hw_version.macVersion) {
 579         case AR_SREV_VERSION_5416_PCI:
 580         case AR_SREV_VERSION_5416_PCIE:
 581         case AR_SREV_VERSION_9160:
 582         case AR_SREV_VERSION_9100:
 583         case AR_SREV_VERSION_9280:
 584         case AR_SREV_VERSION_9285:
 585         case AR_SREV_VERSION_9287:
 586         case AR_SREV_VERSION_9271:
 587         case AR_SREV_VERSION_9300:
 588         case AR_SREV_VERSION_9330:
 589         case AR_SREV_VERSION_9485:
 590         case AR_SREV_VERSION_9340:
 591         case AR_SREV_VERSION_9462:
 592         case AR_SREV_VERSION_9550:
 593         case AR_SREV_VERSION_9565:
 594         case AR_SREV_VERSION_9531:
 595         case AR_SREV_VERSION_9561:
 596                 break;
 597         default:
 598                 ath_err(common,
 599                         "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 600                         ah->hw_version.macVersion, ah->hw_version.macRev);
 601                 return -EOPNOTSUPP;
 602         }
 603 
 604         /*
 605          * Read back AR_WA into a permanent copy and set bits 14 and 17.
 606          * We need to do this to avoid RMW of this register. We cannot
 607          * read the reg when chip is asleep.
 608          */
 609         if (AR_SREV_9300_20_OR_LATER(ah)) {
 610                 ah->WARegVal = REG_READ(ah, AR_WA);
 611                 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 612                                  AR_WA_ASPM_TIMER_BASED_DISABLE);
 613         }
 614 
 615         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 616                 ath_err(common, "Couldn't reset chip\n");
 617                 return -EIO;
 618         }
 619 
 620         if (AR_SREV_9565(ah)) {
 621                 ah->WARegVal |= AR_WA_BIT22;
 622                 REG_WRITE(ah, AR_WA, ah->WARegVal);
 623         }
 624 
 625         ath9k_hw_init_defaults(ah);
 626         ath9k_hw_init_config(ah);
 627 
 628         r = ath9k_hw_attach_ops(ah);
 629         if (r)
 630                 return r;
 631 
 632         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 633                 ath_err(common, "Couldn't wakeup chip\n");
 634                 return -EIO;
 635         }
 636 
 637         if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 638             AR_SREV_9330(ah) || AR_SREV_9550(ah))
 639                 ah->is_pciexpress = false;
 640 
 641         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 642         ath9k_hw_init_cal_settings(ah);
 643 
 644         if (!ah->is_pciexpress)
 645                 ath9k_hw_disablepcie(ah);
 646 
 647         r = ath9k_hw_post_init(ah);
 648         if (r)
 649                 return r;
 650 
 651         ath9k_hw_init_mode_gain_regs(ah);
 652         r = ath9k_hw_fill_cap_info(ah);
 653         if (r)
 654                 return r;
 655 
 656         ath9k_hw_init_macaddr(ah);
 657         ath9k_hw_init_hang_checks(ah);
 658 
 659         common->state = ATH_HW_INITIALIZED;
 660 
 661         return 0;
 662 }
 663 
 664 int ath9k_hw_init(struct ath_hw *ah)
 665 {
 666         int ret;
 667         struct ath_common *common = ath9k_hw_common(ah);
 668 
 669         /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 670         switch (ah->hw_version.devid) {
 671         case AR5416_DEVID_PCI:
 672         case AR5416_DEVID_PCIE:
 673         case AR5416_AR9100_DEVID:
 674         case AR9160_DEVID_PCI:
 675         case AR9280_DEVID_PCI:
 676         case AR9280_DEVID_PCIE:
 677         case AR9285_DEVID_PCIE:
 678         case AR9287_DEVID_PCI:
 679         case AR9287_DEVID_PCIE:
 680         case AR2427_DEVID_PCIE:
 681         case AR9300_DEVID_PCIE:
 682         case AR9300_DEVID_AR9485_PCIE:
 683         case AR9300_DEVID_AR9330:
 684         case AR9300_DEVID_AR9340:
 685         case AR9300_DEVID_QCA955X:
 686         case AR9300_DEVID_AR9580:
 687         case AR9300_DEVID_AR9462:
 688         case AR9485_DEVID_AR1111:
 689         case AR9300_DEVID_AR9565:
 690         case AR9300_DEVID_AR953X:
 691         case AR9300_DEVID_QCA956X:
 692                 break;
 693         default:
 694                 if (common->bus_ops->ath_bus_type == ATH_USB)
 695                         break;
 696                 ath_err(common, "Hardware device ID 0x%04x not supported\n",
 697                         ah->hw_version.devid);
 698                 return -EOPNOTSUPP;
 699         }
 700 
 701         ret = __ath9k_hw_init(ah);
 702         if (ret) {
 703                 ath_err(common,
 704                         "Unable to initialize hardware; initialization status: %d\n",
 705                         ret);
 706                 return ret;
 707         }
 708 
 709         ath_dynack_init(ah);
 710 
 711         return 0;
 712 }
 713 EXPORT_SYMBOL(ath9k_hw_init);
 714 
 715 static void ath9k_hw_init_qos(struct ath_hw *ah)
 716 {
 717         ENABLE_REGWRITE_BUFFER(ah);
 718 
 719         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 720         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 721 
 722         REG_WRITE(ah, AR_QOS_NO_ACK,
 723                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 724                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 725                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 726 
 727         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 728         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 729         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 730         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 731         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 732 
 733         REGWRITE_BUFFER_FLUSH(ah);
 734 }
 735 
 736 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 737 {
 738         struct ath_common *common = ath9k_hw_common(ah);
 739         int i = 0;
 740 
 741         REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 742         udelay(100);
 743         REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 744 
 745         while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 746 
 747                 udelay(100);
 748 
 749                 if (WARN_ON_ONCE(i >= 100)) {
 750                         ath_err(common, "PLL4 measurement not done\n");
 751                         break;
 752                 }
 753 
 754                 i++;
 755         }
 756 
 757         return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 758 }
 759 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 760 
 761 static void ath9k_hw_init_pll(struct ath_hw *ah,
 762                               struct ath9k_channel *chan)
 763 {
 764         u32 pll;
 765 
 766         pll = ath9k_hw_compute_pll_control(ah, chan);
 767 
 768         if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 769                 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 770                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 771                               AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 772                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773                               AR_CH0_DPLL2_KD, 0x40);
 774                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 775                               AR_CH0_DPLL2_KI, 0x4);
 776 
 777                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 778                               AR_CH0_BB_DPLL1_REFDIV, 0x5);
 779                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 780                               AR_CH0_BB_DPLL1_NINI, 0x58);
 781                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 782                               AR_CH0_BB_DPLL1_NFRAC, 0x0);
 783 
 784                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 785                               AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 786                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 787                               AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 788                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 789                               AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 790 
 791                 /* program BB PLL phase_shift to 0x6 */
 792                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 793                               AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 794 
 795                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 796                               AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 797                 udelay(1000);
 798         } else if (AR_SREV_9330(ah)) {
 799                 u32 ddr_dpll2, pll_control2, kd;
 800 
 801                 if (ah->is_clk_25mhz) {
 802                         ddr_dpll2 = 0x18e82f01;
 803                         pll_control2 = 0xe04a3d;
 804                         kd = 0x1d;
 805                 } else {
 806                         ddr_dpll2 = 0x19e82f01;
 807                         pll_control2 = 0x886666;
 808                         kd = 0x3d;
 809                 }
 810 
 811                 /* program DDR PLL ki and kd value */
 812                 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 813 
 814                 /* program DDR PLL phase_shift */
 815                 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 816                               AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 817 
 818                 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 819                           pll | AR_RTC_9300_PLL_BYPASS);
 820                 udelay(1000);
 821 
 822                 /* program refdiv, nint, frac to RTC register */
 823                 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 824 
 825                 /* program BB PLL kd and ki value */
 826                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 827                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 828 
 829                 /* program BB PLL phase_shift */
 830                 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 831                               AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 832         } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 833                    AR_SREV_9561(ah)) {
 834                 u32 regval, pll2_divint, pll2_divfrac, refdiv;
 835 
 836                 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 837                           pll | AR_RTC_9300_SOC_PLL_BYPASS);
 838                 udelay(1000);
 839 
 840                 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 841                 udelay(100);
 842 
 843                 if (ah->is_clk_25mhz) {
 844                         if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 845                                 pll2_divint = 0x1c;
 846                                 pll2_divfrac = 0xa3d2;
 847                                 refdiv = 1;
 848                         } else {
 849                                 pll2_divint = 0x54;
 850                                 pll2_divfrac = 0x1eb85;
 851                                 refdiv = 3;
 852                         }
 853                 } else {
 854                         if (AR_SREV_9340(ah)) {
 855                                 pll2_divint = 88;
 856                                 pll2_divfrac = 0;
 857                                 refdiv = 5;
 858                         } else {
 859                                 pll2_divint = 0x11;
 860                                 pll2_divfrac = (AR_SREV_9531(ah) ||
 861                                                 AR_SREV_9561(ah)) ?
 862                                                 0x26665 : 0x26666;
 863                                 refdiv = 1;
 864                         }
 865                 }
 866 
 867                 regval = REG_READ(ah, AR_PHY_PLL_MODE);
 868                 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 869                         regval |= (0x1 << 22);
 870                 else
 871                         regval |= (0x1 << 16);
 872                 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 873                 udelay(100);
 874 
 875                 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 876                           (pll2_divint << 18) | pll2_divfrac);
 877                 udelay(100);
 878 
 879                 regval = REG_READ(ah, AR_PHY_PLL_MODE);
 880                 if (AR_SREV_9340(ah))
 881                         regval = (regval & 0x80071fff) |
 882                                 (0x1 << 30) |
 883                                 (0x1 << 13) |
 884                                 (0x4 << 26) |
 885                                 (0x18 << 19);
 886                 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 887                         regval = (regval & 0x01c00fff) |
 888                                 (0x1 << 31) |
 889                                 (0x2 << 29) |
 890                                 (0xa << 25) |
 891                                 (0x1 << 19);
 892 
 893                         if (AR_SREV_9531(ah))
 894                                 regval |= (0x6 << 12);
 895                 } else
 896                         regval = (regval & 0x80071fff) |
 897                                 (0x3 << 30) |
 898                                 (0x1 << 13) |
 899                                 (0x4 << 26) |
 900                                 (0x60 << 19);
 901                 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 902 
 903                 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 904                         REG_WRITE(ah, AR_PHY_PLL_MODE,
 905                                   REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 906                 else
 907                         REG_WRITE(ah, AR_PHY_PLL_MODE,
 908                                   REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 909 
 910                 udelay(1000);
 911         }
 912 
 913         if (AR_SREV_9565(ah))
 914                 pll |= 0x40000;
 915         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 916 
 917         if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 918             AR_SREV_9550(ah))
 919                 udelay(1000);
 920 
 921         /* Switch the core clock for ar9271 to 117Mhz */
 922         if (AR_SREV_9271(ah)) {
 923                 udelay(500);
 924                 REG_WRITE(ah, 0x50040, 0x304);
 925         }
 926 
 927         udelay(RTC_PLL_SETTLE_DELAY);
 928 
 929         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 930 }
 931 
 932 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 933                                           enum nl80211_iftype opmode)
 934 {
 935         u32 sync_default = AR_INTR_SYNC_DEFAULT;
 936         u32 imr_reg = AR_IMR_TXERR |
 937                 AR_IMR_TXURN |
 938                 AR_IMR_RXERR |
 939                 AR_IMR_RXORN |
 940                 AR_IMR_BCNMISC;
 941         u32 msi_cfg = 0;
 942 
 943         if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 944             AR_SREV_9561(ah))
 945                 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 946 
 947         if (AR_SREV_9300_20_OR_LATER(ah)) {
 948                 imr_reg |= AR_IMR_RXOK_HP;
 949                 if (ah->config.rx_intr_mitigation) {
 950                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 951                         msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 952                 } else {
 953                         imr_reg |= AR_IMR_RXOK_LP;
 954                         msi_cfg |= AR_INTCFG_MSI_RXOK;
 955                 }
 956         } else {
 957                 if (ah->config.rx_intr_mitigation) {
 958                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 959                         msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 960                 } else {
 961                         imr_reg |= AR_IMR_RXOK;
 962                         msi_cfg |= AR_INTCFG_MSI_RXOK;
 963                 }
 964         }
 965 
 966         if (ah->config.tx_intr_mitigation) {
 967                 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 968                 msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 969         } else {
 970                 imr_reg |= AR_IMR_TXOK;
 971                 msi_cfg |= AR_INTCFG_MSI_TXOK;
 972         }
 973 
 974         ENABLE_REGWRITE_BUFFER(ah);
 975 
 976         REG_WRITE(ah, AR_IMR, imr_reg);
 977         ah->imrs2_reg |= AR_IMR_S2_GTT;
 978         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 979 
 980         if (ah->msi_enabled) {
 981                 ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
 982                 ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 983                 ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 984                 REG_WRITE(ah, AR_INTCFG, msi_cfg);
 985                 ath_dbg(ath9k_hw_common(ah), ANY,
 986                         "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 987                         REG_READ(ah, AR_INTCFG), msi_cfg);
 988         }
 989 
 990         if (!AR_SREV_9100(ah)) {
 991                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 992                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 993                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 994         }
 995 
 996         REGWRITE_BUFFER_FLUSH(ah);
 997 
 998         if (AR_SREV_9300_20_OR_LATER(ah)) {
 999                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003         }
1004 }
1005 
1006 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007 {
1008         u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009         val = min(val, (u32) 0xFFFF);
1010         REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011 }
1012 
1013 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014 {
1015         u32 val = ath9k_hw_mac_to_clks(ah, us);
1016         val = min(val, (u32) 0xFFFF);
1017         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018 }
1019 
1020 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021 {
1022         u32 val = ath9k_hw_mac_to_clks(ah, us);
1023         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025 }
1026 
1027 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028 {
1029         u32 val = ath9k_hw_mac_to_clks(ah, us);
1030         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032 }
1033 
1034 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035 {
1036         if (tu > 0xFFFF) {
1037                 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038                         tu);
1039                 ah->globaltxtimeout = (u32) -1;
1040                 return false;
1041         } else {
1042                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043                 ah->globaltxtimeout = tu;
1044                 return true;
1045         }
1046 }
1047 
1048 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049 {
1050         struct ath_common *common = ath9k_hw_common(ah);
1051         const struct ath9k_channel *chan = ah->curchan;
1052         int acktimeout, ctstimeout, ack_offset = 0;
1053         int slottime;
1054         int sifstime;
1055         int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1056         u32 reg;
1057 
1058         ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1059                 ah->misc_mode);
1060 
1061         if (!chan)
1062                 return;
1063 
1064         if (ah->misc_mode != 0)
1065                 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1066 
1067         if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1068                 rx_lat = 41;
1069         else
1070                 rx_lat = 37;
1071         tx_lat = 54;
1072 
1073         if (IS_CHAN_5GHZ(chan))
1074                 sifstime = 16;
1075         else
1076                 sifstime = 10;
1077 
1078         if (IS_CHAN_HALF_RATE(chan)) {
1079                 eifs = 175;
1080                 rx_lat *= 2;
1081                 tx_lat *= 2;
1082                 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1083                     tx_lat += 11;
1084 
1085                 sifstime = 32;
1086                 ack_offset = 16;
1087                 ack_shift = 3;
1088                 slottime = 13;
1089         } else if (IS_CHAN_QUARTER_RATE(chan)) {
1090                 eifs = 340;
1091                 rx_lat = (rx_lat * 4) - 1;
1092                 tx_lat *= 4;
1093                 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094                     tx_lat += 22;
1095 
1096                 sifstime = 64;
1097                 ack_offset = 32;
1098                 ack_shift = 1;
1099                 slottime = 21;
1100         } else {
1101                 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1102                         eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1103                         reg = AR_USEC_ASYNC_FIFO;
1104                 } else {
1105                         eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1106                                 common->clockrate;
1107                         reg = REG_READ(ah, AR_USEC);
1108                 }
1109                 rx_lat = MS(reg, AR_USEC_RX_LAT);
1110                 tx_lat = MS(reg, AR_USEC_TX_LAT);
1111 
1112                 slottime = ah->slottime;
1113         }
1114 
1115         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1116         slottime += 3 * ah->coverage_class;
1117         acktimeout = slottime + sifstime + ack_offset;
1118         ctstimeout = acktimeout;
1119 
1120         /*
1121          * Workaround for early ACK timeouts, add an offset to match the
1122          * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123          * This was initially only meant to work around an issue with delayed
1124          * BA frames in some implementations, but it has been found to fix ACK
1125          * timeout issues in other cases as well.
1126          */
1127         if (IS_CHAN_2GHZ(chan) &&
1128             !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129                 acktimeout += 64 - sifstime - ah->slottime;
1130                 ctstimeout += 48 - sifstime - ah->slottime;
1131         }
1132 
1133         if (ah->dynack.enabled) {
1134                 acktimeout = ah->dynack.ackto;
1135                 ctstimeout = acktimeout;
1136                 slottime = (acktimeout - 3) / 2;
1137         } else {
1138                 ah->dynack.ackto = acktimeout;
1139         }
1140 
1141         ath9k_hw_set_sifs_time(ah, sifstime);
1142         ath9k_hw_setslottime(ah, slottime);
1143         ath9k_hw_set_ack_timeout(ah, acktimeout);
1144         ath9k_hw_set_cts_timeout(ah, ctstimeout);
1145         if (ah->globaltxtimeout != (u32) -1)
1146                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1147 
1148         REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1149         REG_RMW(ah, AR_USEC,
1150                 (common->clockrate - 1) |
1151                 SM(rx_lat, AR_USEC_RX_LAT) |
1152                 SM(tx_lat, AR_USEC_TX_LAT),
1153                 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1154 
1155         if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1156                 REG_RMW(ah, AR_TXSIFS,
1157                         sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1158                         (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1159 }
1160 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1161 
1162 void ath9k_hw_deinit(struct ath_hw *ah)
1163 {
1164         struct ath_common *common = ath9k_hw_common(ah);
1165 
1166         if (common->state < ATH_HW_INITIALIZED)
1167                 return;
1168 
1169         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1170 }
1171 EXPORT_SYMBOL(ath9k_hw_deinit);
1172 
1173 /*******/
1174 /* INI */
1175 /*******/
1176 
1177 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1178 {
1179         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1180 
1181         if (IS_CHAN_2GHZ(chan))
1182                 ctl |= CTL_11G;
1183         else
1184                 ctl |= CTL_11A;
1185 
1186         return ctl;
1187 }
1188 
1189 /****************************************/
1190 /* Reset and Channel Switching Routines */
1191 /****************************************/
1192 
1193 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1194 {
1195         struct ath_common *common = ath9k_hw_common(ah);
1196         int txbuf_size;
1197 
1198         ENABLE_REGWRITE_BUFFER(ah);
1199 
1200         /*
1201          * set AHB_MODE not to do cacheline prefetches
1202         */
1203         if (!AR_SREV_9300_20_OR_LATER(ah))
1204                 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1205 
1206         /*
1207          * let mac dma reads be in 128 byte chunks
1208          */
1209         REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1210 
1211         REGWRITE_BUFFER_FLUSH(ah);
1212 
1213         /*
1214          * Restore TX Trigger Level to its pre-reset value.
1215          * The initial value depends on whether aggregation is enabled, and is
1216          * adjusted whenever underruns are detected.
1217          */
1218         if (!AR_SREV_9300_20_OR_LATER(ah))
1219                 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1220 
1221         ENABLE_REGWRITE_BUFFER(ah);
1222 
1223         /*
1224          * let mac dma writes be in 128 byte chunks
1225          */
1226         REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1227 
1228         /*
1229          * Setup receive FIFO threshold to hold off TX activities
1230          */
1231         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1232 
1233         if (AR_SREV_9300_20_OR_LATER(ah)) {
1234                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1235                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1236 
1237                 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1238                         ah->caps.rx_status_len);
1239         }
1240 
1241         /*
1242          * reduce the number of usable entries in PCU TXBUF to avoid
1243          * wrap around issues.
1244          */
1245         if (AR_SREV_9285(ah)) {
1246                 /* For AR9285 the number of Fifos are reduced to half.
1247                  * So set the usable tx buf size also to half to
1248                  * avoid data/delimiter underruns
1249                  */
1250                 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1251         } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1252                 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1253                 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1254         } else {
1255                 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1256         }
1257 
1258         if (!AR_SREV_9271(ah))
1259                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1260 
1261         REGWRITE_BUFFER_FLUSH(ah);
1262 
1263         if (AR_SREV_9300_20_OR_LATER(ah))
1264                 ath9k_hw_reset_txstatus_ring(ah);
1265 }
1266 
1267 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1268 {
1269         u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1270         u32 set = AR_STA_ID1_KSRCH_MODE;
1271 
1272         ENABLE_REG_RMW_BUFFER(ah);
1273         switch (opmode) {
1274         case NL80211_IFTYPE_ADHOC:
1275                 if (!AR_SREV_9340_13(ah)) {
1276                         set |= AR_STA_ID1_ADHOC;
1277                         REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1278                         break;
1279                 }
1280                 /* fall through */
1281         case NL80211_IFTYPE_OCB:
1282         case NL80211_IFTYPE_MESH_POINT:
1283         case NL80211_IFTYPE_AP:
1284                 set |= AR_STA_ID1_STA_AP;
1285                 /* fall through */
1286         case NL80211_IFTYPE_STATION:
1287                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288                 break;
1289         default:
1290                 if (!ah->is_monitoring)
1291                         set = 0;
1292                 break;
1293         }
1294         REG_RMW(ah, AR_STA_ID1, set, mask);
1295         REG_RMW_BUFFER_FLUSH(ah);
1296 }
1297 
1298 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1299                                    u32 *coef_mantissa, u32 *coef_exponent)
1300 {
1301         u32 coef_exp, coef_man;
1302 
1303         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1304                 if ((coef_scaled >> coef_exp) & 0x1)
1305                         break;
1306 
1307         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1308 
1309         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1310 
1311         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1312         *coef_exponent = coef_exp - 16;
1313 }
1314 
1315 /* AR9330 WAR:
1316  * call external reset function to reset WMAC if:
1317  * - doing a cold reset
1318  * - we have pending frames in the TX queues.
1319  */
1320 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1321 {
1322         int i, npend = 0;
1323 
1324         for (i = 0; i < AR_NUM_QCU; i++) {
1325                 npend = ath9k_hw_numtxpending(ah, i);
1326                 if (npend)
1327                         break;
1328         }
1329 
1330         if (ah->external_reset &&
1331             (npend || type == ATH9K_RESET_COLD)) {
1332                 int reset_err = 0;
1333 
1334                 ath_dbg(ath9k_hw_common(ah), RESET,
1335                         "reset MAC via external reset\n");
1336 
1337                 reset_err = ah->external_reset();
1338                 if (reset_err) {
1339                         ath_err(ath9k_hw_common(ah),
1340                                 "External reset failed, err=%d\n",
1341                                 reset_err);
1342                         return false;
1343                 }
1344 
1345                 REG_WRITE(ah, AR_RTC_RESET, 1);
1346         }
1347 
1348         return true;
1349 }
1350 
1351 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1352 {
1353         u32 rst_flags;
1354         u32 tmpReg;
1355 
1356         if (AR_SREV_9100(ah)) {
1357                 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1358                               AR_RTC_DERIVED_CLK_PERIOD, 1);
1359                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1360         }
1361 
1362         ENABLE_REGWRITE_BUFFER(ah);
1363 
1364         if (AR_SREV_9300_20_OR_LATER(ah)) {
1365                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1366                 udelay(10);
1367         }
1368 
1369         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1370                   AR_RTC_FORCE_WAKE_ON_INT);
1371 
1372         if (AR_SREV_9100(ah)) {
1373                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1374                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1375         } else {
1376                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1377                 if (AR_SREV_9340(ah))
1378                         tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1379                 else
1380                         tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1381                                   AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1382 
1383                 if (tmpReg) {
1384                         u32 val;
1385                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1386 
1387                         val = AR_RC_HOSTIF;
1388                         if (!AR_SREV_9300_20_OR_LATER(ah))
1389                                 val |= AR_RC_AHB;
1390                         REG_WRITE(ah, AR_RC, val);
1391 
1392                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1393                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394 
1395                 rst_flags = AR_RTC_RC_MAC_WARM;
1396                 if (type == ATH9K_RESET_COLD)
1397                         rst_flags |= AR_RTC_RC_MAC_COLD;
1398         }
1399 
1400         if (AR_SREV_9330(ah)) {
1401                 if (!ath9k_hw_ar9330_reset_war(ah, type))
1402                         return false;
1403         }
1404 
1405         if (ath9k_hw_mci_is_enabled(ah))
1406                 ar9003_mci_check_gpm_offset(ah);
1407 
1408         /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1409          * RTC_RC reg read
1410          */
1411         if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1412                 REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1413                 ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1414                               20 * AH_WAIT_TIMEOUT);
1415                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1416         }
1417 
1418         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1419 
1420         REGWRITE_BUFFER_FLUSH(ah);
1421 
1422         if (AR_SREV_9300_20_OR_LATER(ah))
1423                 udelay(50);
1424         else if (AR_SREV_9100(ah))
1425                 mdelay(10);
1426         else
1427                 udelay(100);
1428 
1429         REG_WRITE(ah, AR_RTC_RC, 0);
1430         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1431                 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1432                 return false;
1433         }
1434 
1435         if (!AR_SREV_9100(ah))
1436                 REG_WRITE(ah, AR_RC, 0);
1437 
1438         if (AR_SREV_9100(ah))
1439                 udelay(50);
1440 
1441         return true;
1442 }
1443 
1444 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1445 {
1446         ENABLE_REGWRITE_BUFFER(ah);
1447 
1448         if (AR_SREV_9300_20_OR_LATER(ah)) {
1449                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1450                 udelay(10);
1451         }
1452 
1453         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1454                   AR_RTC_FORCE_WAKE_ON_INT);
1455 
1456         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1457                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1458 
1459         REG_WRITE(ah, AR_RTC_RESET, 0);
1460 
1461         REGWRITE_BUFFER_FLUSH(ah);
1462 
1463         udelay(2);
1464 
1465         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1466                 REG_WRITE(ah, AR_RC, 0);
1467 
1468         REG_WRITE(ah, AR_RTC_RESET, 1);
1469 
1470         if (!ath9k_hw_wait(ah,
1471                            AR_RTC_STATUS,
1472                            AR_RTC_STATUS_M,
1473                            AR_RTC_STATUS_ON,
1474                            AH_WAIT_TIMEOUT)) {
1475                 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1476                 return false;
1477         }
1478 
1479         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1480 }
1481 
1482 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1483 {
1484         bool ret = false;
1485 
1486         if (AR_SREV_9300_20_OR_LATER(ah)) {
1487                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1488                 udelay(10);
1489         }
1490 
1491         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1492                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1493 
1494         if (!ah->reset_power_on)
1495                 type = ATH9K_RESET_POWER_ON;
1496 
1497         switch (type) {
1498         case ATH9K_RESET_POWER_ON:
1499                 ret = ath9k_hw_set_reset_power_on(ah);
1500                 if (ret)
1501                         ah->reset_power_on = true;
1502                 break;
1503         case ATH9K_RESET_WARM:
1504         case ATH9K_RESET_COLD:
1505                 ret = ath9k_hw_set_reset(ah, type);
1506                 break;
1507         default:
1508                 break;
1509         }
1510 
1511         return ret;
1512 }
1513 
1514 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1515                                 struct ath9k_channel *chan)
1516 {
1517         int reset_type = ATH9K_RESET_WARM;
1518 
1519         if (AR_SREV_9280(ah)) {
1520                 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1521                         reset_type = ATH9K_RESET_POWER_ON;
1522                 else
1523                         reset_type = ATH9K_RESET_COLD;
1524         } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1525                    (REG_READ(ah, AR_CR) & AR_CR_RXE))
1526                 reset_type = ATH9K_RESET_COLD;
1527 
1528         if (!ath9k_hw_set_reset_reg(ah, reset_type))
1529                 return false;
1530 
1531         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1532                 return false;
1533 
1534         ah->chip_fullsleep = false;
1535 
1536         if (AR_SREV_9330(ah))
1537                 ar9003_hw_internal_regulator_apply(ah);
1538         ath9k_hw_init_pll(ah, chan);
1539 
1540         return true;
1541 }
1542 
1543 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1544                                     struct ath9k_channel *chan)
1545 {
1546         struct ath_common *common = ath9k_hw_common(ah);
1547         struct ath9k_hw_capabilities *pCap = &ah->caps;
1548         bool band_switch = false, mode_diff = false;
1549         u8 ini_reloaded = 0;
1550         u32 qnum;
1551         int r;
1552 
1553         if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1554                 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1555                 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1556                 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1557         }
1558 
1559         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1560                 if (ath9k_hw_numtxpending(ah, qnum)) {
1561                         ath_dbg(common, QUEUE,
1562                                 "Transmit frames pending on queue %d\n", qnum);
1563                         return false;
1564                 }
1565         }
1566 
1567         if (!ath9k_hw_rfbus_req(ah)) {
1568                 ath_err(common, "Could not kill baseband RX\n");
1569                 return false;
1570         }
1571 
1572         if (band_switch || mode_diff) {
1573                 ath9k_hw_mark_phy_inactive(ah);
1574                 udelay(5);
1575 
1576                 if (band_switch)
1577                         ath9k_hw_init_pll(ah, chan);
1578 
1579                 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1580                         ath_err(common, "Failed to do fast channel change\n");
1581                         return false;
1582                 }
1583         }
1584 
1585         ath9k_hw_set_channel_regs(ah, chan);
1586 
1587         r = ath9k_hw_rf_set_freq(ah, chan);
1588         if (r) {
1589                 ath_err(common, "Failed to set channel\n");
1590                 return false;
1591         }
1592         ath9k_hw_set_clockrate(ah);
1593         ath9k_hw_apply_txpower(ah, chan, false);
1594 
1595         ath9k_hw_set_delta_slope(ah, chan);
1596         ath9k_hw_spur_mitigate_freq(ah, chan);
1597 
1598         if (band_switch || ini_reloaded)
1599                 ah->eep_ops->set_board_values(ah, chan);
1600 
1601         ath9k_hw_init_bb(ah, chan);
1602         ath9k_hw_rfbus_done(ah);
1603 
1604         if (band_switch || ini_reloaded) {
1605                 ah->ah_flags |= AH_FASTCC;
1606                 ath9k_hw_init_cal(ah, chan);
1607                 ah->ah_flags &= ~AH_FASTCC;
1608         }
1609 
1610         return true;
1611 }
1612 
1613 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1614 {
1615         u32 gpio_mask = ah->gpio_mask;
1616         int i;
1617 
1618         for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1619                 if (!(gpio_mask & 1))
1620                         continue;
1621 
1622                 ath9k_hw_gpio_request_out(ah, i, NULL,
1623                                           AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1624                 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1625                 ath9k_hw_gpio_free(ah, i);
1626         }
1627 }
1628 
1629 void ath9k_hw_check_nav(struct ath_hw *ah)
1630 {
1631         struct ath_common *common = ath9k_hw_common(ah);
1632         u32 val;
1633 
1634         val = REG_READ(ah, AR_NAV);
1635         if (val != 0xdeadbeef && val > 0x7fff) {
1636                 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1637                 REG_WRITE(ah, AR_NAV, 0);
1638         }
1639 }
1640 EXPORT_SYMBOL(ath9k_hw_check_nav);
1641 
1642 bool ath9k_hw_check_alive(struct ath_hw *ah)
1643 {
1644         int count = 50;
1645         u32 reg, last_val;
1646 
1647         /* Check if chip failed to wake up */
1648         if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1649                 return false;
1650 
1651         if (AR_SREV_9300(ah))
1652                 return !ath9k_hw_detect_mac_hang(ah);
1653 
1654         if (AR_SREV_9285_12_OR_LATER(ah))
1655                 return true;
1656 
1657         last_val = REG_READ(ah, AR_OBS_BUS_1);
1658         do {
1659                 reg = REG_READ(ah, AR_OBS_BUS_1);
1660                 if (reg != last_val)
1661                         return true;
1662 
1663                 udelay(1);
1664                 last_val = reg;
1665                 if ((reg & 0x7E7FFFEF) == 0x00702400)
1666                         continue;
1667 
1668                 switch (reg & 0x7E000B00) {
1669                 case 0x1E000000:
1670                 case 0x52000B00:
1671                 case 0x18000B00:
1672                         continue;
1673                 default:
1674                         return true;
1675                 }
1676         } while (count-- > 0);
1677 
1678         return false;
1679 }
1680 EXPORT_SYMBOL(ath9k_hw_check_alive);
1681 
1682 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1683 {
1684         /* Setup MFP options for CCMP */
1685         if (AR_SREV_9280_20_OR_LATER(ah)) {
1686                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1687                  * frames when constructing CCMP AAD. */
1688                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1689                               0xc7ff);
1690                 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1691                         ah->sw_mgmt_crypto_tx = true;
1692                 else
1693                         ah->sw_mgmt_crypto_tx = false;
1694                 ah->sw_mgmt_crypto_rx = false;
1695         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1696                 /* Disable hardware crypto for management frames */
1697                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1698                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1699                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1700                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1701                 ah->sw_mgmt_crypto_tx = true;
1702                 ah->sw_mgmt_crypto_rx = true;
1703         } else {
1704                 ah->sw_mgmt_crypto_tx = true;
1705                 ah->sw_mgmt_crypto_rx = true;
1706         }
1707 }
1708 
1709 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1710                                   u32 macStaId1, u32 saveDefAntenna)
1711 {
1712         struct ath_common *common = ath9k_hw_common(ah);
1713 
1714         ENABLE_REGWRITE_BUFFER(ah);
1715 
1716         REG_RMW(ah, AR_STA_ID1, macStaId1
1717                   | AR_STA_ID1_RTS_USE_DEF
1718                   | ah->sta_id1_defaults,
1719                   ~AR_STA_ID1_SADH_MASK);
1720         ath_hw_setbssidmask(common);
1721         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1722         ath9k_hw_write_associd(ah);
1723         REG_WRITE(ah, AR_ISR, ~0);
1724         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1725 
1726         REGWRITE_BUFFER_FLUSH(ah);
1727 
1728         ath9k_hw_set_operating_mode(ah, ah->opmode);
1729 }
1730 
1731 static void ath9k_hw_init_queues(struct ath_hw *ah)
1732 {
1733         int i;
1734 
1735         ENABLE_REGWRITE_BUFFER(ah);
1736 
1737         for (i = 0; i < AR_NUM_DCU; i++)
1738                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1739 
1740         REGWRITE_BUFFER_FLUSH(ah);
1741 
1742         ah->intr_txqs = 0;
1743         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1744                 ath9k_hw_resettxqueue(ah, i);
1745 }
1746 
1747 /*
1748  * For big endian systems turn on swapping for descriptors
1749  */
1750 static void ath9k_hw_init_desc(struct ath_hw *ah)
1751 {
1752         struct ath_common *common = ath9k_hw_common(ah);
1753 
1754         if (AR_SREV_9100(ah)) {
1755                 u32 mask;
1756                 mask = REG_READ(ah, AR_CFG);
1757                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1758                         ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1759                                 mask);
1760                 } else {
1761                         mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1762                         REG_WRITE(ah, AR_CFG, mask);
1763                         ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1764                                 REG_READ(ah, AR_CFG));
1765                 }
1766         } else {
1767                 if (common->bus_ops->ath_bus_type == ATH_USB) {
1768                         /* Configure AR9271 target WLAN */
1769                         if (AR_SREV_9271(ah))
1770                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1771                         else
1772                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1773                 }
1774 #ifdef __BIG_ENDIAN
1775                 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1776                          AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1777                          AR_SREV_9561(ah))
1778                         REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1779                 else
1780                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1781 #endif
1782         }
1783 }
1784 
1785 /*
1786  * Fast channel change:
1787  * (Change synthesizer based on channel freq without resetting chip)
1788  */
1789 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1790 {
1791         struct ath_common *common = ath9k_hw_common(ah);
1792         struct ath9k_hw_capabilities *pCap = &ah->caps;
1793         int ret;
1794 
1795         if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1796                 goto fail;
1797 
1798         if (ah->chip_fullsleep)
1799                 goto fail;
1800 
1801         if (!ah->curchan)
1802                 goto fail;
1803 
1804         if (chan->channel == ah->curchan->channel)
1805                 goto fail;
1806 
1807         if ((ah->curchan->channelFlags | chan->channelFlags) &
1808             (CHANNEL_HALF | CHANNEL_QUARTER))
1809                 goto fail;
1810 
1811         /*
1812          * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1813          */
1814         if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1815             ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1816                 goto fail;
1817 
1818         if (!ath9k_hw_check_alive(ah))
1819                 goto fail;
1820 
1821         /*
1822          * For AR9462, make sure that calibration data for
1823          * re-using are present.
1824          */
1825         if (AR_SREV_9462(ah) && (ah->caldata &&
1826                                  (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1827                                   !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1828                                   !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1829                 goto fail;
1830 
1831         ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1832                 ah->curchan->channel, chan->channel);
1833 
1834         ret = ath9k_hw_channel_change(ah, chan);
1835         if (!ret)
1836                 goto fail;
1837 
1838         if (ath9k_hw_mci_is_enabled(ah))
1839                 ar9003_mci_2g5g_switch(ah, false);
1840 
1841         ath9k_hw_loadnf(ah, ah->curchan);
1842         ath9k_hw_start_nfcal(ah, true);
1843 
1844         if (AR_SREV_9271(ah))
1845                 ar9002_hw_load_ani_reg(ah, chan);
1846 
1847         return 0;
1848 fail:
1849         return -EINVAL;
1850 }
1851 
1852 u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1853 {
1854         struct timespec64 ts;
1855         s64 usec;
1856 
1857         if (!cur) {
1858                 ktime_get_raw_ts64(&ts);
1859                 cur = &ts;
1860         }
1861 
1862         usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1863         usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1864 
1865         return (u32) usec;
1866 }
1867 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1868 
1869 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1870                    struct ath9k_hw_cal_data *caldata, bool fastcc)
1871 {
1872         struct ath_common *common = ath9k_hw_common(ah);
1873         u32 saveLedState;
1874         u32 saveDefAntenna;
1875         u32 macStaId1;
1876         struct timespec64 tsf_ts;
1877         u32 tsf_offset;
1878         u64 tsf = 0;
1879         int r;
1880         bool start_mci_reset = false;
1881         bool save_fullsleep = ah->chip_fullsleep;
1882 
1883         if (ath9k_hw_mci_is_enabled(ah)) {
1884                 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1885                 if (start_mci_reset)
1886                         return 0;
1887         }
1888 
1889         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1890                 return -EIO;
1891 
1892         if (ah->curchan && !ah->chip_fullsleep)
1893                 ath9k_hw_getnf(ah, ah->curchan);
1894 
1895         ah->caldata = caldata;
1896         if (caldata && (chan->channel != caldata->channel ||
1897                         chan->channelFlags != caldata->channelFlags)) {
1898                 /* Operating channel changed, reset channel calibration data */
1899                 memset(caldata, 0, sizeof(*caldata));
1900                 ath9k_init_nfcal_hist_buffer(ah, chan);
1901         } else if (caldata) {
1902                 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1903         }
1904         ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1905 
1906         if (fastcc) {
1907                 r = ath9k_hw_do_fastcc(ah, chan);
1908                 if (!r)
1909                         return r;
1910         }
1911 
1912         if (ath9k_hw_mci_is_enabled(ah))
1913                 ar9003_mci_stop_bt(ah, save_fullsleep);
1914 
1915         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1916         if (saveDefAntenna == 0)
1917                 saveDefAntenna = 1;
1918 
1919         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1920 
1921         /* Save TSF before chip reset, a cold reset clears it */
1922         ktime_get_raw_ts64(&tsf_ts);
1923         tsf = ath9k_hw_gettsf64(ah);
1924 
1925         saveLedState = REG_READ(ah, AR_CFG_LED) &
1926                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1927                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1928 
1929         ath9k_hw_mark_phy_inactive(ah);
1930 
1931         ah->paprd_table_write_done = false;
1932 
1933         /* Only required on the first reset */
1934         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1935                 REG_WRITE(ah,
1936                           AR9271_RESET_POWER_DOWN_CONTROL,
1937                           AR9271_RADIO_RF_RST);
1938                 udelay(50);
1939         }
1940 
1941         if (!ath9k_hw_chip_reset(ah, chan)) {
1942                 ath_err(common, "Chip reset failed\n");
1943                 return -EINVAL;
1944         }
1945 
1946         /* Only required on the first reset */
1947         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1948                 ah->htc_reset_init = false;
1949                 REG_WRITE(ah,
1950                           AR9271_RESET_POWER_DOWN_CONTROL,
1951                           AR9271_GATE_MAC_CTL);
1952                 udelay(50);
1953         }
1954 
1955         /* Restore TSF */
1956         tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1957         ath9k_hw_settsf64(ah, tsf + tsf_offset);
1958 
1959         if (AR_SREV_9280_20_OR_LATER(ah))
1960                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1961 
1962         if (!AR_SREV_9300_20_OR_LATER(ah))
1963                 ar9002_hw_enable_async_fifo(ah);
1964 
1965         r = ath9k_hw_process_ini(ah, chan);
1966         if (r)
1967                 return r;
1968 
1969         ath9k_hw_set_rfmode(ah, chan);
1970 
1971         if (ath9k_hw_mci_is_enabled(ah))
1972                 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1973 
1974         /*
1975          * Some AR91xx SoC devices frequently fail to accept TSF writes
1976          * right after the chip reset. When that happens, write a new
1977          * value after the initvals have been applied.
1978          */
1979         if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1980                 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1981                 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1982         }
1983 
1984         ath9k_hw_init_mfp(ah);
1985 
1986         ath9k_hw_set_delta_slope(ah, chan);
1987         ath9k_hw_spur_mitigate_freq(ah, chan);
1988         ah->eep_ops->set_board_values(ah, chan);
1989 
1990         ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1991 
1992         r = ath9k_hw_rf_set_freq(ah, chan);
1993         if (r)
1994                 return r;
1995 
1996         ath9k_hw_set_clockrate(ah);
1997 
1998         ath9k_hw_init_queues(ah);
1999         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2000         ath9k_hw_ani_cache_ini_regs(ah);
2001         ath9k_hw_init_qos(ah);
2002 
2003         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2004                 ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2005 
2006         ath9k_hw_init_global_settings(ah);
2007 
2008         if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2009                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2010                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2011                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2012                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2013                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2014                             AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2015         }
2016 
2017         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2018 
2019         ath9k_hw_set_dma(ah);
2020 
2021         if (!ath9k_hw_mci_is_enabled(ah))
2022                 REG_WRITE(ah, AR_OBS, 8);
2023 
2024         ENABLE_REG_RMW_BUFFER(ah);
2025         if (ah->config.rx_intr_mitigation) {
2026                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2027                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2028         }
2029 
2030         if (ah->config.tx_intr_mitigation) {
2031                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2032                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2033         }
2034         REG_RMW_BUFFER_FLUSH(ah);
2035 
2036         ath9k_hw_init_bb(ah, chan);
2037 
2038         if (caldata) {
2039                 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2040                 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2041         }
2042         if (!ath9k_hw_init_cal(ah, chan))
2043                 return -EIO;
2044 
2045         if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2046                 return -EIO;
2047 
2048         ENABLE_REGWRITE_BUFFER(ah);
2049 
2050         ath9k_hw_restore_chainmask(ah);
2051         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2052 
2053         REGWRITE_BUFFER_FLUSH(ah);
2054 
2055         ath9k_hw_gen_timer_start_tsf2(ah);
2056 
2057         ath9k_hw_init_desc(ah);
2058 
2059         if (ath9k_hw_btcoex_is_enabled(ah))
2060                 ath9k_hw_btcoex_enable(ah);
2061 
2062         if (ath9k_hw_mci_is_enabled(ah))
2063                 ar9003_mci_check_bt(ah);
2064 
2065         if (AR_SREV_9300_20_OR_LATER(ah)) {
2066                 ath9k_hw_loadnf(ah, chan);
2067                 ath9k_hw_start_nfcal(ah, true);
2068         }
2069 
2070         if (AR_SREV_9300_20_OR_LATER(ah))
2071                 ar9003_hw_bb_watchdog_config(ah);
2072 
2073         if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2074                 ar9003_hw_disable_phy_restart(ah);
2075 
2076         ath9k_hw_apply_gpio_override(ah);
2077 
2078         if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2079                 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2080 
2081         if (ah->hw->conf.radar_enabled) {
2082                 /* set HW specific DFS configuration */
2083                 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2084                 ath9k_hw_set_radar_params(ah);
2085         }
2086 
2087         return 0;
2088 }
2089 EXPORT_SYMBOL(ath9k_hw_reset);
2090 
2091 /******************************/
2092 /* Power Management (Chipset) */
2093 /******************************/
2094 
2095 /*
2096  * Notify Power Mgt is disabled in self-generated frames.
2097  * If requested, force chip to sleep.
2098  */
2099 static void ath9k_set_power_sleep(struct ath_hw *ah)
2100 {
2101         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2102 
2103         if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2104                 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2105                 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2106                 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2107                 /* xxx Required for WLAN only case ? */
2108                 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2109                 udelay(100);
2110         }
2111 
2112         /*
2113          * Clear the RTC force wake bit to allow the
2114          * mac to go to sleep.
2115          */
2116         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2117 
2118         if (ath9k_hw_mci_is_enabled(ah))
2119                 udelay(100);
2120 
2121         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2122                 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2123 
2124         /* Shutdown chip. Active low */
2125         if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2126                 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2127                 udelay(2);
2128         }
2129 
2130         /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2131         if (AR_SREV_9300_20_OR_LATER(ah))
2132                 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2133 }
2134 
2135 /*
2136  * Notify Power Management is enabled in self-generating
2137  * frames. If request, set power mode of chip to
2138  * auto/normal.  Duration in units of 128us (1/8 TU).
2139  */
2140 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2141 {
2142         struct ath9k_hw_capabilities *pCap = &ah->caps;
2143 
2144         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2145 
2146         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2147                 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2148                 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2149                           AR_RTC_FORCE_WAKE_ON_INT);
2150         } else {
2151 
2152                 /* When chip goes into network sleep, it could be waken
2153                  * up by MCI_INT interrupt caused by BT's HW messages
2154                  * (LNA_xxx, CONT_xxx) which chould be in a very fast
2155                  * rate (~100us). This will cause chip to leave and
2156                  * re-enter network sleep mode frequently, which in
2157                  * consequence will have WLAN MCI HW to generate lots of
2158                  * SYS_WAKING and SYS_SLEEPING messages which will make
2159                  * BT CPU to busy to process.
2160                  */
2161                 if (ath9k_hw_mci_is_enabled(ah))
2162                         REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2163                                     AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2164                 /*
2165                  * Clear the RTC force wake bit to allow the
2166                  * mac to go to sleep.
2167                  */
2168                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2169 
2170                 if (ath9k_hw_mci_is_enabled(ah))
2171                         udelay(30);
2172         }
2173 
2174         /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2175         if (AR_SREV_9300_20_OR_LATER(ah))
2176                 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2177 }
2178 
2179 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2180 {
2181         u32 val;
2182         int i;
2183 
2184         /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2185         if (AR_SREV_9300_20_OR_LATER(ah)) {
2186                 REG_WRITE(ah, AR_WA, ah->WARegVal);
2187                 udelay(10);
2188         }
2189 
2190         if ((REG_READ(ah, AR_RTC_STATUS) &
2191              AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2192                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2193                         return false;
2194                 }
2195                 if (!AR_SREV_9300_20_OR_LATER(ah))
2196                         ath9k_hw_init_pll(ah, NULL);
2197         }
2198         if (AR_SREV_9100(ah))
2199                 REG_SET_BIT(ah, AR_RTC_RESET,
2200                             AR_RTC_RESET_EN);
2201 
2202         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2203                     AR_RTC_FORCE_WAKE_EN);
2204         if (AR_SREV_9100(ah))
2205                 mdelay(10);
2206         else
2207                 udelay(50);
2208 
2209         for (i = POWER_UP_TIME / 50; i > 0; i--) {
2210                 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2211                 if (val == AR_RTC_STATUS_ON)
2212                         break;
2213                 udelay(50);
2214                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2215                             AR_RTC_FORCE_WAKE_EN);
2216         }
2217         if (i == 0) {
2218                 ath_err(ath9k_hw_common(ah),
2219                         "Failed to wakeup in %uus\n",
2220                         POWER_UP_TIME / 20);
2221                 return false;
2222         }
2223 
2224         if (ath9k_hw_mci_is_enabled(ah))
2225                 ar9003_mci_set_power_awake(ah);
2226 
2227         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2228 
2229         return true;
2230 }
2231 
2232 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2233 {
2234         struct ath_common *common = ath9k_hw_common(ah);
2235         int status = true;
2236         static const char *modes[] = {
2237                 "AWAKE",
2238                 "FULL-SLEEP",
2239                 "NETWORK SLEEP",
2240                 "UNDEFINED"
2241         };
2242 
2243         if (ah->power_mode == mode)
2244                 return status;
2245 
2246         ath_dbg(common, RESET, "%s -> %s\n",
2247                 modes[ah->power_mode], modes[mode]);
2248 
2249         switch (mode) {
2250         case ATH9K_PM_AWAKE:
2251                 status = ath9k_hw_set_power_awake(ah);
2252                 break;
2253         case ATH9K_PM_FULL_SLEEP:
2254                 if (ath9k_hw_mci_is_enabled(ah))
2255                         ar9003_mci_set_full_sleep(ah);
2256 
2257                 ath9k_set_power_sleep(ah);
2258                 ah->chip_fullsleep = true;
2259                 break;
2260         case ATH9K_PM_NETWORK_SLEEP:
2261                 ath9k_set_power_network_sleep(ah);
2262                 break;
2263         default:
2264                 ath_err(common, "Unknown power mode %u\n", mode);
2265                 return false;
2266         }
2267         ah->power_mode = mode;
2268 
2269         /*
2270          * XXX: If this warning never comes up after a while then
2271          * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2272          * ath9k_hw_setpower() return type void.
2273          */
2274 
2275         if (!(ah->ah_flags & AH_UNPLUGGED))
2276                 ATH_DBG_WARN_ON_ONCE(!status);
2277 
2278         return status;
2279 }
2280 EXPORT_SYMBOL(ath9k_hw_setpower);
2281 
2282 /*******************/
2283 /* Beacon Handling */
2284 /*******************/
2285 
2286 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2287 {
2288         int flags = 0;
2289 
2290         ENABLE_REGWRITE_BUFFER(ah);
2291 
2292         switch (ah->opmode) {
2293         case NL80211_IFTYPE_ADHOC:
2294                 REG_SET_BIT(ah, AR_TXCFG,
2295                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2296                 /* fall through */
2297         case NL80211_IFTYPE_MESH_POINT:
2298         case NL80211_IFTYPE_AP:
2299                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2300                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2301                           TU_TO_USEC(ah->config.dma_beacon_response_time));
2302                 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2303                           TU_TO_USEC(ah->config.sw_beacon_response_time));
2304                 flags |=
2305                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2306                 break;
2307         default:
2308                 ath_dbg(ath9k_hw_common(ah), BEACON,
2309                         "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2310                 return;
2311                 break;
2312         }
2313 
2314         REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2315         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2316         REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2317 
2318         REGWRITE_BUFFER_FLUSH(ah);
2319 
2320         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2321 }
2322 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2323 
2324 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2325                                     const struct ath9k_beacon_state *bs)
2326 {
2327         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2328         struct ath9k_hw_capabilities *pCap = &ah->caps;
2329         struct ath_common *common = ath9k_hw_common(ah);
2330 
2331         ENABLE_REGWRITE_BUFFER(ah);
2332 
2333         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2334         REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2335         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2336 
2337         REGWRITE_BUFFER_FLUSH(ah);
2338 
2339         REG_RMW_FIELD(ah, AR_RSSI_THR,
2340                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2341 
2342         beaconintval = bs->bs_intval;
2343 
2344         if (bs->bs_sleepduration > beaconintval)
2345                 beaconintval = bs->bs_sleepduration;
2346 
2347         dtimperiod = bs->bs_dtimperiod;
2348         if (bs->bs_sleepduration > dtimperiod)
2349                 dtimperiod = bs->bs_sleepduration;
2350 
2351         if (beaconintval == dtimperiod)
2352                 nextTbtt = bs->bs_nextdtim;
2353         else
2354                 nextTbtt = bs->bs_nexttbtt;
2355 
2356         ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2357         ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2358         ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2359         ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2360 
2361         ENABLE_REGWRITE_BUFFER(ah);
2362 
2363         REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2364         REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2365 
2366         REG_WRITE(ah, AR_SLEEP1,
2367                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2368                   | AR_SLEEP1_ASSUME_DTIM);
2369 
2370         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2371                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2372         else
2373                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2374 
2375         REG_WRITE(ah, AR_SLEEP2,
2376                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2377 
2378         REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2379         REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2380 
2381         REGWRITE_BUFFER_FLUSH(ah);
2382 
2383         REG_SET_BIT(ah, AR_TIMER_MODE,
2384                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2385                     AR_DTIM_TIMER_EN);
2386 
2387         /* TSF Out of Range Threshold */
2388         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2389 }
2390 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2391 
2392 /*******************/
2393 /* HW Capabilities */
2394 /*******************/
2395 
2396 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2397 {
2398         eeprom_chainmask &= chip_chainmask;
2399         if (eeprom_chainmask)
2400                 return eeprom_chainmask;
2401         else
2402                 return chip_chainmask;
2403 }
2404 
2405 /**
2406  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2407  * @ah: the atheros hardware data structure
2408  *
2409  * We enable DFS support upstream on chipsets which have passed a series
2410  * of tests. The testing requirements are going to be documented. Desired
2411  * test requirements are documented at:
2412  *
2413  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2414  *
2415  * Once a new chipset gets properly tested an individual commit can be used
2416  * to document the testing for DFS for that chipset.
2417  */
2418 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2419 {
2420 
2421         switch (ah->hw_version.macVersion) {
2422         /* for temporary testing DFS with 9280 */
2423         case AR_SREV_VERSION_9280:
2424         /* AR9580 will likely be our first target to get testing on */
2425         case AR_SREV_VERSION_9580:
2426                 return true;
2427         default:
2428                 return false;
2429         }
2430 }
2431 
2432 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2433 {
2434         struct ath9k_hw_capabilities *pCap = &ah->caps;
2435 
2436         if (AR_SREV_9271(ah)) {
2437                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2438                 pCap->gpio_mask = AR9271_GPIO_MASK;
2439         } else if (AR_DEVID_7010(ah)) {
2440                 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2441                 pCap->gpio_mask = AR7010_GPIO_MASK;
2442         } else if (AR_SREV_9287(ah)) {
2443                 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2444                 pCap->gpio_mask = AR9287_GPIO_MASK;
2445         } else if (AR_SREV_9285(ah)) {
2446                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2447                 pCap->gpio_mask = AR9285_GPIO_MASK;
2448         } else if (AR_SREV_9280(ah)) {
2449                 pCap->num_gpio_pins = AR9280_NUM_GPIO;
2450                 pCap->gpio_mask = AR9280_GPIO_MASK;
2451         } else if (AR_SREV_9300(ah)) {
2452                 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2453                 pCap->gpio_mask = AR9300_GPIO_MASK;
2454         } else if (AR_SREV_9330(ah)) {
2455                 pCap->num_gpio_pins = AR9330_NUM_GPIO;
2456                 pCap->gpio_mask = AR9330_GPIO_MASK;
2457         } else if (AR_SREV_9340(ah)) {
2458                 pCap->num_gpio_pins = AR9340_NUM_GPIO;
2459                 pCap->gpio_mask = AR9340_GPIO_MASK;
2460         } else if (AR_SREV_9462(ah)) {
2461                 pCap->num_gpio_pins = AR9462_NUM_GPIO;
2462                 pCap->gpio_mask = AR9462_GPIO_MASK;
2463         } else if (AR_SREV_9485(ah)) {
2464                 pCap->num_gpio_pins = AR9485_NUM_GPIO;
2465                 pCap->gpio_mask = AR9485_GPIO_MASK;
2466         } else if (AR_SREV_9531(ah)) {
2467                 pCap->num_gpio_pins = AR9531_NUM_GPIO;
2468                 pCap->gpio_mask = AR9531_GPIO_MASK;
2469         } else if (AR_SREV_9550(ah)) {
2470                 pCap->num_gpio_pins = AR9550_NUM_GPIO;
2471                 pCap->gpio_mask = AR9550_GPIO_MASK;
2472         } else if (AR_SREV_9561(ah)) {
2473                 pCap->num_gpio_pins = AR9561_NUM_GPIO;
2474                 pCap->gpio_mask = AR9561_GPIO_MASK;
2475         } else if (AR_SREV_9565(ah)) {
2476                 pCap->num_gpio_pins = AR9565_NUM_GPIO;
2477                 pCap->gpio_mask = AR9565_GPIO_MASK;
2478         } else if (AR_SREV_9580(ah)) {
2479                 pCap->num_gpio_pins = AR9580_NUM_GPIO;
2480                 pCap->gpio_mask = AR9580_GPIO_MASK;
2481         } else {
2482                 pCap->num_gpio_pins = AR_NUM_GPIO;
2483                 pCap->gpio_mask = AR_GPIO_MASK;
2484         }
2485 }
2486 
2487 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2488 {
2489         struct ath9k_hw_capabilities *pCap = &ah->caps;
2490         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2491         struct ath_common *common = ath9k_hw_common(ah);
2492 
2493         u16 eeval;
2494         u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2495 
2496         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2497         regulatory->current_rd = eeval;
2498 
2499         if (ah->opmode != NL80211_IFTYPE_AP &&
2500             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2501                 if (regulatory->current_rd == 0x64 ||
2502                     regulatory->current_rd == 0x65)
2503                         regulatory->current_rd += 5;
2504                 else if (regulatory->current_rd == 0x41)
2505                         regulatory->current_rd = 0x43;
2506                 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2507                         regulatory->current_rd);
2508         }
2509 
2510         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2511 
2512         if (eeval & AR5416_OPFLAGS_11A) {
2513                 if (ah->disable_5ghz)
2514                         ath_warn(common, "disabling 5GHz band\n");
2515                 else
2516                         pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2517         }
2518 
2519         if (eeval & AR5416_OPFLAGS_11G) {
2520                 if (ah->disable_2ghz)
2521                         ath_warn(common, "disabling 2GHz band\n");
2522                 else
2523                         pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2524         }
2525 
2526         if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2527                 ath_err(common, "both bands are disabled\n");
2528                 return -EINVAL;
2529         }
2530 
2531         ath9k_gpio_cap_init(ah);
2532 
2533         if (AR_SREV_9485(ah) ||
2534             AR_SREV_9285(ah) ||
2535             AR_SREV_9330(ah) ||
2536             AR_SREV_9565(ah))
2537                 pCap->chip_chainmask = 1;
2538         else if (!AR_SREV_9280_20_OR_LATER(ah))
2539                 pCap->chip_chainmask = 7;
2540         else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2541                  AR_SREV_9340(ah) ||
2542                  AR_SREV_9462(ah) ||
2543                  AR_SREV_9531(ah))
2544                 pCap->chip_chainmask = 3;
2545         else
2546                 pCap->chip_chainmask = 7;
2547 
2548         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2549         /*
2550          * For AR9271 we will temporarilly uses the rx chainmax as read from
2551          * the EEPROM.
2552          */
2553         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2554             !(eeval & AR5416_OPFLAGS_11A) &&
2555             !(AR_SREV_9271(ah)))
2556                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2557                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2558         else if (AR_SREV_9100(ah))
2559                 pCap->rx_chainmask = 0x7;
2560         else
2561                 /* Use rx_chainmask from EEPROM. */
2562                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2563 
2564         pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2565         pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2566         ah->txchainmask = pCap->tx_chainmask;
2567         ah->rxchainmask = pCap->rx_chainmask;
2568 
2569         ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2570 
2571         /* enable key search for every frame in an aggregate */
2572         if (AR_SREV_9300_20_OR_LATER(ah))
2573                 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2574 
2575         common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2576 
2577         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2578                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2579         else
2580                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2581 
2582         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2583                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2584         else
2585                 pCap->rts_aggr_limit = (8 * 1024);
2586 
2587 #ifdef CONFIG_ATH9K_RFKILL
2588         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2589         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2590                 ah->rfkill_gpio =
2591                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2592                 ah->rfkill_polarity =
2593                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2594 
2595                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2596         }
2597 #endif
2598         if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2599                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2600         else
2601                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2602 
2603         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2604                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2605         else
2606                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2607 
2608         if (AR_SREV_9300_20_OR_LATER(ah)) {
2609                 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2610                 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2611                     !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2612                         pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2613 
2614                 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2615                 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2616                 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2617                 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2618                 pCap->txs_len = sizeof(struct ar9003_txs);
2619         } else {
2620                 pCap->tx_desc_len = sizeof(struct ath_desc);
2621                 if (AR_SREV_9280_20(ah))
2622                         pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2623         }
2624 
2625         if (AR_SREV_9300_20_OR_LATER(ah))
2626                 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2627 
2628         if (AR_SREV_9561(ah))
2629                 ah->ent_mode = 0x3BDA000;
2630         else if (AR_SREV_9300_20_OR_LATER(ah))
2631                 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2632 
2633         if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2634                 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2635 
2636         if (AR_SREV_9285(ah)) {
2637                 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2638                         ant_div_ctl1 =
2639                                 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2640                         if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2641                                 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2642                                 ath_info(common, "Enable LNA combining\n");
2643                         }
2644                 }
2645         }
2646 
2647         if (AR_SREV_9300_20_OR_LATER(ah)) {
2648                 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2649                         pCap->hw_caps |= ATH9K_HW_CAP_APM;
2650         }
2651 
2652         if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2653                 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2654                 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2655                         pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2656                         ath_info(common, "Enable LNA combining\n");
2657                 }
2658         }
2659 
2660         if (ath9k_hw_dfs_tested(ah))
2661                 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2662 
2663         tx_chainmask = pCap->tx_chainmask;
2664         rx_chainmask = pCap->rx_chainmask;
2665         while (tx_chainmask || rx_chainmask) {
2666                 if (tx_chainmask & BIT(0))
2667                         pCap->max_txchains++;
2668                 if (rx_chainmask & BIT(0))
2669                         pCap->max_rxchains++;
2670 
2671                 tx_chainmask >>= 1;
2672                 rx_chainmask >>= 1;
2673         }
2674 
2675         if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2676                 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2677                         pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2678 
2679                 if (AR_SREV_9462_20_OR_LATER(ah))
2680                         pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2681         }
2682 
2683         if (AR_SREV_9300_20_OR_LATER(ah) &&
2684             ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2685                         pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2686 
2687 #ifdef CONFIG_ATH9K_WOW
2688         if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2689                 ah->wow.max_patterns = MAX_NUM_PATTERN;
2690         else
2691                 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2692 #endif
2693 
2694         return 0;
2695 }
2696 
2697 /****************************/
2698 /* GPIO / RFKILL / Antennae */
2699 /****************************/
2700 
2701 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2702 {
2703         int addr;
2704         u32 gpio_shift, tmp;
2705 
2706         if (gpio > 11)
2707                 addr = AR_GPIO_OUTPUT_MUX3;
2708         else if (gpio > 5)
2709                 addr = AR_GPIO_OUTPUT_MUX2;
2710         else
2711                 addr = AR_GPIO_OUTPUT_MUX1;
2712 
2713         gpio_shift = (gpio % 6) * 5;
2714 
2715         if (AR_SREV_9280_20_OR_LATER(ah) ||
2716             (addr != AR_GPIO_OUTPUT_MUX1)) {
2717                 REG_RMW(ah, addr, (type << gpio_shift),
2718                         (0x1f << gpio_shift));
2719         } else {
2720                 tmp = REG_READ(ah, addr);
2721                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2722                 tmp &= ~(0x1f << gpio_shift);
2723                 tmp |= (type << gpio_shift);
2724                 REG_WRITE(ah, addr, tmp);
2725         }
2726 }
2727 
2728 /* BSP should set the corresponding MUX register correctly.
2729  */
2730 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2731                                   const char *label)
2732 {
2733         if (ah->caps.gpio_requested & BIT(gpio))
2734                 return;
2735 
2736         /* may be requested by BSP, free anyway */
2737         gpio_free(gpio);
2738 
2739         if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2740                 return;
2741 
2742         ah->caps.gpio_requested |= BIT(gpio);
2743 }
2744 
2745 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746                                    u32 ah_signal_type)
2747 {
2748         u32 gpio_set, gpio_shift = gpio;
2749 
2750         if (AR_DEVID_7010(ah)) {
2751                 gpio_set = out ?
2752                         AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753                 REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754                         AR7010_GPIO_OE_MASK << gpio_shift);
2755         } else if (AR_SREV_SOC(ah)) {
2756                 gpio_set = out ? 1 : 0;
2757                 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2758                         gpio_set << gpio_shift);
2759         } else {
2760                 gpio_shift = gpio << 1;
2761                 gpio_set = out ?
2762                         AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763                 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2764                         AR_GPIO_OE_OUT_DRV << gpio_shift);
2765 
2766                 if (out)
2767                         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768         }
2769 }
2770 
2771 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772                                   const char *label, u32 ah_signal_type)
2773 {
2774         WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775 
2776         if (BIT(gpio) & ah->caps.gpio_mask)
2777                 ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778         else if (AR_SREV_SOC(ah))
2779                 ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780         else
2781                 WARN_ON(1);
2782 }
2783 
2784 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785 {
2786         ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789 
2790 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791                                u32 ah_signal_type)
2792 {
2793         ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794 }
2795 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796 
2797 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798 {
2799         if (!AR_SREV_SOC(ah))
2800                 return;
2801 
2802         WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803 
2804         if (ah->caps.gpio_requested & BIT(gpio)) {
2805                 gpio_free(gpio);
2806                 ah->caps.gpio_requested &= ~BIT(gpio);
2807         }
2808 }
2809 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810 
2811 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812 {
2813         u32 val = 0xffffffff;
2814 
2815 #define MS_REG_READ(x, y) \
2816         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2817 
2818         WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819 
2820         if (BIT(gpio) & ah->caps.gpio_mask) {
2821                 if (AR_SREV_9271(ah))
2822                         val = MS_REG_READ(AR9271, gpio);
2823                 else if (AR_SREV_9287(ah))
2824                         val = MS_REG_READ(AR9287, gpio);
2825                 else if (AR_SREV_9285(ah))
2826                         val = MS_REG_READ(AR9285, gpio);
2827                 else if (AR_SREV_9280(ah))
2828                         val = MS_REG_READ(AR928X, gpio);
2829                 else if (AR_DEVID_7010(ah))
2830                         val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831                 else if (AR_SREV_9300_20_OR_LATER(ah))
2832                         val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2833                 else
2834                         val = MS_REG_READ(AR, gpio);
2835         } else if (BIT(gpio) & ah->caps.gpio_requested) {
2836                 val = gpio_get_value(gpio) & BIT(gpio);
2837         } else {
2838                 WARN_ON(1);
2839         }
2840 
2841         return !!val;
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844 
2845 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846 {
2847         WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848 
2849         if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850                 val = !val;
2851         else
2852                 val = !!val;
2853 
2854         if (BIT(gpio) & ah->caps.gpio_mask) {
2855                 u32 out_addr = AR_DEVID_7010(ah) ?
2856                         AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2857 
2858                 REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859         } else if (BIT(gpio) & ah->caps.gpio_requested) {
2860                 gpio_set_value(gpio, val);
2861         } else {
2862                 WARN_ON(1);
2863         }
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866 
2867 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868 {
2869         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870 }
2871 EXPORT_SYMBOL(ath9k_hw_setantenna);
2872 
2873 /*********************/
2874 /* General Operation */
2875 /*********************/
2876 
2877 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878 {
2879         u32 bits = REG_READ(ah, AR_RX_FILTER);
2880         u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881 
2882         if (phybits & AR_PHY_ERR_RADAR)
2883                 bits |= ATH9K_RX_FILTER_PHYRADAR;
2884         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885                 bits |= ATH9K_RX_FILTER_PHYERR;
2886 
2887         return bits;
2888 }
2889 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890 
2891 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892 {
2893         u32 phybits;
2894 
2895         ENABLE_REGWRITE_BUFFER(ah);
2896 
2897         REG_WRITE(ah, AR_RX_FILTER, bits);
2898 
2899         phybits = 0;
2900         if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901                 phybits |= AR_PHY_ERR_RADAR;
2902         if (bits & ATH9K_RX_FILTER_PHYERR)
2903                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904         REG_WRITE(ah, AR_PHY_ERR, phybits);
2905 
2906         if (phybits)
2907                 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908         else
2909                 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910 
2911         REGWRITE_BUFFER_FLUSH(ah);
2912 }
2913 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914 
2915 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916 {
2917         if (ath9k_hw_mci_is_enabled(ah))
2918                 ar9003_mci_bt_gain_ctrl(ah);
2919 
2920         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921                 return false;
2922 
2923         ath9k_hw_init_pll(ah, NULL);
2924         ah->htc_reset_init = true;
2925         return true;
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928 
2929 bool ath9k_hw_disable(struct ath_hw *ah)
2930 {
2931         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932                 return false;
2933 
2934         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935                 return false;
2936 
2937         ath9k_hw_init_pll(ah, NULL);
2938         return true;
2939 }
2940 EXPORT_SYMBOL(ath9k_hw_disable);
2941 
2942 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943 {
2944         enum eeprom_param gain_param;
2945 
2946         if (IS_CHAN_2GHZ(chan))
2947                 gain_param = EEP_ANTENNA_GAIN_2G;
2948         else
2949                 gain_param = EEP_ANTENNA_GAIN_5G;
2950 
2951         return ah->eep_ops->get_eeprom(ah, gain_param);
2952 }
2953 
2954 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955                             bool test)
2956 {
2957         struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958         struct ieee80211_channel *channel;
2959         int chan_pwr, new_pwr;
2960         u16 ctl = NO_CTL;
2961 
2962         if (!chan)
2963                 return;
2964 
2965         if (!test)
2966                 ctl = ath9k_regd_get_ctl(reg, chan);
2967 
2968         channel = chan->chan;
2969         chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970         new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971 
2972         ah->eep_ops->set_txpower(ah, chan, ctl,
2973                                  get_antenna_gain(ah, chan), new_pwr, test);
2974 }
2975 
2976 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977 {
2978         struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979         struct ath9k_channel *chan = ah->curchan;
2980         struct ieee80211_channel *channel = chan->chan;
2981 
2982         reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983         if (test)
2984                 channel->max_power = MAX_COMBINED_POWER / 2;
2985 
2986         ath9k_hw_apply_txpower(ah, chan, test);
2987 
2988         if (test)
2989                 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990 }
2991 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992 
2993 void ath9k_hw_setopmode(struct ath_hw *ah)
2994 {
2995         ath9k_hw_set_operating_mode(ah, ah->opmode);
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_setopmode);
2998 
2999 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000 {
3001         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003 }
3004 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005 
3006 void ath9k_hw_write_associd(struct ath_hw *ah)
3007 {
3008         struct ath_common *common = ath9k_hw_common(ah);
3009 
3010         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013 }
3014 EXPORT_SYMBOL(ath9k_hw_write_associd);
3015 
3016 #define ATH9K_MAX_TSF_READ 10
3017 
3018 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019 {
3020         u32 tsf_lower, tsf_upper1, tsf_upper2;
3021         int i;
3022 
3023         tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024         for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025                 tsf_lower = REG_READ(ah, AR_TSF_L32);
3026                 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027                 if (tsf_upper2 == tsf_upper1)
3028                         break;
3029                 tsf_upper1 = tsf_upper2;
3030         }
3031 
3032         WARN_ON( i == ATH9K_MAX_TSF_READ );
3033 
3034         return (((u64)tsf_upper1 << 32) | tsf_lower);
3035 }
3036 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037 
3038 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039 {
3040         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042 }
3043 EXPORT_SYMBOL(ath9k_hw_settsf64);
3044 
3045 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046 {
3047         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048                            AH_TSF_WRITE_TIMEOUT))
3049                 ath_dbg(ath9k_hw_common(ah), RESET,
3050                         "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051 
3052         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053 }
3054 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055 
3056 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057 {
3058         if (set)
3059                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060         else
3061                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062 }
3063 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064 
3065 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066 {
3067         u32 macmode;
3068 
3069         if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070                 macmode = AR_2040_JOINED_RX_CLEAR;
3071         else
3072                 macmode = 0;
3073 
3074         REG_WRITE(ah, AR_2040_MODE, macmode);
3075 }
3076 
3077 /* HW Generic timers configuration */
3078 
3079 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080 {
3081         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091                                 AR_NDP2_TIMER_MODE, 0x0002},
3092         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093                                 AR_NDP2_TIMER_MODE, 0x0004},
3094         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095                                 AR_NDP2_TIMER_MODE, 0x0008},
3096         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097                                 AR_NDP2_TIMER_MODE, 0x0010},
3098         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099                                 AR_NDP2_TIMER_MODE, 0x0020},
3100         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101                                 AR_NDP2_TIMER_MODE, 0x0040},
3102         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103                                 AR_NDP2_TIMER_MODE, 0x0080}
3104 };
3105 
3106 /* HW generic timer primitives */
3107 
3108 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109 {
3110         return REG_READ(ah, AR_TSF_L32);
3111 }
3112 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113 
3114 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115 {
3116         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117 
3118         if (timer_table->tsf2_enabled) {
3119                 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120                 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121         }
3122 }
3123 
3124 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125                                           void (*trigger)(void *),
3126                                           void (*overflow)(void *),
3127                                           void *arg,
3128                                           u8 timer_index)
3129 {
3130         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131         struct ath_gen_timer *timer;
3132 
3133         if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134             (timer_index >= ATH_MAX_GEN_TIMER))
3135                 return NULL;
3136 
3137         if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138             !AR_SREV_9300_20_OR_LATER(ah))
3139                 return NULL;
3140 
3141         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142         if (timer == NULL)
3143                 return NULL;
3144 
3145         /* allocate a hardware generic timer slot */
3146         timer_table->timers[timer_index] = timer;
3147         timer->index = timer_index;
3148         timer->trigger = trigger;
3149         timer->overflow = overflow;
3150         timer->arg = arg;
3151 
3152         if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153                 timer_table->tsf2_enabled = true;
3154                 ath9k_hw_gen_timer_start_tsf2(ah);
3155         }
3156 
3157         return timer;
3158 }
3159 EXPORT_SYMBOL(ath_gen_timer_alloc);
3160 
3161 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162                               struct ath_gen_timer *timer,
3163                               u32 timer_next,
3164                               u32 timer_period)
3165 {
3166         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167         u32 mask = 0;
3168 
3169         timer_table->timer_mask |= BIT(timer->index);
3170 
3171         /*
3172          * Program generic timer registers
3173          */
3174         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175                  timer_next);
3176         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177                   timer_period);
3178         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179                     gen_tmr_configuration[timer->index].mode_mask);
3180 
3181         if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182                 /*
3183                  * Starting from AR9462, each generic timer can select which tsf
3184                  * to use. But we still follow the old rule, 0 - 7 use tsf and
3185                  * 8 - 15  use tsf2.
3186                  */
3187                 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188                         REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189                                        (1 << timer->index));
3190                 else
3191                         REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192                                        (1 << timer->index));
3193         }
3194 
3195         if (timer->trigger)
3196                 mask |= SM(AR_GENTMR_BIT(timer->index),
3197                            AR_IMR_S5_GENTIMER_TRIG);
3198         if (timer->overflow)
3199                 mask |= SM(AR_GENTMR_BIT(timer->index),
3200                            AR_IMR_S5_GENTIMER_THRESH);
3201 
3202         REG_SET_BIT(ah, AR_IMR_S5, mask);
3203 
3204         if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205                 ah->imask |= ATH9K_INT_GENTIMER;
3206                 ath9k_hw_set_interrupts(ah);
3207         }
3208 }
3209 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210 
3211 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212 {
3213         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214 
3215         /* Clear generic timer enable bits. */
3216         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217                         gen_tmr_configuration[timer->index].mode_mask);
3218 
3219         if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220                 /*
3221                  * Need to switch back to TSF if it was using TSF2.
3222                  */
3223                 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224                         REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225                                     (1 << timer->index));
3226                 }
3227         }
3228 
3229         /* Disable both trigger and thresh interrupt masks */
3230         REG_CLR_BIT(ah, AR_IMR_S5,
3231                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233 
3234         timer_table->timer_mask &= ~BIT(timer->index);
3235 
3236         if (timer_table->timer_mask == 0) {
3237                 ah->imask &= ~ATH9K_INT_GENTIMER;
3238                 ath9k_hw_set_interrupts(ah);
3239         }
3240 }
3241 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242 
3243 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244 {
3245         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246 
3247         /* free the hardware generic timer slot */
3248         timer_table->timers[timer->index] = NULL;
3249         kfree(timer);
3250 }
3251 EXPORT_SYMBOL(ath_gen_timer_free);
3252 
3253 /*
3254  * Generic Timer Interrupts handling
3255  */
3256 void ath_gen_timer_isr(struct ath_hw *ah)
3257 {
3258         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259         struct ath_gen_timer *timer;
3260         unsigned long trigger_mask, thresh_mask;
3261         unsigned int index;
3262 
3263         /* get hardware generic timer interrupt status */
3264         trigger_mask = ah->intr_gen_timer_trigger;
3265         thresh_mask = ah->intr_gen_timer_thresh;
3266         trigger_mask &= timer_table->timer_mask;
3267         thresh_mask &= timer_table->timer_mask;
3268 
3269         for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270                 timer = timer_table->timers[index];
3271                 if (!timer)
3272                     continue;
3273                 if (!timer->overflow)
3274                     continue;
3275 
3276                 trigger_mask &= ~BIT(index);
3277                 timer->overflow(timer->arg);
3278         }
3279 
3280         for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281                 timer = timer_table->timers[index];
3282                 if (!timer)
3283                     continue;
3284                 if (!timer->trigger)
3285                     continue;
3286                 timer->trigger(timer->arg);
3287         }
3288 }
3289 EXPORT_SYMBOL(ath_gen_timer_isr);
3290 
3291 /********/
3292 /* HTC  */
3293 /********/
3294 
3295 static struct {
3296         u32 version;
3297         const char * name;
3298 } ath_mac_bb_names[] = {
3299         /* Devices with external radios */
3300         { AR_SREV_VERSION_5416_PCI,     "5416" },
3301         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3302         { AR_SREV_VERSION_9100,         "9100" },
3303         { AR_SREV_VERSION_9160,         "9160" },
3304         /* Single-chip solutions */
3305         { AR_SREV_VERSION_9280,         "9280" },
3306         { AR_SREV_VERSION_9285,         "9285" },
3307         { AR_SREV_VERSION_9287,         "9287" },
3308         { AR_SREV_VERSION_9271,         "9271" },
3309         { AR_SREV_VERSION_9300,         "9300" },
3310         { AR_SREV_VERSION_9330,         "9330" },
3311         { AR_SREV_VERSION_9340,         "9340" },
3312         { AR_SREV_VERSION_9485,         "9485" },
3313         { AR_SREV_VERSION_9462,         "9462" },
3314         { AR_SREV_VERSION_9550,         "9550" },
3315         { AR_SREV_VERSION_9565,         "9565" },
3316         { AR_SREV_VERSION_9531,         "9531" },
3317         { AR_SREV_VERSION_9561,         "9561" },
3318 };
3319 
3320 /* For devices with external radios */
3321 static struct {
3322         u16 version;
3323         const char * name;
3324 } ath_rf_names[] = {
3325         { 0,                            "5133" },
3326         { AR_RAD5133_SREV_MAJOR,        "5133" },
3327         { AR_RAD5122_SREV_MAJOR,        "5122" },
3328         { AR_RAD2133_SREV_MAJOR,        "2133" },
3329         { AR_RAD2122_SREV_MAJOR,        "2122" }
3330 };
3331 
3332 /*
3333  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334  */
3335 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336 {
3337         int i;
3338 
3339         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3341                         return ath_mac_bb_names[i].name;
3342                 }
3343         }
3344 
3345         return "????";
3346 }
3347 
3348 /*
3349  * Return the RF name. "????" is returned if the RF is unknown.
3350  * Used for devices with external radios.
3351  */
3352 static const char *ath9k_hw_rf_name(u16 rf_version)
3353 {
3354         int i;
3355 
3356         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357                 if (ath_rf_names[i].version == rf_version) {
3358                         return ath_rf_names[i].name;
3359                 }
3360         }
3361 
3362         return "????";
3363 }
3364 
3365 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366 {
3367         int used;
3368 
3369         /* chipsets >= AR9280 are single-chip */
3370         if (AR_SREV_9280_20_OR_LATER(ah)) {
3371                 used = scnprintf(hw_name, len,
3372                                  "Atheros AR%s Rev:%x",
3373                                  ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374                                  ah->hw_version.macRev);
3375         }
3376         else {
3377                 used = scnprintf(hw_name, len,
3378                                  "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379                                  ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380                                  ah->hw_version.macRev,
3381                                  ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382                                                   & AR_RADIO_SREV_MAJOR)),
3383                                  ah->hw_version.phyRev);
3384         }
3385 
3386         hw_name[used] = '\0';
3387 }
3388 EXPORT_SYMBOL(ath9k_hw_name);

/* [<][>][^][v][top][bottom][index][help] */