root/drivers/net/wireless/ath/ath10k/htt_rx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ath10k_htt_rx_find_skb_paddr
  2. ath10k_htt_rx_ring_free
  3. ath10k_htt_get_rx_ring_size_32
  4. ath10k_htt_get_rx_ring_size_64
  5. ath10k_htt_config_paddrs_ring_32
  6. ath10k_htt_config_paddrs_ring_64
  7. ath10k_htt_set_paddrs_ring_32
  8. ath10k_htt_set_paddrs_ring_64
  9. ath10k_htt_reset_paddrs_ring_32
  10. ath10k_htt_reset_paddrs_ring_64
  11. ath10k_htt_get_vaddr_ring_32
  12. ath10k_htt_get_vaddr_ring_64
  13. __ath10k_htt_rx_ring_fill_n
  14. ath10k_htt_rx_ring_fill_n
  15. ath10k_htt_rx_msdu_buff_replenish
  16. ath10k_htt_rx_ring_refill_retry
  17. ath10k_htt_rx_ring_refill
  18. ath10k_htt_rx_free
  19. ath10k_htt_rx_netbuf_pop
  20. ath10k_htt_rx_amsdu_pop
  21. ath10k_htt_rx_pop_paddr
  22. ath10k_htt_append_frag_list
  23. ath10k_htt_rx_handle_amsdu_mon_32
  24. ath10k_htt_rx_handle_amsdu_mon_64
  25. ath10k_htt_rx_pop_paddr32_list
  26. ath10k_htt_rx_pop_paddr64_list
  27. ath10k_htt_rx_alloc
  28. ath10k_htt_rx_crypto_param_len
  29. ath10k_htt_rx_crypto_mic_len
  30. ath10k_htt_rx_crypto_icv_len
  31. ath10k_bw_to_mac80211_bw
  32. ath10k_htt_rx_h_rates
  33. ath10k_htt_rx_h_peer_channel
  34. ath10k_htt_rx_h_vdev_channel
  35. ath10k_htt_rx_h_any_chan_iter
  36. ath10k_htt_rx_h_any_channel
  37. ath10k_htt_rx_h_channel
  38. ath10k_htt_rx_h_signal
  39. ath10k_htt_rx_h_mactime
  40. ath10k_htt_rx_h_ppdu
  41. ath10k_get_tid
  42. ath10k_htt_rx_h_queue_msdu
  43. ath10k_process_rx
  44. ath10k_htt_rx_nwifi_hdrlen
  45. ath10k_htt_rx_h_undecap_raw
  46. ath10k_htt_rx_h_undecap_nwifi
  47. ath10k_htt_rx_h_find_rfc1042
  48. ath10k_htt_rx_h_undecap_eth
  49. ath10k_htt_rx_h_undecap_snap
  50. ath10k_htt_rx_h_undecap
  51. ath10k_htt_rx_get_csum_state
  52. ath10k_htt_rx_h_csum_offload
  53. ath10k_htt_rx_h_mpdu
  54. ath10k_htt_rx_h_enqueue
  55. ath10k_unchain_msdu
  56. ath10k_htt_rx_h_unchain
  57. ath10k_htt_rx_amsdu_allowed
  58. ath10k_htt_rx_h_filter
  59. ath10k_htt_rx_handle_amsdu
  60. ath10k_htt_rx_mpdu_desc_pn_hl
  61. ath10k_htt_rx_pn_cmp48
  62. ath10k_htt_rx_pn_check_replay_hl
  63. ath10k_htt_rx_proc_rx_ind_hl
  64. ath10k_htt_rx_frag_tkip_decap_nomic
  65. ath10k_htt_rx_frag_tkip_decap_withmic
  66. ath10k_htt_rx_frag_ccmp_decap
  67. ath10k_htt_rx_frag_wep_decap
  68. ath10k_htt_rx_proc_rx_frag_ind_hl
  69. ath10k_htt_rx_proc_rx_ind_ll
  70. ath10k_htt_rx_tx_compl_ind
  71. ath10k_htt_rx_addba
  72. ath10k_htt_rx_delba
  73. ath10k_htt_rx_extract_amsdu
  74. ath10k_htt_rx_h_rx_offload_prot
  75. ath10k_htt_rx_h_rx_offload
  76. ath10k_htt_rx_in_ord_ind
  77. ath10k_htt_rx_tx_fetch_resp_id_confirm
  78. ath10k_htt_rx_tx_fetch_ind
  79. ath10k_htt_rx_tx_fetch_confirm
  80. ath10k_htt_rx_tx_mode_switch_ind
  81. ath10k_htt_htc_t2h_msg_handler
  82. ath10k_get_legacy_rate_idx
  83. ath10k_accumulate_per_peer_tx_stats
  84. ath10k_update_per_peer_tx_stats
  85. ath10k_htt_fetch_peer_stats
  86. ath10k_fetch_10_2_tx_stats
  87. ath10k_htt_rx_pn_len
  88. ath10k_htt_rx_sec_ind_handler
  89. ath10k_htt_t2h_msg_handler
  90. ath10k_htt_rx_pktlog_completion_handler
  91. ath10k_htt_rx_deliver_msdu
  92. ath10k_htt_txrx_compl_task
  93. ath10k_htt_set_rx_ops

   1 // SPDX-License-Identifier: ISC
   2 /*
   3  * Copyright (c) 2005-2011 Atheros Communications Inc.
   4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   5  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   6  */
   7 
   8 #include "core.h"
   9 #include "htc.h"
  10 #include "htt.h"
  11 #include "txrx.h"
  12 #include "debug.h"
  13 #include "trace.h"
  14 #include "mac.h"
  15 
  16 #include <linux/log2.h>
  17 #include <linux/bitfield.h>
  18 
  19 /* when under memory pressure rx ring refill may fail and needs a retry */
  20 #define HTT_RX_RING_REFILL_RETRY_MS 50
  21 
  22 #define HTT_RX_RING_REFILL_RESCHED_MS 5
  23 
  24 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
  25 
  26 static struct sk_buff *
  27 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
  28 {
  29         struct ath10k_skb_rxcb *rxcb;
  30 
  31         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
  32                 if (rxcb->paddr == paddr)
  33                         return ATH10K_RXCB_SKB(rxcb);
  34 
  35         WARN_ON_ONCE(1);
  36         return NULL;
  37 }
  38 
  39 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
  40 {
  41         struct sk_buff *skb;
  42         struct ath10k_skb_rxcb *rxcb;
  43         struct hlist_node *n;
  44         int i;
  45 
  46         if (htt->rx_ring.in_ord_rx) {
  47                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
  48                         skb = ATH10K_RXCB_SKB(rxcb);
  49                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
  50                                          skb->len + skb_tailroom(skb),
  51                                          DMA_FROM_DEVICE);
  52                         hash_del(&rxcb->hlist);
  53                         dev_kfree_skb_any(skb);
  54                 }
  55         } else {
  56                 for (i = 0; i < htt->rx_ring.size; i++) {
  57                         skb = htt->rx_ring.netbufs_ring[i];
  58                         if (!skb)
  59                                 continue;
  60 
  61                         rxcb = ATH10K_SKB_RXCB(skb);
  62                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
  63                                          skb->len + skb_tailroom(skb),
  64                                          DMA_FROM_DEVICE);
  65                         dev_kfree_skb_any(skb);
  66                 }
  67         }
  68 
  69         htt->rx_ring.fill_cnt = 0;
  70         hash_init(htt->rx_ring.skb_table);
  71         memset(htt->rx_ring.netbufs_ring, 0,
  72                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
  73 }
  74 
  75 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
  76 {
  77         return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
  78 }
  79 
  80 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
  81 {
  82         return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
  83 }
  84 
  85 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
  86                                              void *vaddr)
  87 {
  88         htt->rx_ring.paddrs_ring_32 = vaddr;
  89 }
  90 
  91 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
  92                                              void *vaddr)
  93 {
  94         htt->rx_ring.paddrs_ring_64 = vaddr;
  95 }
  96 
  97 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
  98                                           dma_addr_t paddr, int idx)
  99 {
 100         htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
 101 }
 102 
 103 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
 104                                           dma_addr_t paddr, int idx)
 105 {
 106         htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
 107 }
 108 
 109 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
 110 {
 111         htt->rx_ring.paddrs_ring_32[idx] = 0;
 112 }
 113 
 114 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
 115 {
 116         htt->rx_ring.paddrs_ring_64[idx] = 0;
 117 }
 118 
 119 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
 120 {
 121         return (void *)htt->rx_ring.paddrs_ring_32;
 122 }
 123 
 124 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
 125 {
 126         return (void *)htt->rx_ring.paddrs_ring_64;
 127 }
 128 
 129 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
 130 {
 131         struct htt_rx_desc *rx_desc;
 132         struct ath10k_skb_rxcb *rxcb;
 133         struct sk_buff *skb;
 134         dma_addr_t paddr;
 135         int ret = 0, idx;
 136 
 137         /* The Full Rx Reorder firmware has no way of telling the host
 138          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
 139          * To keep things simple make sure ring is always half empty. This
 140          * guarantees there'll be no replenishment overruns possible.
 141          */
 142         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
 143 
 144         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
 145         while (num > 0) {
 146                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
 147                 if (!skb) {
 148                         ret = -ENOMEM;
 149                         goto fail;
 150                 }
 151 
 152                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
 153                         skb_pull(skb,
 154                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
 155                                  skb->data);
 156 
 157                 /* Clear rx_desc attention word before posting to Rx ring */
 158                 rx_desc = (struct htt_rx_desc *)skb->data;
 159                 rx_desc->attention.flags = __cpu_to_le32(0);
 160 
 161                 paddr = dma_map_single(htt->ar->dev, skb->data,
 162                                        skb->len + skb_tailroom(skb),
 163                                        DMA_FROM_DEVICE);
 164 
 165                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
 166                         dev_kfree_skb_any(skb);
 167                         ret = -ENOMEM;
 168                         goto fail;
 169                 }
 170 
 171                 rxcb = ATH10K_SKB_RXCB(skb);
 172                 rxcb->paddr = paddr;
 173                 htt->rx_ring.netbufs_ring[idx] = skb;
 174                 ath10k_htt_set_paddrs_ring(htt, paddr, idx);
 175                 htt->rx_ring.fill_cnt++;
 176 
 177                 if (htt->rx_ring.in_ord_rx) {
 178                         hash_add(htt->rx_ring.skb_table,
 179                                  &ATH10K_SKB_RXCB(skb)->hlist,
 180                                  paddr);
 181                 }
 182 
 183                 num--;
 184                 idx++;
 185                 idx &= htt->rx_ring.size_mask;
 186         }
 187 
 188 fail:
 189         /*
 190          * Make sure the rx buffer is updated before available buffer
 191          * index to avoid any potential rx ring corruption.
 192          */
 193         mb();
 194         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
 195         return ret;
 196 }
 197 
 198 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
 199 {
 200         lockdep_assert_held(&htt->rx_ring.lock);
 201         return __ath10k_htt_rx_ring_fill_n(htt, num);
 202 }
 203 
 204 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
 205 {
 206         int ret, num_deficit, num_to_fill;
 207 
 208         /* Refilling the whole RX ring buffer proves to be a bad idea. The
 209          * reason is RX may take up significant amount of CPU cycles and starve
 210          * other tasks, e.g. TX on an ethernet device while acting as a bridge
 211          * with ath10k wlan interface. This ended up with very poor performance
 212          * once CPU the host system was overwhelmed with RX on ath10k.
 213          *
 214          * By limiting the number of refills the replenishing occurs
 215          * progressively. This in turns makes use of the fact tasklets are
 216          * processed in FIFO order. This means actual RX processing can starve
 217          * out refilling. If there's not enough buffers on RX ring FW will not
 218          * report RX until it is refilled with enough buffers. This
 219          * automatically balances load wrt to CPU power.
 220          *
 221          * This probably comes at a cost of lower maximum throughput but
 222          * improves the average and stability.
 223          */
 224         spin_lock_bh(&htt->rx_ring.lock);
 225         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
 226         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
 227         num_deficit -= num_to_fill;
 228         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
 229         if (ret == -ENOMEM) {
 230                 /*
 231                  * Failed to fill it to the desired level -
 232                  * we'll start a timer and try again next time.
 233                  * As long as enough buffers are left in the ring for
 234                  * another A-MPDU rx, no special recovery is needed.
 235                  */
 236                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
 237                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
 238         } else if (num_deficit > 0) {
 239                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
 240                           msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
 241         }
 242         spin_unlock_bh(&htt->rx_ring.lock);
 243 }
 244 
 245 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
 246 {
 247         struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
 248 
 249         ath10k_htt_rx_msdu_buff_replenish(htt);
 250 }
 251 
 252 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
 253 {
 254         struct ath10k_htt *htt = &ar->htt;
 255         int ret;
 256 
 257         if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
 258                 return 0;
 259 
 260         spin_lock_bh(&htt->rx_ring.lock);
 261         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
 262                                               htt->rx_ring.fill_cnt));
 263 
 264         if (ret)
 265                 ath10k_htt_rx_ring_free(htt);
 266 
 267         spin_unlock_bh(&htt->rx_ring.lock);
 268 
 269         return ret;
 270 }
 271 
 272 void ath10k_htt_rx_free(struct ath10k_htt *htt)
 273 {
 274         if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
 275                 return;
 276 
 277         del_timer_sync(&htt->rx_ring.refill_retry_timer);
 278 
 279         skb_queue_purge(&htt->rx_msdus_q);
 280         skb_queue_purge(&htt->rx_in_ord_compl_q);
 281         skb_queue_purge(&htt->tx_fetch_ind_q);
 282 
 283         spin_lock_bh(&htt->rx_ring.lock);
 284         ath10k_htt_rx_ring_free(htt);
 285         spin_unlock_bh(&htt->rx_ring.lock);
 286 
 287         dma_free_coherent(htt->ar->dev,
 288                           ath10k_htt_get_rx_ring_size(htt),
 289                           ath10k_htt_get_vaddr_ring(htt),
 290                           htt->rx_ring.base_paddr);
 291 
 292         dma_free_coherent(htt->ar->dev,
 293                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
 294                           htt->rx_ring.alloc_idx.vaddr,
 295                           htt->rx_ring.alloc_idx.paddr);
 296 
 297         kfree(htt->rx_ring.netbufs_ring);
 298 }
 299 
 300 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
 301 {
 302         struct ath10k *ar = htt->ar;
 303         int idx;
 304         struct sk_buff *msdu;
 305 
 306         lockdep_assert_held(&htt->rx_ring.lock);
 307 
 308         if (htt->rx_ring.fill_cnt == 0) {
 309                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
 310                 return NULL;
 311         }
 312 
 313         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
 314         msdu = htt->rx_ring.netbufs_ring[idx];
 315         htt->rx_ring.netbufs_ring[idx] = NULL;
 316         ath10k_htt_reset_paddrs_ring(htt, idx);
 317 
 318         idx++;
 319         idx &= htt->rx_ring.size_mask;
 320         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
 321         htt->rx_ring.fill_cnt--;
 322 
 323         dma_unmap_single(htt->ar->dev,
 324                          ATH10K_SKB_RXCB(msdu)->paddr,
 325                          msdu->len + skb_tailroom(msdu),
 326                          DMA_FROM_DEVICE);
 327         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
 328                         msdu->data, msdu->len + skb_tailroom(msdu));
 329 
 330         return msdu;
 331 }
 332 
 333 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
 334 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
 335                                    struct sk_buff_head *amsdu)
 336 {
 337         struct ath10k *ar = htt->ar;
 338         int msdu_len, msdu_chaining = 0;
 339         struct sk_buff *msdu;
 340         struct htt_rx_desc *rx_desc;
 341 
 342         lockdep_assert_held(&htt->rx_ring.lock);
 343 
 344         for (;;) {
 345                 int last_msdu, msdu_len_invalid, msdu_chained;
 346 
 347                 msdu = ath10k_htt_rx_netbuf_pop(htt);
 348                 if (!msdu) {
 349                         __skb_queue_purge(amsdu);
 350                         return -ENOENT;
 351                 }
 352 
 353                 __skb_queue_tail(amsdu, msdu);
 354 
 355                 rx_desc = (struct htt_rx_desc *)msdu->data;
 356 
 357                 /* FIXME: we must report msdu payload since this is what caller
 358                  * expects now
 359                  */
 360                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
 361                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
 362 
 363                 /*
 364                  * Sanity check - confirm the HW is finished filling in the
 365                  * rx data.
 366                  * If the HW and SW are working correctly, then it's guaranteed
 367                  * that the HW's MAC DMA is done before this point in the SW.
 368                  * To prevent the case that we handle a stale Rx descriptor,
 369                  * just assert for now until we have a way to recover.
 370                  */
 371                 if (!(__le32_to_cpu(rx_desc->attention.flags)
 372                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
 373                         __skb_queue_purge(amsdu);
 374                         return -EIO;
 375                 }
 376 
 377                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
 378                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
 379                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
 380                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
 381                               RX_MSDU_START_INFO0_MSDU_LENGTH);
 382                 msdu_chained = rx_desc->frag_info.ring2_more_count;
 383 
 384                 if (msdu_len_invalid)
 385                         msdu_len = 0;
 386 
 387                 skb_trim(msdu, 0);
 388                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
 389                 msdu_len -= msdu->len;
 390 
 391                 /* Note: Chained buffers do not contain rx descriptor */
 392                 while (msdu_chained--) {
 393                         msdu = ath10k_htt_rx_netbuf_pop(htt);
 394                         if (!msdu) {
 395                                 __skb_queue_purge(amsdu);
 396                                 return -ENOENT;
 397                         }
 398 
 399                         __skb_queue_tail(amsdu, msdu);
 400                         skb_trim(msdu, 0);
 401                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
 402                         msdu_len -= msdu->len;
 403                         msdu_chaining = 1;
 404                 }
 405 
 406                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
 407                                 RX_MSDU_END_INFO0_LAST_MSDU;
 408 
 409                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
 410                                          sizeof(*rx_desc) - sizeof(u32));
 411 
 412                 if (last_msdu)
 413                         break;
 414         }
 415 
 416         if (skb_queue_empty(amsdu))
 417                 msdu_chaining = -1;
 418 
 419         /*
 420          * Don't refill the ring yet.
 421          *
 422          * First, the elements popped here are still in use - it is not
 423          * safe to overwrite them until the matching call to
 424          * mpdu_desc_list_next. Second, for efficiency it is preferable to
 425          * refill the rx ring with 1 PPDU's worth of rx buffers (something
 426          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
 427          * (something like 3 buffers). Consequently, we'll rely on the txrx
 428          * SW to tell us when it is done pulling all the PPDU's rx buffers
 429          * out of the rx ring, and then refill it just once.
 430          */
 431 
 432         return msdu_chaining;
 433 }
 434 
 435 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
 436                                                u64 paddr)
 437 {
 438         struct ath10k *ar = htt->ar;
 439         struct ath10k_skb_rxcb *rxcb;
 440         struct sk_buff *msdu;
 441 
 442         lockdep_assert_held(&htt->rx_ring.lock);
 443 
 444         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
 445         if (!msdu)
 446                 return NULL;
 447 
 448         rxcb = ATH10K_SKB_RXCB(msdu);
 449         hash_del(&rxcb->hlist);
 450         htt->rx_ring.fill_cnt--;
 451 
 452         dma_unmap_single(htt->ar->dev, rxcb->paddr,
 453                          msdu->len + skb_tailroom(msdu),
 454                          DMA_FROM_DEVICE);
 455         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
 456                         msdu->data, msdu->len + skb_tailroom(msdu));
 457 
 458         return msdu;
 459 }
 460 
 461 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head,
 462                                                struct sk_buff *frag_list,
 463                                                unsigned int frag_len)
 464 {
 465         skb_shinfo(skb_head)->frag_list = frag_list;
 466         skb_head->data_len = frag_len;
 467         skb_head->len += skb_head->data_len;
 468 }
 469 
 470 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt,
 471                                              struct sk_buff *msdu,
 472                                              struct htt_rx_in_ord_msdu_desc **msdu_desc)
 473 {
 474         struct ath10k *ar = htt->ar;
 475         u32 paddr;
 476         struct sk_buff *frag_buf;
 477         struct sk_buff *prev_frag_buf;
 478         u8 last_frag;
 479         struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc;
 480         struct htt_rx_desc *rxd;
 481         int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
 482 
 483         rxd = (void *)msdu->data;
 484         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
 485 
 486         skb_put(msdu, sizeof(struct htt_rx_desc));
 487         skb_pull(msdu, sizeof(struct htt_rx_desc));
 488         skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
 489         amsdu_len -= msdu->len;
 490 
 491         last_frag = ind_desc->reserved;
 492         if (last_frag) {
 493                 if (amsdu_len) {
 494                         ath10k_warn(ar, "invalid amsdu len %u, left %d",
 495                                     __le16_to_cpu(ind_desc->msdu_len),
 496                                     amsdu_len);
 497                 }
 498                 return 0;
 499         }
 500 
 501         ind_desc++;
 502         paddr = __le32_to_cpu(ind_desc->msdu_paddr);
 503         frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
 504         if (!frag_buf) {
 505                 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr);
 506                 return -ENOENT;
 507         }
 508 
 509         skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
 510         ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
 511 
 512         amsdu_len -= frag_buf->len;
 513         prev_frag_buf = frag_buf;
 514         last_frag = ind_desc->reserved;
 515         while (!last_frag) {
 516                 ind_desc++;
 517                 paddr = __le32_to_cpu(ind_desc->msdu_paddr);
 518                 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
 519                 if (!frag_buf) {
 520                         ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x",
 521                                     paddr);
 522                         prev_frag_buf->next = NULL;
 523                         return -ENOENT;
 524                 }
 525 
 526                 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
 527                 last_frag = ind_desc->reserved;
 528                 amsdu_len -= frag_buf->len;
 529 
 530                 prev_frag_buf->next = frag_buf;
 531                 prev_frag_buf = frag_buf;
 532         }
 533 
 534         if (amsdu_len) {
 535                 ath10k_warn(ar, "invalid amsdu len %u, left %d",
 536                             __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
 537         }
 538 
 539         *msdu_desc = ind_desc;
 540 
 541         prev_frag_buf->next = NULL;
 542         return 0;
 543 }
 544 
 545 static int
 546 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt,
 547                                   struct sk_buff *msdu,
 548                                   struct htt_rx_in_ord_msdu_desc_ext **msdu_desc)
 549 {
 550         struct ath10k *ar = htt->ar;
 551         u64 paddr;
 552         struct sk_buff *frag_buf;
 553         struct sk_buff *prev_frag_buf;
 554         u8 last_frag;
 555         struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc;
 556         struct htt_rx_desc *rxd;
 557         int amsdu_len = __le16_to_cpu(ind_desc->msdu_len);
 558 
 559         rxd = (void *)msdu->data;
 560         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
 561 
 562         skb_put(msdu, sizeof(struct htt_rx_desc));
 563         skb_pull(msdu, sizeof(struct htt_rx_desc));
 564         skb_put(msdu, min(amsdu_len, HTT_RX_MSDU_SIZE));
 565         amsdu_len -= msdu->len;
 566 
 567         last_frag = ind_desc->reserved;
 568         if (last_frag) {
 569                 if (amsdu_len) {
 570                         ath10k_warn(ar, "invalid amsdu len %u, left %d",
 571                                     __le16_to_cpu(ind_desc->msdu_len),
 572                                     amsdu_len);
 573                 }
 574                 return 0;
 575         }
 576 
 577         ind_desc++;
 578         paddr = __le64_to_cpu(ind_desc->msdu_paddr);
 579         frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
 580         if (!frag_buf) {
 581                 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr);
 582                 return -ENOENT;
 583         }
 584 
 585         skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
 586         ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len);
 587 
 588         amsdu_len -= frag_buf->len;
 589         prev_frag_buf = frag_buf;
 590         last_frag = ind_desc->reserved;
 591         while (!last_frag) {
 592                 ind_desc++;
 593                 paddr = __le64_to_cpu(ind_desc->msdu_paddr);
 594                 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr);
 595                 if (!frag_buf) {
 596                         ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx",
 597                                     paddr);
 598                         prev_frag_buf->next = NULL;
 599                         return -ENOENT;
 600                 }
 601 
 602                 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE));
 603                 last_frag = ind_desc->reserved;
 604                 amsdu_len -= frag_buf->len;
 605 
 606                 prev_frag_buf->next = frag_buf;
 607                 prev_frag_buf = frag_buf;
 608         }
 609 
 610         if (amsdu_len) {
 611                 ath10k_warn(ar, "invalid amsdu len %u, left %d",
 612                             __le16_to_cpu(ind_desc->msdu_len), amsdu_len);
 613         }
 614 
 615         *msdu_desc = ind_desc;
 616 
 617         prev_frag_buf->next = NULL;
 618         return 0;
 619 }
 620 
 621 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
 622                                           struct htt_rx_in_ord_ind *ev,
 623                                           struct sk_buff_head *list)
 624 {
 625         struct ath10k *ar = htt->ar;
 626         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
 627         struct htt_rx_desc *rxd;
 628         struct sk_buff *msdu;
 629         int msdu_count, ret;
 630         bool is_offload;
 631         u32 paddr;
 632 
 633         lockdep_assert_held(&htt->rx_ring.lock);
 634 
 635         msdu_count = __le16_to_cpu(ev->msdu_count);
 636         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
 637 
 638         while (msdu_count--) {
 639                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
 640 
 641                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
 642                 if (!msdu) {
 643                         __skb_queue_purge(list);
 644                         return -ENOENT;
 645                 }
 646 
 647                 if (!is_offload && ar->monitor_arvif) {
 648                         ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu,
 649                                                                 &msdu_desc);
 650                         if (ret) {
 651                                 __skb_queue_purge(list);
 652                                 return ret;
 653                         }
 654                         __skb_queue_tail(list, msdu);
 655                         msdu_desc++;
 656                         continue;
 657                 }
 658 
 659                 __skb_queue_tail(list, msdu);
 660 
 661                 if (!is_offload) {
 662                         rxd = (void *)msdu->data;
 663 
 664                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
 665 
 666                         skb_put(msdu, sizeof(*rxd));
 667                         skb_pull(msdu, sizeof(*rxd));
 668                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
 669 
 670                         if (!(__le32_to_cpu(rxd->attention.flags) &
 671                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
 672                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
 673                                 return -EIO;
 674                         }
 675                 }
 676 
 677                 msdu_desc++;
 678         }
 679 
 680         return 0;
 681 }
 682 
 683 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
 684                                           struct htt_rx_in_ord_ind *ev,
 685                                           struct sk_buff_head *list)
 686 {
 687         struct ath10k *ar = htt->ar;
 688         struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
 689         struct htt_rx_desc *rxd;
 690         struct sk_buff *msdu;
 691         int msdu_count, ret;
 692         bool is_offload;
 693         u64 paddr;
 694 
 695         lockdep_assert_held(&htt->rx_ring.lock);
 696 
 697         msdu_count = __le16_to_cpu(ev->msdu_count);
 698         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
 699 
 700         while (msdu_count--) {
 701                 paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
 702                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
 703                 if (!msdu) {
 704                         __skb_queue_purge(list);
 705                         return -ENOENT;
 706                 }
 707 
 708                 if (!is_offload && ar->monitor_arvif) {
 709                         ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu,
 710                                                                 &msdu_desc);
 711                         if (ret) {
 712                                 __skb_queue_purge(list);
 713                                 return ret;
 714                         }
 715                         __skb_queue_tail(list, msdu);
 716                         msdu_desc++;
 717                         continue;
 718                 }
 719 
 720                 __skb_queue_tail(list, msdu);
 721 
 722                 if (!is_offload) {
 723                         rxd = (void *)msdu->data;
 724 
 725                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
 726 
 727                         skb_put(msdu, sizeof(*rxd));
 728                         skb_pull(msdu, sizeof(*rxd));
 729                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
 730 
 731                         if (!(__le32_to_cpu(rxd->attention.flags) &
 732                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
 733                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
 734                                 return -EIO;
 735                         }
 736                 }
 737 
 738                 msdu_desc++;
 739         }
 740 
 741         return 0;
 742 }
 743 
 744 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
 745 {
 746         struct ath10k *ar = htt->ar;
 747         dma_addr_t paddr;
 748         void *vaddr, *vaddr_ring;
 749         size_t size;
 750         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
 751 
 752         if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
 753                 return 0;
 754 
 755         htt->rx_confused = false;
 756 
 757         /* XXX: The fill level could be changed during runtime in response to
 758          * the host processing latency. Is this really worth it?
 759          */
 760         htt->rx_ring.size = HTT_RX_RING_SIZE;
 761         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
 762         htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
 763 
 764         if (!is_power_of_2(htt->rx_ring.size)) {
 765                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
 766                 return -EINVAL;
 767         }
 768 
 769         htt->rx_ring.netbufs_ring =
 770                 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *),
 771                         GFP_KERNEL);
 772         if (!htt->rx_ring.netbufs_ring)
 773                 goto err_netbuf;
 774 
 775         size = ath10k_htt_get_rx_ring_size(htt);
 776 
 777         vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
 778         if (!vaddr_ring)
 779                 goto err_dma_ring;
 780 
 781         ath10k_htt_config_paddrs_ring(htt, vaddr_ring);
 782         htt->rx_ring.base_paddr = paddr;
 783 
 784         vaddr = dma_alloc_coherent(htt->ar->dev,
 785                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
 786                                    &paddr, GFP_KERNEL);
 787         if (!vaddr)
 788                 goto err_dma_idx;
 789 
 790         htt->rx_ring.alloc_idx.vaddr = vaddr;
 791         htt->rx_ring.alloc_idx.paddr = paddr;
 792         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
 793         *htt->rx_ring.alloc_idx.vaddr = 0;
 794 
 795         /* Initialize the Rx refill retry timer */
 796         timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
 797 
 798         spin_lock_init(&htt->rx_ring.lock);
 799 
 800         htt->rx_ring.fill_cnt = 0;
 801         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
 802         hash_init(htt->rx_ring.skb_table);
 803 
 804         skb_queue_head_init(&htt->rx_msdus_q);
 805         skb_queue_head_init(&htt->rx_in_ord_compl_q);
 806         skb_queue_head_init(&htt->tx_fetch_ind_q);
 807         atomic_set(&htt->num_mpdus_ready, 0);
 808 
 809         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
 810                    htt->rx_ring.size, htt->rx_ring.fill_level);
 811         return 0;
 812 
 813 err_dma_idx:
 814         dma_free_coherent(htt->ar->dev,
 815                           ath10k_htt_get_rx_ring_size(htt),
 816                           vaddr_ring,
 817                           htt->rx_ring.base_paddr);
 818 err_dma_ring:
 819         kfree(htt->rx_ring.netbufs_ring);
 820 err_netbuf:
 821         return -ENOMEM;
 822 }
 823 
 824 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
 825                                           enum htt_rx_mpdu_encrypt_type type)
 826 {
 827         switch (type) {
 828         case HTT_RX_MPDU_ENCRYPT_NONE:
 829                 return 0;
 830         case HTT_RX_MPDU_ENCRYPT_WEP40:
 831         case HTT_RX_MPDU_ENCRYPT_WEP104:
 832                 return IEEE80211_WEP_IV_LEN;
 833         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
 834         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
 835                 return IEEE80211_TKIP_IV_LEN;
 836         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
 837                 return IEEE80211_CCMP_HDR_LEN;
 838         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
 839                 return IEEE80211_CCMP_256_HDR_LEN;
 840         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
 841         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
 842                 return IEEE80211_GCMP_HDR_LEN;
 843         case HTT_RX_MPDU_ENCRYPT_WEP128:
 844         case HTT_RX_MPDU_ENCRYPT_WAPI:
 845                 break;
 846         }
 847 
 848         ath10k_warn(ar, "unsupported encryption type %d\n", type);
 849         return 0;
 850 }
 851 
 852 #define MICHAEL_MIC_LEN 8
 853 
 854 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
 855                                         enum htt_rx_mpdu_encrypt_type type)
 856 {
 857         switch (type) {
 858         case HTT_RX_MPDU_ENCRYPT_NONE:
 859         case HTT_RX_MPDU_ENCRYPT_WEP40:
 860         case HTT_RX_MPDU_ENCRYPT_WEP104:
 861         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
 862         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
 863                 return 0;
 864         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
 865                 return IEEE80211_CCMP_MIC_LEN;
 866         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
 867                 return IEEE80211_CCMP_256_MIC_LEN;
 868         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
 869         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
 870                 return IEEE80211_GCMP_MIC_LEN;
 871         case HTT_RX_MPDU_ENCRYPT_WEP128:
 872         case HTT_RX_MPDU_ENCRYPT_WAPI:
 873                 break;
 874         }
 875 
 876         ath10k_warn(ar, "unsupported encryption type %d\n", type);
 877         return 0;
 878 }
 879 
 880 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
 881                                         enum htt_rx_mpdu_encrypt_type type)
 882 {
 883         switch (type) {
 884         case HTT_RX_MPDU_ENCRYPT_NONE:
 885         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
 886         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
 887         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
 888         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
 889                 return 0;
 890         case HTT_RX_MPDU_ENCRYPT_WEP40:
 891         case HTT_RX_MPDU_ENCRYPT_WEP104:
 892                 return IEEE80211_WEP_ICV_LEN;
 893         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
 894         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
 895                 return IEEE80211_TKIP_ICV_LEN;
 896         case HTT_RX_MPDU_ENCRYPT_WEP128:
 897         case HTT_RX_MPDU_ENCRYPT_WAPI:
 898                 break;
 899         }
 900 
 901         ath10k_warn(ar, "unsupported encryption type %d\n", type);
 902         return 0;
 903 }
 904 
 905 struct amsdu_subframe_hdr {
 906         u8 dst[ETH_ALEN];
 907         u8 src[ETH_ALEN];
 908         __be16 len;
 909 } __packed;
 910 
 911 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
 912 
 913 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
 914 {
 915         u8 ret = 0;
 916 
 917         switch (bw) {
 918         case 0:
 919                 ret = RATE_INFO_BW_20;
 920                 break;
 921         case 1:
 922                 ret = RATE_INFO_BW_40;
 923                 break;
 924         case 2:
 925                 ret = RATE_INFO_BW_80;
 926                 break;
 927         case 3:
 928                 ret = RATE_INFO_BW_160;
 929                 break;
 930         }
 931 
 932         return ret;
 933 }
 934 
 935 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
 936                                   struct ieee80211_rx_status *status,
 937                                   struct htt_rx_desc *rxd)
 938 {
 939         struct ieee80211_supported_band *sband;
 940         u8 cck, rate, bw, sgi, mcs, nss;
 941         u8 preamble = 0;
 942         u8 group_id;
 943         u32 info1, info2, info3;
 944 
 945         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
 946         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
 947         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
 948 
 949         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
 950 
 951         switch (preamble) {
 952         case HTT_RX_LEGACY:
 953                 /* To get legacy rate index band is required. Since band can't
 954                  * be undefined check if freq is non-zero.
 955                  */
 956                 if (!status->freq)
 957                         return;
 958 
 959                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
 960                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
 961                 rate &= ~RX_PPDU_START_RATE_FLAG;
 962 
 963                 sband = &ar->mac.sbands[status->band];
 964                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
 965                 break;
 966         case HTT_RX_HT:
 967         case HTT_RX_HT_WITH_TXBF:
 968                 /* HT-SIG - Table 20-11 in info2 and info3 */
 969                 mcs = info2 & 0x1F;
 970                 nss = mcs >> 3;
 971                 bw = (info2 >> 7) & 1;
 972                 sgi = (info3 >> 7) & 1;
 973 
 974                 status->rate_idx = mcs;
 975                 status->encoding = RX_ENC_HT;
 976                 if (sgi)
 977                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
 978                 if (bw)
 979                         status->bw = RATE_INFO_BW_40;
 980                 break;
 981         case HTT_RX_VHT:
 982         case HTT_RX_VHT_WITH_TXBF:
 983                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
 984                  * TODO check this
 985                  */
 986                 bw = info2 & 3;
 987                 sgi = info3 & 1;
 988                 group_id = (info2 >> 4) & 0x3F;
 989 
 990                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
 991                         mcs = (info3 >> 4) & 0x0F;
 992                         nss = ((info2 >> 10) & 0x07) + 1;
 993                 } else {
 994                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
 995                          * so it's impossible to decode MCS. Also since
 996                          * firmware consumes Group Id Management frames host
 997                          * has no knowledge regarding group/user position
 998                          * mapping so it's impossible to pick the correct Nsts
 999                          * from VHT-SIG-A1.
1000                          *
1001                          * Bandwidth and SGI are valid so report the rateinfo
1002                          * on best-effort basis.
1003                          */
1004                         mcs = 0;
1005                         nss = 1;
1006                 }
1007 
1008                 if (mcs > 0x09) {
1009                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
1010                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
1011                                     __le32_to_cpu(rxd->attention.flags),
1012                                     __le32_to_cpu(rxd->mpdu_start.info0),
1013                                     __le32_to_cpu(rxd->mpdu_start.info1),
1014                                     __le32_to_cpu(rxd->msdu_start.common.info0),
1015                                     __le32_to_cpu(rxd->msdu_start.common.info1),
1016                                     rxd->ppdu_start.info0,
1017                                     __le32_to_cpu(rxd->ppdu_start.info1),
1018                                     __le32_to_cpu(rxd->ppdu_start.info2),
1019                                     __le32_to_cpu(rxd->ppdu_start.info3),
1020                                     __le32_to_cpu(rxd->ppdu_start.info4));
1021 
1022                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
1023                                     __le32_to_cpu(rxd->msdu_end.common.info0),
1024                                     __le32_to_cpu(rxd->mpdu_end.info0));
1025 
1026                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
1027                                         "rx desc msdu payload: ",
1028                                         rxd->msdu_payload, 50);
1029                 }
1030 
1031                 status->rate_idx = mcs;
1032                 status->nss = nss;
1033 
1034                 if (sgi)
1035                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1036 
1037                 status->bw = ath10k_bw_to_mac80211_bw(bw);
1038                 status->encoding = RX_ENC_VHT;
1039                 break;
1040         default:
1041                 break;
1042         }
1043 }
1044 
1045 static struct ieee80211_channel *
1046 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
1047 {
1048         struct ath10k_peer *peer;
1049         struct ath10k_vif *arvif;
1050         struct cfg80211_chan_def def;
1051         u16 peer_id;
1052 
1053         lockdep_assert_held(&ar->data_lock);
1054 
1055         if (!rxd)
1056                 return NULL;
1057 
1058         if (rxd->attention.flags &
1059             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
1060                 return NULL;
1061 
1062         if (!(rxd->msdu_end.common.info0 &
1063               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
1064                 return NULL;
1065 
1066         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1067                      RX_MPDU_START_INFO0_PEER_IDX);
1068 
1069         peer = ath10k_peer_find_by_id(ar, peer_id);
1070         if (!peer)
1071                 return NULL;
1072 
1073         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1074         if (WARN_ON_ONCE(!arvif))
1075                 return NULL;
1076 
1077         if (ath10k_mac_vif_chan(arvif->vif, &def))
1078                 return NULL;
1079 
1080         return def.chan;
1081 }
1082 
1083 static struct ieee80211_channel *
1084 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
1085 {
1086         struct ath10k_vif *arvif;
1087         struct cfg80211_chan_def def;
1088 
1089         lockdep_assert_held(&ar->data_lock);
1090 
1091         list_for_each_entry(arvif, &ar->arvifs, list) {
1092                 if (arvif->vdev_id == vdev_id &&
1093                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
1094                         return def.chan;
1095         }
1096 
1097         return NULL;
1098 }
1099 
1100 static void
1101 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
1102                               struct ieee80211_chanctx_conf *conf,
1103                               void *data)
1104 {
1105         struct cfg80211_chan_def *def = data;
1106 
1107         *def = conf->def;
1108 }
1109 
1110 static struct ieee80211_channel *
1111 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
1112 {
1113         struct cfg80211_chan_def def = {};
1114 
1115         ieee80211_iter_chan_contexts_atomic(ar->hw,
1116                                             ath10k_htt_rx_h_any_chan_iter,
1117                                             &def);
1118 
1119         return def.chan;
1120 }
1121 
1122 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
1123                                     struct ieee80211_rx_status *status,
1124                                     struct htt_rx_desc *rxd,
1125                                     u32 vdev_id)
1126 {
1127         struct ieee80211_channel *ch;
1128 
1129         spin_lock_bh(&ar->data_lock);
1130         ch = ar->scan_channel;
1131         if (!ch)
1132                 ch = ar->rx_channel;
1133         if (!ch)
1134                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
1135         if (!ch)
1136                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
1137         if (!ch)
1138                 ch = ath10k_htt_rx_h_any_channel(ar);
1139         if (!ch)
1140                 ch = ar->tgt_oper_chan;
1141         spin_unlock_bh(&ar->data_lock);
1142 
1143         if (!ch)
1144                 return false;
1145 
1146         status->band = ch->band;
1147         status->freq = ch->center_freq;
1148 
1149         return true;
1150 }
1151 
1152 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
1153                                    struct ieee80211_rx_status *status,
1154                                    struct htt_rx_desc *rxd)
1155 {
1156         int i;
1157 
1158         for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
1159                 status->chains &= ~BIT(i);
1160 
1161                 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
1162                         status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
1163                                 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
1164 
1165                         status->chains |= BIT(i);
1166                 }
1167         }
1168 
1169         /* FIXME: Get real NF */
1170         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
1171                          rxd->ppdu_start.rssi_comb;
1172         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
1173 }
1174 
1175 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
1176                                     struct ieee80211_rx_status *status,
1177                                     struct htt_rx_desc *rxd)
1178 {
1179         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
1180          * means all prior MSDUs in a PPDU are reported to mac80211 without the
1181          * TSF. Is it worth holding frames until end of PPDU is known?
1182          *
1183          * FIXME: Can we get/compute 64bit TSF?
1184          */
1185         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1186         status->flag |= RX_FLAG_MACTIME_END;
1187 }
1188 
1189 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1190                                  struct sk_buff_head *amsdu,
1191                                  struct ieee80211_rx_status *status,
1192                                  u32 vdev_id)
1193 {
1194         struct sk_buff *first;
1195         struct htt_rx_desc *rxd;
1196         bool is_first_ppdu;
1197         bool is_last_ppdu;
1198 
1199         if (skb_queue_empty(amsdu))
1200                 return;
1201 
1202         first = skb_peek(amsdu);
1203         rxd = (void *)first->data - sizeof(*rxd);
1204 
1205         is_first_ppdu = !!(rxd->attention.flags &
1206                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1207         is_last_ppdu = !!(rxd->attention.flags &
1208                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1209 
1210         if (is_first_ppdu) {
1211                 /* New PPDU starts so clear out the old per-PPDU status. */
1212                 status->freq = 0;
1213                 status->rate_idx = 0;
1214                 status->nss = 0;
1215                 status->encoding = RX_ENC_LEGACY;
1216                 status->bw = RATE_INFO_BW_20;
1217 
1218                 status->flag &= ~RX_FLAG_MACTIME_END;
1219                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1220 
1221                 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1222                 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1223                 status->ampdu_reference = ar->ampdu_reference;
1224 
1225                 ath10k_htt_rx_h_signal(ar, status, rxd);
1226                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1227                 ath10k_htt_rx_h_rates(ar, status, rxd);
1228         }
1229 
1230         if (is_last_ppdu) {
1231                 ath10k_htt_rx_h_mactime(ar, status, rxd);
1232 
1233                 /* set ampdu last segment flag */
1234                 status->flag |= RX_FLAG_AMPDU_IS_LAST;
1235                 ar->ampdu_reference++;
1236         }
1237 }
1238 
1239 static const char * const tid_to_ac[] = {
1240         "BE",
1241         "BK",
1242         "BK",
1243         "BE",
1244         "VI",
1245         "VI",
1246         "VO",
1247         "VO",
1248 };
1249 
1250 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1251 {
1252         u8 *qc;
1253         int tid;
1254 
1255         if (!ieee80211_is_data_qos(hdr->frame_control))
1256                 return "";
1257 
1258         qc = ieee80211_get_qos_ctl(hdr);
1259         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1260         if (tid < 8)
1261                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1262         else
1263                 snprintf(out, size, "tid %d", tid);
1264 
1265         return out;
1266 }
1267 
1268 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1269                                        struct ieee80211_rx_status *rx_status,
1270                                        struct sk_buff *skb)
1271 {
1272         struct ieee80211_rx_status *status;
1273 
1274         status = IEEE80211_SKB_RXCB(skb);
1275         *status = *rx_status;
1276 
1277         skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1278 }
1279 
1280 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1281 {
1282         struct ieee80211_rx_status *status;
1283         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1284         char tid[32];
1285 
1286         status = IEEE80211_SKB_RXCB(skb);
1287 
1288         ath10k_dbg(ar, ATH10K_DBG_DATA,
1289                    "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1290                    skb,
1291                    skb->len,
1292                    ieee80211_get_SA(hdr),
1293                    ath10k_get_tid(hdr, tid, sizeof(tid)),
1294                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1295                                                         "mcast" : "ucast",
1296                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1297                    (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1298                    (status->encoding == RX_ENC_HT) ? "ht" : "",
1299                    (status->encoding == RX_ENC_VHT) ? "vht" : "",
1300                    (status->bw == RATE_INFO_BW_40) ? "40" : "",
1301                    (status->bw == RATE_INFO_BW_80) ? "80" : "",
1302                    (status->bw == RATE_INFO_BW_160) ? "160" : "",
1303                    status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1304                    status->rate_idx,
1305                    status->nss,
1306                    status->freq,
1307                    status->band, status->flag,
1308                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1309                    !!(status->flag & RX_FLAG_MMIC_ERROR),
1310                    !!(status->flag & RX_FLAG_AMSDU_MORE));
1311         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1312                         skb->data, skb->len);
1313         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1314         trace_ath10k_rx_payload(ar, skb->data, skb->len);
1315 
1316         ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1317 }
1318 
1319 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1320                                       struct ieee80211_hdr *hdr)
1321 {
1322         int len = ieee80211_hdrlen(hdr->frame_control);
1323 
1324         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1325                       ar->running_fw->fw_file.fw_features))
1326                 len = round_up(len, 4);
1327 
1328         return len;
1329 }
1330 
1331 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1332                                         struct sk_buff *msdu,
1333                                         struct ieee80211_rx_status *status,
1334                                         enum htt_rx_mpdu_encrypt_type enctype,
1335                                         bool is_decrypted,
1336                                         const u8 first_hdr[64])
1337 {
1338         struct ieee80211_hdr *hdr;
1339         struct htt_rx_desc *rxd;
1340         size_t hdr_len;
1341         size_t crypto_len;
1342         bool is_first;
1343         bool is_last;
1344         bool msdu_limit_err;
1345         int bytes_aligned = ar->hw_params.decap_align_bytes;
1346         u8 *qos;
1347 
1348         rxd = (void *)msdu->data - sizeof(*rxd);
1349         is_first = !!(rxd->msdu_end.common.info0 &
1350                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1351         is_last = !!(rxd->msdu_end.common.info0 &
1352                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1353 
1354         /* Delivered decapped frame:
1355          * [802.11 header]
1356          * [crypto param] <-- can be trimmed if !fcs_err &&
1357          *                    !decrypt_err && !peer_idx_invalid
1358          * [amsdu header] <-- only if A-MSDU
1359          * [rfc1042/llc]
1360          * [payload]
1361          * [FCS] <-- at end, needs to be trimmed
1362          */
1363 
1364         /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when
1365          * deaggregate, so that unwanted MSDU-deaggregation is avoided for
1366          * error packets. If limit exceeds, hw sends all remaining MSDUs as
1367          * a single last MSDU with this msdu limit error set.
1368          */
1369         msdu_limit_err = ath10k_rx_desc_msdu_limit_error(&ar->hw_params, rxd);
1370 
1371         /* If MSDU limit error happens, then don't warn on, the partial raw MSDU
1372          * without first MSDU is expected in that case, and handled later here.
1373          */
1374         /* This probably shouldn't happen but warn just in case */
1375         if (WARN_ON_ONCE(!is_first && !msdu_limit_err))
1376                 return;
1377 
1378         /* This probably shouldn't happen but warn just in case */
1379         if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err))
1380                 return;
1381 
1382         skb_trim(msdu, msdu->len - FCS_LEN);
1383 
1384         /* Push original 80211 header */
1385         if (unlikely(msdu_limit_err)) {
1386                 hdr = (struct ieee80211_hdr *)first_hdr;
1387                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1388                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1389 
1390                 if (ieee80211_is_data_qos(hdr->frame_control)) {
1391                         qos = ieee80211_get_qos_ctl(hdr);
1392                         qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1393                 }
1394 
1395                 if (crypto_len)
1396                         memcpy(skb_push(msdu, crypto_len),
1397                                (void *)hdr + round_up(hdr_len, bytes_aligned),
1398                                crypto_len);
1399 
1400                 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1401         }
1402 
1403         /* In most cases this will be true for sniffed frames. It makes sense
1404          * to deliver them as-is without stripping the crypto param. This is
1405          * necessary for software based decryption.
1406          *
1407          * If there's no error then the frame is decrypted. At least that is
1408          * the case for frames that come in via fragmented rx indication.
1409          */
1410         if (!is_decrypted)
1411                 return;
1412 
1413         /* The payload is decrypted so strip crypto params. Start from tail
1414          * since hdr is used to compute some stuff.
1415          */
1416 
1417         hdr = (void *)msdu->data;
1418 
1419         /* Tail */
1420         if (status->flag & RX_FLAG_IV_STRIPPED) {
1421                 skb_trim(msdu, msdu->len -
1422                          ath10k_htt_rx_crypto_mic_len(ar, enctype));
1423 
1424                 skb_trim(msdu, msdu->len -
1425                          ath10k_htt_rx_crypto_icv_len(ar, enctype));
1426         } else {
1427                 /* MIC */
1428                 if (status->flag & RX_FLAG_MIC_STRIPPED)
1429                         skb_trim(msdu, msdu->len -
1430                                  ath10k_htt_rx_crypto_mic_len(ar, enctype));
1431 
1432                 /* ICV */
1433                 if (status->flag & RX_FLAG_ICV_STRIPPED)
1434                         skb_trim(msdu, msdu->len -
1435                                  ath10k_htt_rx_crypto_icv_len(ar, enctype));
1436         }
1437 
1438         /* MMIC */
1439         if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1440             !ieee80211_has_morefrags(hdr->frame_control) &&
1441             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1442                 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1443 
1444         /* Head */
1445         if (status->flag & RX_FLAG_IV_STRIPPED) {
1446                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1447                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1448 
1449                 memmove((void *)msdu->data + crypto_len,
1450                         (void *)msdu->data, hdr_len);
1451                 skb_pull(msdu, crypto_len);
1452         }
1453 }
1454 
1455 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1456                                           struct sk_buff *msdu,
1457                                           struct ieee80211_rx_status *status,
1458                                           const u8 first_hdr[64],
1459                                           enum htt_rx_mpdu_encrypt_type enctype)
1460 {
1461         struct ieee80211_hdr *hdr;
1462         struct htt_rx_desc *rxd;
1463         size_t hdr_len;
1464         u8 da[ETH_ALEN];
1465         u8 sa[ETH_ALEN];
1466         int l3_pad_bytes;
1467         int bytes_aligned = ar->hw_params.decap_align_bytes;
1468 
1469         /* Delivered decapped frame:
1470          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1471          * [rfc1042/llc]
1472          *
1473          * Note: The nwifi header doesn't have QoS Control and is
1474          * (always?) a 3addr frame.
1475          *
1476          * Note2: There's no A-MSDU subframe header. Even if it's part
1477          * of an A-MSDU.
1478          */
1479 
1480         /* pull decapped header and copy SA & DA */
1481         rxd = (void *)msdu->data - sizeof(*rxd);
1482 
1483         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1484         skb_put(msdu, l3_pad_bytes);
1485 
1486         hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1487 
1488         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1489         ether_addr_copy(da, ieee80211_get_DA(hdr));
1490         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1491         skb_pull(msdu, hdr_len);
1492 
1493         /* push original 802.11 header */
1494         hdr = (struct ieee80211_hdr *)first_hdr;
1495         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1496 
1497         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1498                 memcpy(skb_push(msdu,
1499                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1500                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1501                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1502         }
1503 
1504         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1505 
1506         /* original 802.11 header has a different DA and in
1507          * case of 4addr it may also have different SA
1508          */
1509         hdr = (struct ieee80211_hdr *)msdu->data;
1510         ether_addr_copy(ieee80211_get_DA(hdr), da);
1511         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1512 }
1513 
1514 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1515                                           struct sk_buff *msdu,
1516                                           enum htt_rx_mpdu_encrypt_type enctype)
1517 {
1518         struct ieee80211_hdr *hdr;
1519         struct htt_rx_desc *rxd;
1520         size_t hdr_len, crypto_len;
1521         void *rfc1042;
1522         bool is_first, is_last, is_amsdu;
1523         int bytes_aligned = ar->hw_params.decap_align_bytes;
1524 
1525         rxd = (void *)msdu->data - sizeof(*rxd);
1526         hdr = (void *)rxd->rx_hdr_status;
1527 
1528         is_first = !!(rxd->msdu_end.common.info0 &
1529                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1530         is_last = !!(rxd->msdu_end.common.info0 &
1531                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1532         is_amsdu = !(is_first && is_last);
1533 
1534         rfc1042 = hdr;
1535 
1536         if (is_first) {
1537                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1538                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1539 
1540                 rfc1042 += round_up(hdr_len, bytes_aligned) +
1541                            round_up(crypto_len, bytes_aligned);
1542         }
1543 
1544         if (is_amsdu)
1545                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1546 
1547         return rfc1042;
1548 }
1549 
1550 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1551                                         struct sk_buff *msdu,
1552                                         struct ieee80211_rx_status *status,
1553                                         const u8 first_hdr[64],
1554                                         enum htt_rx_mpdu_encrypt_type enctype)
1555 {
1556         struct ieee80211_hdr *hdr;
1557         struct ethhdr *eth;
1558         size_t hdr_len;
1559         void *rfc1042;
1560         u8 da[ETH_ALEN];
1561         u8 sa[ETH_ALEN];
1562         int l3_pad_bytes;
1563         struct htt_rx_desc *rxd;
1564         int bytes_aligned = ar->hw_params.decap_align_bytes;
1565 
1566         /* Delivered decapped frame:
1567          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1568          * [payload]
1569          */
1570 
1571         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1572         if (WARN_ON_ONCE(!rfc1042))
1573                 return;
1574 
1575         rxd = (void *)msdu->data - sizeof(*rxd);
1576         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1577         skb_put(msdu, l3_pad_bytes);
1578         skb_pull(msdu, l3_pad_bytes);
1579 
1580         /* pull decapped header and copy SA & DA */
1581         eth = (struct ethhdr *)msdu->data;
1582         ether_addr_copy(da, eth->h_dest);
1583         ether_addr_copy(sa, eth->h_source);
1584         skb_pull(msdu, sizeof(struct ethhdr));
1585 
1586         /* push rfc1042/llc/snap */
1587         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1588                sizeof(struct rfc1042_hdr));
1589 
1590         /* push original 802.11 header */
1591         hdr = (struct ieee80211_hdr *)first_hdr;
1592         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1593 
1594         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1595                 memcpy(skb_push(msdu,
1596                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1597                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1598                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1599         }
1600 
1601         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1602 
1603         /* original 802.11 header has a different DA and in
1604          * case of 4addr it may also have different SA
1605          */
1606         hdr = (struct ieee80211_hdr *)msdu->data;
1607         ether_addr_copy(ieee80211_get_DA(hdr), da);
1608         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1609 }
1610 
1611 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1612                                          struct sk_buff *msdu,
1613                                          struct ieee80211_rx_status *status,
1614                                          const u8 first_hdr[64],
1615                                          enum htt_rx_mpdu_encrypt_type enctype)
1616 {
1617         struct ieee80211_hdr *hdr;
1618         size_t hdr_len;
1619         int l3_pad_bytes;
1620         struct htt_rx_desc *rxd;
1621         int bytes_aligned = ar->hw_params.decap_align_bytes;
1622 
1623         /* Delivered decapped frame:
1624          * [amsdu header] <-- replaced with 802.11 hdr
1625          * [rfc1042/llc]
1626          * [payload]
1627          */
1628 
1629         rxd = (void *)msdu->data - sizeof(*rxd);
1630         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1631 
1632         skb_put(msdu, l3_pad_bytes);
1633         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1634 
1635         hdr = (struct ieee80211_hdr *)first_hdr;
1636         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1637 
1638         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1639                 memcpy(skb_push(msdu,
1640                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1641                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1642                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1643         }
1644 
1645         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1646 }
1647 
1648 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1649                                     struct sk_buff *msdu,
1650                                     struct ieee80211_rx_status *status,
1651                                     u8 first_hdr[64],
1652                                     enum htt_rx_mpdu_encrypt_type enctype,
1653                                     bool is_decrypted)
1654 {
1655         struct htt_rx_desc *rxd;
1656         enum rx_msdu_decap_format decap;
1657 
1658         /* First msdu's decapped header:
1659          * [802.11 header] <-- padded to 4 bytes long
1660          * [crypto param] <-- padded to 4 bytes long
1661          * [amsdu header] <-- only if A-MSDU
1662          * [rfc1042/llc]
1663          *
1664          * Other (2nd, 3rd, ..) msdu's decapped header:
1665          * [amsdu header] <-- only if A-MSDU
1666          * [rfc1042/llc]
1667          */
1668 
1669         rxd = (void *)msdu->data - sizeof(*rxd);
1670         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1671                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1672 
1673         switch (decap) {
1674         case RX_MSDU_DECAP_RAW:
1675                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1676                                             is_decrypted, first_hdr);
1677                 break;
1678         case RX_MSDU_DECAP_NATIVE_WIFI:
1679                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1680                                               enctype);
1681                 break;
1682         case RX_MSDU_DECAP_ETHERNET2_DIX:
1683                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1684                 break;
1685         case RX_MSDU_DECAP_8023_SNAP_LLC:
1686                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1687                                              enctype);
1688                 break;
1689         }
1690 }
1691 
1692 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1693 {
1694         struct htt_rx_desc *rxd;
1695         u32 flags, info;
1696         bool is_ip4, is_ip6;
1697         bool is_tcp, is_udp;
1698         bool ip_csum_ok, tcpudp_csum_ok;
1699 
1700         rxd = (void *)skb->data - sizeof(*rxd);
1701         flags = __le32_to_cpu(rxd->attention.flags);
1702         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1703 
1704         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1705         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1706         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1707         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1708         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1709         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1710 
1711         if (!is_ip4 && !is_ip6)
1712                 return CHECKSUM_NONE;
1713         if (!is_tcp && !is_udp)
1714                 return CHECKSUM_NONE;
1715         if (!ip_csum_ok)
1716                 return CHECKSUM_NONE;
1717         if (!tcpudp_csum_ok)
1718                 return CHECKSUM_NONE;
1719 
1720         return CHECKSUM_UNNECESSARY;
1721 }
1722 
1723 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1724 {
1725         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1726 }
1727 
1728 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1729                                  struct sk_buff_head *amsdu,
1730                                  struct ieee80211_rx_status *status,
1731                                  bool fill_crypt_header,
1732                                  u8 *rx_hdr,
1733                                  enum ath10k_pkt_rx_err *err)
1734 {
1735         struct sk_buff *first;
1736         struct sk_buff *last;
1737         struct sk_buff *msdu;
1738         struct htt_rx_desc *rxd;
1739         struct ieee80211_hdr *hdr;
1740         enum htt_rx_mpdu_encrypt_type enctype;
1741         u8 first_hdr[64];
1742         u8 *qos;
1743         bool has_fcs_err;
1744         bool has_crypto_err;
1745         bool has_tkip_err;
1746         bool has_peer_idx_invalid;
1747         bool is_decrypted;
1748         bool is_mgmt;
1749         u32 attention;
1750 
1751         if (skb_queue_empty(amsdu))
1752                 return;
1753 
1754         first = skb_peek(amsdu);
1755         rxd = (void *)first->data - sizeof(*rxd);
1756 
1757         is_mgmt = !!(rxd->attention.flags &
1758                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1759 
1760         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1761                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1762 
1763         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1764          * decapped header. It'll be used for undecapping of each MSDU.
1765          */
1766         hdr = (void *)rxd->rx_hdr_status;
1767         memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1768 
1769         if (rx_hdr)
1770                 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1771 
1772         /* Each A-MSDU subframe will use the original header as the base and be
1773          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1774          */
1775         hdr = (void *)first_hdr;
1776 
1777         if (ieee80211_is_data_qos(hdr->frame_control)) {
1778                 qos = ieee80211_get_qos_ctl(hdr);
1779                 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1780         }
1781 
1782         /* Some attention flags are valid only in the last MSDU. */
1783         last = skb_peek_tail(amsdu);
1784         rxd = (void *)last->data - sizeof(*rxd);
1785         attention = __le32_to_cpu(rxd->attention.flags);
1786 
1787         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1788         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1789         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1790         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1791 
1792         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1793          * e.g. due to fcs error, missing peer or invalid key data it will
1794          * report the frame as raw.
1795          */
1796         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1797                         !has_fcs_err &&
1798                         !has_crypto_err &&
1799                         !has_peer_idx_invalid);
1800 
1801         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1802         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1803                           RX_FLAG_MMIC_ERROR |
1804                           RX_FLAG_DECRYPTED |
1805                           RX_FLAG_IV_STRIPPED |
1806                           RX_FLAG_ONLY_MONITOR |
1807                           RX_FLAG_MMIC_STRIPPED);
1808 
1809         if (has_fcs_err)
1810                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1811 
1812         if (has_tkip_err)
1813                 status->flag |= RX_FLAG_MMIC_ERROR;
1814 
1815         if (err) {
1816                 if (has_fcs_err)
1817                         *err = ATH10K_PKT_RX_ERR_FCS;
1818                 else if (has_tkip_err)
1819                         *err = ATH10K_PKT_RX_ERR_TKIP;
1820                 else if (has_crypto_err)
1821                         *err = ATH10K_PKT_RX_ERR_CRYPT;
1822                 else if (has_peer_idx_invalid)
1823                         *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1824         }
1825 
1826         /* Firmware reports all necessary management frames via WMI already.
1827          * They are not reported to monitor interfaces at all so pass the ones
1828          * coming via HTT to monitor interfaces instead. This simplifies
1829          * matters a lot.
1830          */
1831         if (is_mgmt)
1832                 status->flag |= RX_FLAG_ONLY_MONITOR;
1833 
1834         if (is_decrypted) {
1835                 status->flag |= RX_FLAG_DECRYPTED;
1836 
1837                 if (likely(!is_mgmt))
1838                         status->flag |= RX_FLAG_MMIC_STRIPPED;
1839 
1840                 if (fill_crypt_header)
1841                         status->flag |= RX_FLAG_MIC_STRIPPED |
1842                                         RX_FLAG_ICV_STRIPPED;
1843                 else
1844                         status->flag |= RX_FLAG_IV_STRIPPED;
1845         }
1846 
1847         skb_queue_walk(amsdu, msdu) {
1848                 ath10k_htt_rx_h_csum_offload(msdu);
1849                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1850                                         is_decrypted);
1851 
1852                 /* Undecapping involves copying the original 802.11 header back
1853                  * to sk_buff. If frame is protected and hardware has decrypted
1854                  * it then remove the protected bit.
1855                  */
1856                 if (!is_decrypted)
1857                         continue;
1858                 if (is_mgmt)
1859                         continue;
1860 
1861                 if (fill_crypt_header)
1862                         continue;
1863 
1864                 hdr = (void *)msdu->data;
1865                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1866         }
1867 }
1868 
1869 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1870                                     struct sk_buff_head *amsdu,
1871                                     struct ieee80211_rx_status *status)
1872 {
1873         struct sk_buff *msdu;
1874         struct sk_buff *first_subframe;
1875 
1876         first_subframe = skb_peek(amsdu);
1877 
1878         while ((msdu = __skb_dequeue(amsdu))) {
1879                 /* Setup per-MSDU flags */
1880                 if (skb_queue_empty(amsdu))
1881                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1882                 else
1883                         status->flag |= RX_FLAG_AMSDU_MORE;
1884 
1885                 if (msdu == first_subframe) {
1886                         first_subframe = NULL;
1887                         status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1888                 } else {
1889                         status->flag |= RX_FLAG_ALLOW_SAME_PN;
1890                 }
1891 
1892                 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1893         }
1894 }
1895 
1896 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1897                                unsigned long *unchain_cnt)
1898 {
1899         struct sk_buff *skb, *first;
1900         int space;
1901         int total_len = 0;
1902         int amsdu_len = skb_queue_len(amsdu);
1903 
1904         /* TODO:  Might could optimize this by using
1905          * skb_try_coalesce or similar method to
1906          * decrease copying, or maybe get mac80211 to
1907          * provide a way to just receive a list of
1908          * skb?
1909          */
1910 
1911         first = __skb_dequeue(amsdu);
1912 
1913         /* Allocate total length all at once. */
1914         skb_queue_walk(amsdu, skb)
1915                 total_len += skb->len;
1916 
1917         space = total_len - skb_tailroom(first);
1918         if ((space > 0) &&
1919             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1920                 /* TODO:  bump some rx-oom error stat */
1921                 /* put it back together so we can free the
1922                  * whole list at once.
1923                  */
1924                 __skb_queue_head(amsdu, first);
1925                 return -1;
1926         }
1927 
1928         /* Walk list again, copying contents into
1929          * msdu_head
1930          */
1931         while ((skb = __skb_dequeue(amsdu))) {
1932                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1933                                           skb->len);
1934                 dev_kfree_skb_any(skb);
1935         }
1936 
1937         __skb_queue_head(amsdu, first);
1938 
1939         *unchain_cnt += amsdu_len - 1;
1940 
1941         return 0;
1942 }
1943 
1944 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1945                                     struct sk_buff_head *amsdu,
1946                                     unsigned long *drop_cnt,
1947                                     unsigned long *unchain_cnt)
1948 {
1949         struct sk_buff *first;
1950         struct htt_rx_desc *rxd;
1951         enum rx_msdu_decap_format decap;
1952 
1953         first = skb_peek(amsdu);
1954         rxd = (void *)first->data - sizeof(*rxd);
1955         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1956                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1957 
1958         /* FIXME: Current unchaining logic can only handle simple case of raw
1959          * msdu chaining. If decapping is other than raw the chaining may be
1960          * more complex and this isn't handled by the current code. Don't even
1961          * try re-constructing such frames - it'll be pretty much garbage.
1962          */
1963         if (decap != RX_MSDU_DECAP_RAW ||
1964             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1965                 *drop_cnt += skb_queue_len(amsdu);
1966                 __skb_queue_purge(amsdu);
1967                 return;
1968         }
1969 
1970         ath10k_unchain_msdu(amsdu, unchain_cnt);
1971 }
1972 
1973 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1974                                         struct sk_buff_head *amsdu,
1975                                         struct ieee80211_rx_status *rx_status)
1976 {
1977         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1978          * invalid/dangerous frames.
1979          */
1980 
1981         if (!rx_status->freq) {
1982                 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1983                 return false;
1984         }
1985 
1986         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1987                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1988                 return false;
1989         }
1990 
1991         return true;
1992 }
1993 
1994 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1995                                    struct sk_buff_head *amsdu,
1996                                    struct ieee80211_rx_status *rx_status,
1997                                    unsigned long *drop_cnt)
1998 {
1999         if (skb_queue_empty(amsdu))
2000                 return;
2001 
2002         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
2003                 return;
2004 
2005         if (drop_cnt)
2006                 *drop_cnt += skb_queue_len(amsdu);
2007 
2008         __skb_queue_purge(amsdu);
2009 }
2010 
2011 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
2012 {
2013         struct ath10k *ar = htt->ar;
2014         struct ieee80211_rx_status *rx_status = &htt->rx_status;
2015         struct sk_buff_head amsdu;
2016         int ret;
2017         unsigned long drop_cnt = 0;
2018         unsigned long unchain_cnt = 0;
2019         unsigned long drop_cnt_filter = 0;
2020         unsigned long msdus_to_queue, num_msdus;
2021         enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
2022         u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
2023 
2024         __skb_queue_head_init(&amsdu);
2025 
2026         spin_lock_bh(&htt->rx_ring.lock);
2027         if (htt->rx_confused) {
2028                 spin_unlock_bh(&htt->rx_ring.lock);
2029                 return -EIO;
2030         }
2031         ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
2032         spin_unlock_bh(&htt->rx_ring.lock);
2033 
2034         if (ret < 0) {
2035                 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
2036                 __skb_queue_purge(&amsdu);
2037                 /* FIXME: It's probably a good idea to reboot the
2038                  * device instead of leaving it inoperable.
2039                  */
2040                 htt->rx_confused = true;
2041                 return ret;
2042         }
2043 
2044         num_msdus = skb_queue_len(&amsdu);
2045 
2046         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
2047 
2048         /* only for ret = 1 indicates chained msdus */
2049         if (ret > 0)
2050                 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
2051 
2052         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
2053         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
2054         msdus_to_queue = skb_queue_len(&amsdu);
2055         ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
2056 
2057         ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
2058                                        unchain_cnt, drop_cnt, drop_cnt_filter,
2059                                        msdus_to_queue);
2060 
2061         return 0;
2062 }
2063 
2064 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc,
2065                                           union htt_rx_pn_t *pn,
2066                                           int pn_len_bits)
2067 {
2068         switch (pn_len_bits) {
2069         case 48:
2070                 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) +
2071                            ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32);
2072                 break;
2073         case 24:
2074                 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0);
2075                 break;
2076         };
2077 }
2078 
2079 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn,
2080                                    union htt_rx_pn_t *old_pn)
2081 {
2082         return ((new_pn->pn48 & 0xffffffffffffULL) <=
2083                 (old_pn->pn48 & 0xffffffffffffULL));
2084 }
2085 
2086 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar,
2087                                              struct ath10k_peer *peer,
2088                                              struct htt_rx_indication_hl *rx)
2089 {
2090         bool last_pn_valid, pn_invalid = false;
2091         enum htt_txrx_sec_cast_type sec_index;
2092         enum htt_security_types sec_type;
2093         union htt_rx_pn_t new_pn = {0};
2094         struct htt_hl_rx_desc *rx_desc;
2095         union htt_rx_pn_t *last_pn;
2096         u32 rx_desc_info, tid;
2097         int num_mpdu_ranges;
2098 
2099         lockdep_assert_held(&ar->data_lock);
2100 
2101         if (!peer)
2102                 return false;
2103 
2104         if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU))
2105                 return false;
2106 
2107         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2108                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2109 
2110         rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2111         rx_desc_info = __le32_to_cpu(rx_desc->info);
2112 
2113         if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED))
2114                 return false;
2115 
2116         tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2117         last_pn_valid = peer->tids_last_pn_valid[tid];
2118         last_pn = &peer->tids_last_pn[tid];
2119 
2120         if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2121                 sec_index = HTT_TXRX_SEC_MCAST;
2122         else
2123                 sec_index = HTT_TXRX_SEC_UCAST;
2124 
2125         sec_type = peer->rx_pn[sec_index].sec_type;
2126         ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2127 
2128         if (sec_type != HTT_SECURITY_AES_CCMP &&
2129             sec_type != HTT_SECURITY_TKIP &&
2130             sec_type != HTT_SECURITY_TKIP_NOMIC)
2131                 return false;
2132 
2133         if (last_pn_valid)
2134                 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn);
2135         else
2136                 peer->tids_last_pn_valid[tid] = 1;
2137 
2138         if (!pn_invalid)
2139                 last_pn->pn48 = new_pn.pn48;
2140 
2141         return pn_invalid;
2142 }
2143 
2144 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt,
2145                                          struct htt_rx_indication_hl *rx,
2146                                          struct sk_buff *skb,
2147                                          enum htt_rx_pn_check_type check_pn_type,
2148                                          enum htt_rx_tkip_demic_type tkip_mic_type)
2149 {
2150         struct ath10k *ar = htt->ar;
2151         struct ath10k_peer *peer;
2152         struct htt_rx_indication_mpdu_range *mpdu_ranges;
2153         struct fw_rx_desc_hl *fw_desc;
2154         enum htt_txrx_sec_cast_type sec_index;
2155         enum htt_security_types sec_type;
2156         union htt_rx_pn_t new_pn = {0};
2157         struct htt_hl_rx_desc *rx_desc;
2158         struct ieee80211_hdr *hdr;
2159         struct ieee80211_rx_status *rx_status;
2160         u16 peer_id;
2161         u8 rx_desc_len;
2162         int num_mpdu_ranges;
2163         size_t tot_hdr_len;
2164         struct ieee80211_channel *ch;
2165         bool pn_invalid, qos, first_msdu;
2166         u32 tid, rx_desc_info;
2167 
2168         peer_id = __le16_to_cpu(rx->hdr.peer_id);
2169         tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2170 
2171         spin_lock_bh(&ar->data_lock);
2172         peer = ath10k_peer_find_by_id(ar, peer_id);
2173         spin_unlock_bh(&ar->data_lock);
2174         if (!peer && peer_id != HTT_INVALID_PEERID)
2175                 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id);
2176 
2177         if (!peer)
2178                 return true;
2179 
2180         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2181                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2182         mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx);
2183         fw_desc = &rx->fw_desc;
2184         rx_desc_len = fw_desc->len;
2185 
2186         /* I have not yet seen any case where num_mpdu_ranges > 1.
2187          * qcacld does not seem handle that case either, so we introduce the
2188          * same limitiation here as well.
2189          */
2190         if (num_mpdu_ranges > 1)
2191                 ath10k_warn(ar,
2192                             "Unsupported number of MPDU ranges: %d, ignoring all but the first\n",
2193                             num_mpdu_ranges);
2194 
2195         if (mpdu_ranges->mpdu_range_status !=
2196             HTT_RX_IND_MPDU_STATUS_OK &&
2197             mpdu_ranges->mpdu_range_status !=
2198             HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) {
2199                 ath10k_warn(ar, "MPDU range status: %d\n",
2200                             mpdu_ranges->mpdu_range_status);
2201                 goto err;
2202         }
2203 
2204         rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges];
2205         rx_desc_info = __le32_to_cpu(rx_desc->info);
2206 
2207         if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST))
2208                 sec_index = HTT_TXRX_SEC_MCAST;
2209         else
2210                 sec_index = HTT_TXRX_SEC_UCAST;
2211 
2212         sec_type = peer->rx_pn[sec_index].sec_type;
2213         first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU;
2214 
2215         ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2216 
2217         if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) {
2218                 spin_lock_bh(&ar->data_lock);
2219                 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx);
2220                 spin_unlock_bh(&ar->data_lock);
2221 
2222                 if (pn_invalid)
2223                         goto err;
2224         }
2225 
2226         /* Strip off all headers before the MAC header before delivery to
2227          * mac80211
2228          */
2229         tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) +
2230                       sizeof(rx->ppdu) + sizeof(rx->prefix) +
2231                       sizeof(rx->fw_desc) +
2232                       sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len;
2233 
2234         skb_pull(skb, tot_hdr_len);
2235 
2236         hdr = (struct ieee80211_hdr *)skb->data;
2237         qos = ieee80211_is_data_qos(hdr->frame_control);
2238         rx_status = IEEE80211_SKB_RXCB(skb);
2239         rx_status->chains |= BIT(0);
2240         if (rx->ppdu.combined_rssi == 0) {
2241                 /* SDIO firmware does not provide signal */
2242                 rx_status->signal = 0;
2243                 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2244         } else {
2245                 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
2246                         rx->ppdu.combined_rssi;
2247                 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
2248         }
2249 
2250         spin_lock_bh(&ar->data_lock);
2251         ch = ar->scan_channel;
2252         if (!ch)
2253                 ch = ar->rx_channel;
2254         if (!ch)
2255                 ch = ath10k_htt_rx_h_any_channel(ar);
2256         if (!ch)
2257                 ch = ar->tgt_oper_chan;
2258         spin_unlock_bh(&ar->data_lock);
2259 
2260         if (ch) {
2261                 rx_status->band = ch->band;
2262                 rx_status->freq = ch->center_freq;
2263         }
2264         if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU)
2265                 rx_status->flag &= ~RX_FLAG_AMSDU_MORE;
2266         else
2267                 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2268 
2269         /* Not entirely sure about this, but all frames from the chipset has
2270          * the protected flag set even though they have already been decrypted.
2271          * Unmasking this flag is necessary in order for mac80211 not to drop
2272          * the frame.
2273          * TODO: Verify this is always the case or find out a way to check
2274          * if there has been hw decryption.
2275          */
2276         if (ieee80211_has_protected(hdr->frame_control)) {
2277                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2278                 rx_status->flag |= RX_FLAG_DECRYPTED |
2279                                    RX_FLAG_IV_STRIPPED |
2280                                    RX_FLAG_MMIC_STRIPPED;
2281 
2282                 if (tid < IEEE80211_NUM_TIDS &&
2283                     first_msdu &&
2284                     check_pn_type == HTT_RX_PN_CHECK &&
2285                    (sec_type == HTT_SECURITY_AES_CCMP ||
2286                     sec_type == HTT_SECURITY_TKIP ||
2287                     sec_type == HTT_SECURITY_TKIP_NOMIC)) {
2288                         u8 offset, *ivp, i;
2289                         s8 keyidx = 0;
2290                         __le64 pn48 = cpu_to_le64(new_pn.pn48);
2291 
2292                         hdr = (struct ieee80211_hdr *)skb->data;
2293                         offset = ieee80211_hdrlen(hdr->frame_control);
2294                         hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2295                         rx_status->flag &= ~RX_FLAG_IV_STRIPPED;
2296 
2297                         memmove(skb->data - IEEE80211_CCMP_HDR_LEN,
2298                                 skb->data, offset);
2299                         skb_push(skb, IEEE80211_CCMP_HDR_LEN);
2300                         ivp = skb->data + offset;
2301                         memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN);
2302                         /* Ext IV */
2303                         ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV;
2304 
2305                         for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
2306                                 if (peer->keys[i] &&
2307                                     peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE)
2308                                         keyidx = peer->keys[i]->keyidx;
2309                         }
2310 
2311                         /* Key ID */
2312                         ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6;
2313 
2314                         if (sec_type == HTT_SECURITY_AES_CCMP) {
2315                                 rx_status->flag |= RX_FLAG_MIC_STRIPPED;
2316                                 /* pn 0, pn 1 */
2317                                 memcpy(skb->data + offset, &pn48, 2);
2318                                 /* pn 1, pn 3 , pn 34 , pn 5 */
2319                                 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2320                         } else {
2321                                 rx_status->flag |= RX_FLAG_ICV_STRIPPED;
2322                                 /* TSC 0 */
2323                                 memcpy(skb->data + offset + 2, &pn48, 1);
2324                                 /* TSC 1 */
2325                                 memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1);
2326                                 /* TSC 2 , TSC 3 , TSC 4 , TSC 5*/
2327                                 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4);
2328                         }
2329                 }
2330         }
2331 
2332         if (tkip_mic_type == HTT_RX_TKIP_MIC)
2333                 rx_status->flag &= ~RX_FLAG_IV_STRIPPED &
2334                                    ~RX_FLAG_MMIC_STRIPPED;
2335 
2336         if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR)
2337                 rx_status->flag |= RX_FLAG_MMIC_ERROR;
2338 
2339         if (!qos && tid < IEEE80211_NUM_TIDS) {
2340                 u8 offset;
2341                 __le16 qos_ctrl = 0;
2342 
2343                 hdr = (struct ieee80211_hdr *)skb->data;
2344                 offset = ieee80211_hdrlen(hdr->frame_control);
2345 
2346                 hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
2347                 memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset);
2348                 skb_push(skb, IEEE80211_QOS_CTL_LEN);
2349                 qos_ctrl = cpu_to_le16(tid);
2350                 memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN);
2351         }
2352 
2353         ieee80211_rx_ni(ar->hw, skb);
2354 
2355         /* We have delivered the skb to the upper layers (mac80211) so we
2356          * must not free it.
2357          */
2358         return false;
2359 err:
2360         /* Tell the caller that it must free the skb since we have not
2361          * consumed it
2362          */
2363         return true;
2364 }
2365 
2366 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb,
2367                                                u16 head_len,
2368                                                u16 hdr_len)
2369 {
2370         u8 *ivp, *orig_hdr;
2371 
2372         orig_hdr = skb->data;
2373         ivp = orig_hdr + hdr_len + head_len;
2374 
2375         /* the ExtIV bit is always set to 1 for TKIP */
2376         if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2377                 return -EINVAL;
2378 
2379         memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2380         skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2381         skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN);
2382         return 0;
2383 }
2384 
2385 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb,
2386                                                  u16 head_len,
2387                                                  u16 hdr_len)
2388 {
2389         u8 *ivp, *orig_hdr;
2390 
2391         orig_hdr = skb->data;
2392         ivp = orig_hdr + hdr_len + head_len;
2393 
2394         /* the ExtIV bit is always set to 1 for TKIP */
2395         if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2396                 return -EINVAL;
2397 
2398         memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len);
2399         skb_pull(skb, IEEE80211_TKIP_IV_LEN);
2400         skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN);
2401         return 0;
2402 }
2403 
2404 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb,
2405                                          u16 head_len,
2406                                          u16 hdr_len)
2407 {
2408         u8 *ivp, *orig_hdr;
2409 
2410         orig_hdr = skb->data;
2411         ivp = orig_hdr + hdr_len + head_len;
2412 
2413         /* the ExtIV bit is always set to 1 for CCMP */
2414         if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV))
2415                 return -EINVAL;
2416 
2417         skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN);
2418         memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len);
2419         skb_pull(skb, IEEE80211_CCMP_HDR_LEN);
2420         return 0;
2421 }
2422 
2423 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb,
2424                                         u16 head_len,
2425                                         u16 hdr_len)
2426 {
2427         u8 *orig_hdr;
2428 
2429         orig_hdr = skb->data;
2430 
2431         memmove(orig_hdr + IEEE80211_WEP_IV_LEN,
2432                 orig_hdr, head_len + hdr_len);
2433         skb_pull(skb, IEEE80211_WEP_IV_LEN);
2434         skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);
2435         return 0;
2436 }
2437 
2438 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt,
2439                                               struct htt_rx_fragment_indication *rx,
2440                                               struct sk_buff *skb)
2441 {
2442         struct ath10k *ar = htt->ar;
2443         enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC;
2444         enum htt_txrx_sec_cast_type sec_index;
2445         struct htt_rx_indication_hl *rx_hl;
2446         enum htt_security_types sec_type;
2447         u32 tid, frag, seq, rx_desc_info;
2448         union htt_rx_pn_t new_pn = {0};
2449         struct htt_hl_rx_desc *rx_desc;
2450         u16 peer_id, sc, hdr_space;
2451         union htt_rx_pn_t *last_pn;
2452         struct ieee80211_hdr *hdr;
2453         int ret, num_mpdu_ranges;
2454         struct ath10k_peer *peer;
2455         struct htt_resp *resp;
2456         size_t tot_hdr_len;
2457 
2458         resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2459         skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN);
2460         skb_trim(skb, skb->len - FCS_LEN);
2461 
2462         peer_id = __le16_to_cpu(rx->peer_id);
2463         rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl);
2464 
2465         spin_lock_bh(&ar->data_lock);
2466         peer = ath10k_peer_find_by_id(ar, peer_id);
2467         if (!peer) {
2468                 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id);
2469                 goto err;
2470         }
2471 
2472         num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1),
2473                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2474 
2475         tot_hdr_len = sizeof(struct htt_resp_hdr) +
2476                       sizeof(rx_hl->hdr) +
2477                       sizeof(rx_hl->ppdu) +
2478                       sizeof(rx_hl->prefix) +
2479                       sizeof(rx_hl->fw_desc) +
2480                       sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges;
2481 
2482         tid =  MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2483         rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len);
2484         rx_desc_info = __le32_to_cpu(rx_desc->info);
2485 
2486         if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) {
2487                 spin_unlock_bh(&ar->data_lock);
2488                 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2489                                                     HTT_RX_NON_PN_CHECK,
2490                                                     HTT_RX_NON_TKIP_MIC);
2491         }
2492 
2493         hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len);
2494 
2495         if (ieee80211_has_retry(hdr->frame_control))
2496                 goto err;
2497 
2498         hdr_space = ieee80211_hdrlen(hdr->frame_control);
2499         sc = __le16_to_cpu(hdr->seq_ctrl);
2500         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2501         frag = sc & IEEE80211_SCTL_FRAG;
2502 
2503         sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ?
2504                     HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST;
2505         sec_type = peer->rx_pn[sec_index].sec_type;
2506         ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len);
2507 
2508         switch (sec_type) {
2509         case HTT_SECURITY_TKIP:
2510                 tkip_mic = HTT_RX_TKIP_MIC;
2511                 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb,
2512                                                             tot_hdr_len +
2513                                                             rx_hl->fw_desc.len,
2514                                                             hdr_space);
2515                 if (ret)
2516                         goto err;
2517                 break;
2518         case HTT_SECURITY_TKIP_NOMIC:
2519                 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb,
2520                                                           tot_hdr_len +
2521                                                           rx_hl->fw_desc.len,
2522                                                           hdr_space);
2523                 if (ret)
2524                         goto err;
2525                 break;
2526         case HTT_SECURITY_AES_CCMP:
2527                 ret = ath10k_htt_rx_frag_ccmp_decap(skb,
2528                                                     tot_hdr_len + rx_hl->fw_desc.len,
2529                                                     hdr_space);
2530                 if (ret)
2531                         goto err;
2532                 break;
2533         case HTT_SECURITY_WEP128:
2534         case HTT_SECURITY_WEP104:
2535         case HTT_SECURITY_WEP40:
2536                 ret = ath10k_htt_rx_frag_wep_decap(skb,
2537                                                    tot_hdr_len + rx_hl->fw_desc.len,
2538                                                    hdr_space);
2539                 if (ret)
2540                         goto err;
2541                 break;
2542         default:
2543                 break;
2544         }
2545 
2546         resp = (struct htt_resp *)(skb->data);
2547 
2548         if (sec_type != HTT_SECURITY_AES_CCMP &&
2549             sec_type != HTT_SECURITY_TKIP &&
2550             sec_type != HTT_SECURITY_TKIP_NOMIC) {
2551                 spin_unlock_bh(&ar->data_lock);
2552                 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2553                                                     HTT_RX_NON_PN_CHECK,
2554                                                     HTT_RX_NON_TKIP_MIC);
2555         }
2556 
2557         last_pn = &peer->frag_tids_last_pn[tid];
2558 
2559         if (frag == 0) {
2560                 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl))
2561                         goto err;
2562 
2563                 last_pn->pn48 = new_pn.pn48;
2564                 peer->frag_tids_seq[tid] = seq;
2565         } else if (sec_type == HTT_SECURITY_AES_CCMP) {
2566                 if (seq != peer->frag_tids_seq[tid])
2567                         goto err;
2568 
2569                 if (new_pn.pn48 != last_pn->pn48 + 1)
2570                         goto err;
2571 
2572                 last_pn->pn48 = new_pn.pn48;
2573                 last_pn = &peer->tids_last_pn[tid];
2574                 last_pn->pn48 = new_pn.pn48;
2575         }
2576 
2577         spin_unlock_bh(&ar->data_lock);
2578 
2579         return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb,
2580                                             HTT_RX_NON_PN_CHECK, tkip_mic);
2581 
2582 err:
2583         spin_unlock_bh(&ar->data_lock);
2584 
2585         /* Tell the caller that it must free the skb since we have not
2586          * consumed it
2587          */
2588         return true;
2589 }
2590 
2591 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt,
2592                                          struct htt_rx_indication *rx)
2593 {
2594         struct ath10k *ar = htt->ar;
2595         struct htt_rx_indication_mpdu_range *mpdu_ranges;
2596         int num_mpdu_ranges;
2597         int i, mpdu_count = 0;
2598         u16 peer_id;
2599         u8 tid;
2600 
2601         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
2602                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
2603         peer_id = __le16_to_cpu(rx->hdr.peer_id);
2604         tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
2605 
2606         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
2607 
2608         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
2609                         rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges));
2610 
2611         for (i = 0; i < num_mpdu_ranges; i++)
2612                 mpdu_count += mpdu_ranges[i].mpdu_count;
2613 
2614         atomic_add(mpdu_count, &htt->num_mpdus_ready);
2615 
2616         ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
2617                                              num_mpdu_ranges);
2618 }
2619 
2620 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
2621                                        struct sk_buff *skb)
2622 {
2623         struct ath10k_htt *htt = &ar->htt;
2624         struct htt_resp *resp = (struct htt_resp *)skb->data;
2625         struct htt_tx_done tx_done = {};
2626         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
2627         __le16 msdu_id, *msdus;
2628         bool rssi_enabled = false;
2629         u8 msdu_count = 0, num_airtime_records, tid;
2630         int i, htt_pad = 0;
2631         struct htt_data_tx_compl_ppdu_dur *ppdu_info;
2632         struct ath10k_peer *peer;
2633         u16 ppdu_info_offset = 0, peer_id;
2634         u32 tx_duration;
2635 
2636         switch (status) {
2637         case HTT_DATA_TX_STATUS_NO_ACK:
2638                 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2639                 break;
2640         case HTT_DATA_TX_STATUS_OK:
2641                 tx_done.status = HTT_TX_COMPL_STATE_ACK;
2642                 break;
2643         case HTT_DATA_TX_STATUS_DISCARD:
2644         case HTT_DATA_TX_STATUS_POSTPONE:
2645         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
2646                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2647                 break;
2648         default:
2649                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
2650                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2651                 break;
2652         }
2653 
2654         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
2655                    resp->data_tx_completion.num_msdus);
2656 
2657         msdu_count = resp->data_tx_completion.num_msdus;
2658         msdus = resp->data_tx_completion.msdus;
2659         rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp);
2660 
2661         if (rssi_enabled)
2662                 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params,
2663                                                             resp);
2664 
2665         for (i = 0; i < msdu_count; i++) {
2666                 msdu_id = msdus[i];
2667                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
2668 
2669                 if (rssi_enabled) {
2670                         /* Total no of MSDUs should be even,
2671                          * if odd MSDUs are sent firmware fills
2672                          * last msdu id with 0xffff
2673                          */
2674                         if (msdu_count & 0x01) {
2675                                 msdu_id = msdus[msdu_count +  i + 1 + htt_pad];
2676                                 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2677                         } else {
2678                                 msdu_id = msdus[msdu_count +  i + htt_pad];
2679                                 tx_done.ack_rssi = __le16_to_cpu(msdu_id);
2680                         }
2681                 }
2682 
2683                 /* kfifo_put: In practice firmware shouldn't fire off per-CE
2684                  * interrupt and main interrupt (MSI/-X range case) for the same
2685                  * HTC service so it should be safe to use kfifo_put w/o lock.
2686                  *
2687                  * From kfifo_put() documentation:
2688                  *  Note that with only one concurrent reader and one concurrent
2689                  *  writer, you don't need extra locking to use these macro.
2690                  */
2691                 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) {
2692                         ath10k_txrx_tx_unref(htt, &tx_done);
2693                 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
2694                         ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
2695                                     tx_done.msdu_id, tx_done.status);
2696                         ath10k_txrx_tx_unref(htt, &tx_done);
2697                 }
2698         }
2699 
2700         if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT))
2701                 return;
2702 
2703         ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count;
2704 
2705         if (rssi_enabled)
2706                 ppdu_info_offset += ppdu_info_offset;
2707 
2708         if (resp->data_tx_completion.flags2 &
2709             (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT))
2710                 ppdu_info_offset += 2;
2711 
2712         ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset];
2713         num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK,
2714                                         __le32_to_cpu(ppdu_info->info0));
2715 
2716         for (i = 0; i < num_airtime_records; i++) {
2717                 struct htt_data_tx_ppdu_dur *ppdu_dur;
2718                 u32 info0;
2719 
2720                 ppdu_dur = &ppdu_info->ppdu_dur[i];
2721                 info0 = __le32_to_cpu(ppdu_dur->info0);
2722 
2723                 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK,
2724                                     info0);
2725                 rcu_read_lock();
2726                 spin_lock_bh(&ar->data_lock);
2727 
2728                 peer = ath10k_peer_find_by_id(ar, peer_id);
2729                 if (!peer || !peer->sta) {
2730                         spin_unlock_bh(&ar->data_lock);
2731                         rcu_read_unlock();
2732                         continue;
2733                 }
2734 
2735                 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0);
2736                 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration);
2737 
2738                 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0);
2739 
2740                 spin_unlock_bh(&ar->data_lock);
2741                 rcu_read_unlock();
2742         }
2743 }
2744 
2745 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
2746 {
2747         struct htt_rx_addba *ev = &resp->rx_addba;
2748         struct ath10k_peer *peer;
2749         struct ath10k_vif *arvif;
2750         u16 info0, tid, peer_id;
2751 
2752         info0 = __le16_to_cpu(ev->info0);
2753         tid = MS(info0, HTT_RX_BA_INFO0_TID);
2754         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2755 
2756         ath10k_dbg(ar, ATH10K_DBG_HTT,
2757                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
2758                    tid, peer_id, ev->window_size);
2759 
2760         spin_lock_bh(&ar->data_lock);
2761         peer = ath10k_peer_find_by_id(ar, peer_id);
2762         if (!peer) {
2763                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2764                             peer_id);
2765                 spin_unlock_bh(&ar->data_lock);
2766                 return;
2767         }
2768 
2769         arvif = ath10k_get_arvif(ar, peer->vdev_id);
2770         if (!arvif) {
2771                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2772                             peer->vdev_id);
2773                 spin_unlock_bh(&ar->data_lock);
2774                 return;
2775         }
2776 
2777         ath10k_dbg(ar, ATH10K_DBG_HTT,
2778                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
2779                    peer->addr, tid, ev->window_size);
2780 
2781         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2782         spin_unlock_bh(&ar->data_lock);
2783 }
2784 
2785 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
2786 {
2787         struct htt_rx_delba *ev = &resp->rx_delba;
2788         struct ath10k_peer *peer;
2789         struct ath10k_vif *arvif;
2790         u16 info0, tid, peer_id;
2791 
2792         info0 = __le16_to_cpu(ev->info0);
2793         tid = MS(info0, HTT_RX_BA_INFO0_TID);
2794         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
2795 
2796         ath10k_dbg(ar, ATH10K_DBG_HTT,
2797                    "htt rx delba tid %hu peer_id %hu\n",
2798                    tid, peer_id);
2799 
2800         spin_lock_bh(&ar->data_lock);
2801         peer = ath10k_peer_find_by_id(ar, peer_id);
2802         if (!peer) {
2803                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
2804                             peer_id);
2805                 spin_unlock_bh(&ar->data_lock);
2806                 return;
2807         }
2808 
2809         arvif = ath10k_get_arvif(ar, peer->vdev_id);
2810         if (!arvif) {
2811                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
2812                             peer->vdev_id);
2813                 spin_unlock_bh(&ar->data_lock);
2814                 return;
2815         }
2816 
2817         ath10k_dbg(ar, ATH10K_DBG_HTT,
2818                    "htt rx stop rx ba session sta %pM tid %hu\n",
2819                    peer->addr, tid);
2820 
2821         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2822         spin_unlock_bh(&ar->data_lock);
2823 }
2824 
2825 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2826                                        struct sk_buff_head *amsdu)
2827 {
2828         struct sk_buff *msdu;
2829         struct htt_rx_desc *rxd;
2830 
2831         if (skb_queue_empty(list))
2832                 return -ENOBUFS;
2833 
2834         if (WARN_ON(!skb_queue_empty(amsdu)))
2835                 return -EINVAL;
2836 
2837         while ((msdu = __skb_dequeue(list))) {
2838                 __skb_queue_tail(amsdu, msdu);
2839 
2840                 rxd = (void *)msdu->data - sizeof(*rxd);
2841                 if (rxd->msdu_end.common.info0 &
2842                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2843                         break;
2844         }
2845 
2846         msdu = skb_peek_tail(amsdu);
2847         rxd = (void *)msdu->data - sizeof(*rxd);
2848         if (!(rxd->msdu_end.common.info0 &
2849               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2850                 skb_queue_splice_init(amsdu, list);
2851                 return -EAGAIN;
2852         }
2853 
2854         return 0;
2855 }
2856 
2857 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2858                                             struct sk_buff *skb)
2859 {
2860         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2861 
2862         if (!ieee80211_has_protected(hdr->frame_control))
2863                 return;
2864 
2865         /* Offloaded frames are already decrypted but firmware insists they are
2866          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2867          * will drop the frame.
2868          */
2869 
2870         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2871         status->flag |= RX_FLAG_DECRYPTED |
2872                         RX_FLAG_IV_STRIPPED |
2873                         RX_FLAG_MMIC_STRIPPED;
2874 }
2875 
2876 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2877                                        struct sk_buff_head *list)
2878 {
2879         struct ath10k_htt *htt = &ar->htt;
2880         struct ieee80211_rx_status *status = &htt->rx_status;
2881         struct htt_rx_offload_msdu *rx;
2882         struct sk_buff *msdu;
2883         size_t offset;
2884 
2885         while ((msdu = __skb_dequeue(list))) {
2886                 /* Offloaded frames don't have Rx descriptor. Instead they have
2887                  * a short meta information header.
2888                  */
2889 
2890                 rx = (void *)msdu->data;
2891 
2892                 skb_put(msdu, sizeof(*rx));
2893                 skb_pull(msdu, sizeof(*rx));
2894 
2895                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2896                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2897                         dev_kfree_skb_any(msdu);
2898                         continue;
2899                 }
2900 
2901                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2902 
2903                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
2904                  * actual payload is unaligned. Align the frame.  Otherwise
2905                  * mac80211 complains.  This shouldn't reduce performance much
2906                  * because these offloaded frames are rare.
2907                  */
2908                 offset = 4 - ((unsigned long)msdu->data & 3);
2909                 skb_put(msdu, offset);
2910                 memmove(msdu->data + offset, msdu->data, msdu->len);
2911                 skb_pull(msdu, offset);
2912 
2913                 /* FIXME: The frame is NWifi. Re-construct QoS Control
2914                  * if possible later.
2915                  */
2916 
2917                 memset(status, 0, sizeof(*status));
2918                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2919 
2920                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2921                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2922                 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2923         }
2924 }
2925 
2926 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2927 {
2928         struct ath10k_htt *htt = &ar->htt;
2929         struct htt_resp *resp = (void *)skb->data;
2930         struct ieee80211_rx_status *status = &htt->rx_status;
2931         struct sk_buff_head list;
2932         struct sk_buff_head amsdu;
2933         u16 peer_id;
2934         u16 msdu_count;
2935         u8 vdev_id;
2936         u8 tid;
2937         bool offload;
2938         bool frag;
2939         int ret;
2940 
2941         lockdep_assert_held(&htt->rx_ring.lock);
2942 
2943         if (htt->rx_confused)
2944                 return -EIO;
2945 
2946         skb_pull(skb, sizeof(resp->hdr));
2947         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2948 
2949         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2950         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2951         vdev_id = resp->rx_in_ord_ind.vdev_id;
2952         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2953         offload = !!(resp->rx_in_ord_ind.info &
2954                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2955         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2956 
2957         ath10k_dbg(ar, ATH10K_DBG_HTT,
2958                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2959                    vdev_id, peer_id, tid, offload, frag, msdu_count);
2960 
2961         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2962                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
2963                 return -EINVAL;
2964         }
2965 
2966         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2967          * extracted and processed.
2968          */
2969         __skb_queue_head_init(&list);
2970         if (ar->hw_params.target_64bit)
2971                 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2972                                                      &list);
2973         else
2974                 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2975                                                      &list);
2976 
2977         if (ret < 0) {
2978                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2979                 htt->rx_confused = true;
2980                 return -EIO;
2981         }
2982 
2983         /* Offloaded frames are very different and need to be handled
2984          * separately.
2985          */
2986         if (offload)
2987                 ath10k_htt_rx_h_rx_offload(ar, &list);
2988 
2989         while (!skb_queue_empty(&list)) {
2990                 __skb_queue_head_init(&amsdu);
2991                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2992                 switch (ret) {
2993                 case 0:
2994                         /* Note: The in-order indication may report interleaved
2995                          * frames from different PPDUs meaning reported rx rate
2996                          * to mac80211 isn't accurate/reliable. It's still
2997                          * better to report something than nothing though. This
2998                          * should still give an idea about rx rate to the user.
2999                          */
3000                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
3001                         ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
3002                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
3003                                              NULL);
3004                         ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
3005                         break;
3006                 case -EAGAIN:
3007                         /* fall through */
3008                 default:
3009                         /* Should not happen. */
3010                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
3011                         htt->rx_confused = true;
3012                         __skb_queue_purge(&list);
3013                         return -EIO;
3014                 }
3015         }
3016         return ret;
3017 }
3018 
3019 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
3020                                                    const __le32 *resp_ids,
3021                                                    int num_resp_ids)
3022 {
3023         int i;
3024         u32 resp_id;
3025 
3026         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
3027                    num_resp_ids);
3028 
3029         for (i = 0; i < num_resp_ids; i++) {
3030                 resp_id = le32_to_cpu(resp_ids[i]);
3031 
3032                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
3033                            resp_id);
3034 
3035                 /* TODO: free resp_id */
3036         }
3037 }
3038 
3039 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
3040 {
3041         struct ieee80211_hw *hw = ar->hw;
3042         struct ieee80211_txq *txq;
3043         struct htt_resp *resp = (struct htt_resp *)skb->data;
3044         struct htt_tx_fetch_record *record;
3045         size_t len;
3046         size_t max_num_bytes;
3047         size_t max_num_msdus;
3048         size_t num_bytes;
3049         size_t num_msdus;
3050         const __le32 *resp_ids;
3051         u16 num_records;
3052         u16 num_resp_ids;
3053         u16 peer_id;
3054         u8 tid;
3055         int ret;
3056         int i;
3057         bool may_tx;
3058 
3059         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
3060 
3061         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
3062         if (unlikely(skb->len < len)) {
3063                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
3064                 return;
3065         }
3066 
3067         num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
3068         num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
3069 
3070         len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
3071         len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
3072 
3073         if (unlikely(skb->len < len)) {
3074                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
3075                 return;
3076         }
3077 
3078         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
3079                    num_records, num_resp_ids,
3080                    le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
3081 
3082         if (!ar->htt.tx_q_state.enabled) {
3083                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
3084                 return;
3085         }
3086 
3087         if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
3088                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
3089                 return;
3090         }
3091 
3092         rcu_read_lock();
3093 
3094         for (i = 0; i < num_records; i++) {
3095                 record = &resp->tx_fetch_ind.records[i];
3096                 peer_id = MS(le16_to_cpu(record->info),
3097                              HTT_TX_FETCH_RECORD_INFO_PEER_ID);
3098                 tid = MS(le16_to_cpu(record->info),
3099                          HTT_TX_FETCH_RECORD_INFO_TID);
3100                 max_num_msdus = le16_to_cpu(record->num_msdus);
3101                 max_num_bytes = le32_to_cpu(record->num_bytes);
3102 
3103                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
3104                            i, peer_id, tid, max_num_msdus, max_num_bytes);
3105 
3106                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3107                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3108                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
3109                                     peer_id, tid);
3110                         continue;
3111                 }
3112 
3113                 spin_lock_bh(&ar->data_lock);
3114                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3115                 spin_unlock_bh(&ar->data_lock);
3116 
3117                 /* It is okay to release the lock and use txq because RCU read
3118                  * lock is held.
3119                  */
3120 
3121                 if (unlikely(!txq)) {
3122                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
3123                                     peer_id, tid);
3124                         continue;
3125                 }
3126 
3127                 num_msdus = 0;
3128                 num_bytes = 0;
3129 
3130                 ieee80211_txq_schedule_start(hw, txq->ac);
3131                 may_tx = ieee80211_txq_may_transmit(hw, txq);
3132                 while (num_msdus < max_num_msdus &&
3133                        num_bytes < max_num_bytes) {
3134                         if (!may_tx)
3135                                 break;
3136 
3137                         ret = ath10k_mac_tx_push_txq(hw, txq);
3138                         if (ret < 0)
3139                                 break;
3140 
3141                         num_msdus++;
3142                         num_bytes += ret;
3143                 }
3144                 ieee80211_return_txq(hw, txq, false);
3145                 ieee80211_txq_schedule_end(hw, txq->ac);
3146 
3147                 record->num_msdus = cpu_to_le16(num_msdus);
3148                 record->num_bytes = cpu_to_le32(num_bytes);
3149 
3150                 ath10k_htt_tx_txq_recalc(hw, txq);
3151         }
3152 
3153         rcu_read_unlock();
3154 
3155         resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
3156         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
3157 
3158         ret = ath10k_htt_tx_fetch_resp(ar,
3159                                        resp->tx_fetch_ind.token,
3160                                        resp->tx_fetch_ind.fetch_seq_num,
3161                                        resp->tx_fetch_ind.records,
3162                                        num_records);
3163         if (unlikely(ret)) {
3164                 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
3165                             le32_to_cpu(resp->tx_fetch_ind.token), ret);
3166                 /* FIXME: request fw restart */
3167         }
3168 
3169         ath10k_htt_tx_txq_sync(ar);
3170 }
3171 
3172 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
3173                                            struct sk_buff *skb)
3174 {
3175         const struct htt_resp *resp = (void *)skb->data;
3176         size_t len;
3177         int num_resp_ids;
3178 
3179         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
3180 
3181         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
3182         if (unlikely(skb->len < len)) {
3183                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
3184                 return;
3185         }
3186 
3187         num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
3188         len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
3189 
3190         if (unlikely(skb->len < len)) {
3191                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
3192                 return;
3193         }
3194 
3195         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
3196                                                resp->tx_fetch_confirm.resp_ids,
3197                                                num_resp_ids);
3198 }
3199 
3200 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
3201                                              struct sk_buff *skb)
3202 {
3203         const struct htt_resp *resp = (void *)skb->data;
3204         const struct htt_tx_mode_switch_record *record;
3205         struct ieee80211_txq *txq;
3206         struct ath10k_txq *artxq;
3207         size_t len;
3208         size_t num_records;
3209         enum htt_tx_mode_switch_mode mode;
3210         bool enable;
3211         u16 info0;
3212         u16 info1;
3213         u16 threshold;
3214         u16 peer_id;
3215         u8 tid;
3216         int i;
3217 
3218         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
3219 
3220         len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
3221         if (unlikely(skb->len < len)) {
3222                 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
3223                 return;
3224         }
3225 
3226         info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
3227         info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
3228 
3229         enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
3230         num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3231         mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
3232         threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
3233 
3234         ath10k_dbg(ar, ATH10K_DBG_HTT,
3235                    "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
3236                    info0, info1, enable, num_records, mode, threshold);
3237 
3238         len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
3239 
3240         if (unlikely(skb->len < len)) {
3241                 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
3242                 return;
3243         }
3244 
3245         switch (mode) {
3246         case HTT_TX_MODE_SWITCH_PUSH:
3247         case HTT_TX_MODE_SWITCH_PUSH_PULL:
3248                 break;
3249         default:
3250                 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
3251                             mode);
3252                 return;
3253         }
3254 
3255         if (!enable)
3256                 return;
3257 
3258         ar->htt.tx_q_state.enabled = enable;
3259         ar->htt.tx_q_state.mode = mode;
3260         ar->htt.tx_q_state.num_push_allowed = threshold;
3261 
3262         rcu_read_lock();
3263 
3264         for (i = 0; i < num_records; i++) {
3265                 record = &resp->tx_mode_switch_ind.records[i];
3266                 info0 = le16_to_cpu(record->info0);
3267                 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
3268                 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
3269 
3270                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
3271                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
3272                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
3273                                     peer_id, tid);
3274                         continue;
3275                 }
3276 
3277                 spin_lock_bh(&ar->data_lock);
3278                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
3279                 spin_unlock_bh(&ar->data_lock);
3280 
3281                 /* It is okay to release the lock and use txq because RCU read
3282                  * lock is held.
3283                  */
3284 
3285                 if (unlikely(!txq)) {
3286                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
3287                                     peer_id, tid);
3288                         continue;
3289                 }
3290 
3291                 spin_lock_bh(&ar->htt.tx_lock);
3292                 artxq = (void *)txq->drv_priv;
3293                 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
3294                 spin_unlock_bh(&ar->htt.tx_lock);
3295         }
3296 
3297         rcu_read_unlock();
3298 
3299         ath10k_mac_tx_push_pending(ar);
3300 }
3301 
3302 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3303 {
3304         bool release;
3305 
3306         release = ath10k_htt_t2h_msg_handler(ar, skb);
3307 
3308         /* Free the indication buffer */
3309         if (release)
3310                 dev_kfree_skb_any(skb);
3311 }
3312 
3313 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate)
3314 {
3315         static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
3316                                           18, 24, 36, 48, 54};
3317         int i;
3318 
3319         for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
3320                 if (rate == legacy_rates[i])
3321                         return i;
3322         }
3323 
3324         ath10k_warn(ar, "Invalid legacy rate %hhd peer stats", rate);
3325         return -EINVAL;
3326 }
3327 
3328 static void
3329 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar,
3330                                     struct ath10k_sta *arsta,
3331                                     struct ath10k_per_peer_tx_stats *pstats,
3332                                     s8 legacy_rate_idx)
3333 {
3334         struct rate_info *txrate = &arsta->txrate;
3335         struct ath10k_htt_tx_stats *tx_stats;
3336         int idx, ht_idx, gi, mcs, bw, nss;
3337         unsigned long flags;
3338 
3339         if (!arsta->tx_stats)
3340                 return;
3341 
3342         tx_stats = arsta->tx_stats;
3343         flags = txrate->flags;
3344         gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags);
3345         mcs = ATH10K_HW_MCS_RATE(pstats->ratecode);
3346         bw = txrate->bw;
3347         nss = txrate->nss;
3348         ht_idx = mcs + (nss - 1) * 8;
3349         idx = mcs * 8 + 8 * 10 * (nss - 1);
3350         idx += bw * 2 + gi;
3351 
3352 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name]
3353 
3354         if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) {
3355                 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes;
3356                 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts;
3357                 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes;
3358                 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts;
3359                 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes;
3360                 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts;
3361         } else if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3362                 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes;
3363                 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts;
3364                 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes;
3365                 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts;
3366                 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes;
3367                 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts;
3368         } else {
3369                 mcs = legacy_rate_idx;
3370 
3371                 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes;
3372                 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts;
3373                 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes;
3374                 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts;
3375                 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes;
3376                 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts;
3377         }
3378 
3379         if (ATH10K_HW_AMPDU(pstats->flags)) {
3380                 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags);
3381 
3382                 if (txrate->flags & RATE_INFO_FLAGS_MCS) {
3383                         STATS_OP_FMT(AMPDU).ht[0][ht_idx] +=
3384                                 pstats->succ_bytes + pstats->retry_bytes;
3385                         STATS_OP_FMT(AMPDU).ht[1][ht_idx] +=
3386                                 pstats->succ_pkts + pstats->retry_pkts;
3387                 } else {
3388                         STATS_OP_FMT(AMPDU).vht[0][mcs] +=
3389                                 pstats->succ_bytes + pstats->retry_bytes;
3390                         STATS_OP_FMT(AMPDU).vht[1][mcs] +=
3391                                 pstats->succ_pkts + pstats->retry_pkts;
3392                 }
3393                 STATS_OP_FMT(AMPDU).bw[0][bw] +=
3394                         pstats->succ_bytes + pstats->retry_bytes;
3395                 STATS_OP_FMT(AMPDU).nss[0][nss - 1] +=
3396                         pstats->succ_bytes + pstats->retry_bytes;
3397                 STATS_OP_FMT(AMPDU).gi[0][gi] +=
3398                         pstats->succ_bytes + pstats->retry_bytes;
3399                 STATS_OP_FMT(AMPDU).rate_table[0][idx] +=
3400                         pstats->succ_bytes + pstats->retry_bytes;
3401                 STATS_OP_FMT(AMPDU).bw[1][bw] +=
3402                         pstats->succ_pkts + pstats->retry_pkts;
3403                 STATS_OP_FMT(AMPDU).nss[1][nss - 1] +=
3404                         pstats->succ_pkts + pstats->retry_pkts;
3405                 STATS_OP_FMT(AMPDU).gi[1][gi] +=
3406                         pstats->succ_pkts + pstats->retry_pkts;
3407                 STATS_OP_FMT(AMPDU).rate_table[1][idx] +=
3408                         pstats->succ_pkts + pstats->retry_pkts;
3409         } else {
3410                 tx_stats->ack_fails +=
3411                                 ATH10K_HW_BA_FAIL(pstats->flags);
3412         }
3413 
3414         STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes;
3415         STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes;
3416         STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes;
3417 
3418         STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts;
3419         STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts;
3420         STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts;
3421 
3422         STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes;
3423         STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes;
3424         STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes;
3425 
3426         STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts;
3427         STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts;
3428         STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts;
3429 
3430         STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes;
3431         STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes;
3432         STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes;
3433 
3434         STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts;
3435         STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts;
3436         STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts;
3437 
3438         if (txrate->flags >= RATE_INFO_FLAGS_MCS) {
3439                 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes;
3440                 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts;
3441                 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes;
3442                 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts;
3443                 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes;
3444                 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts;
3445         }
3446 
3447         tx_stats->tx_duration += pstats->duration;
3448 }
3449 
3450 static void
3451 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
3452                                 struct ieee80211_sta *sta,
3453                                 struct ath10k_per_peer_tx_stats *peer_stats)
3454 {
3455         struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3456         struct ieee80211_chanctx_conf *conf = NULL;
3457         u8 rate = 0, sgi;
3458         s8 rate_idx = 0;
3459         bool skip_auto_rate;
3460         struct rate_info txrate;
3461 
3462         lockdep_assert_held(&ar->data_lock);
3463 
3464         txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
3465         txrate.bw = ATH10K_HW_BW(peer_stats->flags);
3466         txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
3467         txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
3468         sgi = ATH10K_HW_GI(peer_stats->flags);
3469         skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags);
3470 
3471         /* Firmware's rate control skips broadcast/management frames,
3472          * if host has configure fixed rates and in some other special cases.
3473          */
3474         if (skip_auto_rate)
3475                 return;
3476 
3477         if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
3478                 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
3479                 return;
3480         }
3481 
3482         if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
3483             (txrate.mcs > 7 || txrate.nss < 1)) {
3484                 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
3485                             txrate.mcs, txrate.nss);
3486                 return;
3487         }
3488 
3489         memset(&arsta->txrate, 0, sizeof(arsta->txrate));
3490         memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status));
3491         if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
3492             txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
3493                 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
3494                 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
3495                 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
3496                         rate = 5;
3497                 rate_idx = ath10k_get_legacy_rate_idx(ar, rate);
3498                 if (rate_idx < 0)
3499                         return;
3500                 arsta->txrate.legacy = rate;
3501         } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
3502                 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
3503                 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
3504         } else {
3505                 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
3506                 arsta->txrate.mcs = txrate.mcs;
3507         }
3508 
3509         switch (txrate.flags) {
3510         case WMI_RATE_PREAMBLE_OFDM:
3511                 if (arsta->arvif && arsta->arvif->vif)
3512                         conf = rcu_dereference(arsta->arvif->vif->chanctx_conf);
3513                 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ)
3514                         arsta->tx_info.status.rates[0].idx = rate_idx - 4;
3515                 break;
3516         case WMI_RATE_PREAMBLE_CCK:
3517                 arsta->tx_info.status.rates[0].idx = rate_idx;
3518                 if (sgi)
3519                         arsta->tx_info.status.rates[0].flags |=
3520                                 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE |
3521                                  IEEE80211_TX_RC_SHORT_GI);
3522                 break;
3523         case WMI_RATE_PREAMBLE_HT:
3524                 arsta->tx_info.status.rates[0].idx =
3525                                 txrate.mcs + ((txrate.nss - 1) * 8);
3526                 if (sgi)
3527                         arsta->tx_info.status.rates[0].flags |=
3528                                         IEEE80211_TX_RC_SHORT_GI;
3529                 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS;
3530                 break;
3531         case WMI_RATE_PREAMBLE_VHT:
3532                 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0],
3533                                        txrate.mcs, txrate.nss);
3534                 if (sgi)
3535                         arsta->tx_info.status.rates[0].flags |=
3536                                                 IEEE80211_TX_RC_SHORT_GI;
3537                 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS;
3538                 break;
3539         }
3540 
3541         arsta->txrate.nss = txrate.nss;
3542         arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
3543         arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate);
3544         if (sgi)
3545                 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
3546 
3547         switch (arsta->txrate.bw) {
3548         case RATE_INFO_BW_40:
3549                 arsta->tx_info.status.rates[0].flags |=
3550                                 IEEE80211_TX_RC_40_MHZ_WIDTH;
3551                 break;
3552         case RATE_INFO_BW_80:
3553                 arsta->tx_info.status.rates[0].flags |=
3554                                 IEEE80211_TX_RC_80_MHZ_WIDTH;
3555                 break;
3556         }
3557 
3558         if (peer_stats->succ_pkts) {
3559                 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK;
3560                 arsta->tx_info.status.rates[0].count = 1;
3561                 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info);
3562         }
3563 
3564         if (ath10k_debug_is_extd_tx_stats_enabled(ar))
3565                 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats,
3566                                                     rate_idx);
3567 }
3568 
3569 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
3570                                         struct sk_buff *skb)
3571 {
3572         struct htt_resp *resp = (struct htt_resp *)skb->data;
3573         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3574         struct htt_per_peer_tx_stats_ind *tx_stats;
3575         struct ieee80211_sta *sta;
3576         struct ath10k_peer *peer;
3577         int peer_id, i;
3578         u8 ppdu_len, num_ppdu;
3579 
3580         num_ppdu = resp->peer_tx_stats.num_ppdu;
3581         ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
3582 
3583         if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
3584                 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
3585                 return;
3586         }
3587 
3588         tx_stats = (struct htt_per_peer_tx_stats_ind *)
3589                         (resp->peer_tx_stats.payload);
3590         peer_id = __le16_to_cpu(tx_stats->peer_id);
3591 
3592         rcu_read_lock();
3593         spin_lock_bh(&ar->data_lock);
3594         peer = ath10k_peer_find_by_id(ar, peer_id);
3595         if (!peer || !peer->sta) {
3596                 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
3597                             peer_id);
3598                 goto out;
3599         }
3600 
3601         sta = peer->sta;
3602         for (i = 0; i < num_ppdu; i++) {
3603                 tx_stats = (struct htt_per_peer_tx_stats_ind *)
3604                            (resp->peer_tx_stats.payload + i * ppdu_len);
3605 
3606                 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
3607                 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
3608                 p_tx_stats->failed_bytes =
3609                                 __le32_to_cpu(tx_stats->failed_bytes);
3610                 p_tx_stats->ratecode = tx_stats->ratecode;
3611                 p_tx_stats->flags = tx_stats->flags;
3612                 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
3613                 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
3614                 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
3615                 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration);
3616 
3617                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3618         }
3619 
3620 out:
3621         spin_unlock_bh(&ar->data_lock);
3622         rcu_read_unlock();
3623 }
3624 
3625 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
3626 {
3627         struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
3628         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
3629         struct ath10k_10_2_peer_tx_stats *tx_stats;
3630         struct ieee80211_sta *sta;
3631         struct ath10k_peer *peer;
3632         u16 log_type = __le16_to_cpu(hdr->log_type);
3633         u32 peer_id = 0, i;
3634 
3635         if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
3636                 return;
3637 
3638         tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
3639                     ATH10K_10_2_TX_STATS_OFFSET);
3640 
3641         if (!tx_stats->tx_ppdu_cnt)
3642                 return;
3643 
3644         peer_id = tx_stats->peer_id;
3645 
3646         rcu_read_lock();
3647         spin_lock_bh(&ar->data_lock);
3648         peer = ath10k_peer_find_by_id(ar, peer_id);
3649         if (!peer || !peer->sta) {
3650                 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
3651                             peer_id);
3652                 goto out;
3653         }
3654 
3655         sta = peer->sta;
3656         for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
3657                 p_tx_stats->succ_bytes =
3658                         __le16_to_cpu(tx_stats->success_bytes[i]);
3659                 p_tx_stats->retry_bytes =
3660                         __le16_to_cpu(tx_stats->retry_bytes[i]);
3661                 p_tx_stats->failed_bytes =
3662                         __le16_to_cpu(tx_stats->failed_bytes[i]);
3663                 p_tx_stats->ratecode = tx_stats->ratecode[i];
3664                 p_tx_stats->flags = tx_stats->flags[i];
3665                 p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
3666                 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
3667                 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
3668 
3669                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
3670         }
3671         spin_unlock_bh(&ar->data_lock);
3672         rcu_read_unlock();
3673 
3674         return;
3675 
3676 out:
3677         spin_unlock_bh(&ar->data_lock);
3678         rcu_read_unlock();
3679 }
3680 
3681 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type)
3682 {
3683         switch (sec_type) {
3684         case HTT_SECURITY_TKIP:
3685         case HTT_SECURITY_TKIP_NOMIC:
3686         case HTT_SECURITY_AES_CCMP:
3687                 return 48;
3688         default:
3689                 return 0;
3690         }
3691 }
3692 
3693 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar,
3694                                           struct htt_security_indication *ev)
3695 {
3696         enum htt_txrx_sec_cast_type sec_index;
3697         enum htt_security_types sec_type;
3698         struct ath10k_peer *peer;
3699 
3700         spin_lock_bh(&ar->data_lock);
3701 
3702         peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id));
3703         if (!peer) {
3704                 ath10k_warn(ar, "failed to find peer id %d for security indication",
3705                             __le16_to_cpu(ev->peer_id));
3706                 goto out;
3707         }
3708 
3709         sec_type = MS(ev->flags, HTT_SECURITY_TYPE);
3710 
3711         if (ev->flags & HTT_SECURITY_IS_UNICAST)
3712                 sec_index = HTT_TXRX_SEC_UCAST;
3713         else
3714                 sec_index = HTT_TXRX_SEC_MCAST;
3715 
3716         peer->rx_pn[sec_index].sec_type = sec_type;
3717         peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type);
3718 
3719         memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid));
3720         memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn));
3721 
3722 out:
3723         spin_unlock_bh(&ar->data_lock);
3724 }
3725 
3726 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
3727 {
3728         struct ath10k_htt *htt = &ar->htt;
3729         struct htt_resp *resp = (struct htt_resp *)skb->data;
3730         enum htt_t2h_msg_type type;
3731 
3732         /* confirm alignment */
3733         if (!IS_ALIGNED((unsigned long)skb->data, 4))
3734                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
3735 
3736         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
3737                    resp->hdr.msg_type);
3738 
3739         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
3740                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
3741                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
3742                 return true;
3743         }
3744         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
3745 
3746         switch (type) {
3747         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
3748                 htt->target_version_major = resp->ver_resp.major;
3749                 htt->target_version_minor = resp->ver_resp.minor;
3750                 complete(&htt->target_version_received);
3751                 break;
3752         }
3753         case HTT_T2H_MSG_TYPE_RX_IND:
3754                 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
3755                         return ath10k_htt_rx_proc_rx_ind_hl(htt,
3756                                                             &resp->rx_ind_hl,
3757                                                             skb,
3758                                                             HTT_RX_PN_CHECK,
3759                                                             HTT_RX_NON_TKIP_MIC);
3760                 else
3761                         ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind);
3762                 break;
3763         case HTT_T2H_MSG_TYPE_PEER_MAP: {
3764                 struct htt_peer_map_event ev = {
3765                         .vdev_id = resp->peer_map.vdev_id,
3766                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
3767                 };
3768                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
3769                 ath10k_peer_map_event(htt, &ev);
3770                 break;
3771         }
3772         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
3773                 struct htt_peer_unmap_event ev = {
3774                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
3775                 };
3776                 ath10k_peer_unmap_event(htt, &ev);
3777                 break;
3778         }
3779         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
3780                 struct htt_tx_done tx_done = {};
3781                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
3782                 int info = __le32_to_cpu(resp->mgmt_tx_completion.info);
3783 
3784                 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
3785 
3786                 switch (status) {
3787                 case HTT_MGMT_TX_STATUS_OK:
3788                         tx_done.status = HTT_TX_COMPL_STATE_ACK;
3789                         if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS,
3790                                      ar->wmi.svc_map) &&
3791                             (resp->mgmt_tx_completion.flags &
3792                              HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) {
3793                                 tx_done.ack_rssi =
3794                                 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK,
3795                                           info);
3796                         }
3797                         break;
3798                 case HTT_MGMT_TX_STATUS_RETRY:
3799                         tx_done.status = HTT_TX_COMPL_STATE_NOACK;
3800                         break;
3801                 case HTT_MGMT_TX_STATUS_DROP:
3802                         tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
3803                         break;
3804                 }
3805 
3806                 status = ath10k_txrx_tx_unref(htt, &tx_done);
3807                 if (!status) {
3808                         spin_lock_bh(&htt->tx_lock);
3809                         ath10k_htt_tx_mgmt_dec_pending(htt);
3810                         spin_unlock_bh(&htt->tx_lock);
3811                 }
3812                 break;
3813         }
3814         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
3815                 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
3816                 break;
3817         case HTT_T2H_MSG_TYPE_SEC_IND: {
3818                 struct ath10k *ar = htt->ar;
3819                 struct htt_security_indication *ev = &resp->security_indication;
3820 
3821                 ath10k_htt_rx_sec_ind_handler(ar, ev);
3822                 ath10k_dbg(ar, ATH10K_DBG_HTT,
3823                            "sec ind peer_id %d unicast %d type %d\n",
3824                           __le16_to_cpu(ev->peer_id),
3825                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
3826                           MS(ev->flags, HTT_SECURITY_TYPE));
3827                 complete(&ar->install_key_done);
3828                 break;
3829         }
3830         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
3831                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3832                                 skb->data, skb->len);
3833                 atomic_inc(&htt->num_mpdus_ready);
3834 
3835                 return ath10k_htt_rx_proc_rx_frag_ind(htt,
3836                                                       &resp->rx_frag_ind,
3837                                                       skb);
3838                 break;
3839         }
3840         case HTT_T2H_MSG_TYPE_TEST:
3841                 break;
3842         case HTT_T2H_MSG_TYPE_STATS_CONF:
3843                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
3844                 break;
3845         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
3846                 /* Firmware can return tx frames if it's unable to fully
3847                  * process them and suspects host may be able to fix it. ath10k
3848                  * sends all tx frames as already inspected so this shouldn't
3849                  * happen unless fw has a bug.
3850                  */
3851                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
3852                 break;
3853         case HTT_T2H_MSG_TYPE_RX_ADDBA:
3854                 ath10k_htt_rx_addba(ar, resp);
3855                 break;
3856         case HTT_T2H_MSG_TYPE_RX_DELBA:
3857                 ath10k_htt_rx_delba(ar, resp);
3858                 break;
3859         case HTT_T2H_MSG_TYPE_PKTLOG: {
3860                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
3861                                         skb->len -
3862                                         offsetof(struct htt_resp,
3863                                                  pktlog_msg.payload));
3864 
3865                 if (ath10k_peer_stats_enabled(ar))
3866                         ath10k_fetch_10_2_tx_stats(ar,
3867                                                    resp->pktlog_msg.payload);
3868                 break;
3869         }
3870         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
3871                 /* Ignore this event because mac80211 takes care of Rx
3872                  * aggregation reordering.
3873                  */
3874                 break;
3875         }
3876         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
3877                 skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
3878                 return false;
3879         }
3880         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
3881                 break;
3882         case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
3883                 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
3884                 u32 freq = __le32_to_cpu(resp->chan_change.freq);
3885 
3886                 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
3887                 ath10k_dbg(ar, ATH10K_DBG_HTT,
3888                            "htt chan change freq %u phymode %s\n",
3889                            freq, ath10k_wmi_phymode_str(phymode));
3890                 break;
3891         }
3892         case HTT_T2H_MSG_TYPE_AGGR_CONF:
3893                 break;
3894         case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
3895                 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
3896 
3897                 if (!tx_fetch_ind) {
3898                         ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
3899                         break;
3900                 }
3901                 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
3902                 break;
3903         }
3904         case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
3905                 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
3906                 break;
3907         case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
3908                 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
3909                 break;
3910         case HTT_T2H_MSG_TYPE_PEER_STATS:
3911                 ath10k_htt_fetch_peer_stats(ar, skb);
3912                 break;
3913         case HTT_T2H_MSG_TYPE_EN_STATS:
3914         default:
3915                 ath10k_warn(ar, "htt event (%d) not handled\n",
3916                             resp->hdr.msg_type);
3917                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
3918                                 skb->data, skb->len);
3919                 break;
3920         }
3921         return true;
3922 }
3923 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
3924 
3925 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
3926                                              struct sk_buff *skb)
3927 {
3928         trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
3929         dev_kfree_skb_any(skb);
3930 }
3931 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
3932 
3933 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
3934 {
3935         struct sk_buff *skb;
3936 
3937         while (quota < budget) {
3938                 if (skb_queue_empty(&ar->htt.rx_msdus_q))
3939                         break;
3940 
3941                 skb = skb_dequeue(&ar->htt.rx_msdus_q);
3942                 if (!skb)
3943                         break;
3944                 ath10k_process_rx(ar, skb);
3945                 quota++;
3946         }
3947 
3948         return quota;
3949 }
3950 
3951 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
3952 {
3953         struct ath10k_htt *htt = &ar->htt;
3954         struct htt_tx_done tx_done = {};
3955         struct sk_buff_head tx_ind_q;
3956         struct sk_buff *skb;
3957         unsigned long flags;
3958         int quota = 0, done, ret;
3959         bool resched_napi = false;
3960 
3961         __skb_queue_head_init(&tx_ind_q);
3962 
3963         /* Process pending frames before dequeuing more data
3964          * from hardware.
3965          */
3966         quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3967         if (quota == budget) {
3968                 resched_napi = true;
3969                 goto exit;
3970         }
3971 
3972         while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) {
3973                 spin_lock_bh(&htt->rx_ring.lock);
3974                 ret = ath10k_htt_rx_in_ord_ind(ar, skb);
3975                 spin_unlock_bh(&htt->rx_ring.lock);
3976 
3977                 dev_kfree_skb_any(skb);
3978                 if (ret == -EIO) {
3979                         resched_napi = true;
3980                         goto exit;
3981                 }
3982         }
3983 
3984         while (atomic_read(&htt->num_mpdus_ready)) {
3985                 ret = ath10k_htt_rx_handle_amsdu(htt);
3986                 if (ret == -EIO) {
3987                         resched_napi = true;
3988                         goto exit;
3989                 }
3990                 atomic_dec(&htt->num_mpdus_ready);
3991         }
3992 
3993         /* Deliver received data after processing data from hardware */
3994         quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
3995 
3996         /* From NAPI documentation:
3997          *  The napi poll() function may also process TX completions, in which
3998          *  case if it processes the entire TX ring then it should count that
3999          *  work as the rest of the budget.
4000          */
4001         if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
4002                 quota = budget;
4003 
4004         /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
4005          * From kfifo_get() documentation:
4006          *  Note that with only one concurrent reader and one concurrent writer,
4007          *  you don't need extra locking to use these macro.
4008          */
4009         while (kfifo_get(&htt->txdone_fifo, &tx_done))
4010                 ath10k_txrx_tx_unref(htt, &tx_done);
4011 
4012         ath10k_mac_tx_push_pending(ar);
4013 
4014         spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
4015         skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
4016         spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
4017 
4018         while ((skb = __skb_dequeue(&tx_ind_q))) {
4019                 ath10k_htt_rx_tx_fetch_ind(ar, skb);
4020                 dev_kfree_skb_any(skb);
4021         }
4022 
4023 exit:
4024         ath10k_htt_rx_msdu_buff_replenish(htt);
4025         /* In case of rx failure or more data to read, report budget
4026          * to reschedule NAPI poll
4027          */
4028         done = resched_napi ? budget : quota;
4029 
4030         return done;
4031 }
4032 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
4033 
4034 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
4035         .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
4036         .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
4037         .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
4038         .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
4039         .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
4040 };
4041 
4042 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
4043         .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
4044         .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
4045         .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
4046         .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
4047         .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
4048 };
4049 
4050 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = {
4051         .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl,
4052 };
4053 
4054 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
4055 {
4056         struct ath10k *ar = htt->ar;
4057 
4058         if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL)
4059                 htt->rx_ops = &htt_rx_ops_hl;
4060         else if (ar->hw_params.target_64bit)
4061                 htt->rx_ops = &htt_rx_ops_64;
4062         else
4063                 htt->rx_ops = &htt_rx_ops_32;
4064 }

/* [<][>][^][v][top][bottom][index][help] */