root/drivers/net/wireless/intel/iwlwifi/pcie/rx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. iwl_rxq_space
  2. iwl_pcie_dma_addr2rbd_ptr
  3. iwl_pcie_rx_stop
  4. iwl_pcie_rxq_inc_wr_ptr
  5. iwl_pcie_rxq_check_wrptr
  6. iwl_pcie_restock_bd
  7. iwl_pcie_rxmq_restock
  8. iwl_pcie_rxsq_restock
  9. iwl_pcie_rxq_restock
  10. iwl_pcie_rx_alloc_page
  11. iwl_pcie_rxq_alloc_rbs
  12. iwl_pcie_free_rbs_pool
  13. iwl_pcie_rx_allocator
  14. iwl_pcie_rx_allocator_get
  15. iwl_pcie_rx_allocator_work
  16. iwl_pcie_free_bd_size
  17. iwl_pcie_free_rxq_dma
  18. iwl_pcie_alloc_rxq_dma
  19. iwl_pcie_rx_alloc
  20. iwl_pcie_rx_hw_init
  21. iwl_pcie_rx_mq_hw_init
  22. iwl_pcie_rx_init_rxb_lists
  23. iwl_pcie_dummy_napi_poll
  24. _iwl_pcie_rx_init
  25. iwl_pcie_rx_init
  26. iwl_pcie_gen2_rx_init
  27. iwl_pcie_rx_free
  28. iwl_pcie_rx_move_to_allocator
  29. iwl_pcie_rx_reuse_rbd
  30. iwl_pcie_rx_handle_rb
  31. iwl_pcie_get_rxb
  32. iwl_pcie_rx_handle
  33. iwl_pcie_get_trans_pcie
  34. iwl_pcie_irq_rx_msix_handler
  35. iwl_pcie_irq_handle_error
  36. iwl_pcie_int_cause_non_ict
  37. iwl_pcie_int_cause_ict
  38. iwl_pcie_handle_rfkill_irq
  39. iwl_pcie_irq_handler
  40. iwl_pcie_free_ict
  41. iwl_pcie_alloc_ict
  42. iwl_pcie_reset_ict
  43. iwl_pcie_disable_ict
  44. iwl_pcie_isr
  45. iwl_pcie_msix_isr
  46. iwl_pcie_irq_msix_handler

   1 /******************************************************************************
   2  *
   3  * This file is provided under a dual BSD/GPLv2 license.  When using or
   4  * redistributing this file, you may do so under either license.
   5  *
   6  * GPL LICENSE SUMMARY
   7  *
   8  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
   9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  11  * Copyright(c) 2018 - 2019 Intel Corporation
  12  *
  13  * This program is free software; you can redistribute it and/or modify it
  14  * under the terms of version 2 of the GNU General Public License as
  15  * published by the Free Software Foundation.
  16  *
  17  * This program is distributed in the hope that it will be useful, but WITHOUT
  18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  20  * more details.
  21  *
  22  * The full GNU General Public License is included in this distribution in the
  23  * file called COPYING.
  24  *
  25  * Contact Information:
  26  *  Intel Linux Wireless <linuxwifi@intel.com>
  27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  28  *
  29  * BSD LICENSE
  30  *
  31  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
  32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
  34  * Copyright(c) 2018 - 2019 Intel Corporation
  35  * All rights reserved.
  36  *
  37  * Redistribution and use in source and binary forms, with or without
  38  * modification, are permitted provided that the following conditions
  39  * are met:
  40  *
  41  *  * Redistributions of source code must retain the above copyright
  42  *    notice, this list of conditions and the following disclaimer.
  43  *  * Redistributions in binary form must reproduce the above copyright
  44  *    notice, this list of conditions and the following disclaimer in
  45  *    the documentation and/or other materials provided with the
  46  *    distribution.
  47  *  * Neither the name Intel Corporation nor the names of its
  48  *    contributors may be used to endorse or promote products derived
  49  *    from this software without specific prior written permission.
  50  *
  51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  62  *
  63  *****************************************************************************/
  64 #include <linux/sched.h>
  65 #include <linux/wait.h>
  66 #include <linux/gfp.h>
  67 
  68 #include "iwl-prph.h"
  69 #include "iwl-io.h"
  70 #include "internal.h"
  71 #include "iwl-op-mode.h"
  72 #include "iwl-context-info-gen3.h"
  73 
  74 /******************************************************************************
  75  *
  76  * RX path functions
  77  *
  78  ******************************************************************************/
  79 
  80 /*
  81  * Rx theory of operation
  82  *
  83  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  84  * each of which point to Receive Buffers to be filled by the NIC.  These get
  85  * used not only for Rx frames, but for any command response or notification
  86  * from the NIC.  The driver and NIC manage the Rx buffers by means
  87  * of indexes into the circular buffer.
  88  *
  89  * Rx Queue Indexes
  90  * The host/firmware share two index registers for managing the Rx buffers.
  91  *
  92  * The READ index maps to the first position that the firmware may be writing
  93  * to -- the driver can read up to (but not including) this position and get
  94  * good data.
  95  * The READ index is managed by the firmware once the card is enabled.
  96  *
  97  * The WRITE index maps to the last position the driver has read from -- the
  98  * position preceding WRITE is the last slot the firmware can place a packet.
  99  *
 100  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
 101  * WRITE = READ.
 102  *
 103  * During initialization, the host sets up the READ queue position to the first
 104  * INDEX position, and WRITE to the last (READ - 1 wrapped)
 105  *
 106  * When the firmware places a packet in a buffer, it will advance the READ index
 107  * and fire the RX interrupt.  The driver can then query the READ index and
 108  * process as many packets as possible, moving the WRITE index forward as it
 109  * resets the Rx queue buffers with new memory.
 110  *
 111  * The management in the driver is as follows:
 112  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
 113  *   When the interrupt handler is called, the request is processed.
 114  *   The page is either stolen - transferred to the upper layer
 115  *   or reused - added immediately to the iwl->rxq->rx_free list.
 116  * + When the page is stolen - the driver updates the matching queue's used
 117  *   count, detaches the RBD and transfers it to the queue used list.
 118  *   When there are two used RBDs - they are transferred to the allocator empty
 119  *   list. Work is then scheduled for the allocator to start allocating
 120  *   eight buffers.
 121  *   When there are another 6 used RBDs - they are transferred to the allocator
 122  *   empty list and the driver tries to claim the pre-allocated buffers and
 123  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
 124  *   until ready.
 125  *   When there are 8+ buffers in the free list - either from allocation or from
 126  *   8 reused unstolen pages - restock is called to update the FW and indexes.
 127  * + In order to make sure the allocator always has RBDs to use for allocation
 128  *   the allocator has initial pool in the size of num_queues*(8-2) - the
 129  *   maximum missing RBDs per allocation request (request posted with 2
 130  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
 131  *   The queues supplies the recycle of the rest of the RBDs.
 132  * + A received packet is processed and handed to the kernel network stack,
 133  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
 134  * + If there are no allocated buffers in iwl->rxq->rx_free,
 135  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 136  *   If there were enough free buffers and RX_STALLED is set it is cleared.
 137  *
 138  *
 139  * Driver sequence:
 140  *
 141  * iwl_rxq_alloc()            Allocates rx_free
 142  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
 143  *                            iwl_pcie_rxq_restock.
 144  *                            Used only during initialization.
 145  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
 146  *                            queue, updates firmware pointers, and updates
 147  *                            the WRITE index.
 148  * iwl_pcie_rx_allocator()     Background work for allocating pages.
 149  *
 150  * -- enable interrupts --
 151  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
 152  *                            READ INDEX, detaching the SKB from the pool.
 153  *                            Moves the packet buffer from queue to rx_used.
 154  *                            Posts and claims requests to the allocator.
 155  *                            Calls iwl_pcie_rxq_restock to refill any empty
 156  *                            slots.
 157  *
 158  * RBD life-cycle:
 159  *
 160  * Init:
 161  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 162  *
 163  * Regular Receive interrupt:
 164  * Page Stolen:
 165  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 166  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 167  * Page not Stolen:
 168  * rxq.queue -> rxq.rx_free -> rxq.queue
 169  * ...
 170  *
 171  */
 172 
 173 /*
 174  * iwl_rxq_space - Return number of free slots available in queue.
 175  */
 176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
 177 {
 178         /* Make sure rx queue size is a power of 2 */
 179         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 180 
 181         /*
 182          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 183          * between empty and completely full queues.
 184          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 185          * defined for negative dividends.
 186          */
 187         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 188 }
 189 
 190 /*
 191  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 192  */
 193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 194 {
 195         return cpu_to_le32((u32)(dma_addr >> 8));
 196 }
 197 
 198 /*
 199  * iwl_pcie_rx_stop - stops the Rx DMA
 200  */
 201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
 202 {
 203         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
 204                 /* TODO: remove this for 22560 once fw does it */
 205                 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
 206                 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
 207                                               RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 208         } else if (trans->trans_cfg->mq_rx_supported) {
 209                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 210                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
 211                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 212         } else {
 213                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 214                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 215                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
 216                                            1000);
 217         }
 218 }
 219 
 220 /*
 221  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 222  */
 223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 224                                     struct iwl_rxq *rxq)
 225 {
 226         u32 reg;
 227 
 228         lockdep_assert_held(&rxq->lock);
 229 
 230         /*
 231          * explicitly wake up the NIC if:
 232          * 1. shadow registers aren't enabled
 233          * 2. there is a chance that the NIC is asleep
 234          */
 235         if (!trans->trans_cfg->base_params->shadow_reg_enable &&
 236             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 237                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 238 
 239                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 240                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 241                                        reg);
 242                         iwl_set_bit(trans, CSR_GP_CNTRL,
 243                                     BIT(trans->trans_cfg->csr->flag_mac_access_req));
 244                         rxq->need_update = true;
 245                         return;
 246                 }
 247         }
 248 
 249         rxq->write_actual = round_down(rxq->write, 8);
 250         if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22560)
 251                 iwl_write32(trans, HBUS_TARG_WRPTR,
 252                             (rxq->write_actual |
 253                              ((FIRST_RX_QUEUE + rxq->id) << 16)));
 254         else if (trans->trans_cfg->mq_rx_supported)
 255                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
 256                             rxq->write_actual);
 257         else
 258                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 259 }
 260 
 261 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 262 {
 263         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 264         int i;
 265 
 266         for (i = 0; i < trans->num_rx_queues; i++) {
 267                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 268 
 269                 if (!rxq->need_update)
 270                         continue;
 271                 spin_lock(&rxq->lock);
 272                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 273                 rxq->need_update = false;
 274                 spin_unlock(&rxq->lock);
 275         }
 276 }
 277 
 278 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
 279                                 struct iwl_rxq *rxq,
 280                                 struct iwl_rx_mem_buffer *rxb)
 281 {
 282         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
 283                 struct iwl_rx_transfer_desc *bd = rxq->bd;
 284 
 285                 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
 286 
 287                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
 288                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
 289         } else {
 290                 __le64 *bd = rxq->bd;
 291 
 292                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 293         }
 294 
 295         IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
 296                      (u32)rxb->vid, rxq->id, rxq->write);
 297 }
 298 
 299 /*
 300  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 301  */
 302 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
 303                                   struct iwl_rxq *rxq)
 304 {
 305         struct iwl_rx_mem_buffer *rxb;
 306 
 307         /*
 308          * If the device isn't enabled - no need to try to add buffers...
 309          * This can happen when we stop the device and still have an interrupt
 310          * pending. We stop the APM before we sync the interrupts because we
 311          * have to (see comment there). On the other hand, since the APM is
 312          * stopped, we cannot access the HW (in particular not prph).
 313          * So don't try to restock if the APM has been already stopped.
 314          */
 315         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 316                 return;
 317 
 318         spin_lock(&rxq->lock);
 319         while (rxq->free_count) {
 320                 /* Get next free Rx buffer, remove from free list */
 321                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 322                                        list);
 323                 list_del(&rxb->list);
 324                 rxb->invalid = false;
 325                 /* 12 first bits are expected to be empty */
 326                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
 327                 /* Point to Rx buffer via next RBD in circular buffer */
 328                 iwl_pcie_restock_bd(trans, rxq, rxb);
 329                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
 330                 rxq->free_count--;
 331         }
 332         spin_unlock(&rxq->lock);
 333 
 334         /*
 335          * If we've added more space for the firmware to place data, tell it.
 336          * Increment device's write pointer in multiples of 8.
 337          */
 338         if (rxq->write_actual != (rxq->write & ~0x7)) {
 339                 spin_lock(&rxq->lock);
 340                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 341                 spin_unlock(&rxq->lock);
 342         }
 343 }
 344 
 345 /*
 346  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 347  */
 348 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
 349                                   struct iwl_rxq *rxq)
 350 {
 351         struct iwl_rx_mem_buffer *rxb;
 352 
 353         /*
 354          * If the device isn't enabled - not need to try to add buffers...
 355          * This can happen when we stop the device and still have an interrupt
 356          * pending. We stop the APM before we sync the interrupts because we
 357          * have to (see comment there). On the other hand, since the APM is
 358          * stopped, we cannot access the HW (in particular not prph).
 359          * So don't try to restock if the APM has been already stopped.
 360          */
 361         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 362                 return;
 363 
 364         spin_lock(&rxq->lock);
 365         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 366                 __le32 *bd = (__le32 *)rxq->bd;
 367                 /* The overwritten rxb must be a used one */
 368                 rxb = rxq->queue[rxq->write];
 369                 BUG_ON(rxb && rxb->page);
 370 
 371                 /* Get next free Rx buffer, remove from free list */
 372                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 373                                        list);
 374                 list_del(&rxb->list);
 375                 rxb->invalid = false;
 376 
 377                 /* Point to Rx buffer via next RBD in circular buffer */
 378                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 379                 rxq->queue[rxq->write] = rxb;
 380                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 381                 rxq->free_count--;
 382         }
 383         spin_unlock(&rxq->lock);
 384 
 385         /* If we've added more space for the firmware to place data, tell it.
 386          * Increment device's write pointer in multiples of 8. */
 387         if (rxq->write_actual != (rxq->write & ~0x7)) {
 388                 spin_lock(&rxq->lock);
 389                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 390                 spin_unlock(&rxq->lock);
 391         }
 392 }
 393 
 394 /*
 395  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 396  *
 397  * If there are slots in the RX queue that need to be restocked,
 398  * and we have free pre-allocated buffers, fill the ranks as much
 399  * as we can, pulling from rx_free.
 400  *
 401  * This moves the 'write' index forward to catch up with 'processed', and
 402  * also updates the memory address in the firmware to reference the new
 403  * target buffer.
 404  */
 405 static
 406 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 407 {
 408         if (trans->trans_cfg->mq_rx_supported)
 409                 iwl_pcie_rxmq_restock(trans, rxq);
 410         else
 411                 iwl_pcie_rxsq_restock(trans, rxq);
 412 }
 413 
 414 /*
 415  * iwl_pcie_rx_alloc_page - allocates and returns a page.
 416  *
 417  */
 418 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 419                                            gfp_t priority)
 420 {
 421         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 422         struct page *page;
 423         gfp_t gfp_mask = priority;
 424 
 425         if (trans_pcie->rx_page_order > 0)
 426                 gfp_mask |= __GFP_COMP;
 427 
 428         /* Alloc a new receive buffer */
 429         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 430         if (!page) {
 431                 if (net_ratelimit())
 432                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 433                                        trans_pcie->rx_page_order);
 434                 /*
 435                  * Issue an error if we don't have enough pre-allocated
 436                   * buffers.
 437                  */
 438                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 439                         IWL_CRIT(trans,
 440                                  "Failed to alloc_pages\n");
 441                 return NULL;
 442         }
 443         return page;
 444 }
 445 
 446 /*
 447  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 448  *
 449  * A used RBD is an Rx buffer that has been given to the stack. To use it again
 450  * a page must be allocated and the RBD must point to the page. This function
 451  * doesn't change the HW pointer but handles the list of pages that is used by
 452  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 453  * allocated buffers.
 454  */
 455 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 456                             struct iwl_rxq *rxq)
 457 {
 458         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 459         struct iwl_rx_mem_buffer *rxb;
 460         struct page *page;
 461 
 462         while (1) {
 463                 spin_lock(&rxq->lock);
 464                 if (list_empty(&rxq->rx_used)) {
 465                         spin_unlock(&rxq->lock);
 466                         return;
 467                 }
 468                 spin_unlock(&rxq->lock);
 469 
 470                 /* Alloc a new receive buffer */
 471                 page = iwl_pcie_rx_alloc_page(trans, priority);
 472                 if (!page)
 473                         return;
 474 
 475                 spin_lock(&rxq->lock);
 476 
 477                 if (list_empty(&rxq->rx_used)) {
 478                         spin_unlock(&rxq->lock);
 479                         __free_pages(page, trans_pcie->rx_page_order);
 480                         return;
 481                 }
 482                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 483                                        list);
 484                 list_del(&rxb->list);
 485                 spin_unlock(&rxq->lock);
 486 
 487                 BUG_ON(rxb->page);
 488                 rxb->page = page;
 489                 /* Get physical address of the RB */
 490                 rxb->page_dma =
 491                         dma_map_page(trans->dev, page, 0,
 492                                      PAGE_SIZE << trans_pcie->rx_page_order,
 493                                      DMA_FROM_DEVICE);
 494                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 495                         rxb->page = NULL;
 496                         spin_lock(&rxq->lock);
 497                         list_add(&rxb->list, &rxq->rx_used);
 498                         spin_unlock(&rxq->lock);
 499                         __free_pages(page, trans_pcie->rx_page_order);
 500                         return;
 501                 }
 502 
 503                 spin_lock(&rxq->lock);
 504 
 505                 list_add_tail(&rxb->list, &rxq->rx_free);
 506                 rxq->free_count++;
 507 
 508                 spin_unlock(&rxq->lock);
 509         }
 510 }
 511 
 512 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 513 {
 514         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 515         int i;
 516 
 517         for (i = 0; i < RX_POOL_SIZE; i++) {
 518                 if (!trans_pcie->rx_pool[i].page)
 519                         continue;
 520                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 521                                PAGE_SIZE << trans_pcie->rx_page_order,
 522                                DMA_FROM_DEVICE);
 523                 __free_pages(trans_pcie->rx_pool[i].page,
 524                              trans_pcie->rx_page_order);
 525                 trans_pcie->rx_pool[i].page = NULL;
 526         }
 527 }
 528 
 529 /*
 530  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 531  *
 532  * Allocates for each received request 8 pages
 533  * Called as a scheduled work item.
 534  */
 535 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 536 {
 537         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 538         struct iwl_rb_allocator *rba = &trans_pcie->rba;
 539         struct list_head local_empty;
 540         int pending = atomic_read(&rba->req_pending);
 541 
 542         IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
 543 
 544         /* If we were scheduled - there is at least one request */
 545         spin_lock(&rba->lock);
 546         /* swap out the rba->rbd_empty to a local list */
 547         list_replace_init(&rba->rbd_empty, &local_empty);
 548         spin_unlock(&rba->lock);
 549 
 550         while (pending) {
 551                 int i;
 552                 LIST_HEAD(local_allocated);
 553                 gfp_t gfp_mask = GFP_KERNEL;
 554 
 555                 /* Do not post a warning if there are only a few requests */
 556                 if (pending < RX_PENDING_WATERMARK)
 557                         gfp_mask |= __GFP_NOWARN;
 558 
 559                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 560                         struct iwl_rx_mem_buffer *rxb;
 561                         struct page *page;
 562 
 563                         /* List should never be empty - each reused RBD is
 564                          * returned to the list, and initial pool covers any
 565                          * possible gap between the time the page is allocated
 566                          * to the time the RBD is added.
 567                          */
 568                         BUG_ON(list_empty(&local_empty));
 569                         /* Get the first rxb from the rbd list */
 570                         rxb = list_first_entry(&local_empty,
 571                                                struct iwl_rx_mem_buffer, list);
 572                         BUG_ON(rxb->page);
 573 
 574                         /* Alloc a new receive buffer */
 575                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
 576                         if (!page)
 577                                 continue;
 578                         rxb->page = page;
 579 
 580                         /* Get physical address of the RB */
 581                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
 582                                         PAGE_SIZE << trans_pcie->rx_page_order,
 583                                         DMA_FROM_DEVICE);
 584                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 585                                 rxb->page = NULL;
 586                                 __free_pages(page, trans_pcie->rx_page_order);
 587                                 continue;
 588                         }
 589 
 590                         /* move the allocated entry to the out list */
 591                         list_move(&rxb->list, &local_allocated);
 592                         i++;
 593                 }
 594 
 595                 atomic_dec(&rba->req_pending);
 596                 pending--;
 597 
 598                 if (!pending) {
 599                         pending = atomic_read(&rba->req_pending);
 600                         if (pending)
 601                                 IWL_DEBUG_TPT(trans,
 602                                               "Got more pending allocation requests = %d\n",
 603                                               pending);
 604                 }
 605 
 606                 spin_lock(&rba->lock);
 607                 /* add the allocated rbds to the allocator allocated list */
 608                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
 609                 /* get more empty RBDs for current pending requests */
 610                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
 611                 spin_unlock(&rba->lock);
 612 
 613                 atomic_inc(&rba->req_ready);
 614 
 615         }
 616 
 617         spin_lock(&rba->lock);
 618         /* return unused rbds to the allocator empty list */
 619         list_splice_tail(&local_empty, &rba->rbd_empty);
 620         spin_unlock(&rba->lock);
 621 
 622         IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
 623 }
 624 
 625 /*
 626  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 627 .*
 628 .* Called by queue when the queue posted allocation request and
 629  * has freed 8 RBDs in order to restock itself.
 630  * This function directly moves the allocated RBs to the queue's ownership
 631  * and updates the relevant counters.
 632  */
 633 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 634                                       struct iwl_rxq *rxq)
 635 {
 636         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 637         struct iwl_rb_allocator *rba = &trans_pcie->rba;
 638         int i;
 639 
 640         lockdep_assert_held(&rxq->lock);
 641 
 642         /*
 643          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 644          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 645          * function will return early, as there are no ready requests.
 646          * atomic_dec_if_positive will perofrm the *actual* decrement only if
 647          * req_ready > 0, i.e. - there are ready requests and the function
 648          * hands one request to the caller.
 649          */
 650         if (atomic_dec_if_positive(&rba->req_ready) < 0)
 651                 return;
 652 
 653         spin_lock(&rba->lock);
 654         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 655                 /* Get next free Rx buffer, remove it from free list */
 656                 struct iwl_rx_mem_buffer *rxb =
 657                         list_first_entry(&rba->rbd_allocated,
 658                                          struct iwl_rx_mem_buffer, list);
 659 
 660                 list_move(&rxb->list, &rxq->rx_free);
 661         }
 662         spin_unlock(&rba->lock);
 663 
 664         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 665         rxq->free_count += RX_CLAIM_REQ_ALLOC;
 666 }
 667 
 668 void iwl_pcie_rx_allocator_work(struct work_struct *data)
 669 {
 670         struct iwl_rb_allocator *rba_p =
 671                 container_of(data, struct iwl_rb_allocator, rx_alloc);
 672         struct iwl_trans_pcie *trans_pcie =
 673                 container_of(rba_p, struct iwl_trans_pcie, rba);
 674 
 675         iwl_pcie_rx_allocator(trans_pcie->trans);
 676 }
 677 
 678 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
 679 {
 680         struct iwl_rx_transfer_desc *rx_td;
 681 
 682         if (use_rx_td)
 683                 return sizeof(*rx_td);
 684         else
 685                 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
 686                         sizeof(__le32);
 687 }
 688 
 689 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
 690                                   struct iwl_rxq *rxq)
 691 {
 692         struct device *dev = trans->dev;
 693         bool use_rx_td = (trans->trans_cfg->device_family >=
 694                           IWL_DEVICE_FAMILY_22560);
 695         int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
 696 
 697         if (rxq->bd)
 698                 dma_free_coherent(trans->dev,
 699                                   free_size * rxq->queue_size,
 700                                   rxq->bd, rxq->bd_dma);
 701         rxq->bd_dma = 0;
 702         rxq->bd = NULL;
 703 
 704         rxq->rb_stts_dma = 0;
 705         rxq->rb_stts = NULL;
 706 
 707         if (rxq->used_bd)
 708                 dma_free_coherent(trans->dev,
 709                                   (use_rx_td ? sizeof(*rxq->cd) :
 710                                    sizeof(__le32)) * rxq->queue_size,
 711                                   rxq->used_bd, rxq->used_bd_dma);
 712         rxq->used_bd_dma = 0;
 713         rxq->used_bd = NULL;
 714 
 715         if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_22560)
 716                 return;
 717 
 718         if (rxq->tr_tail)
 719                 dma_free_coherent(dev, sizeof(__le16),
 720                                   rxq->tr_tail, rxq->tr_tail_dma);
 721         rxq->tr_tail_dma = 0;
 722         rxq->tr_tail = NULL;
 723 
 724         if (rxq->cr_tail)
 725                 dma_free_coherent(dev, sizeof(__le16),
 726                                   rxq->cr_tail, rxq->cr_tail_dma);
 727         rxq->cr_tail_dma = 0;
 728         rxq->cr_tail = NULL;
 729 }
 730 
 731 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
 732                                   struct iwl_rxq *rxq)
 733 {
 734         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 735         struct device *dev = trans->dev;
 736         int i;
 737         int free_size;
 738         bool use_rx_td = (trans->trans_cfg->device_family >=
 739                           IWL_DEVICE_FAMILY_22560);
 740         size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
 741                               sizeof(struct iwl_rb_status);
 742 
 743         spin_lock_init(&rxq->lock);
 744         if (trans->trans_cfg->mq_rx_supported)
 745                 rxq->queue_size = MQ_RX_TABLE_SIZE;
 746         else
 747                 rxq->queue_size = RX_QUEUE_SIZE;
 748 
 749         free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
 750 
 751         /*
 752          * Allocate the circular buffer of Read Buffer Descriptors
 753          * (RBDs)
 754          */
 755         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
 756                                      &rxq->bd_dma, GFP_KERNEL);
 757         if (!rxq->bd)
 758                 goto err;
 759 
 760         if (trans->trans_cfg->mq_rx_supported) {
 761                 rxq->used_bd = dma_alloc_coherent(dev,
 762                                                   (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
 763                                                   &rxq->used_bd_dma,
 764                                                   GFP_KERNEL);
 765                 if (!rxq->used_bd)
 766                         goto err;
 767         }
 768 
 769         rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
 770         rxq->rb_stts_dma =
 771                 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
 772 
 773         if (!use_rx_td)
 774                 return 0;
 775 
 776         /* Allocate the driver's pointer to TR tail */
 777         rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
 778                                           &rxq->tr_tail_dma, GFP_KERNEL);
 779         if (!rxq->tr_tail)
 780                 goto err;
 781 
 782         /* Allocate the driver's pointer to CR tail */
 783         rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
 784                                           &rxq->cr_tail_dma, GFP_KERNEL);
 785         if (!rxq->cr_tail)
 786                 goto err;
 787         /*
 788          * W/A 22560 device step Z0 must be non zero bug
 789          * TODO: remove this when stop supporting Z0
 790          */
 791         *rxq->cr_tail = cpu_to_le16(500);
 792 
 793         return 0;
 794 
 795 err:
 796         for (i = 0; i < trans->num_rx_queues; i++) {
 797                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 798 
 799                 iwl_pcie_free_rxq_dma(trans, rxq);
 800         }
 801 
 802         return -ENOMEM;
 803 }
 804 
 805 int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 806 {
 807         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 808         struct iwl_rb_allocator *rba = &trans_pcie->rba;
 809         int i, ret;
 810         size_t rb_stts_size = trans->trans_cfg->device_family >=
 811                               IWL_DEVICE_FAMILY_22560 ?
 812                               sizeof(__le16) : sizeof(struct iwl_rb_status);
 813 
 814         if (WARN_ON(trans_pcie->rxq))
 815                 return -EINVAL;
 816 
 817         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 818                                   GFP_KERNEL);
 819         if (!trans_pcie->rxq)
 820                 return -ENOMEM;
 821 
 822         spin_lock_init(&rba->lock);
 823 
 824         /*
 825          * Allocate the driver's pointer to receive buffer status.
 826          * Allocate for all queues continuously (HW requirement).
 827          */
 828         trans_pcie->base_rb_stts =
 829                         dma_alloc_coherent(trans->dev,
 830                                            rb_stts_size * trans->num_rx_queues,
 831                                            &trans_pcie->base_rb_stts_dma,
 832                                            GFP_KERNEL);
 833         if (!trans_pcie->base_rb_stts) {
 834                 ret = -ENOMEM;
 835                 goto err;
 836         }
 837 
 838         for (i = 0; i < trans->num_rx_queues; i++) {
 839                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 840 
 841                 rxq->id = i;
 842                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
 843                 if (ret)
 844                         goto err;
 845         }
 846         return 0;
 847 
 848 err:
 849         if (trans_pcie->base_rb_stts) {
 850                 dma_free_coherent(trans->dev,
 851                                   rb_stts_size * trans->num_rx_queues,
 852                                   trans_pcie->base_rb_stts,
 853                                   trans_pcie->base_rb_stts_dma);
 854                 trans_pcie->base_rb_stts = NULL;
 855                 trans_pcie->base_rb_stts_dma = 0;
 856         }
 857         kfree(trans_pcie->rxq);
 858 
 859         return ret;
 860 }
 861 
 862 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 863 {
 864         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 865         u32 rb_size;
 866         unsigned long flags;
 867         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 868 
 869         switch (trans_pcie->rx_buf_size) {
 870         case IWL_AMSDU_4K:
 871                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 872                 break;
 873         case IWL_AMSDU_8K:
 874                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 875                 break;
 876         case IWL_AMSDU_12K:
 877                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 878                 break;
 879         default:
 880                 WARN_ON(1);
 881                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 882         }
 883 
 884         if (!iwl_trans_grab_nic_access(trans, &flags))
 885                 return;
 886 
 887         /* Stop Rx DMA */
 888         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 889         /* reset and flush pointers */
 890         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 891         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 892         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 893 
 894         /* Reset driver's Rx queue write index */
 895         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 896 
 897         /* Tell device where to find RBD circular buffer in DRAM */
 898         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 899                     (u32)(rxq->bd_dma >> 8));
 900 
 901         /* Tell device where in DRAM to update its Rx status */
 902         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 903                     rxq->rb_stts_dma >> 4);
 904 
 905         /* Enable Rx DMA
 906          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 907          *      the credit mechanism in 5000 HW RX FIFO
 908          * Direct rx interrupts to hosts
 909          * Rx buffer size 4 or 8k or 12k
 910          * RB timeout 0x10
 911          * 256 RBDs
 912          */
 913         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 914                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 915                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 916                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 917                     rb_size |
 918                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
 919                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 920 
 921         iwl_trans_release_nic_access(trans, &flags);
 922 
 923         /* Set interrupt coalescing timer to default (2048 usecs) */
 924         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 925 
 926         /* W/A for interrupt coalescing bug in 7260 and 3160 */
 927         if (trans->cfg->host_interrupt_operation_mode)
 928                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 929 }
 930 
 931 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 932 {
 933         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 934         u32 rb_size, enabled = 0;
 935         unsigned long flags;
 936         int i;
 937 
 938         switch (trans_pcie->rx_buf_size) {
 939         case IWL_AMSDU_2K:
 940                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
 941                 break;
 942         case IWL_AMSDU_4K:
 943                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 944                 break;
 945         case IWL_AMSDU_8K:
 946                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 947                 break;
 948         case IWL_AMSDU_12K:
 949                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 950                 break;
 951         default:
 952                 WARN_ON(1);
 953                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 954         }
 955 
 956         if (!iwl_trans_grab_nic_access(trans, &flags))
 957                 return;
 958 
 959         /* Stop Rx DMA */
 960         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
 961         /* disable free amd used rx queue operation */
 962         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
 963 
 964         for (i = 0; i < trans->num_rx_queues; i++) {
 965                 /* Tell device where to find RBD free table in DRAM */
 966                 iwl_write_prph64_no_grab(trans,
 967                                          RFH_Q_FRBDCB_BA_LSB(i),
 968                                          trans_pcie->rxq[i].bd_dma);
 969                 /* Tell device where to find RBD used table in DRAM */
 970                 iwl_write_prph64_no_grab(trans,
 971                                          RFH_Q_URBDCB_BA_LSB(i),
 972                                          trans_pcie->rxq[i].used_bd_dma);
 973                 /* Tell device where in DRAM to update its Rx status */
 974                 iwl_write_prph64_no_grab(trans,
 975                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
 976                                          trans_pcie->rxq[i].rb_stts_dma);
 977                 /* Reset device indice tables */
 978                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 979                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 980                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
 981 
 982                 enabled |= BIT(i) | BIT(i + 16);
 983         }
 984 
 985         /*
 986          * Enable Rx DMA
 987          * Rx buffer size 4 or 8k or 12k
 988          * Min RB size 4 or 8
 989          * Drop frames that exceed RB size
 990          * 512 RBDs
 991          */
 992         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
 993                                RFH_DMA_EN_ENABLE_VAL | rb_size |
 994                                RFH_RXF_DMA_MIN_RB_4_8 |
 995                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 996                                RFH_RXF_DMA_RBDCB_SIZE_512);
 997 
 998         /*
 999          * Activate DMA snooping.
1000          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1001          * Default queue is 0
1002          */
1003         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1004                                RFH_GEN_CFG_RFH_DMA_SNOOP |
1005                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1006                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1007                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1008                                                trans->cfg->integrated ?
1009                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1010                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1011         /* Enable the relevant rx queues */
1012         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1013 
1014         iwl_trans_release_nic_access(trans, &flags);
1015 
1016         /* Set interrupt coalescing timer to default (2048 usecs) */
1017         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1018 }
1019 
1020 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1021 {
1022         lockdep_assert_held(&rxq->lock);
1023 
1024         INIT_LIST_HEAD(&rxq->rx_free);
1025         INIT_LIST_HEAD(&rxq->rx_used);
1026         rxq->free_count = 0;
1027         rxq->used_count = 0;
1028 }
1029 
1030 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1031 {
1032         WARN_ON(1);
1033         return 0;
1034 }
1035 
1036 int _iwl_pcie_rx_init(struct iwl_trans *trans)
1037 {
1038         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1039         struct iwl_rxq *def_rxq;
1040         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1041         int i, err, queue_size, allocator_pool_size, num_alloc;
1042 
1043         if (!trans_pcie->rxq) {
1044                 err = iwl_pcie_rx_alloc(trans);
1045                 if (err)
1046                         return err;
1047         }
1048         def_rxq = trans_pcie->rxq;
1049 
1050         cancel_work_sync(&rba->rx_alloc);
1051 
1052         spin_lock(&rba->lock);
1053         atomic_set(&rba->req_pending, 0);
1054         atomic_set(&rba->req_ready, 0);
1055         INIT_LIST_HEAD(&rba->rbd_allocated);
1056         INIT_LIST_HEAD(&rba->rbd_empty);
1057         spin_unlock(&rba->lock);
1058 
1059         /* free all first - we might be reconfigured for a different size */
1060         iwl_pcie_free_rbs_pool(trans);
1061 
1062         for (i = 0; i < RX_QUEUE_SIZE; i++)
1063                 def_rxq->queue[i] = NULL;
1064 
1065         for (i = 0; i < trans->num_rx_queues; i++) {
1066                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1067 
1068                 spin_lock(&rxq->lock);
1069                 /*
1070                  * Set read write pointer to reflect that we have processed
1071                  * and used all buffers, but have not restocked the Rx queue
1072                  * with fresh buffers
1073                  */
1074                 rxq->read = 0;
1075                 rxq->write = 0;
1076                 rxq->write_actual = 0;
1077                 memset(rxq->rb_stts, 0, (trans->trans_cfg->device_family >=
1078                                          IWL_DEVICE_FAMILY_22560) ?
1079                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1080 
1081                 iwl_pcie_rx_init_rxb_lists(rxq);
1082 
1083                 if (!rxq->napi.poll)
1084                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1085                                        iwl_pcie_dummy_napi_poll, 64);
1086 
1087                 spin_unlock(&rxq->lock);
1088         }
1089 
1090         /* move the pool to the default queue and allocator ownerships */
1091         queue_size = trans->trans_cfg->mq_rx_supported ?
1092                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1093         allocator_pool_size = trans->num_rx_queues *
1094                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1095         num_alloc = queue_size + allocator_pool_size;
1096         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1097                      ARRAY_SIZE(trans_pcie->rx_pool));
1098         for (i = 0; i < num_alloc; i++) {
1099                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1100 
1101                 if (i < allocator_pool_size)
1102                         list_add(&rxb->list, &rba->rbd_empty);
1103                 else
1104                         list_add(&rxb->list, &def_rxq->rx_used);
1105                 trans_pcie->global_table[i] = rxb;
1106                 rxb->vid = (u16)(i + 1);
1107                 rxb->invalid = true;
1108         }
1109 
1110         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1111 
1112         return 0;
1113 }
1114 
1115 int iwl_pcie_rx_init(struct iwl_trans *trans)
1116 {
1117         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1118         int ret = _iwl_pcie_rx_init(trans);
1119 
1120         if (ret)
1121                 return ret;
1122 
1123         if (trans->trans_cfg->mq_rx_supported)
1124                 iwl_pcie_rx_mq_hw_init(trans);
1125         else
1126                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1127 
1128         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1129 
1130         spin_lock(&trans_pcie->rxq->lock);
1131         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1132         spin_unlock(&trans_pcie->rxq->lock);
1133 
1134         return 0;
1135 }
1136 
1137 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1138 {
1139         /* Set interrupt coalescing timer to default (2048 usecs) */
1140         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1141 
1142         /*
1143          * We don't configure the RFH.
1144          * Restock will be done at alive, after firmware configured the RFH.
1145          */
1146         return _iwl_pcie_rx_init(trans);
1147 }
1148 
1149 void iwl_pcie_rx_free(struct iwl_trans *trans)
1150 {
1151         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1152         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1153         int i;
1154         size_t rb_stts_size = trans->trans_cfg->device_family >=
1155                               IWL_DEVICE_FAMILY_22560 ?
1156                               sizeof(__le16) : sizeof(struct iwl_rb_status);
1157 
1158         /*
1159          * if rxq is NULL, it means that nothing has been allocated,
1160          * exit now
1161          */
1162         if (!trans_pcie->rxq) {
1163                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1164                 return;
1165         }
1166 
1167         cancel_work_sync(&rba->rx_alloc);
1168 
1169         iwl_pcie_free_rbs_pool(trans);
1170 
1171         if (trans_pcie->base_rb_stts) {
1172                 dma_free_coherent(trans->dev,
1173                                   rb_stts_size * trans->num_rx_queues,
1174                                   trans_pcie->base_rb_stts,
1175                                   trans_pcie->base_rb_stts_dma);
1176                 trans_pcie->base_rb_stts = NULL;
1177                 trans_pcie->base_rb_stts_dma = 0;
1178         }
1179 
1180         for (i = 0; i < trans->num_rx_queues; i++) {
1181                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1182 
1183                 iwl_pcie_free_rxq_dma(trans, rxq);
1184 
1185                 if (rxq->napi.poll)
1186                         netif_napi_del(&rxq->napi);
1187         }
1188         kfree(trans_pcie->rxq);
1189 }
1190 
1191 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1192                                           struct iwl_rb_allocator *rba)
1193 {
1194         spin_lock(&rba->lock);
1195         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1196         spin_unlock(&rba->lock);
1197 }
1198 
1199 /*
1200  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1201  *
1202  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1203  * When there are 2 empty RBDs - a request for allocation is posted
1204  */
1205 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1206                                   struct iwl_rx_mem_buffer *rxb,
1207                                   struct iwl_rxq *rxq, bool emergency)
1208 {
1209         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1210         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1211 
1212         /* Move the RBD to the used list, will be moved to allocator in batches
1213          * before claiming or posting a request*/
1214         list_add_tail(&rxb->list, &rxq->rx_used);
1215 
1216         if (unlikely(emergency))
1217                 return;
1218 
1219         /* Count the allocator owned RBDs */
1220         rxq->used_count++;
1221 
1222         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1223          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1224          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1225          * after but we still need to post another request.
1226          */
1227         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1228                 /* Move the 2 RBDs to the allocator ownership.
1229                  Allocator has another 6 from pool for the request completion*/
1230                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1231 
1232                 atomic_inc(&rba->req_pending);
1233                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1234         }
1235 }
1236 
1237 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1238                                 struct iwl_rxq *rxq,
1239                                 struct iwl_rx_mem_buffer *rxb,
1240                                 bool emergency,
1241                                 int i)
1242 {
1243         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1244         struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1245         bool page_stolen = false;
1246         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1247         u32 offset = 0;
1248 
1249         if (WARN_ON(!rxb))
1250                 return;
1251 
1252         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1253 
1254         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1255                 struct iwl_rx_packet *pkt;
1256                 u16 sequence;
1257                 bool reclaim;
1258                 int index, cmd_index, len;
1259                 struct iwl_rx_cmd_buffer rxcb = {
1260                         ._offset = offset,
1261                         ._rx_page_order = trans_pcie->rx_page_order,
1262                         ._page = rxb->page,
1263                         ._page_stolen = false,
1264                         .truesize = max_len,
1265                 };
1266 
1267                 pkt = rxb_addr(&rxcb);
1268 
1269                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1270                         IWL_DEBUG_RX(trans,
1271                                      "Q %d: RB end marker at offset %d\n",
1272                                      rxq->id, offset);
1273                         break;
1274                 }
1275 
1276                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1277                         FH_RSCSR_RXQ_POS != rxq->id,
1278                      "frame on invalid queue - is on %d and indicates %d\n",
1279                      rxq->id,
1280                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1281                         FH_RSCSR_RXQ_POS);
1282 
1283                 IWL_DEBUG_RX(trans,
1284                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1285                              rxq->id, offset,
1286                              iwl_get_cmd_string(trans,
1287                                                 iwl_cmd_id(pkt->hdr.cmd,
1288                                                            pkt->hdr.group_id,
1289                                                            0)),
1290                              pkt->hdr.group_id, pkt->hdr.cmd,
1291                              le16_to_cpu(pkt->hdr.sequence));
1292 
1293                 len = iwl_rx_packet_len(pkt);
1294                 len += sizeof(u32); /* account for status word */
1295                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1296                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1297 
1298                 /* Reclaim a command buffer only if this packet is a response
1299                  *   to a (driver-originated) command.
1300                  * If the packet (e.g. Rx frame) originated from uCode,
1301                  *   there is no command buffer to reclaim.
1302                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1303                  *   but apparently a few don't get set; catch them here. */
1304                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1305                 if (reclaim && !pkt->hdr.group_id) {
1306                         int i;
1307 
1308                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1309                                 if (trans_pcie->no_reclaim_cmds[i] ==
1310                                                         pkt->hdr.cmd) {
1311                                         reclaim = false;
1312                                         break;
1313                                 }
1314                         }
1315                 }
1316 
1317                 sequence = le16_to_cpu(pkt->hdr.sequence);
1318                 index = SEQ_TO_INDEX(sequence);
1319                 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1320 
1321                 if (rxq->id == trans_pcie->def_rx_queue)
1322                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1323                                        &rxcb);
1324                 else
1325                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1326                                            &rxcb, rxq->id);
1327 
1328                 if (reclaim) {
1329                         kzfree(txq->entries[cmd_index].free_buf);
1330                         txq->entries[cmd_index].free_buf = NULL;
1331                 }
1332 
1333                 /*
1334                  * After here, we should always check rxcb._page_stolen,
1335                  * if it is true then one of the handlers took the page.
1336                  */
1337 
1338                 if (reclaim) {
1339                         /* Invoke any callbacks, transfer the buffer to caller,
1340                          * and fire off the (possibly) blocking
1341                          * iwl_trans_send_cmd()
1342                          * as we reclaim the driver command queue */
1343                         if (!rxcb._page_stolen)
1344                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1345                         else
1346                                 IWL_WARN(trans, "Claim null rxb?\n");
1347                 }
1348 
1349                 page_stolen |= rxcb._page_stolen;
1350                 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1351                         break;
1352                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1353         }
1354 
1355         /* page was stolen from us -- free our reference */
1356         if (page_stolen) {
1357                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1358                 rxb->page = NULL;
1359         }
1360 
1361         /* Reuse the page if possible. For notification packets and
1362          * SKBs that fail to Rx correctly, add them back into the
1363          * rx_free list for reuse later. */
1364         if (rxb->page != NULL) {
1365                 rxb->page_dma =
1366                         dma_map_page(trans->dev, rxb->page, 0,
1367                                      PAGE_SIZE << trans_pcie->rx_page_order,
1368                                      DMA_FROM_DEVICE);
1369                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1370                         /*
1371                          * free the page(s) as well to not break
1372                          * the invariant that the items on the used
1373                          * list have no page(s)
1374                          */
1375                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1376                         rxb->page = NULL;
1377                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1378                 } else {
1379                         list_add_tail(&rxb->list, &rxq->rx_free);
1380                         rxq->free_count++;
1381                 }
1382         } else
1383                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1384 }
1385 
1386 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1387                                                   struct iwl_rxq *rxq, int i)
1388 {
1389         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1390         struct iwl_rx_mem_buffer *rxb;
1391         u16 vid;
1392 
1393         BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1394 
1395         if (!trans->trans_cfg->mq_rx_supported) {
1396                 rxb = rxq->queue[i];
1397                 rxq->queue[i] = NULL;
1398                 return rxb;
1399         }
1400 
1401         /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1402         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1403                 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1404         else
1405                 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1406 
1407         if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1408                 goto out_err;
1409 
1410         rxb = trans_pcie->global_table[vid - 1];
1411         if (rxb->invalid)
1412                 goto out_err;
1413 
1414         IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1415 
1416         rxb->invalid = true;
1417 
1418         return rxb;
1419 
1420 out_err:
1421         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1422         iwl_force_nmi(trans);
1423         return NULL;
1424 }
1425 
1426 /*
1427  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1428  */
1429 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1430 {
1431         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1432         struct napi_struct *napi;
1433         struct iwl_rxq *rxq;
1434         u32 r, i, count = 0;
1435         bool emergency = false;
1436 
1437         if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1438                 return;
1439 
1440         rxq = &trans_pcie->rxq[queue];
1441 
1442 restart:
1443         spin_lock(&rxq->lock);
1444         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1445          * buffer that the driver may process (last buffer filled by ucode). */
1446         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1447         i = rxq->read;
1448 
1449         /* W/A 9000 device step A0 wrap-around bug */
1450         r &= (rxq->queue_size - 1);
1451 
1452         /* Rx interrupt, but nothing sent from uCode */
1453         if (i == r)
1454                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1455 
1456         while (i != r) {
1457                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1458                 struct iwl_rx_mem_buffer *rxb;
1459                 /* number of RBDs still waiting for page allocation */
1460                 u32 rb_pending_alloc =
1461                         atomic_read(&trans_pcie->rba.req_pending) *
1462                         RX_CLAIM_REQ_ALLOC;
1463 
1464                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1465                              !emergency)) {
1466                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1467                         emergency = true;
1468                         IWL_DEBUG_TPT(trans,
1469                                       "RX path is in emergency. Pending allocations %d\n",
1470                                       rb_pending_alloc);
1471                 }
1472 
1473                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1474 
1475                 rxb = iwl_pcie_get_rxb(trans, rxq, i);
1476                 if (!rxb)
1477                         goto out;
1478 
1479                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1480 
1481                 i = (i + 1) & (rxq->queue_size - 1);
1482 
1483                 /*
1484                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1485                  * try to claim the pre-allocated buffers from the allocator.
1486                  * If not ready - will try to reclaim next time.
1487                  * There is no need to reschedule work - allocator exits only
1488                  * on success
1489                  */
1490                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1491                         iwl_pcie_rx_allocator_get(trans, rxq);
1492 
1493                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1494                         /* Add the remaining empty RBDs for allocator use */
1495                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1496                 } else if (emergency) {
1497                         count++;
1498                         if (count == 8) {
1499                                 count = 0;
1500                                 if (rb_pending_alloc < rxq->queue_size / 3) {
1501                                         IWL_DEBUG_TPT(trans,
1502                                                       "RX path exited emergency. Pending allocations %d\n",
1503                                                       rb_pending_alloc);
1504                                         emergency = false;
1505                                 }
1506 
1507                                 rxq->read = i;
1508                                 spin_unlock(&rxq->lock);
1509                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1510                                 iwl_pcie_rxq_restock(trans, rxq);
1511                                 goto restart;
1512                         }
1513                 }
1514         }
1515 out:
1516         /* Backtrack one entry */
1517         rxq->read = i;
1518         /* update cr tail with the rxq read pointer */
1519         if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1520                 *rxq->cr_tail = cpu_to_le16(r);
1521         spin_unlock(&rxq->lock);
1522 
1523         /*
1524          * handle a case where in emergency there are some unallocated RBDs.
1525          * those RBDs are in the used list, but are not tracked by the queue's
1526          * used_count which counts allocator owned RBDs.
1527          * unallocated emergency RBDs must be allocated on exit, otherwise
1528          * when called again the function may not be in emergency mode and
1529          * they will be handed to the allocator with no tracking in the RBD
1530          * allocator counters, which will lead to them never being claimed back
1531          * by the queue.
1532          * by allocating them here, they are now in the queue free list, and
1533          * will be restocked by the next call of iwl_pcie_rxq_restock.
1534          */
1535         if (unlikely(emergency && count))
1536                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1537 
1538         napi = &rxq->napi;
1539         if (napi->poll) {
1540                 napi_gro_flush(napi, false);
1541 
1542                 if (napi->rx_count) {
1543                         netif_receive_skb_list(&napi->rx_list);
1544                         INIT_LIST_HEAD(&napi->rx_list);
1545                         napi->rx_count = 0;
1546                 }
1547         }
1548 
1549         iwl_pcie_rxq_restock(trans, rxq);
1550 }
1551 
1552 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1553 {
1554         u8 queue = entry->entry;
1555         struct msix_entry *entries = entry - queue;
1556 
1557         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1558 }
1559 
1560 /*
1561  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1562  * This interrupt handler should be used with RSS queue only.
1563  */
1564 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1565 {
1566         struct msix_entry *entry = dev_id;
1567         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1568         struct iwl_trans *trans = trans_pcie->trans;
1569 
1570         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1571 
1572         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1573                 return IRQ_NONE;
1574 
1575         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1576 
1577         local_bh_disable();
1578         iwl_pcie_rx_handle(trans, entry->entry);
1579         local_bh_enable();
1580 
1581         iwl_pcie_clear_irq(trans, entry);
1582 
1583         lock_map_release(&trans->sync_cmd_lockdep_map);
1584 
1585         return IRQ_HANDLED;
1586 }
1587 
1588 /*
1589  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1590  */
1591 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1592 {
1593         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1594         int i;
1595 
1596         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1597         if (trans->cfg->internal_wimax_coex &&
1598             !trans->cfg->apmg_not_supported &&
1599             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1600                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1601              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1602                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1603                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1604                 iwl_op_mode_wimax_active(trans->op_mode);
1605                 wake_up(&trans_pcie->wait_command_queue);
1606                 return;
1607         }
1608 
1609         for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1610                 if (!trans_pcie->txq[i])
1611                         continue;
1612                 del_timer(&trans_pcie->txq[i]->stuck_timer);
1613         }
1614 
1615         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1616          * before we wake up the command caller, to ensure a proper cleanup. */
1617         iwl_trans_fw_error(trans);
1618 
1619         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1620         wake_up(&trans_pcie->wait_command_queue);
1621 }
1622 
1623 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1624 {
1625         u32 inta;
1626 
1627         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1628 
1629         trace_iwlwifi_dev_irq(trans->dev);
1630 
1631         /* Discover which interrupts are active/pending */
1632         inta = iwl_read32(trans, CSR_INT);
1633 
1634         /* the thread will service interrupts and re-enable them */
1635         return inta;
1636 }
1637 
1638 /* a device (PCI-E) page is 4096 bytes long */
1639 #define ICT_SHIFT       12
1640 #define ICT_SIZE        (1 << ICT_SHIFT)
1641 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1642 
1643 /* interrupt handler using ict table, with this interrupt driver will
1644  * stop using INTA register to get device's interrupt, reading this register
1645  * is expensive, device will write interrupts in ICT dram table, increment
1646  * index then will fire interrupt to driver, driver will OR all ICT table
1647  * entries from current index up to table entry with 0 value. the result is
1648  * the interrupt we need to service, driver will set the entries back to 0 and
1649  * set index.
1650  */
1651 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1652 {
1653         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1654         u32 inta;
1655         u32 val = 0;
1656         u32 read;
1657 
1658         trace_iwlwifi_dev_irq(trans->dev);
1659 
1660         /* Ignore interrupt if there's nothing in NIC to service.
1661          * This may be due to IRQ shared with another device,
1662          * or due to sporadic interrupts thrown from our NIC. */
1663         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1664         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1665         if (!read)
1666                 return 0;
1667 
1668         /*
1669          * Collect all entries up to the first 0, starting from ict_index;
1670          * note we already read at ict_index.
1671          */
1672         do {
1673                 val |= read;
1674                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1675                                 trans_pcie->ict_index, read);
1676                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1677                 trans_pcie->ict_index =
1678                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1679 
1680                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1681                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1682                                            read);
1683         } while (read);
1684 
1685         /* We should not get this value, just ignore it. */
1686         if (val == 0xffffffff)
1687                 val = 0;
1688 
1689         /*
1690          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1691          * (bit 15 before shifting it to 31) to clear when using interrupt
1692          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1693          * so we use them to decide on the real state of the Rx bit.
1694          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1695          */
1696         if (val & 0xC0000)
1697                 val |= 0x8000;
1698 
1699         inta = (0xff & val) | ((0xff00 & val) << 16);
1700         return inta;
1701 }
1702 
1703 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1704 {
1705         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1706         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1707         bool hw_rfkill, prev, report;
1708 
1709         mutex_lock(&trans_pcie->mutex);
1710         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1711         hw_rfkill = iwl_is_rfkill_set(trans);
1712         if (hw_rfkill) {
1713                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1714                 set_bit(STATUS_RFKILL_HW, &trans->status);
1715         }
1716         if (trans_pcie->opmode_down)
1717                 report = hw_rfkill;
1718         else
1719                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1720 
1721         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1722                  hw_rfkill ? "disable radio" : "enable radio");
1723 
1724         isr_stats->rfkill++;
1725 
1726         if (prev != report)
1727                 iwl_trans_pcie_rf_kill(trans, report);
1728         mutex_unlock(&trans_pcie->mutex);
1729 
1730         if (hw_rfkill) {
1731                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1732                                        &trans->status))
1733                         IWL_DEBUG_RF_KILL(trans,
1734                                           "Rfkill while SYNC HCMD in flight\n");
1735                 wake_up(&trans_pcie->wait_command_queue);
1736         } else {
1737                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1738                 if (trans_pcie->opmode_down)
1739                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1740         }
1741 }
1742 
1743 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1744 {
1745         struct iwl_trans *trans = dev_id;
1746         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1747         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1748         u32 inta = 0;
1749         u32 handled = 0;
1750 
1751         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1752 
1753         spin_lock(&trans_pcie->irq_lock);
1754 
1755         /* dram interrupt table not set yet,
1756          * use legacy interrupt.
1757          */
1758         if (likely(trans_pcie->use_ict))
1759                 inta = iwl_pcie_int_cause_ict(trans);
1760         else
1761                 inta = iwl_pcie_int_cause_non_ict(trans);
1762 
1763         if (iwl_have_debug_level(IWL_DL_ISR)) {
1764                 IWL_DEBUG_ISR(trans,
1765                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1766                               inta, trans_pcie->inta_mask,
1767                               iwl_read32(trans, CSR_INT_MASK),
1768                               iwl_read32(trans, CSR_FH_INT_STATUS));
1769                 if (inta & (~trans_pcie->inta_mask))
1770                         IWL_DEBUG_ISR(trans,
1771                                       "We got a masked interrupt (0x%08x)\n",
1772                                       inta & (~trans_pcie->inta_mask));
1773         }
1774 
1775         inta &= trans_pcie->inta_mask;
1776 
1777         /*
1778          * Ignore interrupt if there's nothing in NIC to service.
1779          * This may be due to IRQ shared with another device,
1780          * or due to sporadic interrupts thrown from our NIC.
1781          */
1782         if (unlikely(!inta)) {
1783                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1784                 /*
1785                  * Re-enable interrupts here since we don't
1786                  * have anything to service
1787                  */
1788                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1789                         _iwl_enable_interrupts(trans);
1790                 spin_unlock(&trans_pcie->irq_lock);
1791                 lock_map_release(&trans->sync_cmd_lockdep_map);
1792                 return IRQ_NONE;
1793         }
1794 
1795         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1796                 /*
1797                  * Hardware disappeared. It might have
1798                  * already raised an interrupt.
1799                  */
1800                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1801                 spin_unlock(&trans_pcie->irq_lock);
1802                 goto out;
1803         }
1804 
1805         /* Ack/clear/reset pending uCode interrupts.
1806          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1807          */
1808         /* There is a hardware bug in the interrupt mask function that some
1809          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1810          * they are disabled in the CSR_INT_MASK register. Furthermore the
1811          * ICT interrupt handling mechanism has another bug that might cause
1812          * these unmasked interrupts fail to be detected. We workaround the
1813          * hardware bugs here by ACKing all the possible interrupts so that
1814          * interrupt coalescing can still be achieved.
1815          */
1816         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1817 
1818         if (iwl_have_debug_level(IWL_DL_ISR))
1819                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1820                               inta, iwl_read32(trans, CSR_INT_MASK));
1821 
1822         spin_unlock(&trans_pcie->irq_lock);
1823 
1824         /* Now service all interrupt bits discovered above. */
1825         if (inta & CSR_INT_BIT_HW_ERR) {
1826                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1827 
1828                 /* Tell the device to stop sending interrupts */
1829                 iwl_disable_interrupts(trans);
1830 
1831                 isr_stats->hw++;
1832                 iwl_pcie_irq_handle_error(trans);
1833 
1834                 handled |= CSR_INT_BIT_HW_ERR;
1835 
1836                 goto out;
1837         }
1838 
1839         /* NIC fires this, but we don't use it, redundant with WAKEUP */
1840         if (inta & CSR_INT_BIT_SCD) {
1841                 IWL_DEBUG_ISR(trans,
1842                               "Scheduler finished to transmit the frame/frames.\n");
1843                 isr_stats->sch++;
1844         }
1845 
1846         /* Alive notification via Rx interrupt will do the real work */
1847         if (inta & CSR_INT_BIT_ALIVE) {
1848                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1849                 isr_stats->alive++;
1850                 if (trans->trans_cfg->gen2) {
1851                         /*
1852                          * We can restock, since firmware configured
1853                          * the RFH
1854                          */
1855                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1856                 }
1857 
1858                 handled |= CSR_INT_BIT_ALIVE;
1859         }
1860 
1861         /* Safely ignore these bits for debug checks below */
1862         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1863 
1864         /* HW RF KILL switch toggled */
1865         if (inta & CSR_INT_BIT_RF_KILL) {
1866                 iwl_pcie_handle_rfkill_irq(trans);
1867                 handled |= CSR_INT_BIT_RF_KILL;
1868         }
1869 
1870         /* Chip got too hot and stopped itself */
1871         if (inta & CSR_INT_BIT_CT_KILL) {
1872                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1873                 isr_stats->ctkill++;
1874                 handled |= CSR_INT_BIT_CT_KILL;
1875         }
1876 
1877         /* Error detected by uCode */
1878         if (inta & CSR_INT_BIT_SW_ERR) {
1879                 IWL_ERR(trans, "Microcode SW error detected. "
1880                         " Restarting 0x%X.\n", inta);
1881                 isr_stats->sw++;
1882                 iwl_pcie_irq_handle_error(trans);
1883                 handled |= CSR_INT_BIT_SW_ERR;
1884         }
1885 
1886         /* uCode wakes up after power-down sleep */
1887         if (inta & CSR_INT_BIT_WAKEUP) {
1888                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1889                 iwl_pcie_rxq_check_wrptr(trans);
1890                 iwl_pcie_txq_check_wrptrs(trans);
1891 
1892                 isr_stats->wakeup++;
1893 
1894                 handled |= CSR_INT_BIT_WAKEUP;
1895         }
1896 
1897         /* All uCode command responses, including Tx command responses,
1898          * Rx "responses" (frame-received notification), and other
1899          * notifications from uCode come through here*/
1900         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1901                     CSR_INT_BIT_RX_PERIODIC)) {
1902                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1903                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1904                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1905                         iwl_write32(trans, CSR_FH_INT_STATUS,
1906                                         CSR_FH_INT_RX_MASK);
1907                 }
1908                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1909                         handled |= CSR_INT_BIT_RX_PERIODIC;
1910                         iwl_write32(trans,
1911                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1912                 }
1913                 /* Sending RX interrupt require many steps to be done in the
1914                  * the device:
1915                  * 1- write interrupt to current index in ICT table.
1916                  * 2- dma RX frame.
1917                  * 3- update RX shared data to indicate last write index.
1918                  * 4- send interrupt.
1919                  * This could lead to RX race, driver could receive RX interrupt
1920                  * but the shared data changes does not reflect this;
1921                  * periodic interrupt will detect any dangling Rx activity.
1922                  */
1923 
1924                 /* Disable periodic interrupt; we use it as just a one-shot. */
1925                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1926                             CSR_INT_PERIODIC_DIS);
1927 
1928                 /*
1929                  * Enable periodic interrupt in 8 msec only if we received
1930                  * real RX interrupt (instead of just periodic int), to catch
1931                  * any dangling Rx interrupt.  If it was just the periodic
1932                  * interrupt, there was no dangling Rx activity, and no need
1933                  * to extend the periodic interrupt; one-shot is enough.
1934                  */
1935                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1936                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1937                                    CSR_INT_PERIODIC_ENA);
1938 
1939                 isr_stats->rx++;
1940 
1941                 local_bh_disable();
1942                 iwl_pcie_rx_handle(trans, 0);
1943                 local_bh_enable();
1944         }
1945 
1946         /* This "Tx" DMA channel is used only for loading uCode */
1947         if (inta & CSR_INT_BIT_FH_TX) {
1948                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1949                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1950                 isr_stats->tx++;
1951                 handled |= CSR_INT_BIT_FH_TX;
1952                 /* Wake up uCode load routine, now that load is complete */
1953                 trans_pcie->ucode_write_complete = true;
1954                 wake_up(&trans_pcie->ucode_write_waitq);
1955         }
1956 
1957         if (inta & ~handled) {
1958                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1959                 isr_stats->unhandled++;
1960         }
1961 
1962         if (inta & ~(trans_pcie->inta_mask)) {
1963                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1964                          inta & ~trans_pcie->inta_mask);
1965         }
1966 
1967         spin_lock(&trans_pcie->irq_lock);
1968         /* only Re-enable all interrupt if disabled by irq */
1969         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1970                 _iwl_enable_interrupts(trans);
1971         /* we are loading the firmware, enable FH_TX interrupt only */
1972         else if (handled & CSR_INT_BIT_FH_TX)
1973                 iwl_enable_fw_load_int(trans);
1974         /* Re-enable RF_KILL if it occurred */
1975         else if (handled & CSR_INT_BIT_RF_KILL)
1976                 iwl_enable_rfkill_int(trans);
1977         /* Re-enable the ALIVE / Rx interrupt if it occurred */
1978         else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
1979                 iwl_enable_fw_load_int_ctx_info(trans);
1980         spin_unlock(&trans_pcie->irq_lock);
1981 
1982 out:
1983         lock_map_release(&trans->sync_cmd_lockdep_map);
1984         return IRQ_HANDLED;
1985 }
1986 
1987 /******************************************************************************
1988  *
1989  * ICT functions
1990  *
1991  ******************************************************************************/
1992 
1993 /* Free dram table */
1994 void iwl_pcie_free_ict(struct iwl_trans *trans)
1995 {
1996         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1997 
1998         if (trans_pcie->ict_tbl) {
1999                 dma_free_coherent(trans->dev, ICT_SIZE,
2000                                   trans_pcie->ict_tbl,
2001                                   trans_pcie->ict_tbl_dma);
2002                 trans_pcie->ict_tbl = NULL;
2003                 trans_pcie->ict_tbl_dma = 0;
2004         }
2005 }
2006 
2007 /*
2008  * allocate dram shared table, it is an aligned memory
2009  * block of ICT_SIZE.
2010  * also reset all data related to ICT table interrupt.
2011  */
2012 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2013 {
2014         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2015 
2016         trans_pcie->ict_tbl =
2017                 dma_alloc_coherent(trans->dev, ICT_SIZE,
2018                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2019         if (!trans_pcie->ict_tbl)
2020                 return -ENOMEM;
2021 
2022         /* just an API sanity check ... it is guaranteed to be aligned */
2023         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2024                 iwl_pcie_free_ict(trans);
2025                 return -EINVAL;
2026         }
2027 
2028         return 0;
2029 }
2030 
2031 /* Device is going up inform it about using ICT interrupt table,
2032  * also we need to tell the driver to start using ICT interrupt.
2033  */
2034 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2035 {
2036         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2037         u32 val;
2038 
2039         if (!trans_pcie->ict_tbl)
2040                 return;
2041 
2042         spin_lock(&trans_pcie->irq_lock);
2043         _iwl_disable_interrupts(trans);
2044 
2045         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2046 
2047         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2048 
2049         val |= CSR_DRAM_INT_TBL_ENABLE |
2050                CSR_DRAM_INIT_TBL_WRAP_CHECK |
2051                CSR_DRAM_INIT_TBL_WRITE_POINTER;
2052 
2053         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2054 
2055         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2056         trans_pcie->use_ict = true;
2057         trans_pcie->ict_index = 0;
2058         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2059         _iwl_enable_interrupts(trans);
2060         spin_unlock(&trans_pcie->irq_lock);
2061 }
2062 
2063 /* Device is going down disable ict interrupt usage */
2064 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2065 {
2066         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2067 
2068         spin_lock(&trans_pcie->irq_lock);
2069         trans_pcie->use_ict = false;
2070         spin_unlock(&trans_pcie->irq_lock);
2071 }
2072 
2073 irqreturn_t iwl_pcie_isr(int irq, void *data)
2074 {
2075         struct iwl_trans *trans = data;
2076 
2077         if (!trans)
2078                 return IRQ_NONE;
2079 
2080         /* Disable (but don't clear!) interrupts here to avoid
2081          * back-to-back ISRs and sporadic interrupts from our NIC.
2082          * If we have something to service, the tasklet will re-enable ints.
2083          * If we *don't* have something, we'll re-enable before leaving here.
2084          */
2085         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2086 
2087         return IRQ_WAKE_THREAD;
2088 }
2089 
2090 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2091 {
2092         return IRQ_WAKE_THREAD;
2093 }
2094 
2095 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2096 {
2097         struct msix_entry *entry = dev_id;
2098         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2099         struct iwl_trans *trans = trans_pcie->trans;
2100         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2101         u32 inta_fh, inta_hw;
2102 
2103         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2104 
2105         spin_lock(&trans_pcie->irq_lock);
2106         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2107         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2108         /*
2109          * Clear causes registers to avoid being handling the same cause.
2110          */
2111         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2112         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2113         spin_unlock(&trans_pcie->irq_lock);
2114 
2115         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2116 
2117         if (unlikely(!(inta_fh | inta_hw))) {
2118                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2119                 lock_map_release(&trans->sync_cmd_lockdep_map);
2120                 return IRQ_NONE;
2121         }
2122 
2123         if (iwl_have_debug_level(IWL_DL_ISR)) {
2124                 IWL_DEBUG_ISR(trans,
2125                               "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2126                               inta_fh, trans_pcie->fh_mask,
2127                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2128                 if (inta_fh & ~trans_pcie->fh_mask)
2129                         IWL_DEBUG_ISR(trans,
2130                                       "We got a masked interrupt (0x%08x)\n",
2131                                       inta_fh & ~trans_pcie->fh_mask);
2132         }
2133 
2134         inta_fh &= trans_pcie->fh_mask;
2135 
2136         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2137             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2138                 local_bh_disable();
2139                 iwl_pcie_rx_handle(trans, 0);
2140                 local_bh_enable();
2141         }
2142 
2143         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2144             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2145                 local_bh_disable();
2146                 iwl_pcie_rx_handle(trans, 1);
2147                 local_bh_enable();
2148         }
2149 
2150         /* This "Tx" DMA channel is used only for loading uCode */
2151         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2152                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2153                 isr_stats->tx++;
2154                 /*
2155                  * Wake up uCode load routine,
2156                  * now that load is complete
2157                  */
2158                 trans_pcie->ucode_write_complete = true;
2159                 wake_up(&trans_pcie->ucode_write_waitq);
2160         }
2161 
2162         /* Error detected by uCode */
2163         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2164             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2165             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2166                 IWL_ERR(trans,
2167                         "Microcode SW error detected. Restarting 0x%X.\n",
2168                         inta_fh);
2169                 isr_stats->sw++;
2170                 iwl_pcie_irq_handle_error(trans);
2171         }
2172 
2173         /* After checking FH register check HW register */
2174         if (iwl_have_debug_level(IWL_DL_ISR)) {
2175                 IWL_DEBUG_ISR(trans,
2176                               "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2177                               inta_hw, trans_pcie->hw_mask,
2178                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2179                 if (inta_hw & ~trans_pcie->hw_mask)
2180                         IWL_DEBUG_ISR(trans,
2181                                       "We got a masked interrupt 0x%08x\n",
2182                                       inta_hw & ~trans_pcie->hw_mask);
2183         }
2184 
2185         inta_hw &= trans_pcie->hw_mask;
2186 
2187         /* Alive notification via Rx interrupt will do the real work */
2188         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2189                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2190                 isr_stats->alive++;
2191                 if (trans->trans_cfg->gen2) {
2192                         /* We can restock, since firmware configured the RFH */
2193                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2194                 }
2195         }
2196 
2197         if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22560 &&
2198             inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2199                 /* Reflect IML transfer status */
2200                 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2201 
2202                 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2203                 if (res == IWL_IMAGE_RESP_FAIL) {
2204                         isr_stats->sw++;
2205                         iwl_pcie_irq_handle_error(trans);
2206                 }
2207         } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2208                 u32 sleep_notif =
2209                         le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2210                 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2211                     sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2212                         IWL_DEBUG_ISR(trans,
2213                                       "Sx interrupt: sleep notification = 0x%x\n",
2214                                       sleep_notif);
2215                         trans_pcie->sx_complete = true;
2216                         wake_up(&trans_pcie->sx_waitq);
2217                 } else {
2218                         /* uCode wakes up after power-down sleep */
2219                         IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2220                         iwl_pcie_rxq_check_wrptr(trans);
2221                         iwl_pcie_txq_check_wrptrs(trans);
2222 
2223                         isr_stats->wakeup++;
2224                 }
2225         }
2226 
2227         if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2228                 /* Reflect IML transfer status */
2229                 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2230 
2231                 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2232                 if (res == IWL_IMAGE_RESP_FAIL) {
2233                         isr_stats->sw++;
2234                         iwl_pcie_irq_handle_error(trans);
2235                 }
2236         }
2237 
2238         /* Chip got too hot and stopped itself */
2239         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2240                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2241                 isr_stats->ctkill++;
2242         }
2243 
2244         /* HW RF KILL switch toggled */
2245         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2246                 iwl_pcie_handle_rfkill_irq(trans);
2247 
2248         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2249                 IWL_ERR(trans,
2250                         "Hardware error detected. Restarting.\n");
2251 
2252                 isr_stats->hw++;
2253                 trans->dbg.hw_error = true;
2254                 iwl_pcie_irq_handle_error(trans);
2255         }
2256 
2257         iwl_pcie_clear_irq(trans, entry);
2258 
2259         lock_map_release(&trans->sync_cmd_lockdep_map);
2260 
2261         return IRQ_HANDLED;
2262 }

/* [<][>][^][v][top][bottom][index][help] */