root/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. iwl_mvm_skb_get_hdr
  2. iwl_mvm_check_pn
  3. iwl_mvm_create_skb
  4. iwl_mvm_add_rtap_sniffer_config
  5. iwl_mvm_pass_packet_to_mac80211
  6. iwl_mvm_get_signal_strength
  7. iwl_mvm_rx_crypto
  8. iwl_mvm_rx_csum
  9. iwl_mvm_is_dup
  10. iwl_mvm_notify_rx_queue
  11. iwl_mvm_is_sn_less
  12. iwl_mvm_sync_nssn
  13. iwl_mvm_release_frames
  14. iwl_mvm_reorder_timer_expired
  15. iwl_mvm_del_ba
  16. iwl_mvm_release_frames_from_notif
  17. iwl_mvm_nssn_sync
  18. iwl_mvm_rx_queue_notif
  19. iwl_mvm_oldsn_workaround
  20. iwl_mvm_reorder
  21. iwl_mvm_agg_rx_received
  22. iwl_mvm_flip_address
  23. iwl_mvm_decode_he_mu_ext
  24. iwl_mvm_decode_he_phy_ru_alloc
  25. iwl_mvm_decode_he_phy_data
  26. iwl_mvm_rx_he
  27. iwl_mvm_decode_lsig
  28. iwl_mvm_rx_mpdu_mq
  29. iwl_mvm_rx_monitor_no_data
  30. iwl_mvm_rx_frame_release
  31. iwl_mvm_rx_bar_frame_release

   1 /******************************************************************************
   2  *
   3  * This file is provided under a dual BSD/GPLv2 license.  When using or
   4  * redistributing this file, you may do so under either license.
   5  *
   6  * GPL LICENSE SUMMARY
   7  *
   8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
   9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
  11  * Copyright(c) 2018 - 2019 Intel Corporation
  12  *
  13  * This program is free software; you can redistribute it and/or modify
  14  * it under the terms of version 2 of the GNU General Public License as
  15  * published by the Free Software Foundation.
  16  *
  17  * This program is distributed in the hope that it will be useful, but
  18  * WITHOUT ANY WARRANTY; without even the implied warranty of
  19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20  * General Public License for more details.
  21  *
  22  * The full GNU General Public License is included in this distribution
  23  * in the file called COPYING.
  24  *
  25  * Contact Information:
  26  *  Intel Linux Wireless <ilw@linux.intel.com>
  27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  28  *
  29  * BSD LICENSE
  30  *
  31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
  32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  33  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
  34  * Copyright(c) 2018 - 2019 Intel Corporation
  35  * All rights reserved.
  36  *
  37  * Redistribution and use in source and binary forms, with or without
  38  * modification, are permitted provided that the following conditions
  39  * are met:
  40  *
  41  *  * Redistributions of source code must retain the above copyright
  42  *    notice, this list of conditions and the following disclaimer.
  43  *  * Redistributions in binary form must reproduce the above copyright
  44  *    notice, this list of conditions and the following disclaimer in
  45  *    the documentation and/or other materials provided with the
  46  *    distribution.
  47  *  * Neither the name Intel Corporation nor the names of its
  48  *    contributors may be used to endorse or promote products derived
  49  *    from this software without specific prior written permission.
  50  *
  51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  62  *****************************************************************************/
  63 #include <linux/etherdevice.h>
  64 #include <linux/skbuff.h>
  65 #include "iwl-trans.h"
  66 #include "mvm.h"
  67 #include "fw-api.h"
  68 
  69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
  70 {
  71         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
  72         u8 *data = skb->data;
  73 
  74         /* Alignment concerns */
  75         BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
  76         BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
  77         BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
  78         BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
  79 
  80         if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
  81                 data += sizeof(struct ieee80211_radiotap_he);
  82         if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
  83                 data += sizeof(struct ieee80211_radiotap_he_mu);
  84         if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
  85                 data += sizeof(struct ieee80211_radiotap_lsig);
  86         if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
  87                 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
  88 
  89                 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
  90         }
  91 
  92         return data;
  93 }
  94 
  95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
  96                                    int queue, struct ieee80211_sta *sta)
  97 {
  98         struct iwl_mvm_sta *mvmsta;
  99         struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
 100         struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
 101         struct iwl_mvm_key_pn *ptk_pn;
 102         int res;
 103         u8 tid, keyidx;
 104         u8 pn[IEEE80211_CCMP_PN_LEN];
 105         u8 *extiv;
 106 
 107         /* do PN checking */
 108 
 109         /* multicast and non-data only arrives on default queue */
 110         if (!ieee80211_is_data(hdr->frame_control) ||
 111             is_multicast_ether_addr(hdr->addr1))
 112                 return 0;
 113 
 114         /* do not check PN for open AP */
 115         if (!(stats->flag & RX_FLAG_DECRYPTED))
 116                 return 0;
 117 
 118         /*
 119          * avoid checking for default queue - we don't want to replicate
 120          * all the logic that's necessary for checking the PN on fragmented
 121          * frames, leave that to mac80211
 122          */
 123         if (queue == 0)
 124                 return 0;
 125 
 126         /* if we are here - this for sure is either CCMP or GCMP */
 127         if (IS_ERR_OR_NULL(sta)) {
 128                 IWL_ERR(mvm,
 129                         "expected hw-decrypted unicast frame for station\n");
 130                 return -1;
 131         }
 132 
 133         mvmsta = iwl_mvm_sta_from_mac80211(sta);
 134 
 135         extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
 136         keyidx = extiv[3] >> 6;
 137 
 138         ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
 139         if (!ptk_pn)
 140                 return -1;
 141 
 142         if (ieee80211_is_data_qos(hdr->frame_control))
 143                 tid = ieee80211_get_tid(hdr);
 144         else
 145                 tid = 0;
 146 
 147         /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
 148         if (tid >= IWL_MAX_TID_COUNT)
 149                 return -1;
 150 
 151         /* load pn */
 152         pn[0] = extiv[7];
 153         pn[1] = extiv[6];
 154         pn[2] = extiv[5];
 155         pn[3] = extiv[4];
 156         pn[4] = extiv[1];
 157         pn[5] = extiv[0];
 158 
 159         res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
 160         if (res < 0)
 161                 return -1;
 162         if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
 163                 return -1;
 164 
 165         memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
 166         stats->flag |= RX_FLAG_PN_VALIDATED;
 167 
 168         return 0;
 169 }
 170 
 171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
 172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
 173                               struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
 174                               struct iwl_rx_cmd_buffer *rxb)
 175 {
 176         struct iwl_rx_packet *pkt = rxb_addr(rxb);
 177         struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
 178         unsigned int headlen, fraglen, pad_len = 0;
 179         unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
 180 
 181         if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
 182                 len -= 2;
 183                 pad_len = 2;
 184         }
 185 
 186         /* If frame is small enough to fit in skb->head, pull it completely.
 187          * If not, only pull ieee80211_hdr (including crypto if present, and
 188          * an additional 8 bytes for SNAP/ethertype, see below) so that
 189          * splice() or TCP coalesce are more efficient.
 190          *
 191          * Since, in addition, ieee80211_data_to_8023() always pull in at
 192          * least 8 bytes (possibly more for mesh) we can do the same here
 193          * to save the cost of doing it later. That still doesn't pull in
 194          * the actual IP header since the typical case has a SNAP header.
 195          * If the latter changes (there are efforts in the standards group
 196          * to do so) we should revisit this and ieee80211_data_to_8023().
 197          */
 198         headlen = (len <= skb_tailroom(skb)) ? len :
 199                                                hdrlen + crypt_len + 8;
 200 
 201         /* The firmware may align the packet to DWORD.
 202          * The padding is inserted after the IV.
 203          * After copying the header + IV skip the padding if
 204          * present before copying packet data.
 205          */
 206         hdrlen += crypt_len;
 207 
 208         if (WARN_ONCE(headlen < hdrlen,
 209                       "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
 210                       hdrlen, len, crypt_len)) {
 211                 /*
 212                  * We warn and trace because we want to be able to see
 213                  * it in trace-cmd as well.
 214                  */
 215                 IWL_DEBUG_RX(mvm,
 216                              "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
 217                              hdrlen, len, crypt_len);
 218                 return -EINVAL;
 219         }
 220 
 221         skb_put_data(skb, hdr, hdrlen);
 222         skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
 223 
 224         fraglen = len - headlen;
 225 
 226         if (fraglen) {
 227                 int offset = (void *)hdr + headlen + pad_len -
 228                              rxb_addr(rxb) + rxb_offset(rxb);
 229 
 230                 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
 231                                 fraglen, rxb->truesize);
 232         }
 233 
 234         return 0;
 235 }
 236 
 237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
 238                                             struct sk_buff *skb)
 239 {
 240         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 241         struct ieee80211_vendor_radiotap *radiotap;
 242         const int size = sizeof(*radiotap) + sizeof(__le16);
 243 
 244         if (!mvm->cur_aid)
 245                 return;
 246 
 247         /* ensure alignment */
 248         BUILD_BUG_ON((size + 2) % 4);
 249 
 250         radiotap = skb_put(skb, size + 2);
 251         radiotap->align = 1;
 252         /* Intel OUI */
 253         radiotap->oui[0] = 0xf6;
 254         radiotap->oui[1] = 0x54;
 255         radiotap->oui[2] = 0x25;
 256         /* radiotap sniffer config sub-namespace */
 257         radiotap->subns = 1;
 258         radiotap->present = 0x1;
 259         radiotap->len = size - sizeof(*radiotap);
 260         radiotap->pad = 2;
 261 
 262         /* fill the data now */
 263         memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
 264         /* and clear the padding */
 265         memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
 266 
 267         rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
 268 }
 269 
 270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
 271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
 272                                             struct napi_struct *napi,
 273                                             struct sk_buff *skb, int queue,
 274                                             struct ieee80211_sta *sta,
 275                                             bool csi)
 276 {
 277         if (iwl_mvm_check_pn(mvm, skb, queue, sta))
 278                 kfree_skb(skb);
 279         else
 280                 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
 281 }
 282 
 283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
 284                                         struct ieee80211_rx_status *rx_status,
 285                                         u32 rate_n_flags, int energy_a,
 286                                         int energy_b)
 287 {
 288         int max_energy;
 289         u32 rate_flags = rate_n_flags;
 290 
 291         energy_a = energy_a ? -energy_a : S8_MIN;
 292         energy_b = energy_b ? -energy_b : S8_MIN;
 293         max_energy = max(energy_a, energy_b);
 294 
 295         IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
 296                         energy_a, energy_b, max_energy);
 297 
 298         rx_status->signal = max_energy;
 299         rx_status->chains =
 300                 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
 301         rx_status->chain_signal[0] = energy_a;
 302         rx_status->chain_signal[1] = energy_b;
 303         rx_status->chain_signal[2] = S8_MIN;
 304 }
 305 
 306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
 307                              struct ieee80211_rx_status *stats, u16 phy_info,
 308                              struct iwl_rx_mpdu_desc *desc,
 309                              u32 pkt_flags, int queue, u8 *crypt_len)
 310 {
 311         u16 status = le16_to_cpu(desc->status);
 312 
 313         /*
 314          * Drop UNKNOWN frames in aggregation, unless in monitor mode
 315          * (where we don't have the keys).
 316          * We limit this to aggregation because in TKIP this is a valid
 317          * scenario, since we may not have the (correct) TTAK (phase 1
 318          * key) in the firmware.
 319          */
 320         if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
 321             (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 322             IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
 323                 return -1;
 324 
 325         if (!ieee80211_has_protected(hdr->frame_control) ||
 326             (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 327             IWL_RX_MPDU_STATUS_SEC_NONE)
 328                 return 0;
 329 
 330         /* TODO: handle packets encrypted with unknown alg */
 331 
 332         switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
 333         case IWL_RX_MPDU_STATUS_SEC_CCM:
 334         case IWL_RX_MPDU_STATUS_SEC_GCM:
 335                 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
 336                 /* alg is CCM: check MIC only */
 337                 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 338                         return -1;
 339 
 340                 stats->flag |= RX_FLAG_DECRYPTED;
 341                 if (pkt_flags & FH_RSCSR_RADA_EN)
 342                         stats->flag |= RX_FLAG_MIC_STRIPPED;
 343                 *crypt_len = IEEE80211_CCMP_HDR_LEN;
 344                 return 0;
 345         case IWL_RX_MPDU_STATUS_SEC_TKIP:
 346                 /* Don't drop the frame and decrypt it in SW */
 347                 if (!fw_has_api(&mvm->fw->ucode_capa,
 348                                 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
 349                     !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
 350                         return 0;
 351 
 352                 if (mvm->trans->trans_cfg->gen2 &&
 353                     !(status & RX_MPDU_RES_STATUS_MIC_OK))
 354                         stats->flag |= RX_FLAG_MMIC_ERROR;
 355 
 356                 *crypt_len = IEEE80211_TKIP_IV_LEN;
 357                 /* fall through */
 358         case IWL_RX_MPDU_STATUS_SEC_WEP:
 359                 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
 360                         return -1;
 361 
 362                 stats->flag |= RX_FLAG_DECRYPTED;
 363                 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 364                                 IWL_RX_MPDU_STATUS_SEC_WEP)
 365                         *crypt_len = IEEE80211_WEP_IV_LEN;
 366 
 367                 if (pkt_flags & FH_RSCSR_RADA_EN) {
 368                         stats->flag |= RX_FLAG_ICV_STRIPPED;
 369                         if (mvm->trans->trans_cfg->gen2)
 370                                 stats->flag |= RX_FLAG_MMIC_STRIPPED;
 371                 }
 372 
 373                 return 0;
 374         case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
 375                 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 376                         return -1;
 377                 stats->flag |= RX_FLAG_DECRYPTED;
 378                 return 0;
 379         default:
 380                 /*
 381                  * Sometimes we can get frames that were not decrypted
 382                  * because the firmware didn't have the keys yet. This can
 383                  * happen after connection where we can get multicast frames
 384                  * before the GTK is installed.
 385                  * Silently drop those frames.
 386                  * Also drop un-decrypted frames in monitor mode.
 387                  */
 388                 if (!is_multicast_ether_addr(hdr->addr1) &&
 389                     !mvm->monitor_on && net_ratelimit())
 390                         IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
 391         }
 392 
 393         return 0;
 394 }
 395 
 396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
 397                             struct sk_buff *skb,
 398                             struct iwl_rx_mpdu_desc *desc)
 399 {
 400         struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 401         struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
 402         u16 flags = le16_to_cpu(desc->l3l4_flags);
 403         u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
 404                           IWL_RX_L3_PROTO_POS);
 405 
 406         if (mvmvif->features & NETIF_F_RXCSUM &&
 407             flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
 408             (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
 409              l3_prot == IWL_RX_L3_TYPE_IPV6 ||
 410              l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
 411                 skb->ip_summed = CHECKSUM_UNNECESSARY;
 412 }
 413 
 414 /*
 415  * returns true if a packet is a duplicate and should be dropped.
 416  * Updates AMSDU PN tracking info
 417  */
 418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
 419                            struct ieee80211_rx_status *rx_status,
 420                            struct ieee80211_hdr *hdr,
 421                            struct iwl_rx_mpdu_desc *desc)
 422 {
 423         struct iwl_mvm_sta *mvm_sta;
 424         struct iwl_mvm_rxq_dup_data *dup_data;
 425         u8 tid, sub_frame_idx;
 426 
 427         if (WARN_ON(IS_ERR_OR_NULL(sta)))
 428                 return false;
 429 
 430         mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 431         dup_data = &mvm_sta->dup_data[queue];
 432 
 433         /*
 434          * Drop duplicate 802.11 retransmissions
 435          * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
 436          */
 437         if (ieee80211_is_ctl(hdr->frame_control) ||
 438             ieee80211_is_qos_nullfunc(hdr->frame_control) ||
 439             is_multicast_ether_addr(hdr->addr1)) {
 440                 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 441                 return false;
 442         }
 443 
 444         if (ieee80211_is_data_qos(hdr->frame_control))
 445                 /* frame has qos control */
 446                 tid = ieee80211_get_tid(hdr);
 447         else
 448                 tid = IWL_MAX_TID_COUNT;
 449 
 450         /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
 451         sub_frame_idx = desc->amsdu_info &
 452                 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 453 
 454         if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
 455                      dup_data->last_seq[tid] == hdr->seq_ctrl &&
 456                      dup_data->last_sub_frame[tid] >= sub_frame_idx))
 457                 return true;
 458 
 459         /* Allow same PN as the first subframe for following sub frames */
 460         if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
 461             sub_frame_idx > dup_data->last_sub_frame[tid] &&
 462             desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
 463                 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
 464 
 465         dup_data->last_seq[tid] = hdr->seq_ctrl;
 466         dup_data->last_sub_frame[tid] = sub_frame_idx;
 467 
 468         rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 469 
 470         return false;
 471 }
 472 
 473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
 474                             const u8 *data, u32 count, bool async)
 475 {
 476         u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
 477                sizeof(struct iwl_mvm_rss_sync_notif)];
 478         struct iwl_rxq_sync_cmd *cmd = (void *)buf;
 479         u32 data_size = sizeof(*cmd) + count;
 480         int ret;
 481 
 482         /*
 483          * size must be a multiple of DWORD
 484          * Ensure we don't overflow buf
 485          */
 486         if (WARN_ON(count & 3 ||
 487                     count > sizeof(struct iwl_mvm_rss_sync_notif)))
 488                 return -EINVAL;
 489 
 490         cmd->rxq_mask = cpu_to_le32(rxq_mask);
 491         cmd->count =  cpu_to_le32(count);
 492         cmd->flags = 0;
 493         memcpy(cmd->payload, data, count);
 494 
 495         ret = iwl_mvm_send_cmd_pdu(mvm,
 496                                    WIDE_ID(DATA_PATH_GROUP,
 497                                            TRIGGER_RX_QUEUES_NOTIF_CMD),
 498                                    async ? CMD_ASYNC : 0, data_size, cmd);
 499 
 500         return ret;
 501 }
 502 
 503 /*
 504  * Returns true if sn2 - buffer_size < sn1 < sn2.
 505  * To be used only in order to compare reorder buffer head with NSSN.
 506  * We fully trust NSSN unless it is behind us due to reorder timeout.
 507  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
 508  */
 509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
 510 {
 511         return ieee80211_sn_less(sn1, sn2) &&
 512                !ieee80211_sn_less(sn1, sn2 - buffer_size);
 513 }
 514 
 515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
 516 {
 517         if (IWL_MVM_USE_NSSN_SYNC) {
 518                 struct iwl_mvm_rss_sync_notif notif = {
 519                         .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
 520                         .metadata.sync = 0,
 521                         .nssn_sync.baid = baid,
 522                         .nssn_sync.nssn = nssn,
 523                 };
 524 
 525                 iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
 526                                                 sizeof(notif));
 527         }
 528 }
 529 
 530 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
 531 
 532 enum iwl_mvm_release_flags {
 533         IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
 534         IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
 535 };
 536 
 537 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
 538                                    struct ieee80211_sta *sta,
 539                                    struct napi_struct *napi,
 540                                    struct iwl_mvm_baid_data *baid_data,
 541                                    struct iwl_mvm_reorder_buffer *reorder_buf,
 542                                    u16 nssn, u32 flags)
 543 {
 544         struct iwl_mvm_reorder_buf_entry *entries =
 545                 &baid_data->entries[reorder_buf->queue *
 546                                     baid_data->entries_per_queue];
 547         u16 ssn = reorder_buf->head_sn;
 548 
 549         lockdep_assert_held(&reorder_buf->lock);
 550 
 551         /*
 552          * We keep the NSSN not too far behind, if we are sync'ing it and it
 553          * is more than 2048 ahead of us, it must be behind us. Discard it.
 554          * This can happen if the queue that hit the 0 / 2048 seqno was lagging
 555          * behind and this queue already processed packets. The next if
 556          * would have caught cases where this queue would have processed less
 557          * than 64 packets, but it may have processed more than 64 packets.
 558          */
 559         if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
 560             ieee80211_sn_less(nssn, ssn))
 561                 goto set_timer;
 562 
 563         /* ignore nssn smaller than head sn - this can happen due to timeout */
 564         if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
 565                 goto set_timer;
 566 
 567         while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
 568                 int index = ssn % reorder_buf->buf_size;
 569                 struct sk_buff_head *skb_list = &entries[index].e.frames;
 570                 struct sk_buff *skb;
 571 
 572                 ssn = ieee80211_sn_inc(ssn);
 573                 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
 574                     (ssn == 2048 || ssn == 0))
 575                         iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
 576 
 577                 /*
 578                  * Empty the list. Will have more than one frame for A-MSDU.
 579                  * Empty list is valid as well since nssn indicates frames were
 580                  * received.
 581                  */
 582                 while ((skb = __skb_dequeue(skb_list))) {
 583                         iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
 584                                                         reorder_buf->queue,
 585                                                         sta, false);
 586                         reorder_buf->num_stored--;
 587                 }
 588         }
 589         reorder_buf->head_sn = nssn;
 590 
 591 set_timer:
 592         if (reorder_buf->num_stored && !reorder_buf->removed) {
 593                 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
 594 
 595                 while (skb_queue_empty(&entries[index].e.frames))
 596                         index = (index + 1) % reorder_buf->buf_size;
 597                 /* modify timer to match next frame's expiration time */
 598                 mod_timer(&reorder_buf->reorder_timer,
 599                           entries[index].e.reorder_time + 1 +
 600                           RX_REORDER_BUF_TIMEOUT_MQ);
 601         } else {
 602                 del_timer(&reorder_buf->reorder_timer);
 603         }
 604 }
 605 
 606 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
 607 {
 608         struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
 609         struct iwl_mvm_baid_data *baid_data =
 610                 iwl_mvm_baid_data_from_reorder_buf(buf);
 611         struct iwl_mvm_reorder_buf_entry *entries =
 612                 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
 613         int i;
 614         u16 sn = 0, index = 0;
 615         bool expired = false;
 616         bool cont = false;
 617 
 618         spin_lock(&buf->lock);
 619 
 620         if (!buf->num_stored || buf->removed) {
 621                 spin_unlock(&buf->lock);
 622                 return;
 623         }
 624 
 625         for (i = 0; i < buf->buf_size ; i++) {
 626                 index = (buf->head_sn + i) % buf->buf_size;
 627 
 628                 if (skb_queue_empty(&entries[index].e.frames)) {
 629                         /*
 630                          * If there is a hole and the next frame didn't expire
 631                          * we want to break and not advance SN
 632                          */
 633                         cont = false;
 634                         continue;
 635                 }
 636                 if (!cont &&
 637                     !time_after(jiffies, entries[index].e.reorder_time +
 638                                          RX_REORDER_BUF_TIMEOUT_MQ))
 639                         break;
 640 
 641                 expired = true;
 642                 /* continue until next hole after this expired frames */
 643                 cont = true;
 644                 sn = ieee80211_sn_add(buf->head_sn, i + 1);
 645         }
 646 
 647         if (expired) {
 648                 struct ieee80211_sta *sta;
 649                 struct iwl_mvm_sta *mvmsta;
 650                 u8 sta_id = baid_data->sta_id;
 651 
 652                 rcu_read_lock();
 653                 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
 654                 mvmsta = iwl_mvm_sta_from_mac80211(sta);
 655 
 656                 /* SN is set to the last expired frame + 1 */
 657                 IWL_DEBUG_HT(buf->mvm,
 658                              "Releasing expired frames for sta %u, sn %d\n",
 659                              sta_id, sn);
 660                 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
 661                                                      sta, baid_data->tid);
 662                 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
 663                                        buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
 664                 rcu_read_unlock();
 665         } else {
 666                 /*
 667                  * If no frame expired and there are stored frames, index is now
 668                  * pointing to the first unexpired frame - modify timer
 669                  * accordingly to this frame.
 670                  */
 671                 mod_timer(&buf->reorder_timer,
 672                           entries[index].e.reorder_time +
 673                           1 + RX_REORDER_BUF_TIMEOUT_MQ);
 674         }
 675         spin_unlock(&buf->lock);
 676 }
 677 
 678 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
 679                            struct iwl_mvm_delba_data *data)
 680 {
 681         struct iwl_mvm_baid_data *ba_data;
 682         struct ieee80211_sta *sta;
 683         struct iwl_mvm_reorder_buffer *reorder_buf;
 684         u8 baid = data->baid;
 685 
 686         if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
 687                 return;
 688 
 689         rcu_read_lock();
 690 
 691         ba_data = rcu_dereference(mvm->baid_map[baid]);
 692         if (WARN_ON_ONCE(!ba_data))
 693                 goto out;
 694 
 695         sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
 696         if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 697                 goto out;
 698 
 699         reorder_buf = &ba_data->reorder_buf[queue];
 700 
 701         /* release all frames that are in the reorder buffer to the stack */
 702         spin_lock_bh(&reorder_buf->lock);
 703         iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
 704                                ieee80211_sn_add(reorder_buf->head_sn,
 705                                                 reorder_buf->buf_size),
 706                                0);
 707         spin_unlock_bh(&reorder_buf->lock);
 708         del_timer_sync(&reorder_buf->reorder_timer);
 709 
 710 out:
 711         rcu_read_unlock();
 712 }
 713 
 714 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
 715                                               struct napi_struct *napi,
 716                                               u8 baid, u16 nssn, int queue,
 717                                               u32 flags)
 718 {
 719         struct ieee80211_sta *sta;
 720         struct iwl_mvm_reorder_buffer *reorder_buf;
 721         struct iwl_mvm_baid_data *ba_data;
 722 
 723         IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
 724                      baid, nssn);
 725 
 726         if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
 727                          baid >= ARRAY_SIZE(mvm->baid_map)))
 728                 return;
 729 
 730         rcu_read_lock();
 731 
 732         ba_data = rcu_dereference(mvm->baid_map[baid]);
 733         if (WARN_ON_ONCE(!ba_data))
 734                 goto out;
 735 
 736         sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
 737         if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 738                 goto out;
 739 
 740         reorder_buf = &ba_data->reorder_buf[queue];
 741 
 742         spin_lock_bh(&reorder_buf->lock);
 743         iwl_mvm_release_frames(mvm, sta, napi, ba_data,
 744                                reorder_buf, nssn, flags);
 745         spin_unlock_bh(&reorder_buf->lock);
 746 
 747 out:
 748         rcu_read_unlock();
 749 }
 750 
 751 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
 752                               struct napi_struct *napi, int queue,
 753                               const struct iwl_mvm_nssn_sync_data *data)
 754 {
 755         iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
 756                                           data->nssn, queue,
 757                                           IWL_MVM_RELEASE_FROM_RSS_SYNC);
 758 }
 759 
 760 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
 761                             struct iwl_rx_cmd_buffer *rxb, int queue)
 762 {
 763         struct iwl_rx_packet *pkt = rxb_addr(rxb);
 764         struct iwl_rxq_sync_notification *notif;
 765         struct iwl_mvm_internal_rxq_notif *internal_notif;
 766 
 767         notif = (void *)pkt->data;
 768         internal_notif = (void *)notif->payload;
 769 
 770         if (internal_notif->sync &&
 771             mvm->queue_sync_cookie != internal_notif->cookie) {
 772                 WARN_ONCE(1, "Received expired RX queue sync message\n");
 773                 return;
 774         }
 775 
 776         switch (internal_notif->type) {
 777         case IWL_MVM_RXQ_EMPTY:
 778                 break;
 779         case IWL_MVM_RXQ_NOTIF_DEL_BA:
 780                 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
 781                 break;
 782         case IWL_MVM_RXQ_NSSN_SYNC:
 783                 iwl_mvm_nssn_sync(mvm, napi, queue,
 784                                   (void *)internal_notif->data);
 785                 break;
 786         default:
 787                 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
 788         }
 789 
 790         if (internal_notif->sync &&
 791             !atomic_dec_return(&mvm->queue_sync_counter))
 792                 wake_up(&mvm->rx_sync_waitq);
 793 }
 794 
 795 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
 796                                      struct ieee80211_sta *sta, int tid,
 797                                      struct iwl_mvm_reorder_buffer *buffer,
 798                                      u32 reorder, u32 gp2, int queue)
 799 {
 800         struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 801 
 802         if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
 803                 /* we have a new (A-)MPDU ... */
 804 
 805                 /*
 806                  * reset counter to 0 if we didn't have any oldsn in
 807                  * the last A-MPDU (as detected by GP2 being identical)
 808                  */
 809                 if (!buffer->consec_oldsn_prev_drop)
 810                         buffer->consec_oldsn_drops = 0;
 811 
 812                 /* either way, update our tracking state */
 813                 buffer->consec_oldsn_ampdu_gp2 = gp2;
 814         } else if (buffer->consec_oldsn_prev_drop) {
 815                 /*
 816                  * tracking state didn't change, and we had an old SN
 817                  * indication before - do nothing in this case, we
 818                  * already noted this one down and are waiting for the
 819                  * next A-MPDU (by GP2)
 820                  */
 821                 return;
 822         }
 823 
 824         /* return unless this MPDU has old SN */
 825         if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
 826                 return;
 827 
 828         /* update state */
 829         buffer->consec_oldsn_prev_drop = 1;
 830         buffer->consec_oldsn_drops++;
 831 
 832         /* if limit is reached, send del BA and reset state */
 833         if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
 834                 IWL_WARN(mvm,
 835                          "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
 836                          IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
 837                          sta->addr, queue, tid);
 838                 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
 839                 buffer->consec_oldsn_prev_drop = 0;
 840                 buffer->consec_oldsn_drops = 0;
 841         }
 842 }
 843 
 844 /*
 845  * Returns true if the MPDU was buffered\dropped, false if it should be passed
 846  * to upper layer.
 847  */
 848 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
 849                             struct napi_struct *napi,
 850                             int queue,
 851                             struct ieee80211_sta *sta,
 852                             struct sk_buff *skb,
 853                             struct iwl_rx_mpdu_desc *desc)
 854 {
 855         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 856         struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
 857         struct iwl_mvm_sta *mvm_sta;
 858         struct iwl_mvm_baid_data *baid_data;
 859         struct iwl_mvm_reorder_buffer *buffer;
 860         struct sk_buff *tail;
 861         u32 reorder = le32_to_cpu(desc->reorder_data);
 862         bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
 863         bool last_subframe =
 864                 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
 865         u8 tid = ieee80211_get_tid(hdr);
 866         u8 sub_frame_idx = desc->amsdu_info &
 867                            IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 868         struct iwl_mvm_reorder_buf_entry *entries;
 869         int index;
 870         u16 nssn, sn;
 871         u8 baid;
 872 
 873         baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
 874                 IWL_RX_MPDU_REORDER_BAID_SHIFT;
 875 
 876         /*
 877          * This also covers the case of receiving a Block Ack Request
 878          * outside a BA session; we'll pass it to mac80211 and that
 879          * then sends a delBA action frame.
 880          * This also covers pure monitor mode, in which case we won't
 881          * have any BA sessions.
 882          */
 883         if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
 884                 return false;
 885 
 886         /* no sta yet */
 887         if (WARN_ONCE(IS_ERR_OR_NULL(sta),
 888                       "Got valid BAID without a valid station assigned\n"))
 889                 return false;
 890 
 891         mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 892 
 893         /* not a data packet or a bar */
 894         if (!ieee80211_is_back_req(hdr->frame_control) &&
 895             (!ieee80211_is_data_qos(hdr->frame_control) ||
 896              is_multicast_ether_addr(hdr->addr1)))
 897                 return false;
 898 
 899         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 900                 return false;
 901 
 902         baid_data = rcu_dereference(mvm->baid_map[baid]);
 903         if (!baid_data) {
 904                 IWL_DEBUG_RX(mvm,
 905                              "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
 906                               baid, reorder);
 907                 return false;
 908         }
 909 
 910         if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
 911                  "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
 912                  baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
 913                  tid))
 914                 return false;
 915 
 916         nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
 917         sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
 918                 IWL_RX_MPDU_REORDER_SN_SHIFT;
 919 
 920         buffer = &baid_data->reorder_buf[queue];
 921         entries = &baid_data->entries[queue * baid_data->entries_per_queue];
 922 
 923         spin_lock_bh(&buffer->lock);
 924 
 925         if (!buffer->valid) {
 926                 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
 927                         spin_unlock_bh(&buffer->lock);
 928                         return false;
 929                 }
 930                 buffer->valid = true;
 931         }
 932 
 933         if (ieee80211_is_back_req(hdr->frame_control)) {
 934                 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
 935                                        buffer, nssn, 0);
 936                 goto drop;
 937         }
 938 
 939         /*
 940          * If there was a significant jump in the nssn - adjust.
 941          * If the SN is smaller than the NSSN it might need to first go into
 942          * the reorder buffer, in which case we just release up to it and the
 943          * rest of the function will take care of storing it and releasing up to
 944          * the nssn.
 945          * This should not happen. This queue has been lagging and it should
 946          * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
 947          * and update the other queues.
 948          */
 949         if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
 950                                 buffer->buf_size) ||
 951             !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
 952                 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
 953 
 954                 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
 955                                        min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
 956         }
 957 
 958         iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
 959                                  rx_status->device_timestamp, queue);
 960 
 961         /* drop any oudated packets */
 962         if (ieee80211_sn_less(sn, buffer->head_sn))
 963                 goto drop;
 964 
 965         /* release immediately if allowed by nssn and no stored frames */
 966         if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
 967                 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
 968                                        buffer->buf_size) &&
 969                    (!amsdu || last_subframe)) {
 970                         /*
 971                          * If we crossed the 2048 or 0 SN, notify all the
 972                          * queues. This is done in order to avoid having a
 973                          * head_sn that lags behind for too long. When that
 974                          * happens, we can get to a situation where the head_sn
 975                          * is within the interval [nssn - buf_size : nssn]
 976                          * which will make us think that the nssn is a packet
 977                          * that we already freed because of the reordering
 978                          * buffer and we will ignore it. So maintain the
 979                          * head_sn somewhat updated across all the queues:
 980                          * when it crosses 0 and 2048.
 981                          */
 982                         if (sn == 2048 || sn == 0)
 983                                 iwl_mvm_sync_nssn(mvm, baid, sn);
 984                         buffer->head_sn = nssn;
 985                 }
 986                 /* No need to update AMSDU last SN - we are moving the head */
 987                 spin_unlock_bh(&buffer->lock);
 988                 return false;
 989         }
 990 
 991         /*
 992          * release immediately if there are no stored frames, and the sn is
 993          * equal to the head.
 994          * This can happen due to reorder timer, where NSSN is behind head_sn.
 995          * When we released everything, and we got the next frame in the
 996          * sequence, according to the NSSN we can't release immediately,
 997          * while technically there is no hole and we can move forward.
 998          */
 999         if (!buffer->num_stored && sn == buffer->head_sn) {
1000                 if (!amsdu || last_subframe) {
1001                         if (sn == 2048 || sn == 0)
1002                                 iwl_mvm_sync_nssn(mvm, baid, sn);
1003                         buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1004                 }
1005                 /* No need to update AMSDU last SN - we are moving the head */
1006                 spin_unlock_bh(&buffer->lock);
1007                 return false;
1008         }
1009 
1010         index = sn % buffer->buf_size;
1011 
1012         /*
1013          * Check if we already stored this frame
1014          * As AMSDU is either received or not as whole, logic is simple:
1015          * If we have frames in that position in the buffer and the last frame
1016          * originated from AMSDU had a different SN then it is a retransmission.
1017          * If it is the same SN then if the subframe index is incrementing it
1018          * is the same AMSDU - otherwise it is a retransmission.
1019          */
1020         tail = skb_peek_tail(&entries[index].e.frames);
1021         if (tail && !amsdu)
1022                 goto drop;
1023         else if (tail && (sn != buffer->last_amsdu ||
1024                           buffer->last_sub_index >= sub_frame_idx))
1025                 goto drop;
1026 
1027         /* put in reorder buffer */
1028         __skb_queue_tail(&entries[index].e.frames, skb);
1029         buffer->num_stored++;
1030         entries[index].e.reorder_time = jiffies;
1031 
1032         if (amsdu) {
1033                 buffer->last_amsdu = sn;
1034                 buffer->last_sub_index = sub_frame_idx;
1035         }
1036 
1037         /*
1038          * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1039          * The reason is that NSSN advances on the first sub-frame, and may
1040          * cause the reorder buffer to advance before all the sub-frames arrive.
1041          * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1042          * SN 1. NSSN for first sub frame will be 3 with the result of driver
1043          * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1044          * already ahead and it will be dropped.
1045          * If the last sub-frame is not on this queue - we will get frame
1046          * release notification with up to date NSSN.
1047          */
1048         if (!amsdu || last_subframe)
1049                 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1050                                        buffer, nssn,
1051                                        IWL_MVM_RELEASE_SEND_RSS_SYNC);
1052 
1053         spin_unlock_bh(&buffer->lock);
1054         return true;
1055 
1056 drop:
1057         kfree_skb(skb);
1058         spin_unlock_bh(&buffer->lock);
1059         return true;
1060 }
1061 
1062 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1063                                     u32 reorder_data, u8 baid)
1064 {
1065         unsigned long now = jiffies;
1066         unsigned long timeout;
1067         struct iwl_mvm_baid_data *data;
1068 
1069         rcu_read_lock();
1070 
1071         data = rcu_dereference(mvm->baid_map[baid]);
1072         if (!data) {
1073                 IWL_DEBUG_RX(mvm,
1074                              "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1075                               baid, reorder_data);
1076                 goto out;
1077         }
1078 
1079         if (!data->timeout)
1080                 goto out;
1081 
1082         timeout = data->timeout;
1083         /*
1084          * Do not update last rx all the time to avoid cache bouncing
1085          * between the rx queues.
1086          * Update it every timeout. Worst case is the session will
1087          * expire after ~ 2 * timeout, which doesn't matter that much.
1088          */
1089         if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1090                 /* Update is atomic */
1091                 data->last_rx = now;
1092 
1093 out:
1094         rcu_read_unlock();
1095 }
1096 
1097 static void iwl_mvm_flip_address(u8 *addr)
1098 {
1099         int i;
1100         u8 mac_addr[ETH_ALEN];
1101 
1102         for (i = 0; i < ETH_ALEN; i++)
1103                 mac_addr[i] = addr[ETH_ALEN - i - 1];
1104         ether_addr_copy(addr, mac_addr);
1105 }
1106 
1107 struct iwl_mvm_rx_phy_data {
1108         enum iwl_rx_phy_info_type info_type;
1109         __le32 d0, d1, d2, d3;
1110         __le16 d4;
1111 };
1112 
1113 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1114                                      struct iwl_mvm_rx_phy_data *phy_data,
1115                                      u32 rate_n_flags,
1116                                      struct ieee80211_radiotap_he_mu *he_mu)
1117 {
1118         u32 phy_data2 = le32_to_cpu(phy_data->d2);
1119         u32 phy_data3 = le32_to_cpu(phy_data->d3);
1120         u16 phy_data4 = le16_to_cpu(phy_data->d4);
1121 
1122         if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1123                 he_mu->flags1 |=
1124                         cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1125                                     IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1126 
1127                 he_mu->flags1 |=
1128                         le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1129                                                    phy_data4),
1130                                          IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1131 
1132                 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1133                                              phy_data2);
1134                 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1135                                              phy_data3);
1136                 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1137                                              phy_data2);
1138                 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1139                                              phy_data3);
1140         }
1141 
1142         if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1143             (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1144                 he_mu->flags1 |=
1145                         cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1146                                     IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1147 
1148                 he_mu->flags2 |=
1149                         le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1150                                                    phy_data4),
1151                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1152 
1153                 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1154                                              phy_data2);
1155                 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1156                                              phy_data3);
1157                 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1158                                              phy_data2);
1159                 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1160                                              phy_data3);
1161         }
1162 }
1163 
1164 static void
1165 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1166                                u32 rate_n_flags,
1167                                struct ieee80211_radiotap_he *he,
1168                                struct ieee80211_radiotap_he_mu *he_mu,
1169                                struct ieee80211_rx_status *rx_status)
1170 {
1171         /*
1172          * Unfortunately, we have to leave the mac80211 data
1173          * incorrect for the case that we receive an HE-MU
1174          * transmission and *don't* have the HE phy data (due
1175          * to the bits being used for TSF). This shouldn't
1176          * happen though as management frames where we need
1177          * the TSF/timers are not be transmitted in HE-MU.
1178          */
1179         u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1180         u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1181         u8 offs = 0;
1182 
1183         rx_status->bw = RATE_INFO_BW_HE_RU;
1184 
1185         he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1186 
1187         switch (ru) {
1188         case 0 ... 36:
1189                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1190                 offs = ru;
1191                 break;
1192         case 37 ... 52:
1193                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1194                 offs = ru - 37;
1195                 break;
1196         case 53 ... 60:
1197                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1198                 offs = ru - 53;
1199                 break;
1200         case 61 ... 64:
1201                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1202                 offs = ru - 61;
1203                 break;
1204         case 65 ... 66:
1205                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1206                 offs = ru - 65;
1207                 break;
1208         case 67:
1209                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1210                 break;
1211         case 68:
1212                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1213                 break;
1214         }
1215         he->data2 |= le16_encode_bits(offs,
1216                                       IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1217         he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1218                                  IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1219         if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1220                 he->data2 |=
1221                         cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1222 
1223 #define CHECK_BW(bw) \
1224         BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1225                      RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1226         BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1227                      RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1228         CHECK_BW(20);
1229         CHECK_BW(40);
1230         CHECK_BW(80);
1231         CHECK_BW(160);
1232 
1233         if (he_mu)
1234                 he_mu->flags2 |=
1235                         le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1236                                                    rate_n_flags),
1237                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1238         else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1239                 he->data6 |=
1240                         cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1241                         le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1242                                                    rate_n_flags),
1243                                          IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1244 }
1245 
1246 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1247                                        struct iwl_mvm_rx_phy_data *phy_data,
1248                                        struct ieee80211_radiotap_he *he,
1249                                        struct ieee80211_radiotap_he_mu *he_mu,
1250                                        struct ieee80211_rx_status *rx_status,
1251                                        u32 rate_n_flags, int queue)
1252 {
1253         switch (phy_data->info_type) {
1254         case IWL_RX_PHY_INFO_TYPE_NONE:
1255         case IWL_RX_PHY_INFO_TYPE_CCK:
1256         case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1257         case IWL_RX_PHY_INFO_TYPE_HT:
1258         case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1259         case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1260                 return;
1261         case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1262                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1263                                          IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1264                                          IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1265                                          IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1266                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1268                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1269                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1271                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1272                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1274                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1275                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1276                                                             IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1277                                               IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1278                 /* fall through */
1279         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1280         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1281         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1282         case IWL_RX_PHY_INFO_TYPE_HE_TB:
1283                 /* HE common */
1284                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1285                                          IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1286                                          IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1287                 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1288                                          IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1289                                          IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1290                                          IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1291                 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1292                                                             IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1293                                               IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1294                 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1295                     phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1296                         he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1297                         he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1298                                                             IWL_RX_PHY_DATA0_HE_UPLINK),
1299                                                       IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1300                 }
1301                 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302                                                             IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1303                                               IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1304                 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305                                                             IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1306                                               IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1307                 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1308                                                             IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1309                                               IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1310                 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1311                                                             IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1312                                               IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1313                 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314                                                             IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1315                                               IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1316                 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1317                                                             IWL_RX_PHY_DATA0_HE_DOPPLER),
1318                                               IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1319                 break;
1320         }
1321 
1322         switch (phy_data->info_type) {
1323         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1324         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1325         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1326                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1327                 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1328                                                             IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1329                                               IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1330                 break;
1331         default:
1332                 /* nothing here */
1333                 break;
1334         }
1335 
1336         switch (phy_data->info_type) {
1337         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1338                 he_mu->flags1 |=
1339                         le16_encode_bits(le16_get_bits(phy_data->d4,
1340                                                        IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1341                                          IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1342                 he_mu->flags1 |=
1343                         le16_encode_bits(le16_get_bits(phy_data->d4,
1344                                                        IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1345                                          IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1346                 he_mu->flags2 |=
1347                         le16_encode_bits(le16_get_bits(phy_data->d4,
1348                                                        IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1349                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1350                 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1351                 /* fall through */
1352         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1353                 he_mu->flags2 |=
1354                         le16_encode_bits(le32_get_bits(phy_data->d1,
1355                                                        IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1356                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1357                 he_mu->flags2 |=
1358                         le16_encode_bits(le32_get_bits(phy_data->d1,
1359                                                        IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1360                                          IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1361                 /* fall through */
1362         case IWL_RX_PHY_INFO_TYPE_HE_TB:
1363         case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1364                 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1365                                                he, he_mu, rx_status);
1366                 break;
1367         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1368                 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1369                 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1370                                                             IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1371                                               IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1372                 break;
1373         default:
1374                 /* nothing */
1375                 break;
1376         }
1377 }
1378 
1379 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1380                           struct iwl_mvm_rx_phy_data *phy_data,
1381                           u32 rate_n_flags, u16 phy_info, int queue)
1382 {
1383         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1384         struct ieee80211_radiotap_he *he = NULL;
1385         struct ieee80211_radiotap_he_mu *he_mu = NULL;
1386         u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1387         u8 stbc, ltf;
1388         static const struct ieee80211_radiotap_he known = {
1389                 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1390                                      IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1391                                      IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1392                                      IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1393                 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1394                                      IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1395         };
1396         static const struct ieee80211_radiotap_he_mu mu_known = {
1397                 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1398                                       IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1399                                       IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1400                                       IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1401                 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1402                                       IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1403         };
1404 
1405         he = skb_put_data(skb, &known, sizeof(known));
1406         rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1407 
1408         if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1409             phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1410                 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1411                 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1412         }
1413 
1414         /* report the AMPDU-EOF bit on single frames */
1415         if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1416                 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1417                 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1418                 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1419                         rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1420         }
1421 
1422         if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1423                 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1424                                            rate_n_flags, queue);
1425 
1426         /* update aggregation data for monitor sake on default queue */
1427         if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1428             (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1429                 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1430 
1431                 /* toggle is switched whenever new aggregation starts */
1432                 if (toggle_bit != mvm->ampdu_toggle) {
1433                         rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1434                         if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1435                                 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1436                 }
1437         }
1438 
1439         if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1440             rate_n_flags & RATE_MCS_HE_106T_MSK) {
1441                 rx_status->bw = RATE_INFO_BW_HE_RU;
1442                 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1443         }
1444 
1445         /* actually data is filled in mac80211 */
1446         if (he_type == RATE_MCS_HE_TYPE_SU ||
1447             he_type == RATE_MCS_HE_TYPE_EXT_SU)
1448                 he->data1 |=
1449                         cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1450 
1451         stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1452         rx_status->nss =
1453                 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1454                                         RATE_VHT_MCS_NSS_POS) + 1;
1455         rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1456         rx_status->encoding = RX_ENC_HE;
1457         rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1458         if (rate_n_flags & RATE_MCS_BF_MSK)
1459                 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1460 
1461         rx_status->he_dcm =
1462                 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1463 
1464 #define CHECK_TYPE(F)                                                   \
1465         BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=        \
1466                      (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1467 
1468         CHECK_TYPE(SU);
1469         CHECK_TYPE(EXT_SU);
1470         CHECK_TYPE(MU);
1471         CHECK_TYPE(TRIG);
1472 
1473         he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1474 
1475         if (rate_n_flags & RATE_MCS_BF_MSK)
1476                 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1477 
1478         switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1479                 RATE_MCS_HE_GI_LTF_POS) {
1480         case 0:
1481                 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1482                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1483                 else
1484                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1485                 if (he_type == RATE_MCS_HE_TYPE_MU)
1486                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1487                 else
1488                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1489                 break;
1490         case 1:
1491                 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1492                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1493                 else
1494                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1495                 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1496                 break;
1497         case 2:
1498                 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1499                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1500                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1501                 } else {
1502                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1503                         ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1504                 }
1505                 break;
1506         case 3:
1507                 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1508                      he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1509                     rate_n_flags & RATE_MCS_SGI_MSK)
1510                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1511                 else
1512                         rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1513                 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1514                 break;
1515         }
1516 
1517         he->data5 |= le16_encode_bits(ltf,
1518                                       IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1519 }
1520 
1521 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1522                                 struct iwl_mvm_rx_phy_data *phy_data)
1523 {
1524         struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1525         struct ieee80211_radiotap_lsig *lsig;
1526 
1527         switch (phy_data->info_type) {
1528         case IWL_RX_PHY_INFO_TYPE_HT:
1529         case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1530         case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1531         case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1532         case IWL_RX_PHY_INFO_TYPE_HE_SU:
1533         case IWL_RX_PHY_INFO_TYPE_HE_MU:
1534         case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1535         case IWL_RX_PHY_INFO_TYPE_HE_TB:
1536                 lsig = skb_put(skb, sizeof(*lsig));
1537                 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1538                 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1539                                                              IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1540                                                IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1541                 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1542                 break;
1543         default:
1544                 break;
1545         }
1546 }
1547 
1548 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1549                         struct iwl_rx_cmd_buffer *rxb, int queue)
1550 {
1551         struct ieee80211_rx_status *rx_status;
1552         struct iwl_rx_packet *pkt = rxb_addr(rxb);
1553         struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1554         struct ieee80211_hdr *hdr;
1555         u32 len = le16_to_cpu(desc->mpdu_len);
1556         u32 rate_n_flags, gp2_on_air_rise;
1557         u16 phy_info = le16_to_cpu(desc->phy_info);
1558         struct ieee80211_sta *sta = NULL;
1559         struct sk_buff *skb;
1560         u8 crypt_len = 0, channel, energy_a, energy_b;
1561         size_t desc_size;
1562         struct iwl_mvm_rx_phy_data phy_data = {
1563                 .d4 = desc->phy_data4,
1564                 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1565         };
1566         bool csi = false;
1567 
1568         if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1569                 return;
1570 
1571         if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
1572                 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1573                 channel = desc->v3.channel;
1574                 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1575                 energy_a = desc->v3.energy_a;
1576                 energy_b = desc->v3.energy_b;
1577                 desc_size = sizeof(*desc);
1578 
1579                 phy_data.d0 = desc->v3.phy_data0;
1580                 phy_data.d1 = desc->v3.phy_data1;
1581                 phy_data.d2 = desc->v3.phy_data2;
1582                 phy_data.d3 = desc->v3.phy_data3;
1583         } else {
1584                 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1585                 channel = desc->v1.channel;
1586                 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1587                 energy_a = desc->v1.energy_a;
1588                 energy_b = desc->v1.energy_b;
1589                 desc_size = IWL_RX_DESC_SIZE_V1;
1590 
1591                 phy_data.d0 = desc->v1.phy_data0;
1592                 phy_data.d1 = desc->v1.phy_data1;
1593                 phy_data.d2 = desc->v1.phy_data2;
1594                 phy_data.d3 = desc->v1.phy_data3;
1595         }
1596 
1597         if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1598                 phy_data.info_type =
1599                         le32_get_bits(phy_data.d1,
1600                                       IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1601 
1602         hdr = (void *)(pkt->data + desc_size);
1603         /* Dont use dev_alloc_skb(), we'll have enough headroom once
1604          * ieee80211_hdr pulled.
1605          */
1606         skb = alloc_skb(128, GFP_ATOMIC);
1607         if (!skb) {
1608                 IWL_ERR(mvm, "alloc_skb failed\n");
1609                 return;
1610         }
1611 
1612         if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1613                 /*
1614                  * If the device inserted padding it means that (it thought)
1615                  * the 802.11 header wasn't a multiple of 4 bytes long. In
1616                  * this case, reserve two bytes at the start of the SKB to
1617                  * align the payload properly in case we end up copying it.
1618                  */
1619                 skb_reserve(skb, 2);
1620         }
1621 
1622         rx_status = IEEE80211_SKB_RXCB(skb);
1623 
1624         /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1625         switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1626         case RATE_MCS_CHAN_WIDTH_20:
1627                 break;
1628         case RATE_MCS_CHAN_WIDTH_40:
1629                 rx_status->bw = RATE_INFO_BW_40;
1630                 break;
1631         case RATE_MCS_CHAN_WIDTH_80:
1632                 rx_status->bw = RATE_INFO_BW_80;
1633                 break;
1634         case RATE_MCS_CHAN_WIDTH_160:
1635                 rx_status->bw = RATE_INFO_BW_160;
1636                 break;
1637         }
1638 
1639         if (rate_n_flags & RATE_MCS_HE_MSK)
1640                 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1641                               phy_info, queue);
1642 
1643         iwl_mvm_decode_lsig(skb, &phy_data);
1644 
1645         rx_status = IEEE80211_SKB_RXCB(skb);
1646 
1647         if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1648                               le32_to_cpu(pkt->len_n_flags), queue,
1649                               &crypt_len)) {
1650                 kfree_skb(skb);
1651                 return;
1652         }
1653 
1654         /*
1655          * Keep packets with CRC errors (and with overrun) for monitor mode
1656          * (otherwise the firmware discards them) but mark them as bad.
1657          */
1658         if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1659             !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1660                 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1661                              le16_to_cpu(desc->status));
1662                 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1663         }
1664         /* set the preamble flag if appropriate */
1665         if (rate_n_flags & RATE_MCS_CCK_MSK &&
1666             phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1667                 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1668 
1669         if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1670                 u64 tsf_on_air_rise;
1671 
1672                 if (mvm->trans->trans_cfg->device_family >=
1673                     IWL_DEVICE_FAMILY_22560)
1674                         tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1675                 else
1676                         tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1677 
1678                 rx_status->mactime = tsf_on_air_rise;
1679                 /* TSF as indicated by the firmware is at INA time */
1680                 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1681         }
1682 
1683         rx_status->device_timestamp = gp2_on_air_rise;
1684         rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1685                 NL80211_BAND_2GHZ;
1686         rx_status->freq = ieee80211_channel_to_frequency(channel,
1687                                                          rx_status->band);
1688         iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1689                                     energy_b);
1690 
1691         /* update aggregation data for monitor sake on default queue */
1692         if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1693                 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1694 
1695                 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1696                 /*
1697                  * Toggle is switched whenever new aggregation starts. Make
1698                  * sure ampdu_reference is never 0 so we can later use it to
1699                  * see if the frame was really part of an A-MPDU or not.
1700                  */
1701                 if (toggle_bit != mvm->ampdu_toggle) {
1702                         mvm->ampdu_ref++;
1703                         if (mvm->ampdu_ref == 0)
1704                                 mvm->ampdu_ref++;
1705                         mvm->ampdu_toggle = toggle_bit;
1706                 }
1707                 rx_status->ampdu_reference = mvm->ampdu_ref;
1708         }
1709 
1710         if (unlikely(mvm->monitor_on))
1711                 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1712 
1713         rcu_read_lock();
1714 
1715         if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1716                 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1717 
1718                 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1719                         sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1720                         if (IS_ERR(sta))
1721                                 sta = NULL;
1722                 }
1723         } else if (!is_multicast_ether_addr(hdr->addr2)) {
1724                 /*
1725                  * This is fine since we prevent two stations with the same
1726                  * address from being added.
1727                  */
1728                 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1729         }
1730 
1731         if (sta) {
1732                 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1733                 struct ieee80211_vif *tx_blocked_vif =
1734                         rcu_dereference(mvm->csa_tx_blocked_vif);
1735                 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1736                                IWL_RX_MPDU_REORDER_BAID_MASK) >>
1737                                IWL_RX_MPDU_REORDER_BAID_SHIFT);
1738                 struct iwl_fw_dbg_trigger_tlv *trig;
1739                 struct ieee80211_vif *vif = mvmsta->vif;
1740 
1741                 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1742                     !is_multicast_ether_addr(hdr->addr1) &&
1743                     ieee80211_is_data(hdr->frame_control) &&
1744                     time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1745                         schedule_delayed_work(&mvm->tcm.work, 0);
1746 
1747                 /*
1748                  * We have tx blocked stations (with CS bit). If we heard
1749                  * frames from a blocked station on a new channel we can
1750                  * TX to it again.
1751                  */
1752                 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1753                         struct iwl_mvm_vif *mvmvif =
1754                                 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1755 
1756                         if (mvmvif->csa_target_freq == rx_status->freq)
1757                                 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1758                                                                  false);
1759                 }
1760 
1761                 rs_update_last_rssi(mvm, mvmsta, rx_status);
1762 
1763                 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1764                                              ieee80211_vif_to_wdev(vif),
1765                                              FW_DBG_TRIGGER_RSSI);
1766 
1767                 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1768                         struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1769                         s32 rssi;
1770 
1771                         rssi_trig = (void *)trig->data;
1772                         rssi = le32_to_cpu(rssi_trig->rssi);
1773 
1774                         if (rx_status->signal < rssi)
1775                                 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1776                                                         NULL);
1777                 }
1778 
1779                 if (ieee80211_is_data(hdr->frame_control))
1780                         iwl_mvm_rx_csum(sta, skb, desc);
1781 
1782                 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1783                         kfree_skb(skb);
1784                         goto out;
1785                 }
1786 
1787                 /*
1788                  * Our hardware de-aggregates AMSDUs but copies the mac header
1789                  * as it to the de-aggregated MPDUs. We need to turn off the
1790                  * AMSDU bit in the QoS control ourselves.
1791                  * In addition, HW reverses addr3 and addr4 - reverse it back.
1792                  */
1793                 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1794                     !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1795                         u8 *qc = ieee80211_get_qos_ctl(hdr);
1796 
1797                         *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1798 
1799                         if (mvm->trans->trans_cfg->device_family ==
1800                             IWL_DEVICE_FAMILY_9000) {
1801                                 iwl_mvm_flip_address(hdr->addr3);
1802 
1803                                 if (ieee80211_has_a4(hdr->frame_control))
1804                                         iwl_mvm_flip_address(hdr->addr4);
1805                         }
1806                 }
1807                 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1808                         u32 reorder_data = le32_to_cpu(desc->reorder_data);
1809 
1810                         iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1811                 }
1812         }
1813 
1814         if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1815             rate_n_flags & RATE_MCS_SGI_MSK)
1816                 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1817         if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1818                 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1819         if (rate_n_flags & RATE_MCS_LDPC_MSK)
1820                 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1821         if (rate_n_flags & RATE_MCS_HT_MSK) {
1822                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1823                                 RATE_MCS_STBC_POS;
1824                 rx_status->encoding = RX_ENC_HT;
1825                 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1826                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1827         } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1828                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1829                                 RATE_MCS_STBC_POS;
1830                 rx_status->nss =
1831                         ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1832                                                 RATE_VHT_MCS_NSS_POS) + 1;
1833                 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1834                 rx_status->encoding = RX_ENC_VHT;
1835                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1836                 if (rate_n_flags & RATE_MCS_BF_MSK)
1837                         rx_status->enc_flags |= RX_ENC_FLAG_BF;
1838         } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1839                 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1840                                                                rx_status->band);
1841 
1842                 if (WARN(rate < 0 || rate > 0xFF,
1843                          "Invalid rate flags 0x%x, band %d,\n",
1844                          rate_n_flags, rx_status->band)) {
1845                         kfree_skb(skb);
1846                         goto out;
1847                 }
1848                 rx_status->rate_idx = rate;
1849         }
1850 
1851         /* management stuff on default queue */
1852         if (!queue) {
1853                 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1854                               ieee80211_is_probe_resp(hdr->frame_control)) &&
1855                              mvm->sched_scan_pass_all ==
1856                              SCHED_SCAN_PASS_ALL_ENABLED))
1857                         mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1858 
1859                 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1860                              ieee80211_is_probe_resp(hdr->frame_control)))
1861                         rx_status->boottime_ns = ktime_get_boottime_ns();
1862         }
1863 
1864         if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1865                 kfree_skb(skb);
1866                 goto out;
1867         }
1868 
1869         if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1870                 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1871                                                 sta, csi);
1872 out:
1873         rcu_read_unlock();
1874 }
1875 
1876 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1877                                 struct iwl_rx_cmd_buffer *rxb, int queue)
1878 {
1879         struct ieee80211_rx_status *rx_status;
1880         struct iwl_rx_packet *pkt = rxb_addr(rxb);
1881         struct iwl_rx_no_data *desc = (void *)pkt->data;
1882         u32 rate_n_flags = le32_to_cpu(desc->rate);
1883         u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1884         u32 rssi = le32_to_cpu(desc->rssi);
1885         u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1886         u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1887         struct ieee80211_sta *sta = NULL;
1888         struct sk_buff *skb;
1889         u8 channel, energy_a, energy_b;
1890         struct iwl_mvm_rx_phy_data phy_data = {
1891                 .d0 = desc->phy_info[0],
1892                 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1893         };
1894 
1895         if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1896                 return;
1897 
1898         energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1899         energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1900         channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1901 
1902         phy_data.info_type =
1903                 le32_get_bits(desc->phy_info[1],
1904                               IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1905 
1906         /* Dont use dev_alloc_skb(), we'll have enough headroom once
1907          * ieee80211_hdr pulled.
1908          */
1909         skb = alloc_skb(128, GFP_ATOMIC);
1910         if (!skb) {
1911                 IWL_ERR(mvm, "alloc_skb failed\n");
1912                 return;
1913         }
1914 
1915         rx_status = IEEE80211_SKB_RXCB(skb);
1916 
1917         /* 0-length PSDU */
1918         rx_status->flag |= RX_FLAG_NO_PSDU;
1919 
1920         switch (info_type) {
1921         case RX_NO_DATA_INFO_TYPE_NDP:
1922                 rx_status->zero_length_psdu_type =
1923                         IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1924                 break;
1925         case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1926         case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1927                 rx_status->zero_length_psdu_type =
1928                         IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1929                 break;
1930         default:
1931                 rx_status->zero_length_psdu_type =
1932                         IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1933                 break;
1934         }
1935 
1936         /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1937         switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1938         case RATE_MCS_CHAN_WIDTH_20:
1939                 break;
1940         case RATE_MCS_CHAN_WIDTH_40:
1941                 rx_status->bw = RATE_INFO_BW_40;
1942                 break;
1943         case RATE_MCS_CHAN_WIDTH_80:
1944                 rx_status->bw = RATE_INFO_BW_80;
1945                 break;
1946         case RATE_MCS_CHAN_WIDTH_160:
1947                 rx_status->bw = RATE_INFO_BW_160;
1948                 break;
1949         }
1950 
1951         if (rate_n_flags & RATE_MCS_HE_MSK)
1952                 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1953                               phy_info, queue);
1954 
1955         iwl_mvm_decode_lsig(skb, &phy_data);
1956 
1957         rx_status->device_timestamp = gp2_on_air_rise;
1958         rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1959                 NL80211_BAND_2GHZ;
1960         rx_status->freq = ieee80211_channel_to_frequency(channel,
1961                                                          rx_status->band);
1962         iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1963                                     energy_b);
1964 
1965         rcu_read_lock();
1966 
1967         if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1968             rate_n_flags & RATE_MCS_SGI_MSK)
1969                 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1970         if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1971                 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1972         if (rate_n_flags & RATE_MCS_LDPC_MSK)
1973                 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1974         if (rate_n_flags & RATE_MCS_HT_MSK) {
1975                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1976                                 RATE_MCS_STBC_POS;
1977                 rx_status->encoding = RX_ENC_HT;
1978                 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1979                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1980         } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1981                 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1982                                 RATE_MCS_STBC_POS;
1983                 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1984                 rx_status->encoding = RX_ENC_VHT;
1985                 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1986                 if (rate_n_flags & RATE_MCS_BF_MSK)
1987                         rx_status->enc_flags |= RX_ENC_FLAG_BF;
1988                 /*
1989                  * take the nss from the rx_vec since the rate_n_flags has
1990                  * only 2 bits for the nss which gives a max of 4 ss but
1991                  * there may be up to 8 spatial streams
1992                  */
1993                 rx_status->nss =
1994                         le32_get_bits(desc->rx_vec[0],
1995                                       RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
1996         } else if (rate_n_flags & RATE_MCS_HE_MSK) {
1997                 rx_status->nss =
1998                         le32_get_bits(desc->rx_vec[0],
1999                                       RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2000         } else {
2001                 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2002                                                                rx_status->band);
2003 
2004                 if (WARN(rate < 0 || rate > 0xFF,
2005                          "Invalid rate flags 0x%x, band %d,\n",
2006                          rate_n_flags, rx_status->band)) {
2007                         kfree_skb(skb);
2008                         goto out;
2009                 }
2010                 rx_status->rate_idx = rate;
2011         }
2012 
2013         ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2014 out:
2015         rcu_read_unlock();
2016 }
2017 
2018 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2019                               struct iwl_rx_cmd_buffer *rxb, int queue)
2020 {
2021         struct iwl_rx_packet *pkt = rxb_addr(rxb);
2022         struct iwl_frame_release *release = (void *)pkt->data;
2023 
2024         iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2025                                           le16_to_cpu(release->nssn),
2026                                           queue, 0);
2027 }
2028 
2029 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2030                                   struct iwl_rx_cmd_buffer *rxb, int queue)
2031 {
2032         struct iwl_rx_packet *pkt = rxb_addr(rxb);
2033         struct iwl_bar_frame_release *release = (void *)pkt->data;
2034         unsigned int baid = le32_get_bits(release->ba_info,
2035                                           IWL_BAR_FRAME_RELEASE_BAID_MASK);
2036         unsigned int nssn = le32_get_bits(release->ba_info,
2037                                           IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2038         unsigned int sta_id = le32_get_bits(release->sta_tid,
2039                                             IWL_BAR_FRAME_RELEASE_STA_MASK);
2040         unsigned int tid = le32_get_bits(release->sta_tid,
2041                                          IWL_BAR_FRAME_RELEASE_TID_MASK);
2042         struct iwl_mvm_baid_data *baid_data;
2043 
2044         if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2045                          baid >= ARRAY_SIZE(mvm->baid_map)))
2046                 return;
2047 
2048         rcu_read_lock();
2049         baid_data = rcu_dereference(mvm->baid_map[baid]);
2050         if (!baid_data) {
2051                 IWL_DEBUG_RX(mvm,
2052                              "Got valid BAID %d but not allocated, invalid BAR release!\n",
2053                               baid);
2054                 goto out;
2055         }
2056 
2057         if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2058                  "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2059                  baid, baid_data->sta_id, baid_data->tid, sta_id,
2060                  tid))
2061                 goto out;
2062 
2063         iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2064 out:
2065         rcu_read_unlock();
2066 }

/* [<][>][^][v][top][bottom][index][help] */