root/drivers/net/wireless/intel/ipw2x00/ipw2200.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snprint_line
  2. printk_buf
  3. snprintk_buf
  4. ipw_write_reg8
  5. ipw_write_reg16
  6. ipw_write_reg32
  7. _ipw_write8
  8. _ipw_write16
  9. _ipw_write32
  10. _ipw_read8
  11. _ipw_read16
  12. _ipw_read32
  13. _ipw_write_reg32
  14. _ipw_write_reg8
  15. _ipw_write_reg16
  16. _ipw_read_reg8
  17. _ipw_read_reg32
  18. _ipw_read_indirect
  19. _ipw_write_indirect
  20. ipw_write_direct
  21. ipw_set_bit
  22. ipw_clear_bit
  23. __ipw_enable_interrupts
  24. __ipw_disable_interrupts
  25. ipw_enable_interrupts
  26. ipw_disable_interrupts
  27. ipw_error_desc
  28. ipw_dump_error_log
  29. ipw_is_init
  30. ipw_get_ordinal
  31. ipw_init_ordinals
  32. ipw_register_toggle
  33. ipw_led_link_on
  34. ipw_bg_led_link_on
  35. ipw_led_link_off
  36. ipw_bg_led_link_off
  37. __ipw_led_activity_on
  38. ipw_led_activity_on
  39. ipw_led_activity_off
  40. ipw_bg_led_activity_off
  41. ipw_led_band_on
  42. ipw_led_band_off
  43. ipw_led_radio_on
  44. ipw_led_radio_off
  45. ipw_led_link_up
  46. ipw_led_link_down
  47. ipw_led_init
  48. ipw_led_shutdown
  49. debug_level_show
  50. debug_level_store
  51. ipw_get_event_log_len
  52. ipw_capture_event_log
  53. ipw_alloc_error_log
  54. show_event_log
  55. show_error
  56. clear_error
  57. show_cmd_log
  58. store_rtap_iface
  59. show_rtap_iface
  60. store_rtap_filter
  61. show_rtap_filter
  62. show_scan_age
  63. store_scan_age
  64. show_led
  65. store_led
  66. show_status
  67. show_cfg
  68. show_nic_type
  69. show_ucode_version
  70. show_rtc
  71. show_eeprom_delay
  72. store_eeprom_delay
  73. show_command_event_reg
  74. store_command_event_reg
  75. show_mem_gpio_reg
  76. store_mem_gpio_reg
  77. show_indirect_dword
  78. store_indirect_dword
  79. show_indirect_byte
  80. store_indirect_byte
  81. show_direct_dword
  82. store_direct_dword
  83. rf_kill_active
  84. show_rf_kill
  85. ipw_radio_kill_sw
  86. store_rf_kill
  87. show_speed_scan
  88. store_speed_scan
  89. show_net_stats
  90. store_net_stats
  91. show_channels
  92. notify_wx_assoc_event
  93. ipw_irq_tasklet
  94. get_cmd_string
  95. __ipw_send_cmd
  96. ipw_send_cmd_simple
  97. ipw_send_cmd_pdu
  98. ipw_send_host_complete
  99. ipw_send_system_config
  100. ipw_send_ssid
  101. ipw_send_adapter_address
  102. ipw_adapter_restart
  103. ipw_bg_adapter_restart
  104. ipw_scan_check
  105. ipw_bg_scan_check
  106. ipw_send_scan_request_ext
  107. ipw_send_scan_abort
  108. ipw_set_sensitivity
  109. ipw_send_associate
  110. ipw_send_supported_rates
  111. ipw_set_random_seed
  112. ipw_send_card_disable
  113. ipw_send_tx_power
  114. ipw_set_tx_power
  115. ipw_send_rts_threshold
  116. ipw_send_frag_threshold
  117. ipw_send_power_mode
  118. ipw_send_retry_limit
  119. eeprom_write_reg
  120. eeprom_cs
  121. eeprom_disable_cs
  122. eeprom_write_bit
  123. eeprom_op
  124. eeprom_read_u16
  125. eeprom_parse_mac
  126. ipw_read_eeprom
  127. ipw_eeprom_init_sram
  128. ipw_zero_memory
  129. ipw_fw_dma_reset_command_blocks
  130. ipw_fw_dma_enable
  131. ipw_fw_dma_abort
  132. ipw_fw_dma_write_command_block
  133. ipw_fw_dma_kick
  134. ipw_fw_dma_dump_command_block
  135. ipw_fw_dma_command_block_index
  136. ipw_fw_dma_add_command_block
  137. ipw_fw_dma_add_buffer
  138. ipw_fw_dma_wait
  139. ipw_remove_current_network
  140. ipw_alive
  141. ipw_poll_bit
  142. ipw_stop_master
  143. ipw_arc_release
  144. ipw_load_ucode
  145. ipw_load_firmware
  146. ipw_stop_nic
  147. ipw_start_nic
  148. ipw_init_nic
  149. ipw_reset_nic
  150. ipw_get_fw
  151. ipw_rx_queue_reset
  152. free_firmware
  153. ipw_load
  154. ipw_rx_queue_space
  155. ipw_tx_queue_space
  156. ipw_queue_inc_wrap
  157. ipw_queue_init
  158. ipw_queue_tx_init
  159. ipw_queue_tx_free_tfd
  160. ipw_queue_tx_free
  161. ipw_tx_queue_free
  162. ipw_create_bssid
  163. ipw_add_station
  164. ipw_find_station
  165. ipw_send_disassociate
  166. ipw_disassociate
  167. ipw_bg_disassociate
  168. ipw_system_config
  169. ipw_get_status_code
  170. average_init
  171. exponential_average
  172. average_add
  173. average_value
  174. ipw_reset_stats
  175. ipw_get_max_rate
  176. ipw_get_current_rate
  177. ipw_gather_stats
  178. ipw_bg_gather_stats
  179. ipw_handle_missed_beacon
  180. ipw_scan_event
  181. handle_scan_event
  182. ipw_rx_notification
  183. ipw_queue_reset
  184. ipw_queue_tx_reclaim
  185. ipw_queue_tx_hcmd
  186. ipw_rx_queue_restock
  187. ipw_rx_queue_replenish
  188. ipw_bg_rx_queue_replenish
  189. ipw_rx_queue_free
  190. ipw_rx_queue_alloc
  191. ipw_is_rate_in_mask
  192. ipw_compatible_rates
  193. ipw_copy_rates
  194. ipw_add_cck_scan_rates
  195. ipw_add_ofdm_scan_rates
  196. ipw_find_adhoc_network
  197. ipw_merge_adhoc_network
  198. ipw_best_network
  199. ipw_adhoc_create
  200. ipw_send_tgi_tx_key
  201. ipw_send_wep_keys
  202. ipw_set_hw_decrypt_unicast
  203. ipw_set_hw_decrypt_multicast
  204. ipw_set_hwcrypto_keys
  205. ipw_adhoc_check
  206. ipw_bg_adhoc_check
  207. ipw_debug_config
  208. ipw_set_fixed_rate
  209. ipw_abort_scan
  210. ipw_add_scan_channels
  211. ipw_passive_dwell_time
  212. ipw_request_scan_helper
  213. ipw_request_passive_scan
  214. ipw_request_scan
  215. ipw_request_direct_scan
  216. ipw_bg_abort_scan
  217. ipw_wpa_enable
  218. ipw_wpa_set_auth_algs
  219. ipw_wpa_assoc_frame
  220. ipw_set_rsn_capa
  221. ipw_wx_set_genie
  222. ipw_wx_get_genie
  223. wext_cipher2level
  224. ipw_wx_set_auth
  225. ipw_wx_get_auth
  226. ipw_wx_set_encodeext
  227. ipw_wx_get_encodeext
  228. ipw_wx_set_mlme
  229. ipw_qos_current_mode
  230. ipw_qos_handle_probe_response
  231. ipw_qos_activate
  232. ipw_qos_set_info_element
  233. ipw_qos_association
  234. ipw_qos_association_resp
  235. ipw_qos_get_burst_duration
  236. ipw_qos_init
  237. ipw_get_tx_queue_number
  238. ipw_is_qos_active
  239. ipw_qos_set_tx_queue_command
  240. ipw_bg_qos_activate
  241. ipw_handle_probe_response
  242. ipw_handle_beacon
  243. ipw_handle_assoc_response
  244. ipw_send_qos_params_command
  245. ipw_send_qos_info_command
  246. ipw_associate_network
  247. ipw_roam
  248. ipw_bg_roam
  249. ipw_associate
  250. ipw_bg_associate
  251. ipw_rebuild_decrypted_skb
  252. ipw_handle_data_packet
  253. ipw_handle_data_packet_monitor
  254. ipw_handle_promiscuous_rx
  255. is_network_packet
  256. is_duplicate_packet
  257. ipw_handle_mgmt_packet
  258. ipw_rx
  259. ipw_sw_reset
  260. ipw_set_channel
  261. ipw_wx_set_freq
  262. ipw_wx_get_freq
  263. ipw_wx_set_mode
  264. ipw_wx_get_mode
  265. ipw_wx_get_range
  266. ipw_wx_set_wap
  267. ipw_wx_get_wap
  268. ipw_wx_set_essid
  269. ipw_wx_get_essid
  270. ipw_wx_set_nick
  271. ipw_wx_get_nick
  272. ipw_wx_set_sens
  273. ipw_wx_get_sens
  274. ipw_wx_set_rate
  275. ipw_wx_get_rate
  276. ipw_wx_set_rts
  277. ipw_wx_get_rts
  278. ipw_wx_set_txpow
  279. ipw_wx_get_txpow
  280. ipw_wx_set_frag
  281. ipw_wx_get_frag
  282. ipw_wx_set_retry
  283. ipw_wx_get_retry
  284. ipw_wx_set_scan
  285. ipw_wx_get_scan
  286. ipw_wx_set_encode
  287. ipw_wx_get_encode
  288. ipw_wx_set_power
  289. ipw_wx_get_power
  290. ipw_wx_set_powermode
  291. ipw_wx_get_powermode
  292. ipw_wx_set_wireless_mode
  293. ipw_wx_get_wireless_mode
  294. ipw_wx_set_preamble
  295. ipw_wx_get_preamble
  296. ipw_wx_set_monitor
  297. ipw_wx_reset
  298. ipw_wx_sw_reset
  299. ipw_get_wireless_stats
  300. init_sys_config
  301. ipw_net_open
  302. ipw_net_stop
  303. ipw_tx_skb
  304. ipw_net_is_queue_full
  305. ipw_handle_promiscuous_tx
  306. ipw_net_hard_start_xmit
  307. ipw_net_set_multicast_list
  308. ipw_net_set_mac_address
  309. ipw_ethtool_get_drvinfo
  310. ipw_ethtool_get_link
  311. ipw_ethtool_get_eeprom_len
  312. ipw_ethtool_get_eeprom
  313. ipw_ethtool_set_eeprom
  314. ipw_isr
  315. ipw_rf_kill
  316. ipw_bg_rf_kill
  317. ipw_link_up
  318. ipw_bg_link_up
  319. ipw_link_down
  320. ipw_bg_link_down
  321. ipw_setup_deferred_work
  322. shim__set_security
  323. init_supported_rates
  324. ipw_config
  325. ipw_set_geo
  326. ipw_up
  327. ipw_bg_up
  328. ipw_deinit
  329. ipw_down
  330. ipw_bg_down
  331. ipw_wdev_init
  332. ipw_prom_open
  333. ipw_prom_stop
  334. ipw_prom_hard_start_xmit
  335. ipw_prom_alloc
  336. ipw_prom_free
  337. ipw_pci_probe
  338. ipw_pci_remove
  339. ipw_pci_suspend
  340. ipw_pci_resume
  341. ipw_pci_shutdown
  342. ipw_init
  343. ipw_exit

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /******************************************************************************
   3 
   4   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
   5 
   6   802.11 status code portion of this file from ethereal-0.10.6:
   7     Copyright 2000, Axis Communications AB
   8     Ethereal - Network traffic analyzer
   9     By Gerald Combs <gerald@ethereal.com>
  10     Copyright 1998 Gerald Combs
  11 
  12 
  13   Contact Information:
  14   Intel Linux Wireless <ilw@linux.intel.com>
  15   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  16 
  17 ******************************************************************************/
  18 
  19 #include <linux/sched.h>
  20 #include <linux/slab.h>
  21 #include <net/cfg80211-wext.h>
  22 #include "ipw2200.h"
  23 #include "ipw.h"
  24 
  25 
  26 #ifndef KBUILD_EXTMOD
  27 #define VK "k"
  28 #else
  29 #define VK
  30 #endif
  31 
  32 #ifdef CONFIG_IPW2200_DEBUG
  33 #define VD "d"
  34 #else
  35 #define VD
  36 #endif
  37 
  38 #ifdef CONFIG_IPW2200_MONITOR
  39 #define VM "m"
  40 #else
  41 #define VM
  42 #endif
  43 
  44 #ifdef CONFIG_IPW2200_PROMISCUOUS
  45 #define VP "p"
  46 #else
  47 #define VP
  48 #endif
  49 
  50 #ifdef CONFIG_IPW2200_RADIOTAP
  51 #define VR "r"
  52 #else
  53 #define VR
  54 #endif
  55 
  56 #ifdef CONFIG_IPW2200_QOS
  57 #define VQ "q"
  58 #else
  59 #define VQ
  60 #endif
  61 
  62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
  63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
  64 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
  65 #define DRV_VERSION     IPW2200_VERSION
  66 
  67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
  68 
  69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
  70 MODULE_VERSION(DRV_VERSION);
  71 MODULE_AUTHOR(DRV_COPYRIGHT);
  72 MODULE_LICENSE("GPL");
  73 MODULE_FIRMWARE("ipw2200-ibss.fw");
  74 #ifdef CONFIG_IPW2200_MONITOR
  75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
  76 #endif
  77 MODULE_FIRMWARE("ipw2200-bss.fw");
  78 
  79 static int cmdlog = 0;
  80 static int debug = 0;
  81 static int default_channel = 0;
  82 static int network_mode = 0;
  83 
  84 static u32 ipw_debug_level;
  85 static int associate;
  86 static int auto_create = 1;
  87 static int led_support = 1;
  88 static int disable = 0;
  89 static int bt_coexist = 0;
  90 static int hwcrypto = 0;
  91 static int roaming = 1;
  92 static const char ipw_modes[] = {
  93         'a', 'b', 'g', '?'
  94 };
  95 static int antenna = CFG_SYS_ANTENNA_BOTH;
  96 
  97 #ifdef CONFIG_IPW2200_PROMISCUOUS
  98 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
  99 #endif
 100 
 101 static struct ieee80211_rate ipw2200_rates[] = {
 102         { .bitrate = 10 },
 103         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 104         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 105         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 106         { .bitrate = 60 },
 107         { .bitrate = 90 },
 108         { .bitrate = 120 },
 109         { .bitrate = 180 },
 110         { .bitrate = 240 },
 111         { .bitrate = 360 },
 112         { .bitrate = 480 },
 113         { .bitrate = 540 }
 114 };
 115 
 116 #define ipw2200_a_rates         (ipw2200_rates + 4)
 117 #define ipw2200_num_a_rates     8
 118 #define ipw2200_bg_rates        (ipw2200_rates + 0)
 119 #define ipw2200_num_bg_rates    12
 120 
 121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
 122  * There are certianly some conditions that will break this (like feeding it '30')
 123  * but they shouldn't arise since nothing talks on channel 30. */
 124 #define ieee80211chan2mhz(x) \
 125         (((x) <= 14) ? \
 126         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
 127         ((x) + 1000) * 5)
 128 
 129 #ifdef CONFIG_IPW2200_QOS
 130 static int qos_enable = 0;
 131 static int qos_burst_enable = 0;
 132 static int qos_no_ack_mask = 0;
 133 static int burst_duration_CCK = 0;
 134 static int burst_duration_OFDM = 0;
 135 
 136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
 137         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
 138          QOS_TX3_CW_MIN_OFDM},
 139         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
 140          QOS_TX3_CW_MAX_OFDM},
 141         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
 142         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
 143         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
 144          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
 145 };
 146 
 147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
 148         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
 149          QOS_TX3_CW_MIN_CCK},
 150         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
 151          QOS_TX3_CW_MAX_CCK},
 152         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
 153         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
 154         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
 155          QOS_TX3_TXOP_LIMIT_CCK}
 156 };
 157 
 158 static struct libipw_qos_parameters def_parameters_OFDM = {
 159         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
 160          DEF_TX3_CW_MIN_OFDM},
 161         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
 162          DEF_TX3_CW_MAX_OFDM},
 163         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
 164         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
 165         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
 166          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
 167 };
 168 
 169 static struct libipw_qos_parameters def_parameters_CCK = {
 170         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
 171          DEF_TX3_CW_MIN_CCK},
 172         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
 173          DEF_TX3_CW_MAX_CCK},
 174         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
 175         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
 176         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
 177          DEF_TX3_TXOP_LIMIT_CCK}
 178 };
 179 
 180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
 181 
 182 static int from_priority_to_tx_queue[] = {
 183         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
 184         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
 185 };
 186 
 187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
 188 
 189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
 190                                        *qos_param);
 191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
 192                                      *qos_param);
 193 #endif                          /* CONFIG_IPW2200_QOS */
 194 
 195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
 196 static void ipw_remove_current_network(struct ipw_priv *priv);
 197 static void ipw_rx(struct ipw_priv *priv);
 198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
 199                                 struct clx2_tx_queue *txq, int qindex);
 200 static int ipw_queue_reset(struct ipw_priv *priv);
 201 
 202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
 203                              int len, int sync);
 204 
 205 static void ipw_tx_queue_free(struct ipw_priv *);
 206 
 207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
 208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
 209 static void ipw_rx_queue_replenish(void *);
 210 static int ipw_up(struct ipw_priv *);
 211 static void ipw_bg_up(struct work_struct *work);
 212 static void ipw_down(struct ipw_priv *);
 213 static void ipw_bg_down(struct work_struct *work);
 214 static int ipw_config(struct ipw_priv *);
 215 static int init_supported_rates(struct ipw_priv *priv,
 216                                 struct ipw_supported_rates *prates);
 217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
 218 static void ipw_send_wep_keys(struct ipw_priv *, int);
 219 
 220 static int snprint_line(char *buf, size_t count,
 221                         const u8 * data, u32 len, u32 ofs)
 222 {
 223         int out, i, j, l;
 224         char c;
 225 
 226         out = snprintf(buf, count, "%08X", ofs);
 227 
 228         for (l = 0, i = 0; i < 2; i++) {
 229                 out += snprintf(buf + out, count - out, " ");
 230                 for (j = 0; j < 8 && l < len; j++, l++)
 231                         out += snprintf(buf + out, count - out, "%02X ",
 232                                         data[(i * 8 + j)]);
 233                 for (; j < 8; j++)
 234                         out += snprintf(buf + out, count - out, "   ");
 235         }
 236 
 237         out += snprintf(buf + out, count - out, " ");
 238         for (l = 0, i = 0; i < 2; i++) {
 239                 out += snprintf(buf + out, count - out, " ");
 240                 for (j = 0; j < 8 && l < len; j++, l++) {
 241                         c = data[(i * 8 + j)];
 242                         if (!isascii(c) || !isprint(c))
 243                                 c = '.';
 244 
 245                         out += snprintf(buf + out, count - out, "%c", c);
 246                 }
 247 
 248                 for (; j < 8; j++)
 249                         out += snprintf(buf + out, count - out, " ");
 250         }
 251 
 252         return out;
 253 }
 254 
 255 static void printk_buf(int level, const u8 * data, u32 len)
 256 {
 257         char line[81];
 258         u32 ofs = 0;
 259         if (!(ipw_debug_level & level))
 260                 return;
 261 
 262         while (len) {
 263                 snprint_line(line, sizeof(line), &data[ofs],
 264                              min(len, 16U), ofs);
 265                 printk(KERN_DEBUG "%s\n", line);
 266                 ofs += 16;
 267                 len -= min(len, 16U);
 268         }
 269 }
 270 
 271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
 272 {
 273         size_t out = size;
 274         u32 ofs = 0;
 275         int total = 0;
 276 
 277         while (size && len) {
 278                 out = snprint_line(output, size, &data[ofs],
 279                                    min_t(size_t, len, 16U), ofs);
 280 
 281                 ofs += 16;
 282                 output += out;
 283                 size -= out;
 284                 len -= min_t(size_t, len, 16U);
 285                 total += out;
 286         }
 287         return total;
 288 }
 289 
 290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
 291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
 292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
 293 
 294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
 295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
 296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
 297 
 298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
 300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
 301 {
 302         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
 303                      __LINE__, (u32) (b), (u32) (c));
 304         _ipw_write_reg8(a, b, c);
 305 }
 306 
 307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
 309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
 310 {
 311         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
 312                      __LINE__, (u32) (b), (u32) (c));
 313         _ipw_write_reg16(a, b, c);
 314 }
 315 
 316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
 318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
 319 {
 320         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
 321                      __LINE__, (u32) (b), (u32) (c));
 322         _ipw_write_reg32(a, b, c);
 323 }
 324 
 325 /* 8-bit direct write (low 4K) */
 326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
 327                 u8 val)
 328 {
 329         writeb(val, ipw->hw_base + ofs);
 330 }
 331 
 332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 333 #define ipw_write8(ipw, ofs, val) do { \
 334         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
 335                         __LINE__, (u32)(ofs), (u32)(val)); \
 336         _ipw_write8(ipw, ofs, val); \
 337 } while (0)
 338 
 339 /* 16-bit direct write (low 4K) */
 340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
 341                 u16 val)
 342 {
 343         writew(val, ipw->hw_base + ofs);
 344 }
 345 
 346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 347 #define ipw_write16(ipw, ofs, val) do { \
 348         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
 349                         __LINE__, (u32)(ofs), (u32)(val)); \
 350         _ipw_write16(ipw, ofs, val); \
 351 } while (0)
 352 
 353 /* 32-bit direct write (low 4K) */
 354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
 355                 u32 val)
 356 {
 357         writel(val, ipw->hw_base + ofs);
 358 }
 359 
 360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 361 #define ipw_write32(ipw, ofs, val) do { \
 362         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
 363                         __LINE__, (u32)(ofs), (u32)(val)); \
 364         _ipw_write32(ipw, ofs, val); \
 365 } while (0)
 366 
 367 /* 8-bit direct read (low 4K) */
 368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
 369 {
 370         return readb(ipw->hw_base + ofs);
 371 }
 372 
 373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 374 #define ipw_read8(ipw, ofs) ({ \
 375         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
 376                         (u32)(ofs)); \
 377         _ipw_read8(ipw, ofs); \
 378 })
 379 
 380 /* 16-bit direct read (low 4K) */
 381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
 382 {
 383         return readw(ipw->hw_base + ofs);
 384 }
 385 
 386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 387 #define ipw_read16(ipw, ofs) ({ \
 388         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
 389                         (u32)(ofs)); \
 390         _ipw_read16(ipw, ofs); \
 391 })
 392 
 393 /* 32-bit direct read (low 4K) */
 394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
 395 {
 396         return readl(ipw->hw_base + ofs);
 397 }
 398 
 399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 400 #define ipw_read32(ipw, ofs) ({ \
 401         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
 402                         (u32)(ofs)); \
 403         _ipw_read32(ipw, ofs); \
 404 })
 405 
 406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
 407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
 408 #define ipw_read_indirect(a, b, c, d) ({ \
 409         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
 410                         __LINE__, (u32)(b), (u32)(d)); \
 411         _ipw_read_indirect(a, b, c, d); \
 412 })
 413 
 414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
 415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
 416                                 int num);
 417 #define ipw_write_indirect(a, b, c, d) do { \
 418         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
 419                         __LINE__, (u32)(b), (u32)(d)); \
 420         _ipw_write_indirect(a, b, c, d); \
 421 } while (0)
 422 
 423 /* 32-bit indirect write (above 4K) */
 424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
 425 {
 426         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
 427         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
 428         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
 429 }
 430 
 431 /* 8-bit indirect write (above 4K) */
 432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
 433 {
 434         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
 435         u32 dif_len = reg - aligned_addr;
 436 
 437         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
 438         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 439         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
 440 }
 441 
 442 /* 16-bit indirect write (above 4K) */
 443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
 444 {
 445         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
 446         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
 447 
 448         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
 449         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 450         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
 451 }
 452 
 453 /* 8-bit indirect read (above 4K) */
 454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
 455 {
 456         u32 word;
 457         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
 458         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
 459         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
 460         return (word >> ((reg & 0x3) * 8)) & 0xff;
 461 }
 462 
 463 /* 32-bit indirect read (above 4K) */
 464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
 465 {
 466         u32 value;
 467 
 468         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
 469 
 470         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
 471         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
 472         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
 473         return value;
 474 }
 475 
 476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
 477 /*    for area above 1st 4K of SRAM/reg space */
 478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
 479                                int num)
 480 {
 481         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
 482         u32 dif_len = addr - aligned_addr;
 483         u32 i;
 484 
 485         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
 486 
 487         if (num <= 0) {
 488                 return;
 489         }
 490 
 491         /* Read the first dword (or portion) byte by byte */
 492         if (unlikely(dif_len)) {
 493                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 494                 /* Start reading at aligned_addr + dif_len */
 495                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
 496                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
 497                 aligned_addr += 4;
 498         }
 499 
 500         /* Read all of the middle dwords as dwords, with auto-increment */
 501         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
 502         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
 503                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
 504 
 505         /* Read the last dword (or portion) byte by byte */
 506         if (unlikely(num)) {
 507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 508                 for (i = 0; num > 0; i++, num--)
 509                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
 510         }
 511 }
 512 
 513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
 514 /*    for area above 1st 4K of SRAM/reg space */
 515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
 516                                 int num)
 517 {
 518         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
 519         u32 dif_len = addr - aligned_addr;
 520         u32 i;
 521 
 522         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
 523 
 524         if (num <= 0) {
 525                 return;
 526         }
 527 
 528         /* Write the first dword (or portion) byte by byte */
 529         if (unlikely(dif_len)) {
 530                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 531                 /* Start writing at aligned_addr + dif_len */
 532                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
 533                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
 534                 aligned_addr += 4;
 535         }
 536 
 537         /* Write all of the middle dwords as dwords, with auto-increment */
 538         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
 539         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
 540                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
 541 
 542         /* Write the last dword (or portion) byte by byte */
 543         if (unlikely(num)) {
 544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 545                 for (i = 0; num > 0; i++, num--, buf++)
 546                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
 547         }
 548 }
 549 
 550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
 551 /*    for 1st 4K of SRAM/regs space */
 552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
 553                              int num)
 554 {
 555         memcpy_toio((priv->hw_base + addr), buf, num);
 556 }
 557 
 558 /* Set bit(s) in low 4K of SRAM/regs */
 559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
 560 {
 561         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
 562 }
 563 
 564 /* Clear bit(s) in low 4K of SRAM/regs */
 565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
 566 {
 567         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
 568 }
 569 
 570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
 571 {
 572         if (priv->status & STATUS_INT_ENABLED)
 573                 return;
 574         priv->status |= STATUS_INT_ENABLED;
 575         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
 576 }
 577 
 578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
 579 {
 580         if (!(priv->status & STATUS_INT_ENABLED))
 581                 return;
 582         priv->status &= ~STATUS_INT_ENABLED;
 583         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
 584 }
 585 
 586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
 587 {
 588         unsigned long flags;
 589 
 590         spin_lock_irqsave(&priv->irq_lock, flags);
 591         __ipw_enable_interrupts(priv);
 592         spin_unlock_irqrestore(&priv->irq_lock, flags);
 593 }
 594 
 595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
 596 {
 597         unsigned long flags;
 598 
 599         spin_lock_irqsave(&priv->irq_lock, flags);
 600         __ipw_disable_interrupts(priv);
 601         spin_unlock_irqrestore(&priv->irq_lock, flags);
 602 }
 603 
 604 static char *ipw_error_desc(u32 val)
 605 {
 606         switch (val) {
 607         case IPW_FW_ERROR_OK:
 608                 return "ERROR_OK";
 609         case IPW_FW_ERROR_FAIL:
 610                 return "ERROR_FAIL";
 611         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
 612                 return "MEMORY_UNDERFLOW";
 613         case IPW_FW_ERROR_MEMORY_OVERFLOW:
 614                 return "MEMORY_OVERFLOW";
 615         case IPW_FW_ERROR_BAD_PARAM:
 616                 return "BAD_PARAM";
 617         case IPW_FW_ERROR_BAD_CHECKSUM:
 618                 return "BAD_CHECKSUM";
 619         case IPW_FW_ERROR_NMI_INTERRUPT:
 620                 return "NMI_INTERRUPT";
 621         case IPW_FW_ERROR_BAD_DATABASE:
 622                 return "BAD_DATABASE";
 623         case IPW_FW_ERROR_ALLOC_FAIL:
 624                 return "ALLOC_FAIL";
 625         case IPW_FW_ERROR_DMA_UNDERRUN:
 626                 return "DMA_UNDERRUN";
 627         case IPW_FW_ERROR_DMA_STATUS:
 628                 return "DMA_STATUS";
 629         case IPW_FW_ERROR_DINO_ERROR:
 630                 return "DINO_ERROR";
 631         case IPW_FW_ERROR_EEPROM_ERROR:
 632                 return "EEPROM_ERROR";
 633         case IPW_FW_ERROR_SYSASSERT:
 634                 return "SYSASSERT";
 635         case IPW_FW_ERROR_FATAL_ERROR:
 636                 return "FATAL_ERROR";
 637         default:
 638                 return "UNKNOWN_ERROR";
 639         }
 640 }
 641 
 642 static void ipw_dump_error_log(struct ipw_priv *priv,
 643                                struct ipw_fw_error *error)
 644 {
 645         u32 i;
 646 
 647         if (!error) {
 648                 IPW_ERROR("Error allocating and capturing error log.  "
 649                           "Nothing to dump.\n");
 650                 return;
 651         }
 652 
 653         IPW_ERROR("Start IPW Error Log Dump:\n");
 654         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
 655                   error->status, error->config);
 656 
 657         for (i = 0; i < error->elem_len; i++)
 658                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
 659                           ipw_error_desc(error->elem[i].desc),
 660                           error->elem[i].time,
 661                           error->elem[i].blink1,
 662                           error->elem[i].blink2,
 663                           error->elem[i].link1,
 664                           error->elem[i].link2, error->elem[i].data);
 665         for (i = 0; i < error->log_len; i++)
 666                 IPW_ERROR("%i\t0x%08x\t%i\n",
 667                           error->log[i].time,
 668                           error->log[i].data, error->log[i].event);
 669 }
 670 
 671 static inline int ipw_is_init(struct ipw_priv *priv)
 672 {
 673         return (priv->status & STATUS_INIT) ? 1 : 0;
 674 }
 675 
 676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
 677 {
 678         u32 addr, field_info, field_len, field_count, total_len;
 679 
 680         IPW_DEBUG_ORD("ordinal = %i\n", ord);
 681 
 682         if (!priv || !val || !len) {
 683                 IPW_DEBUG_ORD("Invalid argument\n");
 684                 return -EINVAL;
 685         }
 686 
 687         /* verify device ordinal tables have been initialized */
 688         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
 689                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
 690                 return -EINVAL;
 691         }
 692 
 693         switch (IPW_ORD_TABLE_ID_MASK & ord) {
 694         case IPW_ORD_TABLE_0_MASK:
 695                 /*
 696                  * TABLE 0: Direct access to a table of 32 bit values
 697                  *
 698                  * This is a very simple table with the data directly
 699                  * read from the table
 700                  */
 701 
 702                 /* remove the table id from the ordinal */
 703                 ord &= IPW_ORD_TABLE_VALUE_MASK;
 704 
 705                 /* boundary check */
 706                 if (ord > priv->table0_len) {
 707                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
 708                                       "max (%i)\n", ord, priv->table0_len);
 709                         return -EINVAL;
 710                 }
 711 
 712                 /* verify we have enough room to store the value */
 713                 if (*len < sizeof(u32)) {
 714                         IPW_DEBUG_ORD("ordinal buffer length too small, "
 715                                       "need %zd\n", sizeof(u32));
 716                         return -EINVAL;
 717                 }
 718 
 719                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
 720                               ord, priv->table0_addr + (ord << 2));
 721 
 722                 *len = sizeof(u32);
 723                 ord <<= 2;
 724                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
 725                 break;
 726 
 727         case IPW_ORD_TABLE_1_MASK:
 728                 /*
 729                  * TABLE 1: Indirect access to a table of 32 bit values
 730                  *
 731                  * This is a fairly large table of u32 values each
 732                  * representing starting addr for the data (which is
 733                  * also a u32)
 734                  */
 735 
 736                 /* remove the table id from the ordinal */
 737                 ord &= IPW_ORD_TABLE_VALUE_MASK;
 738 
 739                 /* boundary check */
 740                 if (ord > priv->table1_len) {
 741                         IPW_DEBUG_ORD("ordinal value too long\n");
 742                         return -EINVAL;
 743                 }
 744 
 745                 /* verify we have enough room to store the value */
 746                 if (*len < sizeof(u32)) {
 747                         IPW_DEBUG_ORD("ordinal buffer length too small, "
 748                                       "need %zd\n", sizeof(u32));
 749                         return -EINVAL;
 750                 }
 751 
 752                 *((u32 *) val) =
 753                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
 754                 *len = sizeof(u32);
 755                 break;
 756 
 757         case IPW_ORD_TABLE_2_MASK:
 758                 /*
 759                  * TABLE 2: Indirect access to a table of variable sized values
 760                  *
 761                  * This table consist of six values, each containing
 762                  *     - dword containing the starting offset of the data
 763                  *     - dword containing the lengh in the first 16bits
 764                  *       and the count in the second 16bits
 765                  */
 766 
 767                 /* remove the table id from the ordinal */
 768                 ord &= IPW_ORD_TABLE_VALUE_MASK;
 769 
 770                 /* boundary check */
 771                 if (ord > priv->table2_len) {
 772                         IPW_DEBUG_ORD("ordinal value too long\n");
 773                         return -EINVAL;
 774                 }
 775 
 776                 /* get the address of statistic */
 777                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
 778 
 779                 /* get the second DW of statistics ;
 780                  * two 16-bit words - first is length, second is count */
 781                 field_info =
 782                     ipw_read_reg32(priv,
 783                                    priv->table2_addr + (ord << 3) +
 784                                    sizeof(u32));
 785 
 786                 /* get each entry length */
 787                 field_len = *((u16 *) & field_info);
 788 
 789                 /* get number of entries */
 790                 field_count = *(((u16 *) & field_info) + 1);
 791 
 792                 /* abort if not enough memory */
 793                 total_len = field_len * field_count;
 794                 if (total_len > *len) {
 795                         *len = total_len;
 796                         return -EINVAL;
 797                 }
 798 
 799                 *len = total_len;
 800                 if (!total_len)
 801                         return 0;
 802 
 803                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
 804                               "field_info = 0x%08x\n",
 805                               addr, total_len, field_info);
 806                 ipw_read_indirect(priv, addr, val, total_len);
 807                 break;
 808 
 809         default:
 810                 IPW_DEBUG_ORD("Invalid ordinal!\n");
 811                 return -EINVAL;
 812 
 813         }
 814 
 815         return 0;
 816 }
 817 
 818 static void ipw_init_ordinals(struct ipw_priv *priv)
 819 {
 820         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
 821         priv->table0_len = ipw_read32(priv, priv->table0_addr);
 822 
 823         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
 824                       priv->table0_addr, priv->table0_len);
 825 
 826         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
 827         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
 828 
 829         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
 830                       priv->table1_addr, priv->table1_len);
 831 
 832         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
 833         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
 834         priv->table2_len &= 0x0000ffff; /* use first two bytes */
 835 
 836         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
 837                       priv->table2_addr, priv->table2_len);
 838 
 839 }
 840 
 841 static u32 ipw_register_toggle(u32 reg)
 842 {
 843         reg &= ~IPW_START_STANDBY;
 844         if (reg & IPW_GATE_ODMA)
 845                 reg &= ~IPW_GATE_ODMA;
 846         if (reg & IPW_GATE_IDMA)
 847                 reg &= ~IPW_GATE_IDMA;
 848         if (reg & IPW_GATE_ADMA)
 849                 reg &= ~IPW_GATE_ADMA;
 850         return reg;
 851 }
 852 
 853 /*
 854  * LED behavior:
 855  * - On radio ON, turn on any LEDs that require to be on during start
 856  * - On initialization, start unassociated blink
 857  * - On association, disable unassociated blink
 858  * - On disassociation, start unassociated blink
 859  * - On radio OFF, turn off any LEDs started during radio on
 860  *
 861  */
 862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
 863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
 864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
 865 
 866 static void ipw_led_link_on(struct ipw_priv *priv)
 867 {
 868         unsigned long flags;
 869         u32 led;
 870 
 871         /* If configured to not use LEDs, or nic_type is 1,
 872          * then we don't toggle a LINK led */
 873         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
 874                 return;
 875 
 876         spin_lock_irqsave(&priv->lock, flags);
 877 
 878         if (!(priv->status & STATUS_RF_KILL_MASK) &&
 879             !(priv->status & STATUS_LED_LINK_ON)) {
 880                 IPW_DEBUG_LED("Link LED On\n");
 881                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
 882                 led |= priv->led_association_on;
 883 
 884                 led = ipw_register_toggle(led);
 885 
 886                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 887                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
 888 
 889                 priv->status |= STATUS_LED_LINK_ON;
 890 
 891                 /* If we aren't associated, schedule turning the LED off */
 892                 if (!(priv->status & STATUS_ASSOCIATED))
 893                         schedule_delayed_work(&priv->led_link_off,
 894                                               LD_TIME_LINK_ON);
 895         }
 896 
 897         spin_unlock_irqrestore(&priv->lock, flags);
 898 }
 899 
 900 static void ipw_bg_led_link_on(struct work_struct *work)
 901 {
 902         struct ipw_priv *priv =
 903                 container_of(work, struct ipw_priv, led_link_on.work);
 904         mutex_lock(&priv->mutex);
 905         ipw_led_link_on(priv);
 906         mutex_unlock(&priv->mutex);
 907 }
 908 
 909 static void ipw_led_link_off(struct ipw_priv *priv)
 910 {
 911         unsigned long flags;
 912         u32 led;
 913 
 914         /* If configured not to use LEDs, or nic type is 1,
 915          * then we don't goggle the LINK led. */
 916         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
 917                 return;
 918 
 919         spin_lock_irqsave(&priv->lock, flags);
 920 
 921         if (priv->status & STATUS_LED_LINK_ON) {
 922                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
 923                 led &= priv->led_association_off;
 924                 led = ipw_register_toggle(led);
 925 
 926                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 927                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
 928 
 929                 IPW_DEBUG_LED("Link LED Off\n");
 930 
 931                 priv->status &= ~STATUS_LED_LINK_ON;
 932 
 933                 /* If we aren't associated and the radio is on, schedule
 934                  * turning the LED on (blink while unassociated) */
 935                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
 936                     !(priv->status & STATUS_ASSOCIATED))
 937                         schedule_delayed_work(&priv->led_link_on,
 938                                               LD_TIME_LINK_OFF);
 939 
 940         }
 941 
 942         spin_unlock_irqrestore(&priv->lock, flags);
 943 }
 944 
 945 static void ipw_bg_led_link_off(struct work_struct *work)
 946 {
 947         struct ipw_priv *priv =
 948                 container_of(work, struct ipw_priv, led_link_off.work);
 949         mutex_lock(&priv->mutex);
 950         ipw_led_link_off(priv);
 951         mutex_unlock(&priv->mutex);
 952 }
 953 
 954 static void __ipw_led_activity_on(struct ipw_priv *priv)
 955 {
 956         u32 led;
 957 
 958         if (priv->config & CFG_NO_LED)
 959                 return;
 960 
 961         if (priv->status & STATUS_RF_KILL_MASK)
 962                 return;
 963 
 964         if (!(priv->status & STATUS_LED_ACT_ON)) {
 965                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
 966                 led |= priv->led_activity_on;
 967 
 968                 led = ipw_register_toggle(led);
 969 
 970                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 971                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
 972 
 973                 IPW_DEBUG_LED("Activity LED On\n");
 974 
 975                 priv->status |= STATUS_LED_ACT_ON;
 976 
 977                 cancel_delayed_work(&priv->led_act_off);
 978                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
 979         } else {
 980                 /* Reschedule LED off for full time period */
 981                 cancel_delayed_work(&priv->led_act_off);
 982                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
 983         }
 984 }
 985 
 986 #if 0
 987 void ipw_led_activity_on(struct ipw_priv *priv)
 988 {
 989         unsigned long flags;
 990         spin_lock_irqsave(&priv->lock, flags);
 991         __ipw_led_activity_on(priv);
 992         spin_unlock_irqrestore(&priv->lock, flags);
 993 }
 994 #endif  /*  0  */
 995 
 996 static void ipw_led_activity_off(struct ipw_priv *priv)
 997 {
 998         unsigned long flags;
 999         u32 led;
1000 
1001         if (priv->config & CFG_NO_LED)
1002                 return;
1003 
1004         spin_lock_irqsave(&priv->lock, flags);
1005 
1006         if (priv->status & STATUS_LED_ACT_ON) {
1007                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008                 led &= priv->led_activity_off;
1009 
1010                 led = ipw_register_toggle(led);
1011 
1012                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014 
1015                 IPW_DEBUG_LED("Activity LED Off\n");
1016 
1017                 priv->status &= ~STATUS_LED_ACT_ON;
1018         }
1019 
1020         spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022 
1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025         struct ipw_priv *priv =
1026                 container_of(work, struct ipw_priv, led_act_off.work);
1027         mutex_lock(&priv->mutex);
1028         ipw_led_activity_off(priv);
1029         mutex_unlock(&priv->mutex);
1030 }
1031 
1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034         unsigned long flags;
1035         u32 led;
1036 
1037         /* Only nic type 1 supports mode LEDs */
1038         if (priv->config & CFG_NO_LED ||
1039             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040                 return;
1041 
1042         spin_lock_irqsave(&priv->lock, flags);
1043 
1044         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045         if (priv->assoc_network->mode == IEEE_A) {
1046                 led |= priv->led_ofdm_on;
1047                 led &= priv->led_association_off;
1048                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049         } else if (priv->assoc_network->mode == IEEE_G) {
1050                 led |= priv->led_ofdm_on;
1051                 led |= priv->led_association_on;
1052                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053         } else {
1054                 led &= priv->led_ofdm_off;
1055                 led |= priv->led_association_on;
1056                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057         }
1058 
1059         led = ipw_register_toggle(led);
1060 
1061         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063 
1064         spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066 
1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069         unsigned long flags;
1070         u32 led;
1071 
1072         /* Only nic type 1 supports mode LEDs */
1073         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074                 return;
1075 
1076         spin_lock_irqsave(&priv->lock, flags);
1077 
1078         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079         led &= priv->led_ofdm_off;
1080         led &= priv->led_association_off;
1081 
1082         led = ipw_register_toggle(led);
1083 
1084         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086 
1087         spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089 
1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092         ipw_led_link_on(priv);
1093 }
1094 
1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097         ipw_led_activity_off(priv);
1098         ipw_led_link_off(priv);
1099 }
1100 
1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103         /* Set the Link Led on for all nic types */
1104         ipw_led_link_on(priv);
1105 }
1106 
1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109         ipw_led_activity_off(priv);
1110         ipw_led_link_off(priv);
1111 
1112         if (priv->status & STATUS_RF_KILL_MASK)
1113                 ipw_led_radio_off(priv);
1114 }
1115 
1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119 
1120         /* Set the default PINs for the link and activity leds */
1121         priv->led_activity_on = IPW_ACTIVITY_LED;
1122         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123 
1124         priv->led_association_on = IPW_ASSOCIATED_LED;
1125         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126 
1127         /* Set the default PINs for the OFDM leds */
1128         priv->led_ofdm_on = IPW_OFDM_LED;
1129         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130 
1131         switch (priv->nic_type) {
1132         case EEPROM_NIC_TYPE_1:
1133                 /* In this NIC type, the LEDs are reversed.... */
1134                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1135                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136                 priv->led_association_on = IPW_ACTIVITY_LED;
1137                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138 
1139                 if (!(priv->config & CFG_NO_LED))
1140                         ipw_led_band_on(priv);
1141 
1142                 /* And we don't blink link LEDs for this nic, so
1143                  * just return here */
1144                 return;
1145 
1146         case EEPROM_NIC_TYPE_3:
1147         case EEPROM_NIC_TYPE_2:
1148         case EEPROM_NIC_TYPE_4:
1149         case EEPROM_NIC_TYPE_0:
1150                 break;
1151 
1152         default:
1153                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154                                priv->nic_type);
1155                 priv->nic_type = EEPROM_NIC_TYPE_0;
1156                 break;
1157         }
1158 
1159         if (!(priv->config & CFG_NO_LED)) {
1160                 if (priv->status & STATUS_ASSOCIATED)
1161                         ipw_led_link_on(priv);
1162                 else
1163                         ipw_led_link_off(priv);
1164         }
1165 }
1166 
1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169         ipw_led_activity_off(priv);
1170         ipw_led_link_off(priv);
1171         ipw_led_band_off(priv);
1172         cancel_delayed_work(&priv->led_link_on);
1173         cancel_delayed_work(&priv->led_link_off);
1174         cancel_delayed_work(&priv->led_act_off);
1175 }
1176 
1177 /*
1178  * The following adds a new attribute to the sysfs representation
1179  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180  * used for controlling the debug level.
1181  *
1182  * See the level definitions in ipw for details.
1183  */
1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188 
1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190                                  size_t count)
1191 {
1192         char *p = (char *)buf;
1193         u32 val;
1194 
1195         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196                 p++;
1197                 if (p[0] == 'x' || p[0] == 'X')
1198                         p++;
1199                 val = simple_strtoul(p, &p, 16);
1200         } else
1201                 val = simple_strtoul(p, &p, 10);
1202         if (p == buf)
1203                 printk(KERN_INFO DRV_NAME
1204                        ": %s is not in hex or decimal form.\n", buf);
1205         else
1206                 ipw_debug_level = val;
1207 
1208         return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211 
1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214         /* length = 1st dword in log */
1215         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217 
1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219                                   u32 log_len, struct ipw_event *log)
1220 {
1221         u32 base;
1222 
1223         if (log_len) {
1224                 base = ipw_read32(priv, IPW_EVENT_LOG);
1225                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226                                   (u8 *) log, sizeof(*log) * log_len);
1227         }
1228 }
1229 
1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232         struct ipw_fw_error *error;
1233         u32 log_len = ipw_get_event_log_len(priv);
1234         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235         u32 elem_len = ipw_read_reg32(priv, base);
1236 
1237         error = kmalloc(sizeof(*error) +
1238                         sizeof(*error->elem) * elem_len +
1239                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1240         if (!error) {
1241                 IPW_ERROR("Memory allocation for firmware error log "
1242                           "failed.\n");
1243                 return NULL;
1244         }
1245         error->jiffies = jiffies;
1246         error->status = priv->status;
1247         error->config = priv->config;
1248         error->elem_len = elem_len;
1249         error->log_len = log_len;
1250         error->elem = (struct ipw_error_elem *)error->payload;
1251         error->log = (struct ipw_event *)(error->elem + elem_len);
1252 
1253         ipw_capture_event_log(priv, log_len, error->log);
1254 
1255         if (elem_len)
1256                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257                                   sizeof(*error->elem) * elem_len);
1258 
1259         return error;
1260 }
1261 
1262 static ssize_t show_event_log(struct device *d,
1263                               struct device_attribute *attr, char *buf)
1264 {
1265         struct ipw_priv *priv = dev_get_drvdata(d);
1266         u32 log_len = ipw_get_event_log_len(priv);
1267         u32 log_size;
1268         struct ipw_event *log;
1269         u32 len = 0, i;
1270 
1271         /* not using min() because of its strict type checking */
1272         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273                         sizeof(*log) * log_len : PAGE_SIZE;
1274         log = kzalloc(log_size, GFP_KERNEL);
1275         if (!log) {
1276                 IPW_ERROR("Unable to allocate memory for log\n");
1277                 return 0;
1278         }
1279         log_len = log_size / sizeof(*log);
1280         ipw_capture_event_log(priv, log_len, log);
1281 
1282         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283         for (i = 0; i < log_len; i++)
1284                 len += snprintf(buf + len, PAGE_SIZE - len,
1285                                 "\n%08X%08X%08X",
1286                                 log[i].time, log[i].event, log[i].data);
1287         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1288         kfree(log);
1289         return len;
1290 }
1291 
1292 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293 
1294 static ssize_t show_error(struct device *d,
1295                           struct device_attribute *attr, char *buf)
1296 {
1297         struct ipw_priv *priv = dev_get_drvdata(d);
1298         u32 len = 0, i;
1299         if (!priv->error)
1300                 return 0;
1301         len += snprintf(buf + len, PAGE_SIZE - len,
1302                         "%08lX%08X%08X%08X",
1303                         priv->error->jiffies,
1304                         priv->error->status,
1305                         priv->error->config, priv->error->elem_len);
1306         for (i = 0; i < priv->error->elem_len; i++)
1307                 len += snprintf(buf + len, PAGE_SIZE - len,
1308                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1309                                 priv->error->elem[i].time,
1310                                 priv->error->elem[i].desc,
1311                                 priv->error->elem[i].blink1,
1312                                 priv->error->elem[i].blink2,
1313                                 priv->error->elem[i].link1,
1314                                 priv->error->elem[i].link2,
1315                                 priv->error->elem[i].data);
1316 
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "\n%08X", priv->error->log_len);
1319         for (i = 0; i < priv->error->log_len; i++)
1320                 len += snprintf(buf + len, PAGE_SIZE - len,
1321                                 "\n%08X%08X%08X",
1322                                 priv->error->log[i].time,
1323                                 priv->error->log[i].event,
1324                                 priv->error->log[i].data);
1325         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1326         return len;
1327 }
1328 
1329 static ssize_t clear_error(struct device *d,
1330                            struct device_attribute *attr,
1331                            const char *buf, size_t count)
1332 {
1333         struct ipw_priv *priv = dev_get_drvdata(d);
1334 
1335         kfree(priv->error);
1336         priv->error = NULL;
1337         return count;
1338 }
1339 
1340 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341 
1342 static ssize_t show_cmd_log(struct device *d,
1343                             struct device_attribute *attr, char *buf)
1344 {
1345         struct ipw_priv *priv = dev_get_drvdata(d);
1346         u32 len = 0, i;
1347         if (!priv->cmdlog)
1348                 return 0;
1349         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351              i = (i + 1) % priv->cmdlog_len) {
1352                 len +=
1353                     snprintf(buf + len, PAGE_SIZE - len,
1354                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356                              priv->cmdlog[i].cmd.len);
1357                 len +=
1358                     snprintk_buf(buf + len, PAGE_SIZE - len,
1359                                  (u8 *) priv->cmdlog[i].cmd.param,
1360                                  priv->cmdlog[i].cmd.len);
1361                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1362         }
1363         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1364         return len;
1365 }
1366 
1367 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368 
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
1372 static ssize_t store_rtap_iface(struct device *d,
1373                          struct device_attribute *attr,
1374                          const char *buf, size_t count)
1375 {
1376         struct ipw_priv *priv = dev_get_drvdata(d);
1377         int rc = 0;
1378 
1379         if (count < 1)
1380                 return -EINVAL;
1381 
1382         switch (buf[0]) {
1383         case '0':
1384                 if (!rtap_iface)
1385                         return count;
1386 
1387                 if (netif_running(priv->prom_net_dev)) {
1388                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389                         return count;
1390                 }
1391 
1392                 ipw_prom_free(priv);
1393                 rtap_iface = 0;
1394                 break;
1395 
1396         case '1':
1397                 if (rtap_iface)
1398                         return count;
1399 
1400                 rc = ipw_prom_alloc(priv);
1401                 if (!rc)
1402                         rtap_iface = 1;
1403                 break;
1404 
1405         default:
1406                 return -EINVAL;
1407         }
1408 
1409         if (rc) {
1410                 IPW_ERROR("Failed to register promiscuous network "
1411                           "device (error %d).\n", rc);
1412         }
1413 
1414         return count;
1415 }
1416 
1417 static ssize_t show_rtap_iface(struct device *d,
1418                         struct device_attribute *attr,
1419                         char *buf)
1420 {
1421         struct ipw_priv *priv = dev_get_drvdata(d);
1422         if (rtap_iface)
1423                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424         else {
1425                 buf[0] = '-';
1426                 buf[1] = '1';
1427                 buf[2] = '\0';
1428                 return 3;
1429         }
1430 }
1431 
1432 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433 
1434 static ssize_t store_rtap_filter(struct device *d,
1435                          struct device_attribute *attr,
1436                          const char *buf, size_t count)
1437 {
1438         struct ipw_priv *priv = dev_get_drvdata(d);
1439 
1440         if (!priv->prom_priv) {
1441                 IPW_ERROR("Attempting to set filter without "
1442                           "rtap_iface enabled.\n");
1443                 return -EPERM;
1444         }
1445 
1446         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447 
1448         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449                        BIT_ARG16(priv->prom_priv->filter));
1450 
1451         return count;
1452 }
1453 
1454 static ssize_t show_rtap_filter(struct device *d,
1455                         struct device_attribute *attr,
1456                         char *buf)
1457 {
1458         struct ipw_priv *priv = dev_get_drvdata(d);
1459         return sprintf(buf, "0x%04X",
1460                        priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462 
1463 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464 #endif
1465 
1466 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467                              char *buf)
1468 {
1469         struct ipw_priv *priv = dev_get_drvdata(d);
1470         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472 
1473 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474                               const char *buf, size_t count)
1475 {
1476         struct ipw_priv *priv = dev_get_drvdata(d);
1477         struct net_device *dev = priv->net_dev;
1478         char buffer[] = "00000000";
1479         unsigned long len =
1480             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481         unsigned long val;
1482         char *p = buffer;
1483 
1484         IPW_DEBUG_INFO("enter\n");
1485 
1486         strncpy(buffer, buf, len);
1487         buffer[len] = 0;
1488 
1489         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490                 p++;
1491                 if (p[0] == 'x' || p[0] == 'X')
1492                         p++;
1493                 val = simple_strtoul(p, &p, 16);
1494         } else
1495                 val = simple_strtoul(p, &p, 10);
1496         if (p == buffer) {
1497                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498         } else {
1499                 priv->ieee->scan_age = val;
1500                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501         }
1502 
1503         IPW_DEBUG_INFO("exit\n");
1504         return len;
1505 }
1506 
1507 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508 
1509 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510                         char *buf)
1511 {
1512         struct ipw_priv *priv = dev_get_drvdata(d);
1513         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515 
1516 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517                          const char *buf, size_t count)
1518 {
1519         struct ipw_priv *priv = dev_get_drvdata(d);
1520 
1521         IPW_DEBUG_INFO("enter\n");
1522 
1523         if (count == 0)
1524                 return 0;
1525 
1526         if (*buf == 0) {
1527                 IPW_DEBUG_LED("Disabling LED control.\n");
1528                 priv->config |= CFG_NO_LED;
1529                 ipw_led_shutdown(priv);
1530         } else {
1531                 IPW_DEBUG_LED("Enabling LED control.\n");
1532                 priv->config &= ~CFG_NO_LED;
1533                 ipw_led_init(priv);
1534         }
1535 
1536         IPW_DEBUG_INFO("exit\n");
1537         return count;
1538 }
1539 
1540 static DEVICE_ATTR(led, 0644, show_led, store_led);
1541 
1542 static ssize_t show_status(struct device *d,
1543                            struct device_attribute *attr, char *buf)
1544 {
1545         struct ipw_priv *p = dev_get_drvdata(d);
1546         return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548 
1549 static DEVICE_ATTR(status, 0444, show_status, NULL);
1550 
1551 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552                         char *buf)
1553 {
1554         struct ipw_priv *p = dev_get_drvdata(d);
1555         return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557 
1558 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559 
1560 static ssize_t show_nic_type(struct device *d,
1561                              struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *priv = dev_get_drvdata(d);
1564         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566 
1567 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568 
1569 static ssize_t show_ucode_version(struct device *d,
1570                                   struct device_attribute *attr, char *buf)
1571 {
1572         u32 len = sizeof(u32), tmp = 0;
1573         struct ipw_priv *p = dev_get_drvdata(d);
1574 
1575         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576                 return 0;
1577 
1578         return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580 
1581 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582 
1583 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584                         char *buf)
1585 {
1586         u32 len = sizeof(u32), tmp = 0;
1587         struct ipw_priv *p = dev_get_drvdata(d);
1588 
1589         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590                 return 0;
1591 
1592         return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594 
1595 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596 
1597 /*
1598  * Add a device attribute to view/control the delay between eeprom
1599  * operations.
1600  */
1601 static ssize_t show_eeprom_delay(struct device *d,
1602                                  struct device_attribute *attr, char *buf)
1603 {
1604         struct ipw_priv *p = dev_get_drvdata(d);
1605         int n = p->eeprom_delay;
1606         return sprintf(buf, "%i\n", n);
1607 }
1608 static ssize_t store_eeprom_delay(struct device *d,
1609                                   struct device_attribute *attr,
1610                                   const char *buf, size_t count)
1611 {
1612         struct ipw_priv *p = dev_get_drvdata(d);
1613         sscanf(buf, "%i", &p->eeprom_delay);
1614         return strnlen(buf, count);
1615 }
1616 
1617 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618 
1619 static ssize_t show_command_event_reg(struct device *d,
1620                                       struct device_attribute *attr, char *buf)
1621 {
1622         u32 reg = 0;
1623         struct ipw_priv *p = dev_get_drvdata(d);
1624 
1625         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626         return sprintf(buf, "0x%08x\n", reg);
1627 }
1628 static ssize_t store_command_event_reg(struct device *d,
1629                                        struct device_attribute *attr,
1630                                        const char *buf, size_t count)
1631 {
1632         u32 reg;
1633         struct ipw_priv *p = dev_get_drvdata(d);
1634 
1635         sscanf(buf, "%x", &reg);
1636         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637         return strnlen(buf, count);
1638 }
1639 
1640 static DEVICE_ATTR(command_event_reg, 0644,
1641                    show_command_event_reg, store_command_event_reg);
1642 
1643 static ssize_t show_mem_gpio_reg(struct device *d,
1644                                  struct device_attribute *attr, char *buf)
1645 {
1646         u32 reg = 0;
1647         struct ipw_priv *p = dev_get_drvdata(d);
1648 
1649         reg = ipw_read_reg32(p, 0x301100);
1650         return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_mem_gpio_reg(struct device *d,
1653                                   struct device_attribute *attr,
1654                                   const char *buf, size_t count)
1655 {
1656         u32 reg;
1657         struct ipw_priv *p = dev_get_drvdata(d);
1658 
1659         sscanf(buf, "%x", &reg);
1660         ipw_write_reg32(p, 0x301100, reg);
1661         return strnlen(buf, count);
1662 }
1663 
1664 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665 
1666 static ssize_t show_indirect_dword(struct device *d,
1667                                    struct device_attribute *attr, char *buf)
1668 {
1669         u32 reg = 0;
1670         struct ipw_priv *priv = dev_get_drvdata(d);
1671 
1672         if (priv->status & STATUS_INDIRECT_DWORD)
1673                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1674         else
1675                 reg = 0;
1676 
1677         return sprintf(buf, "0x%08x\n", reg);
1678 }
1679 static ssize_t store_indirect_dword(struct device *d,
1680                                     struct device_attribute *attr,
1681                                     const char *buf, size_t count)
1682 {
1683         struct ipw_priv *priv = dev_get_drvdata(d);
1684 
1685         sscanf(buf, "%x", &priv->indirect_dword);
1686         priv->status |= STATUS_INDIRECT_DWORD;
1687         return strnlen(buf, count);
1688 }
1689 
1690 static DEVICE_ATTR(indirect_dword, 0644,
1691                    show_indirect_dword, store_indirect_dword);
1692 
1693 static ssize_t show_indirect_byte(struct device *d,
1694                                   struct device_attribute *attr, char *buf)
1695 {
1696         u8 reg = 0;
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698 
1699         if (priv->status & STATUS_INDIRECT_BYTE)
1700                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1701         else
1702                 reg = 0;
1703 
1704         return sprintf(buf, "0x%02x\n", reg);
1705 }
1706 static ssize_t store_indirect_byte(struct device *d,
1707                                    struct device_attribute *attr,
1708                                    const char *buf, size_t count)
1709 {
1710         struct ipw_priv *priv = dev_get_drvdata(d);
1711 
1712         sscanf(buf, "%x", &priv->indirect_byte);
1713         priv->status |= STATUS_INDIRECT_BYTE;
1714         return strnlen(buf, count);
1715 }
1716 
1717 static DEVICE_ATTR(indirect_byte, 0644,
1718                    show_indirect_byte, store_indirect_byte);
1719 
1720 static ssize_t show_direct_dword(struct device *d,
1721                                  struct device_attribute *attr, char *buf)
1722 {
1723         u32 reg = 0;
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725 
1726         if (priv->status & STATUS_DIRECT_DWORD)
1727                 reg = ipw_read32(priv, priv->direct_dword);
1728         else
1729                 reg = 0;
1730 
1731         return sprintf(buf, "0x%08x\n", reg);
1732 }
1733 static ssize_t store_direct_dword(struct device *d,
1734                                   struct device_attribute *attr,
1735                                   const char *buf, size_t count)
1736 {
1737         struct ipw_priv *priv = dev_get_drvdata(d);
1738 
1739         sscanf(buf, "%x", &priv->direct_dword);
1740         priv->status |= STATUS_DIRECT_DWORD;
1741         return strnlen(buf, count);
1742 }
1743 
1744 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745 
1746 static int rf_kill_active(struct ipw_priv *priv)
1747 {
1748         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749                 priv->status |= STATUS_RF_KILL_HW;
1750                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751         } else {
1752                 priv->status &= ~STATUS_RF_KILL_HW;
1753                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754         }
1755 
1756         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757 }
1758 
1759 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760                             char *buf)
1761 {
1762         /* 0 - RF kill not enabled
1763            1 - SW based RF kill active (sysfs)
1764            2 - HW based RF kill active
1765            3 - Both HW and SW baed RF kill active */
1766         struct ipw_priv *priv = dev_get_drvdata(d);
1767         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768             (rf_kill_active(priv) ? 0x2 : 0x0);
1769         return sprintf(buf, "%i\n", val);
1770 }
1771 
1772 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773 {
1774         if ((disable_radio ? 1 : 0) ==
1775             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776                 return 0;
1777 
1778         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779                           disable_radio ? "OFF" : "ON");
1780 
1781         if (disable_radio) {
1782                 priv->status |= STATUS_RF_KILL_SW;
1783 
1784                 cancel_delayed_work(&priv->request_scan);
1785                 cancel_delayed_work(&priv->request_direct_scan);
1786                 cancel_delayed_work(&priv->request_passive_scan);
1787                 cancel_delayed_work(&priv->scan_event);
1788                 schedule_work(&priv->down);
1789         } else {
1790                 priv->status &= ~STATUS_RF_KILL_SW;
1791                 if (rf_kill_active(priv)) {
1792                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793                                           "disabled by HW switch\n");
1794                         /* Make sure the RF_KILL check timer is running */
1795                         cancel_delayed_work(&priv->rf_kill);
1796                         schedule_delayed_work(&priv->rf_kill,
1797                                               round_jiffies_relative(2 * HZ));
1798                 } else
1799                         schedule_work(&priv->up);
1800         }
1801 
1802         return 1;
1803 }
1804 
1805 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806                              const char *buf, size_t count)
1807 {
1808         struct ipw_priv *priv = dev_get_drvdata(d);
1809 
1810         ipw_radio_kill_sw(priv, buf[0] == '1');
1811 
1812         return count;
1813 }
1814 
1815 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816 
1817 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818                                char *buf)
1819 {
1820         struct ipw_priv *priv = dev_get_drvdata(d);
1821         int pos = 0, len = 0;
1822         if (priv->config & CFG_SPEED_SCAN) {
1823                 while (priv->speed_scan[pos] != 0)
1824                         len += sprintf(&buf[len], "%d ",
1825                                        priv->speed_scan[pos++]);
1826                 return len + sprintf(&buf[len], "\n");
1827         }
1828 
1829         return sprintf(buf, "0\n");
1830 }
1831 
1832 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833                                 const char *buf, size_t count)
1834 {
1835         struct ipw_priv *priv = dev_get_drvdata(d);
1836         int channel, pos = 0;
1837         const char *p = buf;
1838 
1839         /* list of space separated channels to scan, optionally ending with 0 */
1840         while ((channel = simple_strtol(p, NULL, 0))) {
1841                 if (pos == MAX_SPEED_SCAN - 1) {
1842                         priv->speed_scan[pos] = 0;
1843                         break;
1844                 }
1845 
1846                 if (libipw_is_valid_channel(priv->ieee, channel))
1847                         priv->speed_scan[pos++] = channel;
1848                 else
1849                         IPW_WARNING("Skipping invalid channel request: %d\n",
1850                                     channel);
1851                 p = strchr(p, ' ');
1852                 if (!p)
1853                         break;
1854                 while (*p == ' ' || *p == '\t')
1855                         p++;
1856         }
1857 
1858         if (pos == 0)
1859                 priv->config &= ~CFG_SPEED_SCAN;
1860         else {
1861                 priv->speed_scan_pos = 0;
1862                 priv->config |= CFG_SPEED_SCAN;
1863         }
1864 
1865         return count;
1866 }
1867 
1868 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869 
1870 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871                               char *buf)
1872 {
1873         struct ipw_priv *priv = dev_get_drvdata(d);
1874         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875 }
1876 
1877 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878                                const char *buf, size_t count)
1879 {
1880         struct ipw_priv *priv = dev_get_drvdata(d);
1881         if (buf[0] == '1')
1882                 priv->config |= CFG_NET_STATS;
1883         else
1884                 priv->config &= ~CFG_NET_STATS;
1885 
1886         return count;
1887 }
1888 
1889 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890 
1891 static ssize_t show_channels(struct device *d,
1892                              struct device_attribute *attr,
1893                              char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897         int len = 0, i;
1898 
1899         len = sprintf(&buf[len],
1900                       "Displaying %d channels in 2.4Ghz band "
1901                       "(802.11bg):\n", geo->bg_channels);
1902 
1903         for (i = 0; i < geo->bg_channels; i++) {
1904                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905                                geo->bg[i].channel,
1906                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907                                " (radar spectrum)" : "",
1908                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910                                ? "" : ", IBSS",
1911                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912                                "passive only" : "active/passive",
1913                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914                                "B" : "B/G");
1915         }
1916 
1917         len += sprintf(&buf[len],
1918                        "Displaying %d channels in 5.2Ghz band "
1919                        "(802.11a):\n", geo->a_channels);
1920         for (i = 0; i < geo->a_channels; i++) {
1921                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922                                geo->a[i].channel,
1923                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924                                " (radar spectrum)" : "",
1925                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927                                ? "" : ", IBSS",
1928                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929                                "passive only" : "active/passive");
1930         }
1931 
1932         return len;
1933 }
1934 
1935 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936 
1937 static void notify_wx_assoc_event(struct ipw_priv *priv)
1938 {
1939         union iwreq_data wrqu;
1940         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941         if (priv->status & STATUS_ASSOCIATED)
1942                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943         else
1944                 eth_zero_addr(wrqu.ap_addr.sa_data);
1945         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946 }
1947 
1948 static void ipw_irq_tasklet(unsigned long data)
1949 {
1950         struct ipw_priv *priv = (struct ipw_priv *)data;
1951         u32 inta, inta_mask, handled = 0;
1952         unsigned long flags;
1953         int rc = 0;
1954 
1955         spin_lock_irqsave(&priv->irq_lock, flags);
1956 
1957         inta = ipw_read32(priv, IPW_INTA_RW);
1958         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1959 
1960         if (inta == 0xFFFFFFFF) {
1961                 /* Hardware disappeared */
1962                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1963                 /* Only handle the cached INTA values */
1964                 inta = 0;
1965         }
1966         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1967 
1968         /* Add any cached INTA values that need to be handled */
1969         inta |= priv->isr_inta;
1970 
1971         spin_unlock_irqrestore(&priv->irq_lock, flags);
1972 
1973         spin_lock_irqsave(&priv->lock, flags);
1974 
1975         /* handle all the justifications for the interrupt */
1976         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1977                 ipw_rx(priv);
1978                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1979         }
1980 
1981         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1982                 IPW_DEBUG_HC("Command completed.\n");
1983                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1984                 priv->status &= ~STATUS_HCMD_ACTIVE;
1985                 wake_up_interruptible(&priv->wait_command_queue);
1986                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1987         }
1988 
1989         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1990                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1991                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1992                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1993         }
1994 
1995         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1996                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1997                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1998                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1999         }
2000 
2001         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2002                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2003                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2004                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2005         }
2006 
2007         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2008                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2009                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2010                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2011         }
2012 
2013         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2014                 IPW_WARNING("STATUS_CHANGE\n");
2015                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2016         }
2017 
2018         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2019                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2020                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2021         }
2022 
2023         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2024                 IPW_WARNING("HOST_CMD_DONE\n");
2025                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2026         }
2027 
2028         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2029                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2030                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2031         }
2032 
2033         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2034                 IPW_WARNING("PHY_OFF_DONE\n");
2035                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2036         }
2037 
2038         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2039                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2040                 priv->status |= STATUS_RF_KILL_HW;
2041                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2042                 wake_up_interruptible(&priv->wait_command_queue);
2043                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2044                 cancel_delayed_work(&priv->request_scan);
2045                 cancel_delayed_work(&priv->request_direct_scan);
2046                 cancel_delayed_work(&priv->request_passive_scan);
2047                 cancel_delayed_work(&priv->scan_event);
2048                 schedule_work(&priv->link_down);
2049                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2050                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2051         }
2052 
2053         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2054                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2055                 if (priv->error) {
2056                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2057                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2058                                 struct ipw_fw_error *error =
2059                                     ipw_alloc_error_log(priv);
2060                                 ipw_dump_error_log(priv, error);
2061                                 kfree(error);
2062                         }
2063                 } else {
2064                         priv->error = ipw_alloc_error_log(priv);
2065                         if (priv->error)
2066                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2067                         else
2068                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2069                                              "log.\n");
2070                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2071                                 ipw_dump_error_log(priv, priv->error);
2072                 }
2073 
2074                 /* XXX: If hardware encryption is for WPA/WPA2,
2075                  * we have to notify the supplicant. */
2076                 if (priv->ieee->sec.encrypt) {
2077                         priv->status &= ~STATUS_ASSOCIATED;
2078                         notify_wx_assoc_event(priv);
2079                 }
2080 
2081                 /* Keep the restart process from trying to send host
2082                  * commands by clearing the INIT status bit */
2083                 priv->status &= ~STATUS_INIT;
2084 
2085                 /* Cancel currently queued command. */
2086                 priv->status &= ~STATUS_HCMD_ACTIVE;
2087                 wake_up_interruptible(&priv->wait_command_queue);
2088 
2089                 schedule_work(&priv->adapter_restart);
2090                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2091         }
2092 
2093         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2094                 IPW_ERROR("Parity error\n");
2095                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2096         }
2097 
2098         if (handled != inta) {
2099                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2100         }
2101 
2102         spin_unlock_irqrestore(&priv->lock, flags);
2103 
2104         /* enable all interrupts */
2105         ipw_enable_interrupts(priv);
2106 }
2107 
2108 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2109 static char *get_cmd_string(u8 cmd)
2110 {
2111         switch (cmd) {
2112                 IPW_CMD(HOST_COMPLETE);
2113                 IPW_CMD(POWER_DOWN);
2114                 IPW_CMD(SYSTEM_CONFIG);
2115                 IPW_CMD(MULTICAST_ADDRESS);
2116                 IPW_CMD(SSID);
2117                 IPW_CMD(ADAPTER_ADDRESS);
2118                 IPW_CMD(PORT_TYPE);
2119                 IPW_CMD(RTS_THRESHOLD);
2120                 IPW_CMD(FRAG_THRESHOLD);
2121                 IPW_CMD(POWER_MODE);
2122                 IPW_CMD(WEP_KEY);
2123                 IPW_CMD(TGI_TX_KEY);
2124                 IPW_CMD(SCAN_REQUEST);
2125                 IPW_CMD(SCAN_REQUEST_EXT);
2126                 IPW_CMD(ASSOCIATE);
2127                 IPW_CMD(SUPPORTED_RATES);
2128                 IPW_CMD(SCAN_ABORT);
2129                 IPW_CMD(TX_FLUSH);
2130                 IPW_CMD(QOS_PARAMETERS);
2131                 IPW_CMD(DINO_CONFIG);
2132                 IPW_CMD(RSN_CAPABILITIES);
2133                 IPW_CMD(RX_KEY);
2134                 IPW_CMD(CARD_DISABLE);
2135                 IPW_CMD(SEED_NUMBER);
2136                 IPW_CMD(TX_POWER);
2137                 IPW_CMD(COUNTRY_INFO);
2138                 IPW_CMD(AIRONET_INFO);
2139                 IPW_CMD(AP_TX_POWER);
2140                 IPW_CMD(CCKM_INFO);
2141                 IPW_CMD(CCX_VER_INFO);
2142                 IPW_CMD(SET_CALIBRATION);
2143                 IPW_CMD(SENSITIVITY_CALIB);
2144                 IPW_CMD(RETRY_LIMIT);
2145                 IPW_CMD(IPW_PRE_POWER_DOWN);
2146                 IPW_CMD(VAP_BEACON_TEMPLATE);
2147                 IPW_CMD(VAP_DTIM_PERIOD);
2148                 IPW_CMD(EXT_SUPPORTED_RATES);
2149                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2150                 IPW_CMD(VAP_QUIET_INTERVALS);
2151                 IPW_CMD(VAP_CHANNEL_SWITCH);
2152                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2153                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2154                 IPW_CMD(VAP_CF_PARAM_SET);
2155                 IPW_CMD(VAP_SET_BEACONING_STATE);
2156                 IPW_CMD(MEASUREMENT);
2157                 IPW_CMD(POWER_CAPABILITY);
2158                 IPW_CMD(SUPPORTED_CHANNELS);
2159                 IPW_CMD(TPC_REPORT);
2160                 IPW_CMD(WME_INFO);
2161                 IPW_CMD(PRODUCTION_COMMAND);
2162         default:
2163                 return "UNKNOWN";
2164         }
2165 }
2166 
2167 #define HOST_COMPLETE_TIMEOUT HZ
2168 
2169 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2170 {
2171         int rc = 0;
2172         unsigned long flags;
2173         unsigned long now, end;
2174 
2175         spin_lock_irqsave(&priv->lock, flags);
2176         if (priv->status & STATUS_HCMD_ACTIVE) {
2177                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2178                           get_cmd_string(cmd->cmd));
2179                 spin_unlock_irqrestore(&priv->lock, flags);
2180                 return -EAGAIN;
2181         }
2182 
2183         priv->status |= STATUS_HCMD_ACTIVE;
2184 
2185         if (priv->cmdlog) {
2186                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2187                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2188                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2189                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2190                        cmd->len);
2191                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2192         }
2193 
2194         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2195                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2196                      priv->status);
2197 
2198 #ifndef DEBUG_CMD_WEP_KEY
2199         if (cmd->cmd == IPW_CMD_WEP_KEY)
2200                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2201         else
2202 #endif
2203                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2204 
2205         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2206         if (rc) {
2207                 priv->status &= ~STATUS_HCMD_ACTIVE;
2208                 IPW_ERROR("Failed to send %s: Reason %d\n",
2209                           get_cmd_string(cmd->cmd), rc);
2210                 spin_unlock_irqrestore(&priv->lock, flags);
2211                 goto exit;
2212         }
2213         spin_unlock_irqrestore(&priv->lock, flags);
2214 
2215         now = jiffies;
2216         end = now + HOST_COMPLETE_TIMEOUT;
2217 again:
2218         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2219                                               !(priv->
2220                                                 status & STATUS_HCMD_ACTIVE),
2221                                               end - now);
2222         if (rc < 0) {
2223                 now = jiffies;
2224                 if (time_before(now, end))
2225                         goto again;
2226                 rc = 0;
2227         }
2228 
2229         if (rc == 0) {
2230                 spin_lock_irqsave(&priv->lock, flags);
2231                 if (priv->status & STATUS_HCMD_ACTIVE) {
2232                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2233                                   get_cmd_string(cmd->cmd));
2234                         priv->status &= ~STATUS_HCMD_ACTIVE;
2235                         spin_unlock_irqrestore(&priv->lock, flags);
2236                         rc = -EIO;
2237                         goto exit;
2238                 }
2239                 spin_unlock_irqrestore(&priv->lock, flags);
2240         } else
2241                 rc = 0;
2242 
2243         if (priv->status & STATUS_RF_KILL_HW) {
2244                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2245                           get_cmd_string(cmd->cmd));
2246                 rc = -EIO;
2247                 goto exit;
2248         }
2249 
2250       exit:
2251         if (priv->cmdlog) {
2252                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2253                 priv->cmdlog_pos %= priv->cmdlog_len;
2254         }
2255         return rc;
2256 }
2257 
2258 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2259 {
2260         struct host_cmd cmd = {
2261                 .cmd = command,
2262         };
2263 
2264         return __ipw_send_cmd(priv, &cmd);
2265 }
2266 
2267 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2268                             void *data)
2269 {
2270         struct host_cmd cmd = {
2271                 .cmd = command,
2272                 .len = len,
2273                 .param = data,
2274         };
2275 
2276         return __ipw_send_cmd(priv, &cmd);
2277 }
2278 
2279 static int ipw_send_host_complete(struct ipw_priv *priv)
2280 {
2281         if (!priv) {
2282                 IPW_ERROR("Invalid args\n");
2283                 return -1;
2284         }
2285 
2286         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2287 }
2288 
2289 static int ipw_send_system_config(struct ipw_priv *priv)
2290 {
2291         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2292                                 sizeof(priv->sys_config),
2293                                 &priv->sys_config);
2294 }
2295 
2296 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2297 {
2298         if (!priv || !ssid) {
2299                 IPW_ERROR("Invalid args\n");
2300                 return -1;
2301         }
2302 
2303         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2304                                 ssid);
2305 }
2306 
2307 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2308 {
2309         if (!priv || !mac) {
2310                 IPW_ERROR("Invalid args\n");
2311                 return -1;
2312         }
2313 
2314         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2315                        priv->net_dev->name, mac);
2316 
2317         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2318 }
2319 
2320 static void ipw_adapter_restart(void *adapter)
2321 {
2322         struct ipw_priv *priv = adapter;
2323 
2324         if (priv->status & STATUS_RF_KILL_MASK)
2325                 return;
2326 
2327         ipw_down(priv);
2328 
2329         if (priv->assoc_network &&
2330             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2331                 ipw_remove_current_network(priv);
2332 
2333         if (ipw_up(priv)) {
2334                 IPW_ERROR("Failed to up device\n");
2335                 return;
2336         }
2337 }
2338 
2339 static void ipw_bg_adapter_restart(struct work_struct *work)
2340 {
2341         struct ipw_priv *priv =
2342                 container_of(work, struct ipw_priv, adapter_restart);
2343         mutex_lock(&priv->mutex);
2344         ipw_adapter_restart(priv);
2345         mutex_unlock(&priv->mutex);
2346 }
2347 
2348 static void ipw_abort_scan(struct ipw_priv *priv);
2349 
2350 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2351 
2352 static void ipw_scan_check(void *data)
2353 {
2354         struct ipw_priv *priv = data;
2355 
2356         if (priv->status & STATUS_SCAN_ABORTING) {
2357                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358                                "adapter after (%dms).\n",
2359                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360                 schedule_work(&priv->adapter_restart);
2361         } else if (priv->status & STATUS_SCANNING) {
2362                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2363                                "after (%dms).\n",
2364                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2365                 ipw_abort_scan(priv);
2366                 schedule_delayed_work(&priv->scan_check, HZ);
2367         }
2368 }
2369 
2370 static void ipw_bg_scan_check(struct work_struct *work)
2371 {
2372         struct ipw_priv *priv =
2373                 container_of(work, struct ipw_priv, scan_check.work);
2374         mutex_lock(&priv->mutex);
2375         ipw_scan_check(priv);
2376         mutex_unlock(&priv->mutex);
2377 }
2378 
2379 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2380                                      struct ipw_scan_request_ext *request)
2381 {
2382         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2383                                 sizeof(*request), request);
2384 }
2385 
2386 static int ipw_send_scan_abort(struct ipw_priv *priv)
2387 {
2388         if (!priv) {
2389                 IPW_ERROR("Invalid args\n");
2390                 return -1;
2391         }
2392 
2393         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2394 }
2395 
2396 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2397 {
2398         struct ipw_sensitivity_calib calib = {
2399                 .beacon_rssi_raw = cpu_to_le16(sens),
2400         };
2401 
2402         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2403                                 &calib);
2404 }
2405 
2406 static int ipw_send_associate(struct ipw_priv *priv,
2407                               struct ipw_associate *associate)
2408 {
2409         if (!priv || !associate) {
2410                 IPW_ERROR("Invalid args\n");
2411                 return -1;
2412         }
2413 
2414         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2415                                 associate);
2416 }
2417 
2418 static int ipw_send_supported_rates(struct ipw_priv *priv,
2419                                     struct ipw_supported_rates *rates)
2420 {
2421         if (!priv || !rates) {
2422                 IPW_ERROR("Invalid args\n");
2423                 return -1;
2424         }
2425 
2426         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2427                                 rates);
2428 }
2429 
2430 static int ipw_set_random_seed(struct ipw_priv *priv)
2431 {
2432         u32 val;
2433 
2434         if (!priv) {
2435                 IPW_ERROR("Invalid args\n");
2436                 return -1;
2437         }
2438 
2439         get_random_bytes(&val, sizeof(val));
2440 
2441         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2442 }
2443 
2444 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2445 {
2446         __le32 v = cpu_to_le32(phy_off);
2447         if (!priv) {
2448                 IPW_ERROR("Invalid args\n");
2449                 return -1;
2450         }
2451 
2452         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2453 }
2454 
2455 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2456 {
2457         if (!priv || !power) {
2458                 IPW_ERROR("Invalid args\n");
2459                 return -1;
2460         }
2461 
2462         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2463 }
2464 
2465 static int ipw_set_tx_power(struct ipw_priv *priv)
2466 {
2467         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2468         struct ipw_tx_power tx_power;
2469         s8 max_power;
2470         int i;
2471 
2472         memset(&tx_power, 0, sizeof(tx_power));
2473 
2474         /* configure device for 'G' band */
2475         tx_power.ieee_mode = IPW_G_MODE;
2476         tx_power.num_channels = geo->bg_channels;
2477         for (i = 0; i < geo->bg_channels; i++) {
2478                 max_power = geo->bg[i].max_power;
2479                 tx_power.channels_tx_power[i].channel_number =
2480                     geo->bg[i].channel;
2481                 tx_power.channels_tx_power[i].tx_power = max_power ?
2482                     min(max_power, priv->tx_power) : priv->tx_power;
2483         }
2484         if (ipw_send_tx_power(priv, &tx_power))
2485                 return -EIO;
2486 
2487         /* configure device to also handle 'B' band */
2488         tx_power.ieee_mode = IPW_B_MODE;
2489         if (ipw_send_tx_power(priv, &tx_power))
2490                 return -EIO;
2491 
2492         /* configure device to also handle 'A' band */
2493         if (priv->ieee->abg_true) {
2494                 tx_power.ieee_mode = IPW_A_MODE;
2495                 tx_power.num_channels = geo->a_channels;
2496                 for (i = 0; i < tx_power.num_channels; i++) {
2497                         max_power = geo->a[i].max_power;
2498                         tx_power.channels_tx_power[i].channel_number =
2499                             geo->a[i].channel;
2500                         tx_power.channels_tx_power[i].tx_power = max_power ?
2501                             min(max_power, priv->tx_power) : priv->tx_power;
2502                 }
2503                 if (ipw_send_tx_power(priv, &tx_power))
2504                         return -EIO;
2505         }
2506         return 0;
2507 }
2508 
2509 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2510 {
2511         struct ipw_rts_threshold rts_threshold = {
2512                 .rts_threshold = cpu_to_le16(rts),
2513         };
2514 
2515         if (!priv) {
2516                 IPW_ERROR("Invalid args\n");
2517                 return -1;
2518         }
2519 
2520         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2521                                 sizeof(rts_threshold), &rts_threshold);
2522 }
2523 
2524 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2525 {
2526         struct ipw_frag_threshold frag_threshold = {
2527                 .frag_threshold = cpu_to_le16(frag),
2528         };
2529 
2530         if (!priv) {
2531                 IPW_ERROR("Invalid args\n");
2532                 return -1;
2533         }
2534 
2535         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2536                                 sizeof(frag_threshold), &frag_threshold);
2537 }
2538 
2539 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2540 {
2541         __le32 param;
2542 
2543         if (!priv) {
2544                 IPW_ERROR("Invalid args\n");
2545                 return -1;
2546         }
2547 
2548         /* If on battery, set to 3, if AC set to CAM, else user
2549          * level */
2550         switch (mode) {
2551         case IPW_POWER_BATTERY:
2552                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2553                 break;
2554         case IPW_POWER_AC:
2555                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2556                 break;
2557         default:
2558                 param = cpu_to_le32(mode);
2559                 break;
2560         }
2561 
2562         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2563                                 &param);
2564 }
2565 
2566 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2567 {
2568         struct ipw_retry_limit retry_limit = {
2569                 .short_retry_limit = slimit,
2570                 .long_retry_limit = llimit
2571         };
2572 
2573         if (!priv) {
2574                 IPW_ERROR("Invalid args\n");
2575                 return -1;
2576         }
2577 
2578         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2579                                 &retry_limit);
2580 }
2581 
2582 /*
2583  * The IPW device contains a Microwire compatible EEPROM that stores
2584  * various data like the MAC address.  Usually the firmware has exclusive
2585  * access to the eeprom, but during device initialization (before the
2586  * device driver has sent the HostComplete command to the firmware) the
2587  * device driver has read access to the EEPROM by way of indirect addressing
2588  * through a couple of memory mapped registers.
2589  *
2590  * The following is a simplified implementation for pulling data out of the
2591  * the eeprom, along with some helper functions to find information in
2592  * the per device private data's copy of the eeprom.
2593  *
2594  * NOTE: To better understand how these functions work (i.e what is a chip
2595  *       select and why do have to keep driving the eeprom clock?), read
2596  *       just about any data sheet for a Microwire compatible EEPROM.
2597  */
2598 
2599 /* write a 32 bit value into the indirect accessor register */
2600 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2601 {
2602         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2603 
2604         /* the eeprom requires some time to complete the operation */
2605         udelay(p->eeprom_delay);
2606 }
2607 
2608 /* perform a chip select operation */
2609 static void eeprom_cs(struct ipw_priv *priv)
2610 {
2611         eeprom_write_reg(priv, 0);
2612         eeprom_write_reg(priv, EEPROM_BIT_CS);
2613         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2614         eeprom_write_reg(priv, EEPROM_BIT_CS);
2615 }
2616 
2617 /* perform a chip select operation */
2618 static void eeprom_disable_cs(struct ipw_priv *priv)
2619 {
2620         eeprom_write_reg(priv, EEPROM_BIT_CS);
2621         eeprom_write_reg(priv, 0);
2622         eeprom_write_reg(priv, EEPROM_BIT_SK);
2623 }
2624 
2625 /* push a single bit down to the eeprom */
2626 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2627 {
2628         int d = (bit ? EEPROM_BIT_DI : 0);
2629         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2630         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2631 }
2632 
2633 /* push an opcode followed by an address down to the eeprom */
2634 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2635 {
2636         int i;
2637 
2638         eeprom_cs(priv);
2639         eeprom_write_bit(priv, 1);
2640         eeprom_write_bit(priv, op & 2);
2641         eeprom_write_bit(priv, op & 1);
2642         for (i = 7; i >= 0; i--) {
2643                 eeprom_write_bit(priv, addr & (1 << i));
2644         }
2645 }
2646 
2647 /* pull 16 bits off the eeprom, one bit at a time */
2648 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2649 {
2650         int i;
2651         u16 r = 0;
2652 
2653         /* Send READ Opcode */
2654         eeprom_op(priv, EEPROM_CMD_READ, addr);
2655 
2656         /* Send dummy bit */
2657         eeprom_write_reg(priv, EEPROM_BIT_CS);
2658 
2659         /* Read the byte off the eeprom one bit at a time */
2660         for (i = 0; i < 16; i++) {
2661                 u32 data = 0;
2662                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2663                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2664                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2665                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2666         }
2667 
2668         /* Send another dummy bit */
2669         eeprom_write_reg(priv, 0);
2670         eeprom_disable_cs(priv);
2671 
2672         return r;
2673 }
2674 
2675 /* helper function for pulling the mac address out of the private */
2676 /* data's copy of the eeprom data                                 */
2677 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2678 {
2679         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2680 }
2681 
2682 static void ipw_read_eeprom(struct ipw_priv *priv)
2683 {
2684         int i;
2685         __le16 *eeprom = (__le16 *) priv->eeprom;
2686 
2687         IPW_DEBUG_TRACE(">>\n");
2688 
2689         /* read entire contents of eeprom into private buffer */
2690         for (i = 0; i < 128; i++)
2691                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2692 
2693         IPW_DEBUG_TRACE("<<\n");
2694 }
2695 
2696 /*
2697  * Either the device driver (i.e. the host) or the firmware can
2698  * load eeprom data into the designated region in SRAM.  If neither
2699  * happens then the FW will shutdown with a fatal error.
2700  *
2701  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2702  * bit needs region of shared SRAM needs to be non-zero.
2703  */
2704 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2705 {
2706         int i;
2707 
2708         IPW_DEBUG_TRACE(">>\n");
2709 
2710         /*
2711            If the data looks correct, then copy it to our private
2712            copy.  Otherwise let the firmware know to perform the operation
2713            on its own.
2714          */
2715         if (priv->eeprom[EEPROM_VERSION] != 0) {
2716                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2717 
2718                 /* write the eeprom data to sram */
2719                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2720                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2721 
2722                 /* Do not load eeprom data on fatal error or suspend */
2723                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2724         } else {
2725                 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2726 
2727                 /* Load eeprom data on fatal error or suspend */
2728                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2729         }
2730 
2731         IPW_DEBUG_TRACE("<<\n");
2732 }
2733 
2734 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2735 {
2736         count >>= 2;
2737         if (!count)
2738                 return;
2739         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2740         while (count--)
2741                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2742 }
2743 
2744 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2745 {
2746         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2747                         CB_NUMBER_OF_ELEMENTS_SMALL *
2748                         sizeof(struct command_block));
2749 }
2750 
2751 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2752 {                               /* start dma engine but no transfers yet */
2753 
2754         IPW_DEBUG_FW(">> :\n");
2755 
2756         /* Start the dma */
2757         ipw_fw_dma_reset_command_blocks(priv);
2758 
2759         /* Write CB base address */
2760         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2761 
2762         IPW_DEBUG_FW("<< :\n");
2763         return 0;
2764 }
2765 
2766 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2767 {
2768         u32 control = 0;
2769 
2770         IPW_DEBUG_FW(">> :\n");
2771 
2772         /* set the Stop and Abort bit */
2773         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2774         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2775         priv->sram_desc.last_cb_index = 0;
2776 
2777         IPW_DEBUG_FW("<<\n");
2778 }
2779 
2780 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2781                                           struct command_block *cb)
2782 {
2783         u32 address =
2784             IPW_SHARED_SRAM_DMA_CONTROL +
2785             (sizeof(struct command_block) * index);
2786         IPW_DEBUG_FW(">> :\n");
2787 
2788         ipw_write_indirect(priv, address, (u8 *) cb,
2789                            (int)sizeof(struct command_block));
2790 
2791         IPW_DEBUG_FW("<< :\n");
2792         return 0;
2793 
2794 }
2795 
2796 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2797 {
2798         u32 control = 0;
2799         u32 index = 0;
2800 
2801         IPW_DEBUG_FW(">> :\n");
2802 
2803         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2804                 ipw_fw_dma_write_command_block(priv, index,
2805                                                &priv->sram_desc.cb_list[index]);
2806 
2807         /* Enable the DMA in the CSR register */
2808         ipw_clear_bit(priv, IPW_RESET_REG,
2809                       IPW_RESET_REG_MASTER_DISABLED |
2810                       IPW_RESET_REG_STOP_MASTER);
2811 
2812         /* Set the Start bit. */
2813         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2814         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2815 
2816         IPW_DEBUG_FW("<< :\n");
2817         return 0;
2818 }
2819 
2820 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2821 {
2822         u32 address;
2823         u32 register_value = 0;
2824         u32 cb_fields_address = 0;
2825 
2826         IPW_DEBUG_FW(">> :\n");
2827         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2828         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2829 
2830         /* Read the DMA Controlor register */
2831         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2832         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2833 
2834         /* Print the CB values */
2835         cb_fields_address = address;
2836         register_value = ipw_read_reg32(priv, cb_fields_address);
2837         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2838 
2839         cb_fields_address += sizeof(u32);
2840         register_value = ipw_read_reg32(priv, cb_fields_address);
2841         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2842 
2843         cb_fields_address += sizeof(u32);
2844         register_value = ipw_read_reg32(priv, cb_fields_address);
2845         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2846                           register_value);
2847 
2848         cb_fields_address += sizeof(u32);
2849         register_value = ipw_read_reg32(priv, cb_fields_address);
2850         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2851 
2852         IPW_DEBUG_FW(">> :\n");
2853 }
2854 
2855 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2856 {
2857         u32 current_cb_address = 0;
2858         u32 current_cb_index = 0;
2859 
2860         IPW_DEBUG_FW("<< :\n");
2861         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2862 
2863         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2864             sizeof(struct command_block);
2865 
2866         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2867                           current_cb_index, current_cb_address);
2868 
2869         IPW_DEBUG_FW(">> :\n");
2870         return current_cb_index;
2871 
2872 }
2873 
2874 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2875                                         u32 src_address,
2876                                         u32 dest_address,
2877                                         u32 length,
2878                                         int interrupt_enabled, int is_last)
2879 {
2880 
2881         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2882             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2883             CB_DEST_SIZE_LONG;
2884         struct command_block *cb;
2885         u32 last_cb_element = 0;
2886 
2887         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2888                           src_address, dest_address, length);
2889 
2890         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2891                 return -1;
2892 
2893         last_cb_element = priv->sram_desc.last_cb_index;
2894         cb = &priv->sram_desc.cb_list[last_cb_element];
2895         priv->sram_desc.last_cb_index++;
2896 
2897         /* Calculate the new CB control word */
2898         if (interrupt_enabled)
2899                 control |= CB_INT_ENABLED;
2900 
2901         if (is_last)
2902                 control |= CB_LAST_VALID;
2903 
2904         control |= length;
2905 
2906         /* Calculate the CB Element's checksum value */
2907         cb->status = control ^ src_address ^ dest_address;
2908 
2909         /* Copy the Source and Destination addresses */
2910         cb->dest_addr = dest_address;
2911         cb->source_addr = src_address;
2912 
2913         /* Copy the Control Word last */
2914         cb->control = control;
2915 
2916         return 0;
2917 }
2918 
2919 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2920                                  int nr, u32 dest_address, u32 len)
2921 {
2922         int ret, i;
2923         u32 size;
2924 
2925         IPW_DEBUG_FW(">>\n");
2926         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2927                           nr, dest_address, len);
2928 
2929         for (i = 0; i < nr; i++) {
2930                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2931                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2932                                                    dest_address +
2933                                                    i * CB_MAX_LENGTH, size,
2934                                                    0, 0);
2935                 if (ret) {
2936                         IPW_DEBUG_FW_INFO(": Failed\n");
2937                         return -1;
2938                 } else
2939                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2940         }
2941 
2942         IPW_DEBUG_FW("<<\n");
2943         return 0;
2944 }
2945 
2946 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2947 {
2948         u32 current_index = 0, previous_index;
2949         u32 watchdog = 0;
2950 
2951         IPW_DEBUG_FW(">> :\n");
2952 
2953         current_index = ipw_fw_dma_command_block_index(priv);
2954         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2955                           (int)priv->sram_desc.last_cb_index);
2956 
2957         while (current_index < priv->sram_desc.last_cb_index) {
2958                 udelay(50);
2959                 previous_index = current_index;
2960                 current_index = ipw_fw_dma_command_block_index(priv);
2961 
2962                 if (previous_index < current_index) {
2963                         watchdog = 0;
2964                         continue;
2965                 }
2966                 if (++watchdog > 400) {
2967                         IPW_DEBUG_FW_INFO("Timeout\n");
2968                         ipw_fw_dma_dump_command_block(priv);
2969                         ipw_fw_dma_abort(priv);
2970                         return -1;
2971                 }
2972         }
2973 
2974         ipw_fw_dma_abort(priv);
2975 
2976         /*Disable the DMA in the CSR register */
2977         ipw_set_bit(priv, IPW_RESET_REG,
2978                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2979 
2980         IPW_DEBUG_FW("<< dmaWaitSync\n");
2981         return 0;
2982 }
2983 
2984 static void ipw_remove_current_network(struct ipw_priv *priv)
2985 {
2986         struct list_head *element, *safe;
2987         struct libipw_network *network = NULL;
2988         unsigned long flags;
2989 
2990         spin_lock_irqsave(&priv->ieee->lock, flags);
2991         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2992                 network = list_entry(element, struct libipw_network, list);
2993                 if (ether_addr_equal(network->bssid, priv->bssid)) {
2994                         list_del(element);
2995                         list_add_tail(&network->list,
2996                                       &priv->ieee->network_free_list);
2997                 }
2998         }
2999         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3000 }
3001 
3002 /**
3003  * Check that card is still alive.
3004  * Reads debug register from domain0.
3005  * If card is present, pre-defined value should
3006  * be found there.
3007  *
3008  * @param priv
3009  * @return 1 if card is present, 0 otherwise
3010  */
3011 static inline int ipw_alive(struct ipw_priv *priv)
3012 {
3013         return ipw_read32(priv, 0x90) == 0xd55555d5;
3014 }
3015 
3016 /* timeout in msec, attempted in 10-msec quanta */
3017 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3018                                int timeout)
3019 {
3020         int i = 0;
3021 
3022         do {
3023                 if ((ipw_read32(priv, addr) & mask) == mask)
3024                         return i;
3025                 mdelay(10);
3026                 i += 10;
3027         } while (i < timeout);
3028 
3029         return -ETIME;
3030 }
3031 
3032 /* These functions load the firmware and micro code for the operation of
3033  * the ipw hardware.  It assumes the buffer has all the bits for the
3034  * image and the caller is handling the memory allocation and clean up.
3035  */
3036 
3037 static int ipw_stop_master(struct ipw_priv *priv)
3038 {
3039         int rc;
3040 
3041         IPW_DEBUG_TRACE(">>\n");
3042         /* stop master. typical delay - 0 */
3043         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3044 
3045         /* timeout is in msec, polled in 10-msec quanta */
3046         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3047                           IPW_RESET_REG_MASTER_DISABLED, 100);
3048         if (rc < 0) {
3049                 IPW_ERROR("wait for stop master failed after 100ms\n");
3050                 return -1;
3051         }
3052 
3053         IPW_DEBUG_INFO("stop master %dms\n", rc);
3054 
3055         return rc;
3056 }
3057 
3058 static void ipw_arc_release(struct ipw_priv *priv)
3059 {
3060         IPW_DEBUG_TRACE(">>\n");
3061         mdelay(5);
3062 
3063         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3064 
3065         /* no one knows timing, for safety add some delay */
3066         mdelay(5);
3067 }
3068 
3069 struct fw_chunk {
3070         __le32 address;
3071         __le32 length;
3072 };
3073 
3074 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3075 {
3076         int rc = 0, i, addr;
3077         u8 cr = 0;
3078         __le16 *image;
3079 
3080         image = (__le16 *) data;
3081 
3082         IPW_DEBUG_TRACE(">>\n");
3083 
3084         rc = ipw_stop_master(priv);
3085 
3086         if (rc < 0)
3087                 return rc;
3088 
3089         for (addr = IPW_SHARED_LOWER_BOUND;
3090              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3091                 ipw_write32(priv, addr, 0);
3092         }
3093 
3094         /* no ucode (yet) */
3095         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3096         /* destroy DMA queues */
3097         /* reset sequence */
3098 
3099         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3100         ipw_arc_release(priv);
3101         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3102         mdelay(1);
3103 
3104         /* reset PHY */
3105         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3106         mdelay(1);
3107 
3108         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3109         mdelay(1);
3110 
3111         /* enable ucode store */
3112         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3113         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3114         mdelay(1);
3115 
3116         /* write ucode */
3117         /**
3118          * @bug
3119          * Do NOT set indirect address register once and then
3120          * store data to indirect data register in the loop.
3121          * It seems very reasonable, but in this case DINO do not
3122          * accept ucode. It is essential to set address each time.
3123          */
3124         /* load new ipw uCode */
3125         for (i = 0; i < len / 2; i++)
3126                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3127                                 le16_to_cpu(image[i]));
3128 
3129         /* enable DINO */
3130         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3131         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3132 
3133         /* this is where the igx / win driver deveates from the VAP driver. */
3134 
3135         /* wait for alive response */
3136         for (i = 0; i < 100; i++) {
3137                 /* poll for incoming data */
3138                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3139                 if (cr & DINO_RXFIFO_DATA)
3140                         break;
3141                 mdelay(1);
3142         }
3143 
3144         if (cr & DINO_RXFIFO_DATA) {
3145                 /* alive_command_responce size is NOT multiple of 4 */
3146                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3147 
3148                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3149                         response_buffer[i] =
3150                             cpu_to_le32(ipw_read_reg32(priv,
3151                                                        IPW_BASEBAND_RX_FIFO_READ));
3152                 memcpy(&priv->dino_alive, response_buffer,
3153                        sizeof(priv->dino_alive));
3154                 if (priv->dino_alive.alive_command == 1
3155                     && priv->dino_alive.ucode_valid == 1) {
3156                         rc = 0;
3157                         IPW_DEBUG_INFO
3158                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3159                              "of %02d/%02d/%02d %02d:%02d\n",
3160                              priv->dino_alive.software_revision,
3161                              priv->dino_alive.software_revision,
3162                              priv->dino_alive.device_identifier,
3163                              priv->dino_alive.device_identifier,
3164                              priv->dino_alive.time_stamp[0],
3165                              priv->dino_alive.time_stamp[1],
3166                              priv->dino_alive.time_stamp[2],
3167                              priv->dino_alive.time_stamp[3],
3168                              priv->dino_alive.time_stamp[4]);
3169                 } else {
3170                         IPW_DEBUG_INFO("Microcode is not alive\n");
3171                         rc = -EINVAL;
3172                 }
3173         } else {
3174                 IPW_DEBUG_INFO("No alive response from DINO\n");
3175                 rc = -ETIME;
3176         }
3177 
3178         /* disable DINO, otherwise for some reason
3179            firmware have problem getting alive resp. */
3180         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3181 
3182         return rc;
3183 }
3184 
3185 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3186 {
3187         int ret = -1;
3188         int offset = 0;
3189         struct fw_chunk *chunk;
3190         int total_nr = 0;
3191         int i;
3192         struct dma_pool *pool;
3193         void **virts;
3194         dma_addr_t *phys;
3195 
3196         IPW_DEBUG_TRACE("<< :\n");
3197 
3198         virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3199                               GFP_KERNEL);
3200         if (!virts)
3201                 return -ENOMEM;
3202 
3203         phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3204                              GFP_KERNEL);
3205         if (!phys) {
3206                 kfree(virts);
3207                 return -ENOMEM;
3208         }
3209         pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3210                                0);
3211         if (!pool) {
3212                 IPW_ERROR("dma_pool_create failed\n");
3213                 kfree(phys);
3214                 kfree(virts);
3215                 return -ENOMEM;
3216         }
3217 
3218         /* Start the Dma */
3219         ret = ipw_fw_dma_enable(priv);
3220 
3221         /* the DMA is already ready this would be a bug. */
3222         BUG_ON(priv->sram_desc.last_cb_index > 0);
3223 
3224         do {
3225                 u32 chunk_len;
3226                 u8 *start;
3227                 int size;
3228                 int nr = 0;
3229 
3230                 chunk = (struct fw_chunk *)(data + offset);
3231                 offset += sizeof(struct fw_chunk);
3232                 chunk_len = le32_to_cpu(chunk->length);
3233                 start = data + offset;
3234 
3235                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3236                 for (i = 0; i < nr; i++) {
3237                         virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3238                                                          &phys[total_nr]);
3239                         if (!virts[total_nr]) {
3240                                 ret = -ENOMEM;
3241                                 goto out;
3242                         }
3243                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3244                                      CB_MAX_LENGTH);
3245                         memcpy(virts[total_nr], start, size);
3246                         start += size;
3247                         total_nr++;
3248                         /* We don't support fw chunk larger than 64*8K */
3249                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3250                 }
3251 
3252                 /* build DMA packet and queue up for sending */
3253                 /* dma to chunk->address, the chunk->length bytes from data +
3254                  * offeset*/
3255                 /* Dma loading */
3256                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3257                                             nr, le32_to_cpu(chunk->address),
3258                                             chunk_len);
3259                 if (ret) {
3260                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3261                         goto out;
3262                 }
3263 
3264                 offset += chunk_len;
3265         } while (offset < len);
3266 
3267         /* Run the DMA and wait for the answer */
3268         ret = ipw_fw_dma_kick(priv);
3269         if (ret) {
3270                 IPW_ERROR("dmaKick Failed\n");
3271                 goto out;
3272         }
3273 
3274         ret = ipw_fw_dma_wait(priv);
3275         if (ret) {
3276                 IPW_ERROR("dmaWaitSync Failed\n");
3277                 goto out;
3278         }
3279  out:
3280         for (i = 0; i < total_nr; i++)
3281                 dma_pool_free(pool, virts[i], phys[i]);
3282 
3283         dma_pool_destroy(pool);
3284         kfree(phys);
3285         kfree(virts);
3286 
3287         return ret;
3288 }
3289 
3290 /* stop nic */
3291 static int ipw_stop_nic(struct ipw_priv *priv)
3292 {
3293         int rc = 0;
3294 
3295         /* stop */
3296         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3297 
3298         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3299                           IPW_RESET_REG_MASTER_DISABLED, 500);
3300         if (rc < 0) {
3301                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3302                 return rc;
3303         }
3304 
3305         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3306 
3307         return rc;
3308 }
3309 
3310 static void ipw_start_nic(struct ipw_priv *priv)
3311 {
3312         IPW_DEBUG_TRACE(">>\n");
3313 
3314         /* prvHwStartNic  release ARC */
3315         ipw_clear_bit(priv, IPW_RESET_REG,
3316                       IPW_RESET_REG_MASTER_DISABLED |
3317                       IPW_RESET_REG_STOP_MASTER |
3318                       CBD_RESET_REG_PRINCETON_RESET);
3319 
3320         /* enable power management */
3321         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3322                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3323 
3324         IPW_DEBUG_TRACE("<<\n");
3325 }
3326 
3327 static int ipw_init_nic(struct ipw_priv *priv)
3328 {
3329         int rc;
3330 
3331         IPW_DEBUG_TRACE(">>\n");
3332         /* reset */
3333         /*prvHwInitNic */
3334         /* set "initialization complete" bit to move adapter to D0 state */
3335         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3336 
3337         /* low-level PLL activation */
3338         ipw_write32(priv, IPW_READ_INT_REGISTER,
3339                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3340 
3341         /* wait for clock stabilization */
3342         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3343                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3344         if (rc < 0)
3345                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3346 
3347         /* assert SW reset */
3348         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3349 
3350         udelay(10);
3351 
3352         /* set "initialization complete" bit to move adapter to D0 state */
3353         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3354 
3355         IPW_DEBUG_TRACE(">>\n");
3356         return 0;
3357 }
3358 
3359 /* Call this function from process context, it will sleep in request_firmware.
3360  * Probe is an ok place to call this from.
3361  */
3362 static int ipw_reset_nic(struct ipw_priv *priv)
3363 {
3364         int rc = 0;
3365         unsigned long flags;
3366 
3367         IPW_DEBUG_TRACE(">>\n");
3368 
3369         rc = ipw_init_nic(priv);
3370 
3371         spin_lock_irqsave(&priv->lock, flags);
3372         /* Clear the 'host command active' bit... */
3373         priv->status &= ~STATUS_HCMD_ACTIVE;
3374         wake_up_interruptible(&priv->wait_command_queue);
3375         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3376         wake_up_interruptible(&priv->wait_state);
3377         spin_unlock_irqrestore(&priv->lock, flags);
3378 
3379         IPW_DEBUG_TRACE("<<\n");
3380         return rc;
3381 }
3382 
3383 
3384 struct ipw_fw {
3385         __le32 ver;
3386         __le32 boot_size;
3387         __le32 ucode_size;
3388         __le32 fw_size;
3389         u8 data[0];
3390 };
3391 
3392 static int ipw_get_fw(struct ipw_priv *priv,
3393                       const struct firmware **raw, const char *name)
3394 {
3395         struct ipw_fw *fw;
3396         int rc;
3397 
3398         /* ask firmware_class module to get the boot firmware off disk */
3399         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3400         if (rc < 0) {
3401                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3402                 return rc;
3403         }
3404 
3405         if ((*raw)->size < sizeof(*fw)) {
3406                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3407                 return -EINVAL;
3408         }
3409 
3410         fw = (void *)(*raw)->data;
3411 
3412         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3413             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3414                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3415                           name, (*raw)->size);
3416                 return -EINVAL;
3417         }
3418 
3419         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3420                        name,
3421                        le32_to_cpu(fw->ver) >> 16,
3422                        le32_to_cpu(fw->ver) & 0xff,
3423                        (*raw)->size - sizeof(*fw));
3424         return 0;
3425 }
3426 
3427 #define IPW_RX_BUF_SIZE (3000)
3428 
3429 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3430                                       struct ipw_rx_queue *rxq)
3431 {
3432         unsigned long flags;
3433         int i;
3434 
3435         spin_lock_irqsave(&rxq->lock, flags);
3436 
3437         INIT_LIST_HEAD(&rxq->rx_free);
3438         INIT_LIST_HEAD(&rxq->rx_used);
3439 
3440         /* Fill the rx_used queue with _all_ of the Rx buffers */
3441         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3442                 /* In the reset function, these buffers may have been allocated
3443                  * to an SKB, so we need to unmap and free potential storage */
3444                 if (rxq->pool[i].skb != NULL) {
3445                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3446                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3447                         dev_kfree_skb(rxq->pool[i].skb);
3448                         rxq->pool[i].skb = NULL;
3449                 }
3450                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451         }
3452 
3453         /* Set us so that we have processed and used all buffers, but have
3454          * not restocked the Rx queue with fresh buffers */
3455         rxq->read = rxq->write = 0;
3456         rxq->free_count = 0;
3457         spin_unlock_irqrestore(&rxq->lock, flags);
3458 }
3459 
3460 #ifdef CONFIG_PM
3461 static int fw_loaded = 0;
3462 static const struct firmware *raw = NULL;
3463 
3464 static void free_firmware(void)
3465 {
3466         if (fw_loaded) {
3467                 release_firmware(raw);
3468                 raw = NULL;
3469                 fw_loaded = 0;
3470         }
3471 }
3472 #else
3473 #define free_firmware() do {} while (0)
3474 #endif
3475 
3476 static int ipw_load(struct ipw_priv *priv)
3477 {
3478 #ifndef CONFIG_PM
3479         const struct firmware *raw = NULL;
3480 #endif
3481         struct ipw_fw *fw;
3482         u8 *boot_img, *ucode_img, *fw_img;
3483         u8 *name = NULL;
3484         int rc = 0, retries = 3;
3485 
3486         switch (priv->ieee->iw_mode) {
3487         case IW_MODE_ADHOC:
3488                 name = "ipw2200-ibss.fw";
3489                 break;
3490 #ifdef CONFIG_IPW2200_MONITOR
3491         case IW_MODE_MONITOR:
3492                 name = "ipw2200-sniffer.fw";
3493                 break;
3494 #endif
3495         case IW_MODE_INFRA:
3496                 name = "ipw2200-bss.fw";
3497                 break;
3498         }
3499 
3500         if (!name) {
3501                 rc = -EINVAL;
3502                 goto error;
3503         }
3504 
3505 #ifdef CONFIG_PM
3506         if (!fw_loaded) {
3507 #endif
3508                 rc = ipw_get_fw(priv, &raw, name);
3509                 if (rc < 0)
3510                         goto error;
3511 #ifdef CONFIG_PM
3512         }
3513 #endif
3514 
3515         fw = (void *)raw->data;
3516         boot_img = &fw->data[0];
3517         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519                            le32_to_cpu(fw->ucode_size)];
3520 
3521         if (!priv->rxq)
3522                 priv->rxq = ipw_rx_queue_alloc(priv);
3523         else
3524                 ipw_rx_queue_reset(priv, priv->rxq);
3525         if (!priv->rxq) {
3526                 IPW_ERROR("Unable to initialize Rx queue\n");
3527                 rc = -ENOMEM;
3528                 goto error;
3529         }
3530 
3531       retry:
3532         /* Ensure interrupts are disabled */
3533         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534         priv->status &= ~STATUS_INT_ENABLED;
3535 
3536         /* ack pending interrupts */
3537         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538 
3539         ipw_stop_nic(priv);
3540 
3541         rc = ipw_reset_nic(priv);
3542         if (rc < 0) {
3543                 IPW_ERROR("Unable to reset NIC\n");
3544                 goto error;
3545         }
3546 
3547         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549 
3550         /* DMA the initial boot firmware into the device */
3551         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552         if (rc < 0) {
3553                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554                 goto error;
3555         }
3556 
3557         /* kick start the device */
3558         ipw_start_nic(priv);
3559 
3560         /* wait for the device to finish its initial startup sequence */
3561         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563         if (rc < 0) {
3564                 IPW_ERROR("device failed to boot initial fw image\n");
3565                 goto error;
3566         }
3567         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568 
3569         /* ack fw init done interrupt */
3570         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571 
3572         /* DMA the ucode into the device */
3573         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574         if (rc < 0) {
3575                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3576                 goto error;
3577         }
3578 
3579         /* stop nic */
3580         ipw_stop_nic(priv);
3581 
3582         /* DMA bss firmware into the device */
3583         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584         if (rc < 0) {
3585                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3586                 goto error;
3587         }
3588 #ifdef CONFIG_PM
3589         fw_loaded = 1;
3590 #endif
3591 
3592         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593 
3594         rc = ipw_queue_reset(priv);
3595         if (rc < 0) {
3596                 IPW_ERROR("Unable to initialize queues\n");
3597                 goto error;
3598         }
3599 
3600         /* Ensure interrupts are disabled */
3601         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602         /* ack pending interrupts */
3603         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604 
3605         /* kick start the device */
3606         ipw_start_nic(priv);
3607 
3608         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609                 if (retries > 0) {
3610                         IPW_WARNING("Parity error.  Retrying init.\n");
3611                         retries--;
3612                         goto retry;
3613                 }
3614 
3615                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616                 rc = -EIO;
3617                 goto error;
3618         }
3619 
3620         /* wait for the device */
3621         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623         if (rc < 0) {
3624                 IPW_ERROR("device failed to start within 500ms\n");
3625                 goto error;
3626         }
3627         IPW_DEBUG_INFO("device response after %dms\n", rc);
3628 
3629         /* ack fw init done interrupt */
3630         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631 
3632         /* read eeprom data */
3633         priv->eeprom_delay = 1;
3634         ipw_read_eeprom(priv);
3635         /* initialize the eeprom region of sram */
3636         ipw_eeprom_init_sram(priv);
3637 
3638         /* enable interrupts */
3639         ipw_enable_interrupts(priv);
3640 
3641         /* Ensure our queue has valid packets */
3642         ipw_rx_queue_replenish(priv);
3643 
3644         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645 
3646         /* ack pending interrupts */
3647         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648 
3649 #ifndef CONFIG_PM
3650         release_firmware(raw);
3651 #endif
3652         return 0;
3653 
3654       error:
3655         if (priv->rxq) {
3656                 ipw_rx_queue_free(priv, priv->rxq);
3657                 priv->rxq = NULL;
3658         }
3659         ipw_tx_queue_free(priv);
3660         release_firmware(raw);
3661 #ifdef CONFIG_PM
3662         fw_loaded = 0;
3663         raw = NULL;
3664 #endif
3665 
3666         return rc;
3667 }
3668 
3669 /**
3670  * DMA services
3671  *
3672  * Theory of operation
3673  *
3674  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675  * 2 empty entries always kept in the buffer to protect from overflow.
3676  *
3677  * For Tx queue, there are low mark and high mark limits. If, after queuing
3678  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680  * Tx queue resumed.
3681  *
3682  * The IPW operates with six queues, one receive queue in the device's
3683  * sram, one transmit queue for sending commands to the device firmware,
3684  * and four transmit queues for data.
3685  *
3686  * The four transmit queues allow for performing quality of service (qos)
3687  * transmissions as per the 802.11 protocol.  Currently Linux does not
3688  * provide a mechanism to the user for utilizing prioritized queues, so
3689  * we only utilize the first data transmit queue (queue1).
3690  */
3691 
3692 /**
3693  * Driver allocates buffers of this size for Rx
3694  */
3695 
3696 /**
3697  * ipw_rx_queue_space - Return number of free slots available in queue.
3698  */
3699 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700 {
3701         int s = q->read - q->write;
3702         if (s <= 0)
3703                 s += RX_QUEUE_SIZE;
3704         /* keep some buffer to not confuse full and empty queue */
3705         s -= 2;
3706         if (s < 0)
3707                 s = 0;
3708         return s;
3709 }
3710 
3711 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712 {
3713         int s = q->last_used - q->first_empty;
3714         if (s <= 0)
3715                 s += q->n_bd;
3716         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3717         if (s < 0)
3718                 s = 0;
3719         return s;
3720 }
3721 
3722 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723 {
3724         return (++index == n_bd) ? 0 : index;
3725 }
3726 
3727 /**
3728  * Initialize common DMA queue structure
3729  *
3730  * @param q                queue to init
3731  * @param count            Number of BD's to allocate. Should be power of 2
3732  * @param read_register    Address for 'read' register
3733  *                         (not offset within BAR, full address)
3734  * @param write_register   Address for 'write' register
3735  *                         (not offset within BAR, full address)
3736  * @param base_register    Address for 'base' register
3737  *                         (not offset within BAR, full address)
3738  * @param size             Address for 'size' register
3739  *                         (not offset within BAR, full address)
3740  */
3741 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742                            int count, u32 read, u32 write, u32 base, u32 size)
3743 {
3744         q->n_bd = count;
3745 
3746         q->low_mark = q->n_bd / 4;
3747         if (q->low_mark < 4)
3748                 q->low_mark = 4;
3749 
3750         q->high_mark = q->n_bd / 8;
3751         if (q->high_mark < 2)
3752                 q->high_mark = 2;
3753 
3754         q->first_empty = q->last_used = 0;
3755         q->reg_r = read;
3756         q->reg_w = write;
3757 
3758         ipw_write32(priv, base, q->dma_addr);
3759         ipw_write32(priv, size, count);
3760         ipw_write32(priv, read, 0);
3761         ipw_write32(priv, write, 0);
3762 
3763         _ipw_read32(priv, 0x90);
3764 }
3765 
3766 static int ipw_queue_tx_init(struct ipw_priv *priv,
3767                              struct clx2_tx_queue *q,
3768                              int count, u32 read, u32 write, u32 base, u32 size)
3769 {
3770         struct pci_dev *dev = priv->pci_dev;
3771 
3772         q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773         if (!q->txb) {
3774                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3775                 return -ENOMEM;
3776         }
3777 
3778         q->bd =
3779             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3780         if (!q->bd) {
3781                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3782                           sizeof(q->bd[0]) * count);
3783                 kfree(q->txb);
3784                 q->txb = NULL;
3785                 return -ENOMEM;
3786         }
3787 
3788         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3789         return 0;
3790 }
3791 
3792 /**
3793  * Free one TFD, those at index [txq->q.last_used].
3794  * Do NOT advance any indexes
3795  *
3796  * @param dev
3797  * @param txq
3798  */
3799 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3800                                   struct clx2_tx_queue *txq)
3801 {
3802         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3803         struct pci_dev *dev = priv->pci_dev;
3804         int i;
3805 
3806         /* classify bd */
3807         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3808                 /* nothing to cleanup after for host commands */
3809                 return;
3810 
3811         /* sanity check */
3812         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3813                 IPW_ERROR("Too many chunks: %i\n",
3814                           le32_to_cpu(bd->u.data.num_chunks));
3815                 /** @todo issue fatal error, it is quite serious situation */
3816                 return;
3817         }
3818 
3819         /* unmap chunks if any */
3820         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3821                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3823                                  PCI_DMA_TODEVICE);
3824                 if (txq->txb[txq->q.last_used]) {
3825                         libipw_txb_free(txq->txb[txq->q.last_used]);
3826                         txq->txb[txq->q.last_used] = NULL;
3827                 }
3828         }
3829 }
3830 
3831 /**
3832  * Deallocate DMA queue.
3833  *
3834  * Empty queue by removing and destroying all BD's.
3835  * Free all buffers.
3836  *
3837  * @param dev
3838  * @param q
3839  */
3840 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841 {
3842         struct clx2_queue *q = &txq->q;
3843         struct pci_dev *dev = priv->pci_dev;
3844 
3845         if (q->n_bd == 0)
3846                 return;
3847 
3848         /* first, empty all BD's */
3849         for (; q->first_empty != q->last_used;
3850              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851                 ipw_queue_tx_free_tfd(priv, txq);
3852         }
3853 
3854         /* free buffers belonging to queue itself */
3855         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856                             q->dma_addr);
3857         kfree(txq->txb);
3858 
3859         /* 0 fill whole structure */
3860         memset(txq, 0, sizeof(*txq));
3861 }
3862 
3863 /**
3864  * Destroy all DMA queues and structures
3865  *
3866  * @param priv
3867  */
3868 static void ipw_tx_queue_free(struct ipw_priv *priv)
3869 {
3870         /* Tx CMD queue */
3871         ipw_queue_tx_free(priv, &priv->txq_cmd);
3872 
3873         /* Tx queues */
3874         ipw_queue_tx_free(priv, &priv->txq[0]);
3875         ipw_queue_tx_free(priv, &priv->txq[1]);
3876         ipw_queue_tx_free(priv, &priv->txq[2]);
3877         ipw_queue_tx_free(priv, &priv->txq[3]);
3878 }
3879 
3880 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881 {
3882         /* First 3 bytes are manufacturer */
3883         bssid[0] = priv->mac_addr[0];
3884         bssid[1] = priv->mac_addr[1];
3885         bssid[2] = priv->mac_addr[2];
3886 
3887         /* Last bytes are random */
3888         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889 
3890         bssid[0] &= 0xfe;       /* clear multicast bit */
3891         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3892 }
3893 
3894 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895 {
3896         struct ipw_station_entry entry;
3897         int i;
3898 
3899         for (i = 0; i < priv->num_stations; i++) {
3900                 if (ether_addr_equal(priv->stations[i], bssid)) {
3901                         /* Another node is active in network */
3902                         priv->missed_adhoc_beacons = 0;
3903                         if (!(priv->config & CFG_STATIC_CHANNEL))
3904                                 /* when other nodes drop out, we drop out */
3905                                 priv->config &= ~CFG_ADHOC_PERSIST;
3906 
3907                         return i;
3908                 }
3909         }
3910 
3911         if (i == MAX_STATIONS)
3912                 return IPW_INVALID_STATION;
3913 
3914         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915 
3916         entry.reserved = 0;
3917         entry.support_mode = 0;
3918         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919         memcpy(priv->stations[i], bssid, ETH_ALEN);
3920         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921                          &entry, sizeof(entry));
3922         priv->num_stations++;
3923 
3924         return i;
3925 }
3926 
3927 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928 {
3929         int i;
3930 
3931         for (i = 0; i < priv->num_stations; i++)
3932                 if (ether_addr_equal(priv->stations[i], bssid))
3933                         return i;
3934 
3935         return IPW_INVALID_STATION;
3936 }
3937 
3938 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939 {
3940         int err;
3941 
3942         if (priv->status & STATUS_ASSOCIATING) {
3943                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944                 schedule_work(&priv->disassociate);
3945                 return;
3946         }
3947 
3948         if (!(priv->status & STATUS_ASSOCIATED)) {
3949                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950                 return;
3951         }
3952 
3953         IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954                         "on channel %d.\n",
3955                         priv->assoc_request.bssid,
3956                         priv->assoc_request.channel);
3957 
3958         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959         priv->status |= STATUS_DISASSOCIATING;
3960 
3961         if (quiet)
3962                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963         else
3964                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965 
3966         err = ipw_send_associate(priv, &priv->assoc_request);
3967         if (err) {
3968                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969                              "failed.\n");
3970                 return;
3971         }
3972 
3973 }
3974 
3975 static int ipw_disassociate(void *data)
3976 {
3977         struct ipw_priv *priv = data;
3978         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979                 return 0;
3980         ipw_send_disassociate(data, 0);
3981         netif_carrier_off(priv->net_dev);
3982         return 1;
3983 }
3984 
3985 static void ipw_bg_disassociate(struct work_struct *work)
3986 {
3987         struct ipw_priv *priv =
3988                 container_of(work, struct ipw_priv, disassociate);
3989         mutex_lock(&priv->mutex);
3990         ipw_disassociate(priv);
3991         mutex_unlock(&priv->mutex);
3992 }
3993 
3994 static void ipw_system_config(struct work_struct *work)
3995 {
3996         struct ipw_priv *priv =
3997                 container_of(work, struct ipw_priv, system_config);
3998 
3999 #ifdef CONFIG_IPW2200_PROMISCUOUS
4000         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001                 priv->sys_config.accept_all_data_frames = 1;
4002                 priv->sys_config.accept_non_directed_frames = 1;
4003                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4004                 priv->sys_config.accept_all_mgmt_frames = 1;
4005         }
4006 #endif
4007 
4008         ipw_send_system_config(priv);
4009 }
4010 
4011 struct ipw_status_code {
4012         u16 status;
4013         const char *reason;
4014 };
4015 
4016 static const struct ipw_status_code ipw_status_codes[] = {
4017         {0x00, "Successful"},
4018         {0x01, "Unspecified failure"},
4019         {0x0A, "Cannot support all requested capabilities in the "
4020          "Capability information field"},
4021         {0x0B, "Reassociation denied due to inability to confirm that "
4022          "association exists"},
4023         {0x0C, "Association denied due to reason outside the scope of this "
4024          "standard"},
4025         {0x0D,
4026          "Responding station does not support the specified authentication "
4027          "algorithm"},
4028         {0x0E,
4029          "Received an Authentication frame with authentication sequence "
4030          "transaction sequence number out of expected sequence"},
4031         {0x0F, "Authentication rejected because of challenge failure"},
4032         {0x10, "Authentication rejected due to timeout waiting for next "
4033          "frame in sequence"},
4034         {0x11, "Association denied because AP is unable to handle additional "
4035          "associated stations"},
4036         {0x12,
4037          "Association denied due to requesting station not supporting all "
4038          "of the datarates in the BSSBasicServiceSet Parameter"},
4039         {0x13,
4040          "Association denied due to requesting station not supporting "
4041          "short preamble operation"},
4042         {0x14,
4043          "Association denied due to requesting station not supporting "
4044          "PBCC encoding"},
4045         {0x15,
4046          "Association denied due to requesting station not supporting "
4047          "channel agility"},
4048         {0x19,
4049          "Association denied due to requesting station not supporting "
4050          "short slot operation"},
4051         {0x1A,
4052          "Association denied due to requesting station not supporting "
4053          "DSSS-OFDM operation"},
4054         {0x28, "Invalid Information Element"},
4055         {0x29, "Group Cipher is not valid"},
4056         {0x2A, "Pairwise Cipher is not valid"},
4057         {0x2B, "AKMP is not valid"},
4058         {0x2C, "Unsupported RSN IE version"},
4059         {0x2D, "Invalid RSN IE Capabilities"},
4060         {0x2E, "Cipher suite is rejected per security policy"},
4061 };
4062 
4063 static const char *ipw_get_status_code(u16 status)
4064 {
4065         int i;
4066         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067                 if (ipw_status_codes[i].status == (status & 0xff))
4068                         return ipw_status_codes[i].reason;
4069         return "Unknown status value.";
4070 }
4071 
4072 static inline void average_init(struct average *avg)
4073 {
4074         memset(avg, 0, sizeof(*avg));
4075 }
4076 
4077 #define DEPTH_RSSI 8
4078 #define DEPTH_NOISE 16
4079 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080 {
4081         return ((depth-1)*prev_avg +  val)/depth;
4082 }
4083 
4084 static void average_add(struct average *avg, s16 val)
4085 {
4086         avg->sum -= avg->entries[avg->pos];
4087         avg->sum += val;
4088         avg->entries[avg->pos++] = val;
4089         if (unlikely(avg->pos == AVG_ENTRIES)) {
4090                 avg->init = 1;
4091                 avg->pos = 0;
4092         }
4093 }
4094 
4095 static s16 average_value(struct average *avg)
4096 {
4097         if (!unlikely(avg->init)) {
4098                 if (avg->pos)
4099                         return avg->sum / avg->pos;
4100                 return 0;
4101         }
4102 
4103         return avg->sum / AVG_ENTRIES;
4104 }
4105 
4106 static void ipw_reset_stats(struct ipw_priv *priv)
4107 {
4108         u32 len = sizeof(u32);
4109 
4110         priv->quality = 0;
4111 
4112         average_init(&priv->average_missed_beacons);
4113         priv->exp_avg_rssi = -60;
4114         priv->exp_avg_noise = -85 + 0x100;
4115 
4116         priv->last_rate = 0;
4117         priv->last_missed_beacons = 0;
4118         priv->last_rx_packets = 0;
4119         priv->last_tx_packets = 0;
4120         priv->last_tx_failures = 0;
4121 
4122         /* Firmware managed, reset only when NIC is restarted, so we have to
4123          * normalize on the current value */
4124         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125                         &priv->last_rx_err, &len);
4126         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127                         &priv->last_tx_failures, &len);
4128 
4129         /* Driver managed, reset with each association */
4130         priv->missed_adhoc_beacons = 0;
4131         priv->missed_beacons = 0;
4132         priv->tx_packets = 0;
4133         priv->rx_packets = 0;
4134 
4135 }
4136 
4137 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138 {
4139         u32 i = 0x80000000;
4140         u32 mask = priv->rates_mask;
4141         /* If currently associated in B mode, restrict the maximum
4142          * rate match to B rates */
4143         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144                 mask &= LIBIPW_CCK_RATES_MASK;
4145 
4146         /* TODO: Verify that the rate is supported by the current rates
4147          * list. */
4148 
4149         while (i && !(mask & i))
4150                 i >>= 1;
4151         switch (i) {
4152         case LIBIPW_CCK_RATE_1MB_MASK:
4153                 return 1000000;
4154         case LIBIPW_CCK_RATE_2MB_MASK:
4155                 return 2000000;
4156         case LIBIPW_CCK_RATE_5MB_MASK:
4157                 return 5500000;
4158         case LIBIPW_OFDM_RATE_6MB_MASK:
4159                 return 6000000;
4160         case LIBIPW_OFDM_RATE_9MB_MASK:
4161                 return 9000000;
4162         case LIBIPW_CCK_RATE_11MB_MASK:
4163                 return 11000000;
4164         case LIBIPW_OFDM_RATE_12MB_MASK:
4165                 return 12000000;
4166         case LIBIPW_OFDM_RATE_18MB_MASK:
4167                 return 18000000;
4168         case LIBIPW_OFDM_RATE_24MB_MASK:
4169                 return 24000000;
4170         case LIBIPW_OFDM_RATE_36MB_MASK:
4171                 return 36000000;
4172         case LIBIPW_OFDM_RATE_48MB_MASK:
4173                 return 48000000;
4174         case LIBIPW_OFDM_RATE_54MB_MASK:
4175                 return 54000000;
4176         }
4177 
4178         if (priv->ieee->mode == IEEE_B)
4179                 return 11000000;
4180         else
4181                 return 54000000;
4182 }
4183 
4184 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185 {
4186         u32 rate, len = sizeof(rate);
4187         int err;
4188 
4189         if (!(priv->status & STATUS_ASSOCIATED))
4190                 return 0;
4191 
4192         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194                                       &len);
4195                 if (err) {
4196                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4197                         return 0;
4198                 }
4199         } else
4200                 return ipw_get_max_rate(priv);
4201 
4202         switch (rate) {
4203         case IPW_TX_RATE_1MB:
4204                 return 1000000;
4205         case IPW_TX_RATE_2MB:
4206                 return 2000000;
4207         case IPW_TX_RATE_5MB:
4208                 return 5500000;
4209         case IPW_TX_RATE_6MB:
4210                 return 6000000;
4211         case IPW_TX_RATE_9MB:
4212                 return 9000000;
4213         case IPW_TX_RATE_11MB:
4214                 return 11000000;
4215         case IPW_TX_RATE_12MB:
4216                 return 12000000;
4217         case IPW_TX_RATE_18MB:
4218                 return 18000000;
4219         case IPW_TX_RATE_24MB:
4220                 return 24000000;
4221         case IPW_TX_RATE_36MB:
4222                 return 36000000;
4223         case IPW_TX_RATE_48MB:
4224                 return 48000000;
4225         case IPW_TX_RATE_54MB:
4226                 return 54000000;
4227         }
4228 
4229         return 0;
4230 }
4231 
4232 #define IPW_STATS_INTERVAL (2 * HZ)
4233 static void ipw_gather_stats(struct ipw_priv *priv)
4234 {
4235         u32 rx_err, rx_err_delta, rx_packets_delta;
4236         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237         u32 missed_beacons_percent, missed_beacons_delta;
4238         u32 quality = 0;
4239         u32 len = sizeof(u32);
4240         s16 rssi;
4241         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242             rate_quality;
4243         u32 max_rate;
4244 
4245         if (!(priv->status & STATUS_ASSOCIATED)) {
4246                 priv->quality = 0;
4247                 return;
4248         }
4249 
4250         /* Update the statistics */
4251         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252                         &priv->missed_beacons, &len);
4253         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254         priv->last_missed_beacons = priv->missed_beacons;
4255         if (priv->assoc_request.beacon_interval) {
4256                 missed_beacons_percent = missed_beacons_delta *
4257                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258                     (IPW_STATS_INTERVAL * 10);
4259         } else {
4260                 missed_beacons_percent = 0;
4261         }
4262         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263 
4264         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265         rx_err_delta = rx_err - priv->last_rx_err;
4266         priv->last_rx_err = rx_err;
4267 
4268         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269         tx_failures_delta = tx_failures - priv->last_tx_failures;
4270         priv->last_tx_failures = tx_failures;
4271 
4272         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273         priv->last_rx_packets = priv->rx_packets;
4274 
4275         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276         priv->last_tx_packets = priv->tx_packets;
4277 
4278         /* Calculate quality based on the following:
4279          *
4280          * Missed beacon: 100% = 0, 0% = 70% missed
4281          * Rate: 60% = 1Mbs, 100% = Max
4282          * Rx and Tx errors represent a straight % of total Rx/Tx
4283          * RSSI: 100% = > -50,  0% = < -80
4284          * Rx errors: 100% = 0, 0% = 50% missed
4285          *
4286          * The lowest computed quality is used.
4287          *
4288          */
4289 #define BEACON_THRESHOLD 5
4290         beacon_quality = 100 - missed_beacons_percent;
4291         if (beacon_quality < BEACON_THRESHOLD)
4292                 beacon_quality = 0;
4293         else
4294                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295                     (100 - BEACON_THRESHOLD);
4296         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297                         beacon_quality, missed_beacons_percent);
4298 
4299         priv->last_rate = ipw_get_current_rate(priv);
4300         max_rate = ipw_get_max_rate(priv);
4301         rate_quality = priv->last_rate * 40 / max_rate + 60;
4302         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303                         rate_quality, priv->last_rate / 1000000);
4304 
4305         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306                 rx_quality = 100 - (rx_err_delta * 100) /
4307                     (rx_packets_delta + rx_err_delta);
4308         else
4309                 rx_quality = 100;
4310         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4311                         rx_quality, rx_err_delta, rx_packets_delta);
4312 
4313         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314                 tx_quality = 100 - (tx_failures_delta * 100) /
4315                     (tx_packets_delta + tx_failures_delta);
4316         else
4317                 tx_quality = 100;
4318         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4319                         tx_quality, tx_failures_delta, tx_packets_delta);
4320 
4321         rssi = priv->exp_avg_rssi;
4322         signal_quality =
4323             (100 *
4324              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326              (priv->ieee->perfect_rssi - rssi) *
4327              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328               62 * (priv->ieee->perfect_rssi - rssi))) /
4329             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331         if (signal_quality > 100)
4332                 signal_quality = 100;
4333         else if (signal_quality < 1)
4334                 signal_quality = 0;
4335 
4336         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337                         signal_quality, rssi);
4338 
4339         quality = min(rx_quality, signal_quality);
4340         quality = min(tx_quality, quality);
4341         quality = min(rate_quality, quality);
4342         quality = min(beacon_quality, quality);
4343         if (quality == beacon_quality)
4344                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345                                 quality);
4346         if (quality == rate_quality)
4347                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348                                 quality);
4349         if (quality == tx_quality)
4350                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351                                 quality);
4352         if (quality == rx_quality)
4353                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354                                 quality);
4355         if (quality == signal_quality)
4356                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357                                 quality);
4358 
4359         priv->quality = quality;
4360 
4361         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362 }
4363 
4364 static void ipw_bg_gather_stats(struct work_struct *work)
4365 {
4366         struct ipw_priv *priv =
4367                 container_of(work, struct ipw_priv, gather_stats.work);
4368         mutex_lock(&priv->mutex);
4369         ipw_gather_stats(priv);
4370         mutex_unlock(&priv->mutex);
4371 }
4372 
4373 /* Missed beacon behavior:
4374  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376  * Above disassociate threshold, give up and stop scanning.
4377  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4378 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379                                             int missed_count)
4380 {
4381         priv->notif_missed_beacons = missed_count;
4382 
4383         if (missed_count > priv->disassociate_threshold &&
4384             priv->status & STATUS_ASSOCIATED) {
4385                 /* If associated and we've hit the missed
4386                  * beacon threshold, disassociate, turn
4387                  * off roaming, and abort any active scans */
4388                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389                           IPW_DL_STATE | IPW_DL_ASSOC,
4390                           "Missed beacon: %d - disassociate\n", missed_count);
4391                 priv->status &= ~STATUS_ROAMING;
4392                 if (priv->status & STATUS_SCANNING) {
4393                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394                                   IPW_DL_STATE,
4395                                   "Aborting scan with missed beacon.\n");
4396                         schedule_work(&priv->abort_scan);
4397                 }
4398 
4399                 schedule_work(&priv->disassociate);
4400                 return;
4401         }
4402 
4403         if (priv->status & STATUS_ROAMING) {
4404                 /* If we are currently roaming, then just
4405                  * print a debug statement... */
4406                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407                           "Missed beacon: %d - roam in progress\n",
4408                           missed_count);
4409                 return;
4410         }
4411 
4412         if (roaming &&
4413             (missed_count > priv->roaming_threshold &&
4414              missed_count <= priv->disassociate_threshold)) {
4415                 /* If we are not already roaming, set the ROAM
4416                  * bit in the status and kick off a scan.
4417                  * This can happen several times before we reach
4418                  * disassociate_threshold. */
4419                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420                           "Missed beacon: %d - initiate "
4421                           "roaming\n", missed_count);
4422                 if (!(priv->status & STATUS_ROAMING)) {
4423                         priv->status |= STATUS_ROAMING;
4424                         if (!(priv->status & STATUS_SCANNING))
4425                                 schedule_delayed_work(&priv->request_scan, 0);
4426                 }
4427                 return;
4428         }
4429 
4430         if (priv->status & STATUS_SCANNING &&
4431             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432                 /* Stop scan to keep fw from getting
4433                  * stuck (only if we aren't roaming --
4434                  * otherwise we'll never scan more than 2 or 3
4435                  * channels..) */
4436                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437                           "Aborting scan with missed beacon.\n");
4438                 schedule_work(&priv->abort_scan);
4439         }
4440 
4441         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442 }
4443 
4444 static void ipw_scan_event(struct work_struct *work)
4445 {
4446         union iwreq_data wrqu;
4447 
4448         struct ipw_priv *priv =
4449                 container_of(work, struct ipw_priv, scan_event.work);
4450 
4451         wrqu.data.length = 0;
4452         wrqu.data.flags = 0;
4453         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454 }
4455 
4456 static void handle_scan_event(struct ipw_priv *priv)
4457 {
4458         /* Only userspace-requested scan completion events go out immediately */
4459         if (!priv->user_requested_scan) {
4460                 schedule_delayed_work(&priv->scan_event,
4461                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4462         } else {
4463                 priv->user_requested_scan = 0;
4464                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4465         }
4466 }
4467 
4468 /**
4469  * Handle host notification packet.
4470  * Called from interrupt routine
4471  */
4472 static void ipw_rx_notification(struct ipw_priv *priv,
4473                                        struct ipw_rx_notification *notif)
4474 {
4475         u16 size = le16_to_cpu(notif->size);
4476 
4477         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478 
4479         switch (notif->subtype) {
4480         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481                         struct notif_association *assoc = &notif->u.assoc;
4482 
4483                         switch (assoc->state) {
4484                         case CMAS_ASSOCIATED:{
4485                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486                                                   IPW_DL_ASSOC,
4487                                                   "associated: '%*pE' %pM\n",
4488                                                   priv->essid_len, priv->essid,
4489                                                   priv->bssid);
4490 
4491                                         switch (priv->ieee->iw_mode) {
4492                                         case IW_MODE_INFRA:
4493                                                 memcpy(priv->ieee->bssid,
4494                                                        priv->bssid, ETH_ALEN);
4495                                                 break;
4496 
4497                                         case IW_MODE_ADHOC:
4498                                                 memcpy(priv->ieee->bssid,
4499                                                        priv->bssid, ETH_ALEN);
4500 
4501                                                 /* clear out the station table */
4502                                                 priv->num_stations = 0;
4503 
4504                                                 IPW_DEBUG_ASSOC
4505                                                     ("queueing adhoc check\n");
4506                                                 schedule_delayed_work(
4507                                                         &priv->adhoc_check,
4508                                                         le16_to_cpu(priv->
4509                                                         assoc_request.
4510                                                         beacon_interval));
4511                                                 break;
4512                                         }
4513 
4514                                         priv->status &= ~STATUS_ASSOCIATING;
4515                                         priv->status |= STATUS_ASSOCIATED;
4516                                         schedule_work(&priv->system_config);
4517 
4518 #ifdef CONFIG_IPW2200_QOS
4519 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521                                         if ((priv->status & STATUS_AUTH) &&
4522                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4524                                                 if ((sizeof
4525                                                      (struct
4526                                                       libipw_assoc_response)
4527                                                      <= size)
4528                                                     && (size <= 2314)) {
4529                                                         struct
4530                                                         libipw_rx_stats
4531                                                             stats = {
4532                                                                 .len = size - 1,
4533                                                         };
4534 
4535                                                         IPW_DEBUG_QOS
4536                                                             ("QoS Associate "
4537                                                              "size %d\n", size);
4538                                                         libipw_rx_mgt(priv->
4539                                                                          ieee,
4540                                                                          (struct
4541                                                                           libipw_hdr_4addr
4542                                                                           *)
4543                                                                          &notif->u.raw, &stats);
4544                                                 }
4545                                         }
4546 #endif
4547 
4548                                         schedule_work(&priv->link_up);
4549 
4550                                         break;
4551                                 }
4552 
4553                         case CMAS_AUTHENTICATED:{
4554                                         if (priv->
4555                                             status & (STATUS_ASSOCIATED |
4556                                                       STATUS_AUTH)) {
4557                                                 struct notif_authenticate *auth
4558                                                     = &notif->u.auth;
4559                                                 IPW_DEBUG(IPW_DL_NOTIF |
4560                                                           IPW_DL_STATE |
4561                                                           IPW_DL_ASSOC,
4562                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563                                                           priv->essid_len,
4564                                                           priv->essid,
4565                                                           priv->bssid,
4566                                                           le16_to_cpu(auth->status),
4567                                                           ipw_get_status_code
4568                                                           (le16_to_cpu
4569                                                            (auth->status)));
4570 
4571                                                 priv->status &=
4572                                                     ~(STATUS_ASSOCIATING |
4573                                                       STATUS_AUTH |
4574                                                       STATUS_ASSOCIATED);
4575 
4576                                                 schedule_work(&priv->link_down);
4577                                                 break;
4578                                         }
4579 
4580                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581                                                   IPW_DL_ASSOC,
4582                                                   "authenticated: '%*pE' %pM\n",
4583                                                   priv->essid_len, priv->essid,
4584                                                   priv->bssid);
4585                                         break;
4586                                 }
4587 
4588                         case CMAS_INIT:{
4589                                         if (priv->status & STATUS_AUTH) {
4590                                                 struct
4591                                                     libipw_assoc_response
4592                                                 *resp;
4593                                                 resp =
4594                                                     (struct
4595                                                      libipw_assoc_response
4596                                                      *)&notif->u.raw;
4597                                                 IPW_DEBUG(IPW_DL_NOTIF |
4598                                                           IPW_DL_STATE |
4599                                                           IPW_DL_ASSOC,
4600                                                           "association failed (0x%04X): %s\n",
4601                                                           le16_to_cpu(resp->status),
4602                                                           ipw_get_status_code
4603                                                           (le16_to_cpu
4604                                                            (resp->status)));
4605                                         }
4606 
4607                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608                                                   IPW_DL_ASSOC,
4609                                                   "disassociated: '%*pE' %pM\n",
4610                                                   priv->essid_len, priv->essid,
4611                                                   priv->bssid);
4612 
4613                                         priv->status &=
4614                                             ~(STATUS_DISASSOCIATING |
4615                                               STATUS_ASSOCIATING |
4616                                               STATUS_ASSOCIATED | STATUS_AUTH);
4617                                         if (priv->assoc_network
4618                                             && (priv->assoc_network->
4619                                                 capability &
4620                                                 WLAN_CAPABILITY_IBSS))
4621                                                 ipw_remove_current_network
4622                                                     (priv);
4623 
4624                                         schedule_work(&priv->link_down);
4625 
4626                                         break;
4627                                 }
4628 
4629                         case CMAS_RX_ASSOC_RESP:
4630                                 break;
4631 
4632                         default:
4633                                 IPW_ERROR("assoc: unknown (%d)\n",
4634                                           assoc->state);
4635                                 break;
4636                         }
4637 
4638                         break;
4639                 }
4640 
4641         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642                         struct notif_authenticate *auth = &notif->u.auth;
4643                         switch (auth->state) {
4644                         case CMAS_AUTHENTICATED:
4645                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646                                           "authenticated: '%*pE' %pM\n",
4647                                           priv->essid_len, priv->essid,
4648                                           priv->bssid);
4649                                 priv->status |= STATUS_AUTH;
4650                                 break;
4651 
4652                         case CMAS_INIT:
4653                                 if (priv->status & STATUS_AUTH) {
4654                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                                   IPW_DL_ASSOC,
4656                                                   "authentication failed (0x%04X): %s\n",
4657                                                   le16_to_cpu(auth->status),
4658                                                   ipw_get_status_code(le16_to_cpu
4659                                                                       (auth->
4660                                                                        status)));
4661                                 }
4662                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663                                           IPW_DL_ASSOC,
4664                                           "deauthenticated: '%*pE' %pM\n",
4665                                           priv->essid_len, priv->essid,
4666                                           priv->bssid);
4667 
4668                                 priv->status &= ~(STATUS_ASSOCIATING |
4669                                                   STATUS_AUTH |
4670                                                   STATUS_ASSOCIATED);
4671 
4672                                 schedule_work(&priv->link_down);
4673                                 break;
4674 
4675                         case CMAS_TX_AUTH_SEQ_1:
4676                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678                                 break;
4679                         case CMAS_RX_AUTH_SEQ_2:
4680                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682                                 break;
4683                         case CMAS_AUTH_SEQ_1_PASS:
4684                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686                                 break;
4687                         case CMAS_AUTH_SEQ_1_FAIL:
4688                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690                                 break;
4691                         case CMAS_TX_AUTH_SEQ_3:
4692                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694                                 break;
4695                         case CMAS_RX_AUTH_SEQ_4:
4696                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698                                 break;
4699                         case CMAS_AUTH_SEQ_2_PASS:
4700                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702                                 break;
4703                         case CMAS_AUTH_SEQ_2_FAIL:
4704                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706                                 break;
4707                         case CMAS_TX_ASSOC:
4708                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4710                                 break;
4711                         case CMAS_RX_ASSOC_RESP:
4712                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714 
4715                                 break;
4716                         case CMAS_ASSOCIATED:
4717                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4719                                 break;
4720                         default:
4721                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722                                                 auth->state);
4723                                 break;
4724                         }
4725                         break;
4726                 }
4727 
4728         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729                         struct notif_channel_result *x =
4730                             &notif->u.channel_result;
4731 
4732                         if (size == sizeof(*x)) {
4733                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734                                                x->channel_num);
4735                         } else {
4736                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737                                                "(should be %zd)\n",
4738                                                size, sizeof(*x));
4739                         }
4740                         break;
4741                 }
4742 
4743         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744                         struct notif_scan_complete *x = &notif->u.scan_complete;
4745                         if (size == sizeof(*x)) {
4746                                 IPW_DEBUG_SCAN
4747                                     ("Scan completed: type %d, %d channels, "
4748                                      "%d status\n", x->scan_type,
4749                                      x->num_channels, x->status);
4750                         } else {
4751                                 IPW_ERROR("Scan completed of wrong size %d "
4752                                           "(should be %zd)\n",
4753                                           size, sizeof(*x));
4754                         }
4755 
4756                         priv->status &=
4757                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758 
4759                         wake_up_interruptible(&priv->wait_state);
4760                         cancel_delayed_work(&priv->scan_check);
4761 
4762                         if (priv->status & STATUS_EXIT_PENDING)
4763                                 break;
4764 
4765                         priv->ieee->scans++;
4766 
4767 #ifdef CONFIG_IPW2200_MONITOR
4768                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769                                 priv->status |= STATUS_SCAN_FORCED;
4770                                 schedule_delayed_work(&priv->request_scan, 0);
4771                                 break;
4772                         }
4773                         priv->status &= ~STATUS_SCAN_FORCED;
4774 #endif                          /* CONFIG_IPW2200_MONITOR */
4775 
4776                         /* Do queued direct scans first */
4777                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4779 
4780                         if (!(priv->status & (STATUS_ASSOCIATED |
4781                                               STATUS_ASSOCIATING |
4782                                               STATUS_ROAMING |
4783                                               STATUS_DISASSOCIATING)))
4784                                 schedule_work(&priv->associate);
4785                         else if (priv->status & STATUS_ROAMING) {
4786                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787                                         /* If a scan completed and we are in roam mode, then
4788                                          * the scan that completed was the one requested as a
4789                                          * result of entering roam... so, schedule the
4790                                          * roam work */
4791                                         schedule_work(&priv->roam);
4792                                 else
4793                                         /* Don't schedule if we aborted the scan */
4794                                         priv->status &= ~STATUS_ROAMING;
4795                         } else if (priv->status & STATUS_SCAN_PENDING)
4796                                 schedule_delayed_work(&priv->request_scan, 0);
4797                         else if (priv->config & CFG_BACKGROUND_SCAN
4798                                  && priv->status & STATUS_ASSOCIATED)
4799                                 schedule_delayed_work(&priv->request_scan,
4800                                                       round_jiffies_relative(HZ));
4801 
4802                         /* Send an empty event to user space.
4803                          * We don't send the received data on the event because
4804                          * it would require us to do complex transcoding, and
4805                          * we want to minimise the work done in the irq handler
4806                          * Use a request to extract the data.
4807                          * Also, we generate this even for any scan, regardless
4808                          * on how the scan was initiated. User space can just
4809                          * sync on periodic scan to get fresh data...
4810                          * Jean II */
4811                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812                                 handle_scan_event(priv);
4813                         break;
4814                 }
4815 
4816         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817                         struct notif_frag_length *x = &notif->u.frag_len;
4818 
4819                         if (size == sizeof(*x))
4820                                 IPW_ERROR("Frag length: %d\n",
4821                                           le16_to_cpu(x->frag_length));
4822                         else
4823                                 IPW_ERROR("Frag length of wrong size %d "
4824                                           "(should be %zd)\n",
4825                                           size, sizeof(*x));
4826                         break;
4827                 }
4828 
4829         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830                         struct notif_link_deterioration *x =
4831                             &notif->u.link_deterioration;
4832 
4833                         if (size == sizeof(*x)) {
4834                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835                                         "link deterioration: type %d, cnt %d\n",
4836                                         x->silence_notification_type,
4837                                         x->silence_count);
4838                                 memcpy(&priv->last_link_deterioration, x,
4839                                        sizeof(*x));
4840                         } else {
4841                                 IPW_ERROR("Link Deterioration of wrong size %d "
4842                                           "(should be %zd)\n",
4843                                           size, sizeof(*x));
4844                         }
4845                         break;
4846                 }
4847 
4848         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849                         IPW_ERROR("Dino config\n");
4850                         if (priv->hcmd
4851                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853 
4854                         break;
4855                 }
4856 
4857         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858                         struct notif_beacon_state *x = &notif->u.beacon_state;
4859                         if (size != sizeof(*x)) {
4860                                 IPW_ERROR
4861                                     ("Beacon state of wrong size %d (should "
4862                                      "be %zd)\n", size, sizeof(*x));
4863                                 break;
4864                         }
4865 
4866                         if (le32_to_cpu(x->state) ==
4867                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868                                 ipw_handle_missed_beacon(priv,
4869                                                          le32_to_cpu(x->
4870                                                                      number));
4871 
4872                         break;
4873                 }
4874 
4875         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877                         if (size == sizeof(*x)) {
4878                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879                                           "0x%02x station %d\n",
4880                                           x->key_state, x->security_type,
4881                                           x->station_index);
4882                                 break;
4883                         }
4884 
4885                         IPW_ERROR
4886                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887                              size, sizeof(*x));
4888                         break;
4889                 }
4890 
4891         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892                         struct notif_calibration *x = &notif->u.calibration;
4893 
4894                         if (size == sizeof(*x)) {
4895                                 memcpy(&priv->calib, x, sizeof(*x));
4896                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4897                                 break;
4898                         }
4899 
4900                         IPW_ERROR
4901                             ("Calibration of wrong size %d (should be %zd)\n",
4902                              size, sizeof(*x));
4903                         break;
4904                 }
4905 
4906         case HOST_NOTIFICATION_NOISE_STATS:{
4907                         if (size == sizeof(u32)) {
4908                                 priv->exp_avg_noise =
4909                                     exponential_average(priv->exp_avg_noise,
4910                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911                                     DEPTH_NOISE);
4912                                 break;
4913                         }
4914 
4915                         IPW_ERROR
4916                             ("Noise stat is wrong size %d (should be %zd)\n",
4917                              size, sizeof(u32));
4918                         break;
4919                 }
4920 
4921         default:
4922                 IPW_DEBUG_NOTIF("Unknown notification: "
4923                                 "subtype=%d,flags=0x%2x,size=%d\n",
4924                                 notif->subtype, notif->flags, size);
4925         }
4926 }
4927 
4928 /**
4929  * Destroys all DMA structures and initialise them again
4930  *
4931  * @param priv
4932  * @return error code
4933  */
4934 static int ipw_queue_reset(struct ipw_priv *priv)
4935 {
4936         int rc = 0;
4937         /** @todo customize queue sizes */
4938         int nTx = 64, nTxCmd = 8;
4939         ipw_tx_queue_free(priv);
4940         /* Tx CMD queue */
4941         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942                                IPW_TX_CMD_QUEUE_READ_INDEX,
4943                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944                                IPW_TX_CMD_QUEUE_BD_BASE,
4945                                IPW_TX_CMD_QUEUE_BD_SIZE);
4946         if (rc) {
4947                 IPW_ERROR("Tx Cmd queue init failed\n");
4948                 goto error;
4949         }
4950         /* Tx queue(s) */
4951         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952                                IPW_TX_QUEUE_0_READ_INDEX,
4953                                IPW_TX_QUEUE_0_WRITE_INDEX,
4954                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955         if (rc) {
4956                 IPW_ERROR("Tx 0 queue init failed\n");
4957                 goto error;
4958         }
4959         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960                                IPW_TX_QUEUE_1_READ_INDEX,
4961                                IPW_TX_QUEUE_1_WRITE_INDEX,
4962                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963         if (rc) {
4964                 IPW_ERROR("Tx 1 queue init failed\n");
4965                 goto error;
4966         }
4967         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968                                IPW_TX_QUEUE_2_READ_INDEX,
4969                                IPW_TX_QUEUE_2_WRITE_INDEX,
4970                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971         if (rc) {
4972                 IPW_ERROR("Tx 2 queue init failed\n");
4973                 goto error;
4974         }
4975         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976                                IPW_TX_QUEUE_3_READ_INDEX,
4977                                IPW_TX_QUEUE_3_WRITE_INDEX,
4978                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979         if (rc) {
4980                 IPW_ERROR("Tx 3 queue init failed\n");
4981                 goto error;
4982         }
4983         /* statistics */
4984         priv->rx_bufs_min = 0;
4985         priv->rx_pend_max = 0;
4986         return rc;
4987 
4988       error:
4989         ipw_tx_queue_free(priv);
4990         return rc;
4991 }
4992 
4993 /**
4994  * Reclaim Tx queue entries no more used by NIC.
4995  *
4996  * When FW advances 'R' index, all entries between old and
4997  * new 'R' index need to be reclaimed. As result, some free space
4998  * forms. If there is enough free space (> low mark), wake Tx queue.
4999  *
5000  * @note Need to protect against garbage in 'R' index
5001  * @param priv
5002  * @param txq
5003  * @param qindex
5004  * @return Number of used entries remains in the queue
5005  */
5006 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007                                 struct clx2_tx_queue *txq, int qindex)
5008 {
5009         u32 hw_tail;
5010         int used;
5011         struct clx2_queue *q = &txq->q;
5012 
5013         hw_tail = ipw_read32(priv, q->reg_r);
5014         if (hw_tail >= q->n_bd) {
5015                 IPW_ERROR
5016                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017                      hw_tail, q->n_bd);
5018                 goto done;
5019         }
5020         for (; q->last_used != hw_tail;
5021              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022                 ipw_queue_tx_free_tfd(priv, txq);
5023                 priv->tx_packets++;
5024         }
5025       done:
5026         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027             (qindex >= 0))
5028                 netif_wake_queue(priv->net_dev);
5029         used = q->first_empty - q->last_used;
5030         if (used < 0)
5031                 used += q->n_bd;
5032 
5033         return used;
5034 }
5035 
5036 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037                              int len, int sync)
5038 {
5039         struct clx2_tx_queue *txq = &priv->txq_cmd;
5040         struct clx2_queue *q = &txq->q;
5041         struct tfd_frame *tfd;
5042 
5043         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044                 IPW_ERROR("No space for Tx\n");
5045                 return -EBUSY;
5046         }
5047 
5048         tfd = &txq->bd[q->first_empty];
5049         txq->txb[q->first_empty] = NULL;
5050 
5051         memset(tfd, 0, sizeof(*tfd));
5052         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054         priv->hcmd_seq++;
5055         tfd->u.cmd.index = hcmd;
5056         tfd->u.cmd.length = len;
5057         memcpy(tfd->u.cmd.payload, buf, len);
5058         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059         ipw_write32(priv, q->reg_w, q->first_empty);
5060         _ipw_read32(priv, 0x90);
5061 
5062         return 0;
5063 }
5064 
5065 /*
5066  * Rx theory of operation
5067  *
5068  * The host allocates 32 DMA target addresses and passes the host address
5069  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070  * 0 to 31
5071  *
5072  * Rx Queue Indexes
5073  * The host/firmware share two index registers for managing the Rx buffers.
5074  *
5075  * The READ index maps to the first position that the firmware may be writing
5076  * to -- the driver can read up to (but not including) this position and get
5077  * good data.
5078  * The READ index is managed by the firmware once the card is enabled.
5079  *
5080  * The WRITE index maps to the last position the driver has read from -- the
5081  * position preceding WRITE is the last slot the firmware can place a packet.
5082  *
5083  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084  * WRITE = READ.
5085  *
5086  * During initialization the host sets up the READ queue position to the first
5087  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088  *
5089  * When the firmware places a packet in a buffer it will advance the READ index
5090  * and fire the RX interrupt.  The driver can then query the READ index and
5091  * process as many packets as possible, moving the WRITE index forward as it
5092  * resets the Rx queue buffers with new memory.
5093  *
5094  * The management in the driver is as follows:
5095  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5096  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097  *   to replensish the ipw->rxq->rx_free.
5098  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5100  *   'processed' and 'read' driver indexes as well)
5101  * + A received packet is processed and handed to the kernel network stack,
5102  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5103  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5106  *   were enough free buffers and RX_STALLED is set it is cleared.
5107  *
5108  *
5109  * Driver sequence:
5110  *
5111  * ipw_rx_queue_alloc()       Allocates rx_free
5112  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5113  *                            ipw_rx_queue_restock
5114  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5115  *                            queue, updates firmware pointers, and updates
5116  *                            the WRITE index.  If insufficient rx_free buffers
5117  *                            are available, schedules ipw_rx_queue_replenish
5118  *
5119  * -- enable interrupts --
5120  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5121  *                            READ INDEX, detaching the SKB from the pool.
5122  *                            Moves the packet buffer from queue to rx_used.
5123  *                            Calls ipw_rx_queue_restock to refill any empty
5124  *                            slots.
5125  * ...
5126  *
5127  */
5128 
5129 /*
5130  * If there are slots in the RX queue that  need to be restocked,
5131  * and we have free pre-allocated buffers, fill the ranks as much
5132  * as we can pulling from rx_free.
5133  *
5134  * This moves the 'write' index forward to catch up with 'processed', and
5135  * also updates the memory address in the firmware to reference the new
5136  * target buffer.
5137  */
5138 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139 {
5140         struct ipw_rx_queue *rxq = priv->rxq;
5141         struct list_head *element;
5142         struct ipw_rx_mem_buffer *rxb;
5143         unsigned long flags;
5144         int write;
5145 
5146         spin_lock_irqsave(&rxq->lock, flags);
5147         write = rxq->write;
5148         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149                 element = rxq->rx_free.next;
5150                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151                 list_del(element);
5152 
5153                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154                             rxb->dma_addr);
5155                 rxq->queue[rxq->write] = rxb;
5156                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157                 rxq->free_count--;
5158         }
5159         spin_unlock_irqrestore(&rxq->lock, flags);
5160 
5161         /* If the pre-allocated buffer pool is dropping low, schedule to
5162          * refill it */
5163         if (rxq->free_count <= RX_LOW_WATERMARK)
5164                 schedule_work(&priv->rx_replenish);
5165 
5166         /* If we've added more space for the firmware to place data, tell it */
5167         if (write != rxq->write)
5168                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169 }
5170 
5171 /*
5172  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173  * Also restock the Rx queue via ipw_rx_queue_restock.
5174  *
5175  * This is called as a scheduled work item (except for during initialization)
5176  */
5177 static void ipw_rx_queue_replenish(void *data)
5178 {
5179         struct ipw_priv *priv = data;
5180         struct ipw_rx_queue *rxq = priv->rxq;
5181         struct list_head *element;
5182         struct ipw_rx_mem_buffer *rxb;
5183         unsigned long flags;
5184 
5185         spin_lock_irqsave(&rxq->lock, flags);
5186         while (!list_empty(&rxq->rx_used)) {
5187                 element = rxq->rx_used.next;
5188                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190                 if (!rxb->skb) {
5191                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192                                priv->net_dev->name);
5193                         /* We don't reschedule replenish work here -- we will
5194                          * call the restock method and if it still needs
5195                          * more buffers it will schedule replenish */
5196                         break;
5197                 }
5198                 list_del(element);
5199 
5200                 rxb->dma_addr =
5201                     pci_map_single(priv->pci_dev, rxb->skb->data,
5202                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5203 
5204                 list_add_tail(&rxb->list, &rxq->rx_free);
5205                 rxq->free_count++;
5206         }
5207         spin_unlock_irqrestore(&rxq->lock, flags);
5208 
5209         ipw_rx_queue_restock(priv);
5210 }
5211 
5212 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213 {
5214         struct ipw_priv *priv =
5215                 container_of(work, struct ipw_priv, rx_replenish);
5216         mutex_lock(&priv->mutex);
5217         ipw_rx_queue_replenish(priv);
5218         mutex_unlock(&priv->mutex);
5219 }
5220 
5221 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223  * This free routine walks the list of POOL entries and if SKB is set to
5224  * non NULL it is unmapped and freed
5225  */
5226 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227 {
5228         int i;
5229 
5230         if (!rxq)
5231                 return;
5232 
5233         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234                 if (rxq->pool[i].skb != NULL) {
5235                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5236                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5237                         dev_kfree_skb(rxq->pool[i].skb);
5238                 }
5239         }
5240 
5241         kfree(rxq);
5242 }
5243 
5244 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5245 {
5246         struct ipw_rx_queue *rxq;
5247         int i;
5248 
5249         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5250         if (unlikely(!rxq)) {
5251                 IPW_ERROR("memory allocation failed\n");
5252                 return NULL;
5253         }
5254         spin_lock_init(&rxq->lock);
5255         INIT_LIST_HEAD(&rxq->rx_free);
5256         INIT_LIST_HEAD(&rxq->rx_used);
5257 
5258         /* Fill the rx_used queue with _all_ of the Rx buffers */
5259         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5260                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5261 
5262         /* Set us so that we have processed and used all buffers, but have
5263          * not restocked the Rx queue with fresh buffers */
5264         rxq->read = rxq->write = 0;
5265         rxq->free_count = 0;
5266 
5267         return rxq;
5268 }
5269 
5270 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5271 {
5272         rate &= ~LIBIPW_BASIC_RATE_MASK;
5273         if (ieee_mode == IEEE_A) {
5274                 switch (rate) {
5275                 case LIBIPW_OFDM_RATE_6MB:
5276                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5277                             1 : 0;
5278                 case LIBIPW_OFDM_RATE_9MB:
5279                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5280                             1 : 0;
5281                 case LIBIPW_OFDM_RATE_12MB:
5282                         return priv->
5283                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5284                 case LIBIPW_OFDM_RATE_18MB:
5285                         return priv->
5286                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5287                 case LIBIPW_OFDM_RATE_24MB:
5288                         return priv->
5289                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5290                 case LIBIPW_OFDM_RATE_36MB:
5291                         return priv->
5292                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5293                 case LIBIPW_OFDM_RATE_48MB:
5294                         return priv->
5295                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5296                 case LIBIPW_OFDM_RATE_54MB:
5297                         return priv->
5298                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5299                 default:
5300                         return 0;
5301                 }
5302         }
5303 
5304         /* B and G mixed */
5305         switch (rate) {
5306         case LIBIPW_CCK_RATE_1MB:
5307                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5308         case LIBIPW_CCK_RATE_2MB:
5309                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5310         case LIBIPW_CCK_RATE_5MB:
5311                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5312         case LIBIPW_CCK_RATE_11MB:
5313                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5314         }
5315 
5316         /* If we are limited to B modulations, bail at this point */
5317         if (ieee_mode == IEEE_B)
5318                 return 0;
5319 
5320         /* G */
5321         switch (rate) {
5322         case LIBIPW_OFDM_RATE_6MB:
5323                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5324         case LIBIPW_OFDM_RATE_9MB:
5325                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5326         case LIBIPW_OFDM_RATE_12MB:
5327                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5328         case LIBIPW_OFDM_RATE_18MB:
5329                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5330         case LIBIPW_OFDM_RATE_24MB:
5331                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5332         case LIBIPW_OFDM_RATE_36MB:
5333                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334         case LIBIPW_OFDM_RATE_48MB:
5335                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5336         case LIBIPW_OFDM_RATE_54MB:
5337                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5338         }
5339 
5340         return 0;
5341 }
5342 
5343 static int ipw_compatible_rates(struct ipw_priv *priv,
5344                                 const struct libipw_network *network,
5345                                 struct ipw_supported_rates *rates)
5346 {
5347         int num_rates, i;
5348 
5349         memset(rates, 0, sizeof(*rates));
5350         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5351         rates->num_rates = 0;
5352         for (i = 0; i < num_rates; i++) {
5353                 if (!ipw_is_rate_in_mask(priv, network->mode,
5354                                          network->rates[i])) {
5355 
5356                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5357                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5358                                                "rate %02X\n",
5359                                                network->rates[i]);
5360                                 rates->supported_rates[rates->num_rates++] =
5361                                     network->rates[i];
5362                                 continue;
5363                         }
5364 
5365                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5366                                        network->rates[i], priv->rates_mask);
5367                         continue;
5368                 }
5369 
5370                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5371         }
5372 
5373         num_rates = min(network->rates_ex_len,
5374                         (u8) (IPW_MAX_RATES - num_rates));
5375         for (i = 0; i < num_rates; i++) {
5376                 if (!ipw_is_rate_in_mask(priv, network->mode,
5377                                          network->rates_ex[i])) {
5378                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5379                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5380                                                "rate %02X\n",
5381                                                network->rates_ex[i]);
5382                                 rates->supported_rates[rates->num_rates++] =
5383                                     network->rates[i];
5384                                 continue;
5385                         }
5386 
5387                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5388                                        network->rates_ex[i], priv->rates_mask);
5389                         continue;
5390                 }
5391 
5392                 rates->supported_rates[rates->num_rates++] =
5393                     network->rates_ex[i];
5394         }
5395 
5396         return 1;
5397 }
5398 
5399 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5400                                   const struct ipw_supported_rates *src)
5401 {
5402         u8 i;
5403         for (i = 0; i < src->num_rates; i++)
5404                 dest->supported_rates[i] = src->supported_rates[i];
5405         dest->num_rates = src->num_rates;
5406 }
5407 
5408 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5409  * mask should ever be used -- right now all callers to add the scan rates are
5410  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5411 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5412                                    u8 modulation, u32 rate_mask)
5413 {
5414         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5415             LIBIPW_BASIC_RATE_MASK : 0;
5416 
5417         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5418                 rates->supported_rates[rates->num_rates++] =
5419                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5420 
5421         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5422                 rates->supported_rates[rates->num_rates++] =
5423                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5424 
5425         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5426                 rates->supported_rates[rates->num_rates++] = basic_mask |
5427                     LIBIPW_CCK_RATE_5MB;
5428 
5429         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5430                 rates->supported_rates[rates->num_rates++] = basic_mask |
5431                     LIBIPW_CCK_RATE_11MB;
5432 }
5433 
5434 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5435                                     u8 modulation, u32 rate_mask)
5436 {
5437         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5438             LIBIPW_BASIC_RATE_MASK : 0;
5439 
5440         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5441                 rates->supported_rates[rates->num_rates++] = basic_mask |
5442                     LIBIPW_OFDM_RATE_6MB;
5443 
5444         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5445                 rates->supported_rates[rates->num_rates++] =
5446                     LIBIPW_OFDM_RATE_9MB;
5447 
5448         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5449                 rates->supported_rates[rates->num_rates++] = basic_mask |
5450                     LIBIPW_OFDM_RATE_12MB;
5451 
5452         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5453                 rates->supported_rates[rates->num_rates++] =
5454                     LIBIPW_OFDM_RATE_18MB;
5455 
5456         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5457                 rates->supported_rates[rates->num_rates++] = basic_mask |
5458                     LIBIPW_OFDM_RATE_24MB;
5459 
5460         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5461                 rates->supported_rates[rates->num_rates++] =
5462                     LIBIPW_OFDM_RATE_36MB;
5463 
5464         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5465                 rates->supported_rates[rates->num_rates++] =
5466                     LIBIPW_OFDM_RATE_48MB;
5467 
5468         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5469                 rates->supported_rates[rates->num_rates++] =
5470                     LIBIPW_OFDM_RATE_54MB;
5471 }
5472 
5473 struct ipw_network_match {
5474         struct libipw_network *network;
5475         struct ipw_supported_rates rates;
5476 };
5477 
5478 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5479                                   struct ipw_network_match *match,
5480                                   struct libipw_network *network,
5481                                   int roaming)
5482 {
5483         struct ipw_supported_rates rates;
5484 
5485         /* Verify that this network's capability is compatible with the
5486          * current mode (AdHoc or Infrastructure) */
5487         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5488              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5489                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5490                                 network->ssid_len, network->ssid,
5491                                 network->bssid);
5492                 return 0;
5493         }
5494 
5495         if (unlikely(roaming)) {
5496                 /* If we are roaming, then ensure check if this is a valid
5497                  * network to try and roam to */
5498                 if ((network->ssid_len != match->network->ssid_len) ||
5499                     memcmp(network->ssid, match->network->ssid,
5500                            network->ssid_len)) {
5501                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5502                                         network->ssid_len, network->ssid,
5503                                         network->bssid);
5504                         return 0;
5505                 }
5506         } else {
5507                 /* If an ESSID has been configured then compare the broadcast
5508                  * ESSID to ours */
5509                 if ((priv->config & CFG_STATIC_ESSID) &&
5510                     ((network->ssid_len != priv->essid_len) ||
5511                      memcmp(network->ssid, priv->essid,
5512                             min(network->ssid_len, priv->essid_len)))) {
5513                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5514                                         network->ssid_len, network->ssid,
5515                                         network->bssid, priv->essid_len,
5516                                         priv->essid);
5517                         return 0;
5518                 }
5519         }
5520 
5521         /* If the old network rate is better than this one, don't bother
5522          * testing everything else. */
5523 
5524         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5525                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5526                                 match->network->ssid_len, match->network->ssid);
5527                 return 0;
5528         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5529                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5530                                 match->network->ssid_len, match->network->ssid);
5531                 return 0;
5532         }
5533 
5534         /* Now go through and see if the requested network is valid... */
5535         if (priv->ieee->scan_age != 0 &&
5536             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5537                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5538                                 network->ssid_len, network->ssid,
5539                                 network->bssid,
5540                                 jiffies_to_msecs(jiffies -
5541                                                  network->last_scanned));
5542                 return 0;
5543         }
5544 
5545         if ((priv->config & CFG_STATIC_CHANNEL) &&
5546             (network->channel != priv->channel)) {
5547                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5548                                 network->ssid_len, network->ssid,
5549                                 network->bssid,
5550                                 network->channel, priv->channel);
5551                 return 0;
5552         }
5553 
5554         /* Verify privacy compatibility */
5555         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5556             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5557                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5558                                 network->ssid_len, network->ssid,
5559                                 network->bssid,
5560                                 priv->
5561                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5562                                 network->
5563                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5564                                 "off");
5565                 return 0;
5566         }
5567 
5568         if (ether_addr_equal(network->bssid, priv->bssid)) {
5569                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5570                                 network->ssid_len, network->ssid,
5571                                 network->bssid, priv->bssid);
5572                 return 0;
5573         }
5574 
5575         /* Filter out any incompatible freq / mode combinations */
5576         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5577                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5578                                 network->ssid_len, network->ssid,
5579                                 network->bssid);
5580                 return 0;
5581         }
5582 
5583         /* Ensure that the rates supported by the driver are compatible with
5584          * this AP, including verification of basic rates (mandatory) */
5585         if (!ipw_compatible_rates(priv, network, &rates)) {
5586                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5587                                 network->ssid_len, network->ssid,
5588                                 network->bssid);
5589                 return 0;
5590         }
5591 
5592         if (rates.num_rates == 0) {
5593                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5594                                 network->ssid_len, network->ssid,
5595                                 network->bssid);
5596                 return 0;
5597         }
5598 
5599         /* TODO: Perform any further minimal comparititive tests.  We do not
5600          * want to put too much policy logic here; intelligent scan selection
5601          * should occur within a generic IEEE 802.11 user space tool.  */
5602 
5603         /* Set up 'new' AP to this network */
5604         ipw_copy_rates(&match->rates, &rates);
5605         match->network = network;
5606         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5607                         network->ssid_len, network->ssid, network->bssid);
5608 
5609         return 1;
5610 }
5611 
5612 static void ipw_merge_adhoc_network(struct work_struct *work)
5613 {
5614         struct ipw_priv *priv =
5615                 container_of(work, struct ipw_priv, merge_networks);
5616         struct libipw_network *network = NULL;
5617         struct ipw_network_match match = {
5618                 .network = priv->assoc_network
5619         };
5620 
5621         if ((priv->status & STATUS_ASSOCIATED) &&
5622             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5623                 /* First pass through ROAM process -- look for a better
5624                  * network */
5625                 unsigned long flags;
5626 
5627                 spin_lock_irqsave(&priv->ieee->lock, flags);
5628                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5629                         if (network != priv->assoc_network)
5630                                 ipw_find_adhoc_network(priv, &match, network,
5631                                                        1);
5632                 }
5633                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5634 
5635                 if (match.network == priv->assoc_network) {
5636                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5637                                         "merge to.\n");
5638                         return;
5639                 }
5640 
5641                 mutex_lock(&priv->mutex);
5642                 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5643                         IPW_DEBUG_MERGE("remove network %*pE\n",
5644                                         priv->essid_len, priv->essid);
5645                         ipw_remove_current_network(priv);
5646                 }
5647 
5648                 ipw_disassociate(priv);
5649                 priv->assoc_network = match.network;
5650                 mutex_unlock(&priv->mutex);
5651                 return;
5652         }
5653 }
5654 
5655 static int ipw_best_network(struct ipw_priv *priv,
5656                             struct ipw_network_match *match,
5657                             struct libipw_network *network, int roaming)
5658 {
5659         struct ipw_supported_rates rates;
5660 
5661         /* Verify that this network's capability is compatible with the
5662          * current mode (AdHoc or Infrastructure) */
5663         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5664              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5665             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5666              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5667                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5668                                 network->ssid_len, network->ssid,
5669                                 network->bssid);
5670                 return 0;
5671         }
5672 
5673         if (unlikely(roaming)) {
5674                 /* If we are roaming, then ensure check if this is a valid
5675                  * network to try and roam to */
5676                 if ((network->ssid_len != match->network->ssid_len) ||
5677                     memcmp(network->ssid, match->network->ssid,
5678                            network->ssid_len)) {
5679                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5680                                         network->ssid_len, network->ssid,
5681                                         network->bssid);
5682                         return 0;
5683                 }
5684         } else {
5685                 /* If an ESSID has been configured then compare the broadcast
5686                  * ESSID to ours */
5687                 if ((priv->config & CFG_STATIC_ESSID) &&
5688                     ((network->ssid_len != priv->essid_len) ||
5689                      memcmp(network->ssid, priv->essid,
5690                             min(network->ssid_len, priv->essid_len)))) {
5691                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5692                                         network->ssid_len, network->ssid,
5693                                         network->bssid, priv->essid_len,
5694                                         priv->essid);
5695                         return 0;
5696                 }
5697         }
5698 
5699         /* If the old network rate is better than this one, don't bother
5700          * testing everything else. */
5701         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5702                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5703                                 network->ssid_len, network->ssid,
5704                                 network->bssid, match->network->ssid_len,
5705                                 match->network->ssid, match->network->bssid);
5706                 return 0;
5707         }
5708 
5709         /* If this network has already had an association attempt within the
5710          * last 3 seconds, do not try and associate again... */
5711         if (network->last_associate &&
5712             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5713                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5714                                 network->ssid_len, network->ssid,
5715                                 network->bssid,
5716                                 jiffies_to_msecs(jiffies -
5717                                                  network->last_associate));
5718                 return 0;
5719         }
5720 
5721         /* Now go through and see if the requested network is valid... */
5722         if (priv->ieee->scan_age != 0 &&
5723             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5724                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5725                                 network->ssid_len, network->ssid,
5726                                 network->bssid,
5727                                 jiffies_to_msecs(jiffies -
5728                                                  network->last_scanned));
5729                 return 0;
5730         }
5731 
5732         if ((priv->config & CFG_STATIC_CHANNEL) &&
5733             (network->channel != priv->channel)) {
5734                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5735                                 network->ssid_len, network->ssid,
5736                                 network->bssid,
5737                                 network->channel, priv->channel);
5738                 return 0;
5739         }
5740 
5741         /* Verify privacy compatibility */
5742         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5743             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5744                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5745                                 network->ssid_len, network->ssid,
5746                                 network->bssid,
5747                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5748                                 "off",
5749                                 network->capability &
5750                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5751                 return 0;
5752         }
5753 
5754         if ((priv->config & CFG_STATIC_BSSID) &&
5755             !ether_addr_equal(network->bssid, priv->bssid)) {
5756                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5757                                 network->ssid_len, network->ssid,
5758                                 network->bssid, priv->bssid);
5759                 return 0;
5760         }
5761 
5762         /* Filter out any incompatible freq / mode combinations */
5763         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5764                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5765                                 network->ssid_len, network->ssid,
5766                                 network->bssid);
5767                 return 0;
5768         }
5769 
5770         /* Filter out invalid channel in current GEO */
5771         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5772                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5773                                 network->ssid_len, network->ssid,
5774                                 network->bssid);
5775                 return 0;
5776         }
5777 
5778         /* Ensure that the rates supported by the driver are compatible with
5779          * this AP, including verification of basic rates (mandatory) */
5780         if (!ipw_compatible_rates(priv, network, &rates)) {
5781                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5782                                 network->ssid_len, network->ssid,
5783                                 network->bssid);
5784                 return 0;
5785         }
5786 
5787         if (rates.num_rates == 0) {
5788                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5789                                 network->ssid_len, network->ssid,
5790                                 network->bssid);
5791                 return 0;
5792         }
5793 
5794         /* TODO: Perform any further minimal comparititive tests.  We do not
5795          * want to put too much policy logic here; intelligent scan selection
5796          * should occur within a generic IEEE 802.11 user space tool.  */
5797 
5798         /* Set up 'new' AP to this network */
5799         ipw_copy_rates(&match->rates, &rates);
5800         match->network = network;
5801 
5802         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5803                         network->ssid_len, network->ssid, network->bssid);
5804 
5805         return 1;
5806 }
5807 
5808 static void ipw_adhoc_create(struct ipw_priv *priv,
5809                              struct libipw_network *network)
5810 {
5811         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5812         int i;
5813 
5814         /*
5815          * For the purposes of scanning, we can set our wireless mode
5816          * to trigger scans across combinations of bands, but when it
5817          * comes to creating a new ad-hoc network, we have tell the FW
5818          * exactly which band to use.
5819          *
5820          * We also have the possibility of an invalid channel for the
5821          * chossen band.  Attempting to create a new ad-hoc network
5822          * with an invalid channel for wireless mode will trigger a
5823          * FW fatal error.
5824          *
5825          */
5826         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5827         case LIBIPW_52GHZ_BAND:
5828                 network->mode = IEEE_A;
5829                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5830                 BUG_ON(i == -1);
5831                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5832                         IPW_WARNING("Overriding invalid channel\n");
5833                         priv->channel = geo->a[0].channel;
5834                 }
5835                 break;
5836 
5837         case LIBIPW_24GHZ_BAND:
5838                 if (priv->ieee->mode & IEEE_G)
5839                         network->mode = IEEE_G;
5840                 else
5841                         network->mode = IEEE_B;
5842                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5843                 BUG_ON(i == -1);
5844                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5845                         IPW_WARNING("Overriding invalid channel\n");
5846                         priv->channel = geo->bg[0].channel;
5847                 }
5848                 break;
5849 
5850         default:
5851                 IPW_WARNING("Overriding invalid channel\n");
5852                 if (priv->ieee->mode & IEEE_A) {
5853                         network->mode = IEEE_A;
5854                         priv->channel = geo->a[0].channel;
5855                 } else if (priv->ieee->mode & IEEE_G) {
5856                         network->mode = IEEE_G;
5857                         priv->channel = geo->bg[0].channel;
5858                 } else {
5859                         network->mode = IEEE_B;
5860                         priv->channel = geo->bg[0].channel;
5861                 }
5862                 break;
5863         }
5864 
5865         network->channel = priv->channel;
5866         priv->config |= CFG_ADHOC_PERSIST;
5867         ipw_create_bssid(priv, network->bssid);
5868         network->ssid_len = priv->essid_len;
5869         memcpy(network->ssid, priv->essid, priv->essid_len);
5870         memset(&network->stats, 0, sizeof(network->stats));
5871         network->capability = WLAN_CAPABILITY_IBSS;
5872         if (!(priv->config & CFG_PREAMBLE_LONG))
5873                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5874         if (priv->capability & CAP_PRIVACY_ON)
5875                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5876         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5877         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5878         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5879         memcpy(network->rates_ex,
5880                &priv->rates.supported_rates[network->rates_len],
5881                network->rates_ex_len);
5882         network->last_scanned = 0;
5883         network->flags = 0;
5884         network->last_associate = 0;
5885         network->time_stamp[0] = 0;
5886         network->time_stamp[1] = 0;
5887         network->beacon_interval = 100; /* Default */
5888         network->listen_interval = 10;  /* Default */
5889         network->atim_window = 0;       /* Default */
5890         network->wpa_ie_len = 0;
5891         network->rsn_ie_len = 0;
5892 }
5893 
5894 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5895 {
5896         struct ipw_tgi_tx_key key;
5897 
5898         if (!(priv->ieee->sec.flags & (1 << index)))
5899                 return;
5900 
5901         key.key_id = index;
5902         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5903         key.security_type = type;
5904         key.station_index = 0;  /* always 0 for BSS */
5905         key.flags = 0;
5906         /* 0 for new key; previous value of counter (after fatal error) */
5907         key.tx_counter[0] = cpu_to_le32(0);
5908         key.tx_counter[1] = cpu_to_le32(0);
5909 
5910         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5911 }
5912 
5913 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5914 {
5915         struct ipw_wep_key key;
5916         int i;
5917 
5918         key.cmd_id = DINO_CMD_WEP_KEY;
5919         key.seq_num = 0;
5920 
5921         /* Note: AES keys cannot be set for multiple times.
5922          * Only set it at the first time. */
5923         for (i = 0; i < 4; i++) {
5924                 key.key_index = i | type;
5925                 if (!(priv->ieee->sec.flags & (1 << i))) {
5926                         key.key_size = 0;
5927                         continue;
5928                 }
5929 
5930                 key.key_size = priv->ieee->sec.key_sizes[i];
5931                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5932 
5933                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5934         }
5935 }
5936 
5937 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5938 {
5939         if (priv->ieee->host_encrypt)
5940                 return;
5941 
5942         switch (level) {
5943         case SEC_LEVEL_3:
5944                 priv->sys_config.disable_unicast_decryption = 0;
5945                 priv->ieee->host_decrypt = 0;
5946                 break;
5947         case SEC_LEVEL_2:
5948                 priv->sys_config.disable_unicast_decryption = 1;
5949                 priv->ieee->host_decrypt = 1;
5950                 break;
5951         case SEC_LEVEL_1:
5952                 priv->sys_config.disable_unicast_decryption = 0;
5953                 priv->ieee->host_decrypt = 0;
5954                 break;
5955         case SEC_LEVEL_0:
5956                 priv->sys_config.disable_unicast_decryption = 1;
5957                 break;
5958         default:
5959                 break;
5960         }
5961 }
5962 
5963 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5964 {
5965         if (priv->ieee->host_encrypt)
5966                 return;
5967 
5968         switch (level) {
5969         case SEC_LEVEL_3:
5970                 priv->sys_config.disable_multicast_decryption = 0;
5971                 break;
5972         case SEC_LEVEL_2:
5973                 priv->sys_config.disable_multicast_decryption = 1;
5974                 break;
5975         case SEC_LEVEL_1:
5976                 priv->sys_config.disable_multicast_decryption = 0;
5977                 break;
5978         case SEC_LEVEL_0:
5979                 priv->sys_config.disable_multicast_decryption = 1;
5980                 break;
5981         default:
5982                 break;
5983         }
5984 }
5985 
5986 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5987 {
5988         switch (priv->ieee->sec.level) {
5989         case SEC_LEVEL_3:
5990                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5991                         ipw_send_tgi_tx_key(priv,
5992                                             DCT_FLAG_EXT_SECURITY_CCM,
5993                                             priv->ieee->sec.active_key);
5994 
5995                 if (!priv->ieee->host_mc_decrypt)
5996                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5997                 break;
5998         case SEC_LEVEL_2:
5999                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6000                         ipw_send_tgi_tx_key(priv,
6001                                             DCT_FLAG_EXT_SECURITY_TKIP,
6002                                             priv->ieee->sec.active_key);
6003                 break;
6004         case SEC_LEVEL_1:
6005                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6006                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6007                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6008                 break;
6009         case SEC_LEVEL_0:
6010         default:
6011                 break;
6012         }
6013 }
6014 
6015 static void ipw_adhoc_check(void *data)
6016 {
6017         struct ipw_priv *priv = data;
6018 
6019         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6020             !(priv->config & CFG_ADHOC_PERSIST)) {
6021                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6022                           IPW_DL_STATE | IPW_DL_ASSOC,
6023                           "Missed beacon: %d - disassociate\n",
6024                           priv->missed_adhoc_beacons);
6025                 ipw_remove_current_network(priv);
6026                 ipw_disassociate(priv);
6027                 return;
6028         }
6029 
6030         schedule_delayed_work(&priv->adhoc_check,
6031                               le16_to_cpu(priv->assoc_request.beacon_interval));
6032 }
6033 
6034 static void ipw_bg_adhoc_check(struct work_struct *work)
6035 {
6036         struct ipw_priv *priv =
6037                 container_of(work, struct ipw_priv, adhoc_check.work);
6038         mutex_lock(&priv->mutex);
6039         ipw_adhoc_check(priv);
6040         mutex_unlock(&priv->mutex);
6041 }
6042 
6043 static void ipw_debug_config(struct ipw_priv *priv)
6044 {
6045         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6046                        "[CFG 0x%08X]\n", priv->config);
6047         if (priv->config & CFG_STATIC_CHANNEL)
6048                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6049         else
6050                 IPW_DEBUG_INFO("Channel unlocked.\n");
6051         if (priv->config & CFG_STATIC_ESSID)
6052                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6053                                priv->essid_len, priv->essid);
6054         else
6055                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6056         if (priv->config & CFG_STATIC_BSSID)
6057                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6058         else
6059                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6060         if (priv->capability & CAP_PRIVACY_ON)
6061                 IPW_DEBUG_INFO("PRIVACY on\n");
6062         else
6063                 IPW_DEBUG_INFO("PRIVACY off\n");
6064         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6065 }
6066 
6067 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6068 {
6069         /* TODO: Verify that this works... */
6070         struct ipw_fixed_rate fr;
6071         u32 reg;
6072         u16 mask = 0;
6073         u16 new_tx_rates = priv->rates_mask;
6074 
6075         /* Identify 'current FW band' and match it with the fixed
6076          * Tx rates */
6077 
6078         switch (priv->ieee->freq_band) {
6079         case LIBIPW_52GHZ_BAND: /* A only */
6080                 /* IEEE_A */
6081                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6082                         /* Invalid fixed rate mask */
6083                         IPW_DEBUG_WX
6084                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6085                         new_tx_rates = 0;
6086                         break;
6087                 }
6088 
6089                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6090                 break;
6091 
6092         default:                /* 2.4Ghz or Mixed */
6093                 /* IEEE_B */
6094                 if (mode == IEEE_B) {
6095                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6096                                 /* Invalid fixed rate mask */
6097                                 IPW_DEBUG_WX
6098                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6099                                 new_tx_rates = 0;
6100                         }
6101                         break;
6102                 }
6103 
6104                 /* IEEE_G */
6105                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6106                                     LIBIPW_OFDM_RATES_MASK)) {
6107                         /* Invalid fixed rate mask */
6108                         IPW_DEBUG_WX
6109                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6110                         new_tx_rates = 0;
6111                         break;
6112                 }
6113 
6114                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6115                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6116                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6117                 }
6118 
6119                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6120                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6121                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6122                 }
6123 
6124                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6125                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6126                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6127                 }
6128 
6129                 new_tx_rates |= mask;
6130                 break;
6131         }
6132 
6133         fr.tx_rates = cpu_to_le16(new_tx_rates);
6134 
6135         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6136         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6137 }
6138 
6139 static void ipw_abort_scan(struct ipw_priv *priv)
6140 {
6141         int err;
6142 
6143         if (priv->status & STATUS_SCAN_ABORTING) {
6144                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6145                 return;
6146         }
6147         priv->status |= STATUS_SCAN_ABORTING;
6148 
6149         err = ipw_send_scan_abort(priv);
6150         if (err)
6151                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6152 }
6153 
6154 static void ipw_add_scan_channels(struct ipw_priv *priv,
6155                                   struct ipw_scan_request_ext *scan,
6156                                   int scan_type)
6157 {
6158         int channel_index = 0;
6159         const struct libipw_geo *geo;
6160         int i;
6161 
6162         geo = libipw_get_geo(priv->ieee);
6163 
6164         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6165                 int start = channel_index;
6166                 for (i = 0; i < geo->a_channels; i++) {
6167                         if ((priv->status & STATUS_ASSOCIATED) &&
6168                             geo->a[i].channel == priv->channel)
6169                                 continue;
6170                         channel_index++;
6171                         scan->channels_list[channel_index] = geo->a[i].channel;
6172                         ipw_set_scan_type(scan, channel_index,
6173                                           geo->a[i].
6174                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6175                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6176                                           scan_type);
6177                 }
6178 
6179                 if (start != channel_index) {
6180                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6181                             (channel_index - start);
6182                         channel_index++;
6183                 }
6184         }
6185 
6186         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6187                 int start = channel_index;
6188                 if (priv->config & CFG_SPEED_SCAN) {
6189                         int index;
6190                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6191                                 /* nop out the list */
6192                                 [0] = 0
6193                         };
6194 
6195                         u8 channel;
6196                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6197                                 channel =
6198                                     priv->speed_scan[priv->speed_scan_pos];
6199                                 if (channel == 0) {
6200                                         priv->speed_scan_pos = 0;
6201                                         channel = priv->speed_scan[0];
6202                                 }
6203                                 if ((priv->status & STATUS_ASSOCIATED) &&
6204                                     channel == priv->channel) {
6205                                         priv->speed_scan_pos++;
6206                                         continue;
6207                                 }
6208 
6209                                 /* If this channel has already been
6210                                  * added in scan, break from loop
6211                                  * and this will be the first channel
6212                                  * in the next scan.
6213                                  */
6214                                 if (channels[channel - 1] != 0)
6215                                         break;
6216 
6217                                 channels[channel - 1] = 1;
6218                                 priv->speed_scan_pos++;
6219                                 channel_index++;
6220                                 scan->channels_list[channel_index] = channel;
6221                                 index =
6222                                     libipw_channel_to_index(priv->ieee, channel);
6223                                 ipw_set_scan_type(scan, channel_index,
6224                                                   geo->bg[index].
6225                                                   flags &
6226                                                   LIBIPW_CH_PASSIVE_ONLY ?
6227                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6228                                                   : scan_type);
6229                         }
6230                 } else {
6231                         for (i = 0; i < geo->bg_channels; i++) {
6232                                 if ((priv->status & STATUS_ASSOCIATED) &&
6233                                     geo->bg[i].channel == priv->channel)
6234                                         continue;
6235                                 channel_index++;
6236                                 scan->channels_list[channel_index] =
6237                                     geo->bg[i].channel;
6238                                 ipw_set_scan_type(scan, channel_index,
6239                                                   geo->bg[i].
6240                                                   flags &
6241                                                   LIBIPW_CH_PASSIVE_ONLY ?
6242                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6243                                                   : scan_type);
6244                         }
6245                 }
6246 
6247                 if (start != channel_index) {
6248                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6249                             (channel_index - start);
6250                 }
6251         }
6252 }
6253 
6254 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6255 {
6256         /* staying on passive channels longer than the DTIM interval during a
6257          * scan, while associated, causes the firmware to cancel the scan
6258          * without notification. Hence, don't stay on passive channels longer
6259          * than the beacon interval.
6260          */
6261         if (priv->status & STATUS_ASSOCIATED
6262             && priv->assoc_network->beacon_interval > 10)
6263                 return priv->assoc_network->beacon_interval - 10;
6264         else
6265                 return 120;
6266 }
6267 
6268 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6269 {
6270         struct ipw_scan_request_ext scan;
6271         int err = 0, scan_type;
6272 
6273         if (!(priv->status & STATUS_INIT) ||
6274             (priv->status & STATUS_EXIT_PENDING))
6275                 return 0;
6276 
6277         mutex_lock(&priv->mutex);
6278 
6279         if (direct && (priv->direct_scan_ssid_len == 0)) {
6280                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6281                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6282                 goto done;
6283         }
6284 
6285         if (priv->status & STATUS_SCANNING) {
6286                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6287                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6288                                         STATUS_SCAN_PENDING;
6289                 goto done;
6290         }
6291 
6292         if (!(priv->status & STATUS_SCAN_FORCED) &&
6293             priv->status & STATUS_SCAN_ABORTING) {
6294                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6295                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6296                                         STATUS_SCAN_PENDING;
6297                 goto done;
6298         }
6299 
6300         if (priv->status & STATUS_RF_KILL_MASK) {
6301                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6302                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6303                                         STATUS_SCAN_PENDING;
6304                 goto done;
6305         }
6306 
6307         memset(&scan, 0, sizeof(scan));
6308         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6309 
6310         if (type == IW_SCAN_TYPE_PASSIVE) {
6311                 IPW_DEBUG_WX("use passive scanning\n");
6312                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6313                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6314                         cpu_to_le16(ipw_passive_dwell_time(priv));
6315                 ipw_add_scan_channels(priv, &scan, scan_type);
6316                 goto send_request;
6317         }
6318 
6319         /* Use active scan by default. */
6320         if (priv->config & CFG_SPEED_SCAN)
6321                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6322                         cpu_to_le16(30);
6323         else
6324                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6325                         cpu_to_le16(20);
6326 
6327         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6328                 cpu_to_le16(20);
6329 
6330         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6331                 cpu_to_le16(ipw_passive_dwell_time(priv));
6332         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6333 
6334 #ifdef CONFIG_IPW2200_MONITOR
6335         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6336                 u8 channel;
6337                 u8 band = 0;
6338 
6339                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6340                 case LIBIPW_52GHZ_BAND:
6341                         band = (u8) (IPW_A_MODE << 6) | 1;
6342                         channel = priv->channel;
6343                         break;
6344 
6345                 case LIBIPW_24GHZ_BAND:
6346                         band = (u8) (IPW_B_MODE << 6) | 1;
6347                         channel = priv->channel;
6348                         break;
6349 
6350                 default:
6351                         band = (u8) (IPW_B_MODE << 6) | 1;
6352                         channel = 9;
6353                         break;
6354                 }
6355 
6356                 scan.channels_list[0] = band;
6357                 scan.channels_list[1] = channel;
6358                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6359 
6360                 /* NOTE:  The card will sit on this channel for this time
6361                  * period.  Scan aborts are timing sensitive and frequently
6362                  * result in firmware restarts.  As such, it is best to
6363                  * set a small dwell_time here and just keep re-issuing
6364                  * scans.  Otherwise fast channel hopping will not actually
6365                  * hop channels.
6366                  *
6367                  * TODO: Move SPEED SCAN support to all modes and bands */
6368                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6369                         cpu_to_le16(2000);
6370         } else {
6371 #endif                          /* CONFIG_IPW2200_MONITOR */
6372                 /* Honor direct scans first, otherwise if we are roaming make
6373                  * this a direct scan for the current network.  Finally,
6374                  * ensure that every other scan is a fast channel hop scan */
6375                 if (direct) {
6376                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6377                                             priv->direct_scan_ssid_len);
6378                         if (err) {
6379                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6380                                              "failed\n");
6381                                 goto done;
6382                         }
6383 
6384                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6385                 } else if ((priv->status & STATUS_ROAMING)
6386                            || (!(priv->status & STATUS_ASSOCIATED)
6387                                && (priv->config & CFG_STATIC_ESSID)
6388                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6389                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6390                         if (err) {
6391                                 IPW_DEBUG_HC("Attempt to send SSID command "
6392                                              "failed.\n");
6393                                 goto done;
6394                         }
6395 
6396                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6397                 } else
6398                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6399 
6400                 ipw_add_scan_channels(priv, &scan, scan_type);
6401 #ifdef CONFIG_IPW2200_MONITOR
6402         }
6403 #endif
6404 
6405 send_request:
6406         err = ipw_send_scan_request_ext(priv, &scan);
6407         if (err) {
6408                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6409                 goto done;
6410         }
6411 
6412         priv->status |= STATUS_SCANNING;
6413         if (direct) {
6414                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6415                 priv->direct_scan_ssid_len = 0;
6416         } else
6417                 priv->status &= ~STATUS_SCAN_PENDING;
6418 
6419         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6420 done:
6421         mutex_unlock(&priv->mutex);
6422         return err;
6423 }
6424 
6425 static void ipw_request_passive_scan(struct work_struct *work)
6426 {
6427         struct ipw_priv *priv =
6428                 container_of(work, struct ipw_priv, request_passive_scan.work);
6429         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6430 }
6431 
6432 static void ipw_request_scan(struct work_struct *work)
6433 {
6434         struct ipw_priv *priv =
6435                 container_of(work, struct ipw_priv, request_scan.work);
6436         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6437 }
6438 
6439 static void ipw_request_direct_scan(struct work_struct *work)
6440 {
6441         struct ipw_priv *priv =
6442                 container_of(work, struct ipw_priv, request_direct_scan.work);
6443         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6444 }
6445 
6446 static void ipw_bg_abort_scan(struct work_struct *work)
6447 {
6448         struct ipw_priv *priv =
6449                 container_of(work, struct ipw_priv, abort_scan);
6450         mutex_lock(&priv->mutex);
6451         ipw_abort_scan(priv);
6452         mutex_unlock(&priv->mutex);
6453 }
6454 
6455 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6456 {
6457         /* This is called when wpa_supplicant loads and closes the driver
6458          * interface. */
6459         priv->ieee->wpa_enabled = value;
6460         return 0;
6461 }
6462 
6463 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6464 {
6465         struct libipw_device *ieee = priv->ieee;
6466         struct libipw_security sec = {
6467                 .flags = SEC_AUTH_MODE,
6468         };
6469         int ret = 0;
6470 
6471         if (value & IW_AUTH_ALG_SHARED_KEY) {
6472                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6473                 ieee->open_wep = 0;
6474         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6475                 sec.auth_mode = WLAN_AUTH_OPEN;
6476                 ieee->open_wep = 1;
6477         } else if (value & IW_AUTH_ALG_LEAP) {
6478                 sec.auth_mode = WLAN_AUTH_LEAP;
6479                 ieee->open_wep = 1;
6480         } else
6481                 return -EINVAL;
6482 
6483         if (ieee->set_security)
6484                 ieee->set_security(ieee->dev, &sec);
6485         else
6486                 ret = -EOPNOTSUPP;
6487 
6488         return ret;
6489 }
6490 
6491 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6492                                 int wpa_ie_len)
6493 {
6494         /* make sure WPA is enabled */
6495         ipw_wpa_enable(priv, 1);
6496 }
6497 
6498 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6499                             char *capabilities, int length)
6500 {
6501         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6502 
6503         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6504                                 capabilities);
6505 }
6506 
6507 /*
6508  * WE-18 support
6509  */
6510 
6511 /* SIOCSIWGENIE */
6512 static int ipw_wx_set_genie(struct net_device *dev,
6513                             struct iw_request_info *info,
6514                             union iwreq_data *wrqu, char *extra)
6515 {
6516         struct ipw_priv *priv = libipw_priv(dev);
6517         struct libipw_device *ieee = priv->ieee;
6518         u8 *buf;
6519         int err = 0;
6520 
6521         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6522             (wrqu->data.length && extra == NULL))
6523                 return -EINVAL;
6524 
6525         if (wrqu->data.length) {
6526                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6527                 if (buf == NULL) {
6528                         err = -ENOMEM;
6529                         goto out;
6530                 }
6531 
6532                 kfree(ieee->wpa_ie);
6533                 ieee->wpa_ie = buf;
6534                 ieee->wpa_ie_len = wrqu->data.length;
6535         } else {
6536                 kfree(ieee->wpa_ie);
6537                 ieee->wpa_ie = NULL;
6538                 ieee->wpa_ie_len = 0;
6539         }
6540 
6541         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6542       out:
6543         return err;
6544 }
6545 
6546 /* SIOCGIWGENIE */
6547 static int ipw_wx_get_genie(struct net_device *dev,
6548                             struct iw_request_info *info,
6549                             union iwreq_data *wrqu, char *extra)
6550 {
6551         struct ipw_priv *priv = libipw_priv(dev);
6552         struct libipw_device *ieee = priv->ieee;
6553         int err = 0;
6554 
6555         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6556                 wrqu->data.length = 0;
6557                 goto out;
6558         }
6559 
6560         if (wrqu->data.length < ieee->wpa_ie_len) {
6561                 err = -E2BIG;
6562                 goto out;
6563         }
6564 
6565         wrqu->data.length = ieee->wpa_ie_len;
6566         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6567 
6568       out:
6569         return err;
6570 }
6571 
6572 static int wext_cipher2level(int cipher)
6573 {
6574         switch (cipher) {
6575         case IW_AUTH_CIPHER_NONE:
6576                 return SEC_LEVEL_0;
6577         case IW_AUTH_CIPHER_WEP40:
6578         case IW_AUTH_CIPHER_WEP104:
6579                 return SEC_LEVEL_1;
6580         case IW_AUTH_CIPHER_TKIP:
6581                 return SEC_LEVEL_2;
6582         case IW_AUTH_CIPHER_CCMP:
6583                 return SEC_LEVEL_3;
6584         default:
6585                 return -1;
6586         }
6587 }
6588 
6589 /* SIOCSIWAUTH */
6590 static int ipw_wx_set_auth(struct net_device *dev,
6591                            struct iw_request_info *info,
6592                            union iwreq_data *wrqu, char *extra)
6593 {
6594         struct ipw_priv *priv = libipw_priv(dev);
6595         struct libipw_device *ieee = priv->ieee;
6596         struct iw_param *param = &wrqu->param;
6597         struct lib80211_crypt_data *crypt;
6598         unsigned long flags;
6599         int ret = 0;
6600 
6601         switch (param->flags & IW_AUTH_INDEX) {
6602         case IW_AUTH_WPA_VERSION:
6603                 break;
6604         case IW_AUTH_CIPHER_PAIRWISE:
6605                 ipw_set_hw_decrypt_unicast(priv,
6606                                            wext_cipher2level(param->value));
6607                 break;
6608         case IW_AUTH_CIPHER_GROUP:
6609                 ipw_set_hw_decrypt_multicast(priv,
6610                                              wext_cipher2level(param->value));
6611                 break;
6612         case IW_AUTH_KEY_MGMT:
6613                 /*
6614                  * ipw2200 does not use these parameters
6615                  */
6616                 break;
6617 
6618         case IW_AUTH_TKIP_COUNTERMEASURES:
6619                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6620                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6621                         break;
6622 
6623                 flags = crypt->ops->get_flags(crypt->priv);
6624 
6625                 if (param->value)
6626                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6627                 else
6628                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6629 
6630                 crypt->ops->set_flags(flags, crypt->priv);
6631 
6632                 break;
6633 
6634         case IW_AUTH_DROP_UNENCRYPTED:{
6635                         /* HACK:
6636                          *
6637                          * wpa_supplicant calls set_wpa_enabled when the driver
6638                          * is loaded and unloaded, regardless of if WPA is being
6639                          * used.  No other calls are made which can be used to
6640                          * determine if encryption will be used or not prior to
6641                          * association being expected.  If encryption is not being
6642                          * used, drop_unencrypted is set to false, else true -- we
6643                          * can use this to determine if the CAP_PRIVACY_ON bit should
6644                          * be set.
6645                          */
6646                         struct libipw_security sec = {
6647                                 .flags = SEC_ENABLED,
6648                                 .enabled = param->value,
6649                         };
6650                         priv->ieee->drop_unencrypted = param->value;
6651                         /* We only change SEC_LEVEL for open mode. Others
6652                          * are set by ipw_wpa_set_encryption.
6653                          */
6654                         if (!param->value) {
6655                                 sec.flags |= SEC_LEVEL;
6656                                 sec.level = SEC_LEVEL_0;
6657                         } else {
6658                                 sec.flags |= SEC_LEVEL;
6659                                 sec.level = SEC_LEVEL_1;
6660                         }
6661                         if (priv->ieee->set_security)
6662                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6663                         break;
6664                 }
6665 
6666         case IW_AUTH_80211_AUTH_ALG:
6667                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6668                 break;
6669 
6670         case IW_AUTH_WPA_ENABLED:
6671                 ret = ipw_wpa_enable(priv, param->value);
6672                 ipw_disassociate(priv);
6673                 break;
6674 
6675         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6676                 ieee->ieee802_1x = param->value;
6677                 break;
6678 
6679         case IW_AUTH_PRIVACY_INVOKED:
6680                 ieee->privacy_invoked = param->value;
6681                 break;
6682 
6683         default:
6684                 return -EOPNOTSUPP;
6685         }
6686         return ret;
6687 }
6688 
6689 /* SIOCGIWAUTH */
6690 static int ipw_wx_get_auth(struct net_device *dev,
6691                            struct iw_request_info *info,
6692                            union iwreq_data *wrqu, char *extra)
6693 {
6694         struct ipw_priv *priv = libipw_priv(dev);
6695         struct libipw_device *ieee = priv->ieee;
6696         struct lib80211_crypt_data *crypt;
6697         struct iw_param *param = &wrqu->param;
6698 
6699         switch (param->flags & IW_AUTH_INDEX) {
6700         case IW_AUTH_WPA_VERSION:
6701         case IW_AUTH_CIPHER_PAIRWISE:
6702         case IW_AUTH_CIPHER_GROUP:
6703         case IW_AUTH_KEY_MGMT:
6704                 /*
6705                  * wpa_supplicant will control these internally
6706                  */
6707                 return -EOPNOTSUPP;
6708 
6709         case IW_AUTH_TKIP_COUNTERMEASURES:
6710                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6711                 if (!crypt || !crypt->ops->get_flags)
6712                         break;
6713 
6714                 param->value = (crypt->ops->get_flags(crypt->priv) &
6715                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6716 
6717                 break;
6718 
6719         case IW_AUTH_DROP_UNENCRYPTED:
6720                 param->value = ieee->drop_unencrypted;
6721                 break;
6722 
6723         case IW_AUTH_80211_AUTH_ALG:
6724                 param->value = ieee->sec.auth_mode;
6725                 break;
6726 
6727         case IW_AUTH_WPA_ENABLED:
6728                 param->value = ieee->wpa_enabled;
6729                 break;
6730 
6731         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6732                 param->value = ieee->ieee802_1x;
6733                 break;
6734 
6735         case IW_AUTH_ROAMING_CONTROL:
6736         case IW_AUTH_PRIVACY_INVOKED:
6737                 param->value = ieee->privacy_invoked;
6738                 break;
6739 
6740         default:
6741                 return -EOPNOTSUPP;
6742         }
6743         return 0;
6744 }
6745 
6746 /* SIOCSIWENCODEEXT */
6747 static int ipw_wx_set_encodeext(struct net_device *dev,
6748                                 struct iw_request_info *info,
6749                                 union iwreq_data *wrqu, char *extra)
6750 {
6751         struct ipw_priv *priv = libipw_priv(dev);
6752         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6753 
6754         if (hwcrypto) {
6755                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6756                         /* IPW HW can't build TKIP MIC,
6757                            host decryption still needed */
6758                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6759                                 priv->ieee->host_mc_decrypt = 1;
6760                         else {
6761                                 priv->ieee->host_encrypt = 0;
6762                                 priv->ieee->host_encrypt_msdu = 1;
6763                                 priv->ieee->host_decrypt = 1;
6764                         }
6765                 } else {
6766                         priv->ieee->host_encrypt = 0;
6767                         priv->ieee->host_encrypt_msdu = 0;
6768                         priv->ieee->host_decrypt = 0;
6769                         priv->ieee->host_mc_decrypt = 0;
6770                 }
6771         }
6772 
6773         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6774 }
6775 
6776 /* SIOCGIWENCODEEXT */
6777 static int ipw_wx_get_encodeext(struct net_device *dev,
6778                                 struct iw_request_info *info,
6779                                 union iwreq_data *wrqu, char *extra)
6780 {
6781         struct ipw_priv *priv = libipw_priv(dev);
6782         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6783 }
6784 
6785 /* SIOCSIWMLME */
6786 static int ipw_wx_set_mlme(struct net_device *dev,
6787                            struct iw_request_info *info,
6788                            union iwreq_data *wrqu, char *extra)
6789 {
6790         struct ipw_priv *priv = libipw_priv(dev);
6791         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6792         __le16 reason;
6793 
6794         reason = cpu_to_le16(mlme->reason_code);
6795 
6796         switch (mlme->cmd) {
6797         case IW_MLME_DEAUTH:
6798                 /* silently ignore */
6799                 break;
6800 
6801         case IW_MLME_DISASSOC:
6802                 ipw_disassociate(priv);
6803                 break;
6804 
6805         default:
6806                 return -EOPNOTSUPP;
6807         }
6808         return 0;
6809 }
6810 
6811 #ifdef CONFIG_IPW2200_QOS
6812 
6813 /* QoS */
6814 /*
6815 * get the modulation type of the current network or
6816 * the card current mode
6817 */
6818 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6819 {
6820         u8 mode = 0;
6821 
6822         if (priv->status & STATUS_ASSOCIATED) {
6823                 unsigned long flags;
6824 
6825                 spin_lock_irqsave(&priv->ieee->lock, flags);
6826                 mode = priv->assoc_network->mode;
6827                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6828         } else {
6829                 mode = priv->ieee->mode;
6830         }
6831         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6832         return mode;
6833 }
6834 
6835 /*
6836 * Handle management frame beacon and probe response
6837 */
6838 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6839                                          int active_network,
6840                                          struct libipw_network *network)
6841 {
6842         u32 size = sizeof(struct libipw_qos_parameters);
6843 
6844         if (network->capability & WLAN_CAPABILITY_IBSS)
6845                 network->qos_data.active = network->qos_data.supported;
6846 
6847         if (network->flags & NETWORK_HAS_QOS_MASK) {
6848                 if (active_network &&
6849                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6850                         network->qos_data.active = network->qos_data.supported;
6851 
6852                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6853                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6854                     (network->qos_data.old_param_count !=
6855                      network->qos_data.param_count)) {
6856                         network->qos_data.old_param_count =
6857                             network->qos_data.param_count;
6858                         schedule_work(&priv->qos_activate);
6859                         IPW_DEBUG_QOS("QoS parameters change call "
6860                                       "qos_activate\n");
6861                 }
6862         } else {
6863                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6864                         memcpy(&network->qos_data.parameters,
6865                                &def_parameters_CCK, size);
6866                 else
6867                         memcpy(&network->qos_data.parameters,
6868                                &def_parameters_OFDM, size);
6869 
6870                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6871                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6872                         schedule_work(&priv->qos_activate);
6873                 }
6874 
6875                 network->qos_data.active = 0;
6876                 network->qos_data.supported = 0;
6877         }
6878         if ((priv->status & STATUS_ASSOCIATED) &&
6879             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6880                 if (!ether_addr_equal(network->bssid, priv->bssid))
6881                         if (network->capability & WLAN_CAPABILITY_IBSS)
6882                                 if ((network->ssid_len ==
6883                                      priv->assoc_network->ssid_len) &&
6884                                     !memcmp(network->ssid,
6885                                             priv->assoc_network->ssid,
6886                                             network->ssid_len)) {
6887                                         schedule_work(&priv->merge_networks);
6888                                 }
6889         }
6890 
6891         return 0;
6892 }
6893 
6894 /*
6895 * This function set up the firmware to support QoS. It sends
6896 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6897 */
6898 static int ipw_qos_activate(struct ipw_priv *priv,
6899                             struct libipw_qos_data *qos_network_data)
6900 {
6901         int err;
6902         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6903         struct libipw_qos_parameters *active_one = NULL;
6904         u32 size = sizeof(struct libipw_qos_parameters);
6905         u32 burst_duration;
6906         int i;
6907         u8 type;
6908 
6909         type = ipw_qos_current_mode(priv);
6910 
6911         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6912         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6913         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6914         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6915 
6916         if (qos_network_data == NULL) {
6917                 if (type == IEEE_B) {
6918                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6919                         active_one = &def_parameters_CCK;
6920                 } else
6921                         active_one = &def_parameters_OFDM;
6922 
6923                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6924                 burst_duration = ipw_qos_get_burst_duration(priv);
6925                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6926                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6927                             cpu_to_le16(burst_duration);
6928         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6929                 if (type == IEEE_B) {
6930                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6931                                       type);
6932                         if (priv->qos_data.qos_enable == 0)
6933                                 active_one = &def_parameters_CCK;
6934                         else
6935                                 active_one = priv->qos_data.def_qos_parm_CCK;
6936                 } else {
6937                         if (priv->qos_data.qos_enable == 0)
6938                                 active_one = &def_parameters_OFDM;
6939                         else
6940                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6941                 }
6942                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6943         } else {
6944                 unsigned long flags;
6945                 int active;
6946 
6947                 spin_lock_irqsave(&priv->ieee->lock, flags);
6948                 active_one = &(qos_network_data->parameters);
6949                 qos_network_data->old_param_count =
6950                     qos_network_data->param_count;
6951                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6952                 active = qos_network_data->supported;
6953                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6954 
6955                 if (active == 0) {
6956                         burst_duration = ipw_qos_get_burst_duration(priv);
6957                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6958                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6959                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6960                 }
6961         }
6962 
6963         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6964         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6965         if (err)
6966                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6967 
6968         return err;
6969 }
6970 
6971 /*
6972 * send IPW_CMD_WME_INFO to the firmware
6973 */
6974 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6975 {
6976         int ret = 0;
6977         struct libipw_qos_information_element qos_info;
6978 
6979         if (priv == NULL)
6980                 return -1;
6981 
6982         qos_info.elementID = QOS_ELEMENT_ID;
6983         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6984 
6985         qos_info.version = QOS_VERSION_1;
6986         qos_info.ac_info = 0;
6987 
6988         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6989         qos_info.qui_type = QOS_OUI_TYPE;
6990         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6991 
6992         ret = ipw_send_qos_info_command(priv, &qos_info);
6993         if (ret != 0) {
6994                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6995         }
6996         return ret;
6997 }
6998 
6999 /*
7000 * Set the QoS parameter with the association request structure
7001 */
7002 static int ipw_qos_association(struct ipw_priv *priv,
7003                                struct libipw_network *network)
7004 {
7005         int err = 0;
7006         struct libipw_qos_data *qos_data = NULL;
7007         struct libipw_qos_data ibss_data = {
7008                 .supported = 1,
7009                 .active = 1,
7010         };
7011 
7012         switch (priv->ieee->iw_mode) {
7013         case IW_MODE_ADHOC:
7014                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7015 
7016                 qos_data = &ibss_data;
7017                 break;
7018 
7019         case IW_MODE_INFRA:
7020                 qos_data = &network->qos_data;
7021                 break;
7022 
7023         default:
7024                 BUG();
7025                 break;
7026         }
7027 
7028         err = ipw_qos_activate(priv, qos_data);
7029         if (err) {
7030                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7031                 return err;
7032         }
7033 
7034         if (priv->qos_data.qos_enable && qos_data->supported) {
7035                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7036                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7037                 return ipw_qos_set_info_element(priv);
7038         }
7039 
7040         return 0;
7041 }
7042 
7043 /*
7044 * handling the beaconing responses. if we get different QoS setting
7045 * off the network from the associated setting, adjust the QoS
7046 * setting
7047 */
7048 static int ipw_qos_association_resp(struct ipw_priv *priv,
7049                                     struct libipw_network *network)
7050 {
7051         int ret = 0;
7052         unsigned long flags;
7053         u32 size = sizeof(struct libipw_qos_parameters);
7054         int set_qos_param = 0;
7055 
7056         if ((priv == NULL) || (network == NULL) ||
7057             (priv->assoc_network == NULL))
7058                 return ret;
7059 
7060         if (!(priv->status & STATUS_ASSOCIATED))
7061                 return ret;
7062 
7063         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7064                 return ret;
7065 
7066         spin_lock_irqsave(&priv->ieee->lock, flags);
7067         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7068                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7069                        sizeof(struct libipw_qos_data));
7070                 priv->assoc_network->qos_data.active = 1;
7071                 if ((network->qos_data.old_param_count !=
7072                      network->qos_data.param_count)) {
7073                         set_qos_param = 1;
7074                         network->qos_data.old_param_count =
7075                             network->qos_data.param_count;
7076                 }
7077 
7078         } else {
7079                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7080                         memcpy(&priv->assoc_network->qos_data.parameters,
7081                                &def_parameters_CCK, size);
7082                 else
7083                         memcpy(&priv->assoc_network->qos_data.parameters,
7084                                &def_parameters_OFDM, size);
7085                 priv->assoc_network->qos_data.active = 0;
7086                 priv->assoc_network->qos_data.supported = 0;
7087                 set_qos_param = 1;
7088         }
7089 
7090         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7091 
7092         if (set_qos_param == 1)
7093                 schedule_work(&priv->qos_activate);
7094 
7095         return ret;
7096 }
7097 
7098 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7099 {
7100         u32 ret = 0;
7101 
7102         if (!priv)
7103                 return 0;
7104 
7105         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7106                 ret = priv->qos_data.burst_duration_CCK;
7107         else
7108                 ret = priv->qos_data.burst_duration_OFDM;
7109 
7110         return ret;
7111 }
7112 
7113 /*
7114 * Initialize the setting of QoS global
7115 */
7116 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7117                          int burst_enable, u32 burst_duration_CCK,
7118                          u32 burst_duration_OFDM)
7119 {
7120         priv->qos_data.qos_enable = enable;
7121 
7122         if (priv->qos_data.qos_enable) {
7123                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7124                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7125                 IPW_DEBUG_QOS("QoS is enabled\n");
7126         } else {
7127                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7128                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7129                 IPW_DEBUG_QOS("QoS is not enabled\n");
7130         }
7131 
7132         priv->qos_data.burst_enable = burst_enable;
7133 
7134         if (burst_enable) {
7135                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7136                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7137         } else {
7138                 priv->qos_data.burst_duration_CCK = 0;
7139                 priv->qos_data.burst_duration_OFDM = 0;
7140         }
7141 }
7142 
7143 /*
7144 * map the packet priority to the right TX Queue
7145 */
7146 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7147 {
7148         if (priority > 7 || !priv->qos_data.qos_enable)
7149                 priority = 0;
7150 
7151         return from_priority_to_tx_queue[priority] - 1;
7152 }
7153 
7154 static int ipw_is_qos_active(struct net_device *dev,
7155                              struct sk_buff *skb)
7156 {
7157         struct ipw_priv *priv = libipw_priv(dev);
7158         struct libipw_qos_data *qos_data = NULL;
7159         int active, supported;
7160         u8 *daddr = skb->data + ETH_ALEN;
7161         int unicast = !is_multicast_ether_addr(daddr);
7162 
7163         if (!(priv->status & STATUS_ASSOCIATED))
7164                 return 0;
7165 
7166         qos_data = &priv->assoc_network->qos_data;
7167 
7168         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7169                 if (unicast == 0)
7170                         qos_data->active = 0;
7171                 else
7172                         qos_data->active = qos_data->supported;
7173         }
7174         active = qos_data->active;
7175         supported = qos_data->supported;
7176         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7177                       "unicast %d\n",
7178                       priv->qos_data.qos_enable, active, supported, unicast);
7179         if (active && priv->qos_data.qos_enable)
7180                 return 1;
7181 
7182         return 0;
7183 
7184 }
7185 /*
7186 * add QoS parameter to the TX command
7187 */
7188 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7189                                         u16 priority,
7190                                         struct tfd_data *tfd)
7191 {
7192         int tx_queue_id = 0;
7193 
7194 
7195         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7196         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7197 
7198         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7199                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7200                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7201         }
7202         return 0;
7203 }
7204 
7205 /*
7206 * background support to run QoS activate functionality
7207 */
7208 static void ipw_bg_qos_activate(struct work_struct *work)
7209 {
7210         struct ipw_priv *priv =
7211                 container_of(work, struct ipw_priv, qos_activate);
7212 
7213         mutex_lock(&priv->mutex);
7214 
7215         if (priv->status & STATUS_ASSOCIATED)
7216                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7217 
7218         mutex_unlock(&priv->mutex);
7219 }
7220 
7221 static int ipw_handle_probe_response(struct net_device *dev,
7222                                      struct libipw_probe_response *resp,
7223                                      struct libipw_network *network)
7224 {
7225         struct ipw_priv *priv = libipw_priv(dev);
7226         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7227                               (network == priv->assoc_network));
7228 
7229         ipw_qos_handle_probe_response(priv, active_network, network);
7230 
7231         return 0;
7232 }
7233 
7234 static int ipw_handle_beacon(struct net_device *dev,
7235                              struct libipw_beacon *resp,
7236                              struct libipw_network *network)
7237 {
7238         struct ipw_priv *priv = libipw_priv(dev);
7239         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7240                               (network == priv->assoc_network));
7241 
7242         ipw_qos_handle_probe_response(priv, active_network, network);
7243 
7244         return 0;
7245 }
7246 
7247 static int ipw_handle_assoc_response(struct net_device *dev,
7248                                      struct libipw_assoc_response *resp,
7249                                      struct libipw_network *network)
7250 {
7251         struct ipw_priv *priv = libipw_priv(dev);
7252         ipw_qos_association_resp(priv, network);
7253         return 0;
7254 }
7255 
7256 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7257                                        *qos_param)
7258 {
7259         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7260                                 sizeof(*qos_param) * 3, qos_param);
7261 }
7262 
7263 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7264                                      *qos_param)
7265 {
7266         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7267                                 qos_param);
7268 }
7269 
7270 #endif                          /* CONFIG_IPW2200_QOS */
7271 
7272 static int ipw_associate_network(struct ipw_priv *priv,
7273                                  struct libipw_network *network,
7274                                  struct ipw_supported_rates *rates, int roaming)
7275 {
7276         int err;
7277 
7278         if (priv->config & CFG_FIXED_RATE)
7279                 ipw_set_fixed_rate(priv, network->mode);
7280 
7281         if (!(priv->config & CFG_STATIC_ESSID)) {
7282                 priv->essid_len = min(network->ssid_len,
7283                                       (u8) IW_ESSID_MAX_SIZE);
7284                 memcpy(priv->essid, network->ssid, priv->essid_len);
7285         }
7286 
7287         network->last_associate = jiffies;
7288 
7289         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7290         priv->assoc_request.channel = network->channel;
7291         priv->assoc_request.auth_key = 0;
7292 
7293         if ((priv->capability & CAP_PRIVACY_ON) &&
7294             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7295                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7296                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7297 
7298                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7299                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7300 
7301         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7302                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7303                 priv->assoc_request.auth_type = AUTH_LEAP;
7304         else
7305                 priv->assoc_request.auth_type = AUTH_OPEN;
7306 
7307         if (priv->ieee->wpa_ie_len) {
7308                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7309                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7310                                  priv->ieee->wpa_ie_len);
7311         }
7312 
7313         /*
7314          * It is valid for our ieee device to support multiple modes, but
7315          * when it comes to associating to a given network we have to choose
7316          * just one mode.
7317          */
7318         if (network->mode & priv->ieee->mode & IEEE_A)
7319                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7320         else if (network->mode & priv->ieee->mode & IEEE_G)
7321                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7322         else if (network->mode & priv->ieee->mode & IEEE_B)
7323                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7324 
7325         priv->assoc_request.capability = cpu_to_le16(network->capability);
7326         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7327             && !(priv->config & CFG_PREAMBLE_LONG)) {
7328                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7329         } else {
7330                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7331 
7332                 /* Clear the short preamble if we won't be supporting it */
7333                 priv->assoc_request.capability &=
7334                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7335         }
7336 
7337         /* Clear capability bits that aren't used in Ad Hoc */
7338         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7339                 priv->assoc_request.capability &=
7340                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7341 
7342         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7343                         roaming ? "Rea" : "A",
7344                         priv->essid_len, priv->essid,
7345                         network->channel,
7346                         ipw_modes[priv->assoc_request.ieee_mode],
7347                         rates->num_rates,
7348                         (priv->assoc_request.preamble_length ==
7349                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7350                         network->capability &
7351                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7352                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7353                         priv->capability & CAP_PRIVACY_ON ?
7354                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7355                          "(open)") : "",
7356                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7357                         priv->capability & CAP_PRIVACY_ON ?
7358                         '1' + priv->ieee->sec.active_key : '.',
7359                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7360 
7361         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7362         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7363             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7364                 priv->assoc_request.assoc_type = HC_IBSS_START;
7365                 priv->assoc_request.assoc_tsf_msw = 0;
7366                 priv->assoc_request.assoc_tsf_lsw = 0;
7367         } else {
7368                 if (unlikely(roaming))
7369                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7370                 else
7371                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7372                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7373                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7374         }
7375 
7376         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7377 
7378         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7379                 eth_broadcast_addr(priv->assoc_request.dest);
7380                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7381         } else {
7382                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7383                 priv->assoc_request.atim_window = 0;
7384         }
7385 
7386         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7387 
7388         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7389         if (err) {
7390                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7391                 return err;
7392         }
7393 
7394         rates->ieee_mode = priv->assoc_request.ieee_mode;
7395         rates->purpose = IPW_RATE_CONNECT;
7396         ipw_send_supported_rates(priv, rates);
7397 
7398         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7399                 priv->sys_config.dot11g_auto_detection = 1;
7400         else
7401                 priv->sys_config.dot11g_auto_detection = 0;
7402 
7403         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7404                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7405         else
7406                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7407 
7408         err = ipw_send_system_config(priv);
7409         if (err) {
7410                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7411                 return err;
7412         }
7413 
7414         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7415         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7416         if (err) {
7417                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7418                 return err;
7419         }
7420 
7421         /*
7422          * If preemption is enabled, it is possible for the association
7423          * to complete before we return from ipw_send_associate.  Therefore
7424          * we have to be sure and update our priviate data first.
7425          */
7426         priv->channel = network->channel;
7427         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7428         priv->status |= STATUS_ASSOCIATING;
7429         priv->status &= ~STATUS_SECURITY_UPDATED;
7430 
7431         priv->assoc_network = network;
7432 
7433 #ifdef CONFIG_IPW2200_QOS
7434         ipw_qos_association(priv, network);
7435 #endif
7436 
7437         err = ipw_send_associate(priv, &priv->assoc_request);
7438         if (err) {
7439                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7440                 return err;
7441         }
7442 
7443         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7444                   priv->essid_len, priv->essid, priv->bssid);
7445 
7446         return 0;
7447 }
7448 
7449 static void ipw_roam(void *data)
7450 {
7451         struct ipw_priv *priv = data;
7452         struct libipw_network *network = NULL;
7453         struct ipw_network_match match = {
7454                 .network = priv->assoc_network
7455         };
7456 
7457         /* The roaming process is as follows:
7458          *
7459          * 1.  Missed beacon threshold triggers the roaming process by
7460          *     setting the status ROAM bit and requesting a scan.
7461          * 2.  When the scan completes, it schedules the ROAM work
7462          * 3.  The ROAM work looks at all of the known networks for one that
7463          *     is a better network than the currently associated.  If none
7464          *     found, the ROAM process is over (ROAM bit cleared)
7465          * 4.  If a better network is found, a disassociation request is
7466          *     sent.
7467          * 5.  When the disassociation completes, the roam work is again
7468          *     scheduled.  The second time through, the driver is no longer
7469          *     associated, and the newly selected network is sent an
7470          *     association request.
7471          * 6.  At this point ,the roaming process is complete and the ROAM
7472          *     status bit is cleared.
7473          */
7474 
7475         /* If we are no longer associated, and the roaming bit is no longer
7476          * set, then we are not actively roaming, so just return */
7477         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7478                 return;
7479 
7480         if (priv->status & STATUS_ASSOCIATED) {
7481                 /* First pass through ROAM process -- look for a better
7482                  * network */
7483                 unsigned long flags;
7484                 u8 rssi = priv->assoc_network->stats.rssi;
7485                 priv->assoc_network->stats.rssi = -128;
7486                 spin_lock_irqsave(&priv->ieee->lock, flags);
7487                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7488                         if (network != priv->assoc_network)
7489                                 ipw_best_network(priv, &match, network, 1);
7490                 }
7491                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7492                 priv->assoc_network->stats.rssi = rssi;
7493 
7494                 if (match.network == priv->assoc_network) {
7495                         IPW_DEBUG_ASSOC("No better APs in this network to "
7496                                         "roam to.\n");
7497                         priv->status &= ~STATUS_ROAMING;
7498                         ipw_debug_config(priv);
7499                         return;
7500                 }
7501 
7502                 ipw_send_disassociate(priv, 1);
7503                 priv->assoc_network = match.network;
7504 
7505                 return;
7506         }
7507 
7508         /* Second pass through ROAM process -- request association */
7509         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7510         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7511         priv->status &= ~STATUS_ROAMING;
7512 }
7513 
7514 static void ipw_bg_roam(struct work_struct *work)
7515 {
7516         struct ipw_priv *priv =
7517                 container_of(work, struct ipw_priv, roam);
7518         mutex_lock(&priv->mutex);
7519         ipw_roam(priv);
7520         mutex_unlock(&priv->mutex);
7521 }
7522 
7523 static int ipw_associate(void *data)
7524 {
7525         struct ipw_priv *priv = data;
7526 
7527         struct libipw_network *network = NULL;
7528         struct ipw_network_match match = {
7529                 .network = NULL
7530         };
7531         struct ipw_supported_rates *rates;
7532         struct list_head *element;
7533         unsigned long flags;
7534 
7535         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7536                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7537                 return 0;
7538         }
7539 
7540         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7541                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7542                                 "progress)\n");
7543                 return 0;
7544         }
7545 
7546         if (priv->status & STATUS_DISASSOCIATING) {
7547                 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7548                 schedule_work(&priv->associate);
7549                 return 0;
7550         }
7551 
7552         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7553                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7554                                 "initialized)\n");
7555                 return 0;
7556         }
7557 
7558         if (!(priv->config & CFG_ASSOCIATE) &&
7559             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7560                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7561                 return 0;
7562         }
7563 
7564         /* Protect our use of the network_list */
7565         spin_lock_irqsave(&priv->ieee->lock, flags);
7566         list_for_each_entry(network, &priv->ieee->network_list, list)
7567             ipw_best_network(priv, &match, network, 0);
7568 
7569         network = match.network;
7570         rates = &match.rates;
7571 
7572         if (network == NULL &&
7573             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7574             priv->config & CFG_ADHOC_CREATE &&
7575             priv->config & CFG_STATIC_ESSID &&
7576             priv->config & CFG_STATIC_CHANNEL) {
7577                 /* Use oldest network if the free list is empty */
7578                 if (list_empty(&priv->ieee->network_free_list)) {
7579                         struct libipw_network *oldest = NULL;
7580                         struct libipw_network *target;
7581 
7582                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7583                                 if ((oldest == NULL) ||
7584                                     (target->last_scanned < oldest->last_scanned))
7585                                         oldest = target;
7586                         }
7587 
7588                         /* If there are no more slots, expire the oldest */
7589                         list_del(&oldest->list);
7590                         target = oldest;
7591                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7592                                         target->ssid_len, target->ssid,
7593                                         target->bssid);
7594                         list_add_tail(&target->list,
7595                                       &priv->ieee->network_free_list);
7596                 }
7597 
7598                 element = priv->ieee->network_free_list.next;
7599                 network = list_entry(element, struct libipw_network, list);
7600                 ipw_adhoc_create(priv, network);
7601                 rates = &priv->rates;
7602                 list_del(element);
7603                 list_add_tail(&network->list, &priv->ieee->network_list);
7604         }
7605         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7606 
7607         /* If we reached the end of the list, then we don't have any valid
7608          * matching APs */
7609         if (!network) {
7610                 ipw_debug_config(priv);
7611 
7612                 if (!(priv->status & STATUS_SCANNING)) {
7613                         if (!(priv->config & CFG_SPEED_SCAN))
7614                                 schedule_delayed_work(&priv->request_scan,
7615                                                       SCAN_INTERVAL);
7616                         else
7617                                 schedule_delayed_work(&priv->request_scan, 0);
7618                 }
7619 
7620                 return 0;
7621         }
7622 
7623         ipw_associate_network(priv, network, rates, 0);
7624 
7625         return 1;
7626 }
7627 
7628 static void ipw_bg_associate(struct work_struct *work)
7629 {
7630         struct ipw_priv *priv =
7631                 container_of(work, struct ipw_priv, associate);
7632         mutex_lock(&priv->mutex);
7633         ipw_associate(priv);
7634         mutex_unlock(&priv->mutex);
7635 }
7636 
7637 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7638                                       struct sk_buff *skb)
7639 {
7640         struct ieee80211_hdr *hdr;
7641         u16 fc;
7642 
7643         hdr = (struct ieee80211_hdr *)skb->data;
7644         fc = le16_to_cpu(hdr->frame_control);
7645         if (!(fc & IEEE80211_FCTL_PROTECTED))
7646                 return;
7647 
7648         fc &= ~IEEE80211_FCTL_PROTECTED;
7649         hdr->frame_control = cpu_to_le16(fc);
7650         switch (priv->ieee->sec.level) {
7651         case SEC_LEVEL_3:
7652                 /* Remove CCMP HDR */
7653                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7654                         skb->data + LIBIPW_3ADDR_LEN + 8,
7655                         skb->len - LIBIPW_3ADDR_LEN - 8);
7656                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7657                 break;
7658         case SEC_LEVEL_2:
7659                 break;
7660         case SEC_LEVEL_1:
7661                 /* Remove IV */
7662                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7663                         skb->data + LIBIPW_3ADDR_LEN + 4,
7664                         skb->len - LIBIPW_3ADDR_LEN - 4);
7665                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7666                 break;
7667         case SEC_LEVEL_0:
7668                 break;
7669         default:
7670                 printk(KERN_ERR "Unknown security level %d\n",
7671                        priv->ieee->sec.level);
7672                 break;
7673         }
7674 }
7675 
7676 static void ipw_handle_data_packet(struct ipw_priv *priv,
7677                                    struct ipw_rx_mem_buffer *rxb,
7678                                    struct libipw_rx_stats *stats)
7679 {
7680         struct net_device *dev = priv->net_dev;
7681         struct libipw_hdr_4addr *hdr;
7682         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7683 
7684         /* We received data from the HW, so stop the watchdog */
7685         netif_trans_update(dev);
7686 
7687         /* We only process data packets if the
7688          * interface is open */
7689         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7690                      skb_tailroom(rxb->skb))) {
7691                 dev->stats.rx_errors++;
7692                 priv->wstats.discard.misc++;
7693                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7694                 return;
7695         } else if (unlikely(!netif_running(priv->net_dev))) {
7696                 dev->stats.rx_dropped++;
7697                 priv->wstats.discard.misc++;
7698                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7699                 return;
7700         }
7701 
7702         /* Advance skb->data to the start of the actual payload */
7703         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7704 
7705         /* Set the size of the skb to the size of the frame */
7706         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7707 
7708         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7709 
7710         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7711         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7712         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7713             (is_multicast_ether_addr(hdr->addr1) ?
7714              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7715                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7716 
7717         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7718                 dev->stats.rx_errors++;
7719         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7720                 rxb->skb = NULL;
7721                 __ipw_led_activity_on(priv);
7722         }
7723 }
7724 
7725 #ifdef CONFIG_IPW2200_RADIOTAP
7726 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7727                                            struct ipw_rx_mem_buffer *rxb,
7728                                            struct libipw_rx_stats *stats)
7729 {
7730         struct net_device *dev = priv->net_dev;
7731         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7732         struct ipw_rx_frame *frame = &pkt->u.frame;
7733 
7734         /* initial pull of some data */
7735         u16 received_channel = frame->received_channel;
7736         u8 antennaAndPhy = frame->antennaAndPhy;
7737         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7738         u16 pktrate = frame->rate;
7739 
7740         /* Magic struct that slots into the radiotap header -- no reason
7741          * to build this manually element by element, we can write it much
7742          * more efficiently than we can parse it. ORDER MATTERS HERE */
7743         struct ipw_rt_hdr *ipw_rt;
7744 
7745         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7746 
7747         /* We received data from the HW, so stop the watchdog */
7748         netif_trans_update(dev);
7749 
7750         /* We only process data packets if the
7751          * interface is open */
7752         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7753                      skb_tailroom(rxb->skb))) {
7754                 dev->stats.rx_errors++;
7755                 priv->wstats.discard.misc++;
7756                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7757                 return;
7758         } else if (unlikely(!netif_running(priv->net_dev))) {
7759                 dev->stats.rx_dropped++;
7760                 priv->wstats.discard.misc++;
7761                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7762                 return;
7763         }
7764 
7765         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7766          * that now */
7767         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7768                 /* FIXME: Should alloc bigger skb instead */
7769                 dev->stats.rx_dropped++;
7770                 priv->wstats.discard.misc++;
7771                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7772                 return;
7773         }
7774 
7775         /* copy the frame itself */
7776         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7777                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7778 
7779         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7780 
7781         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7782         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7783         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7784 
7785         /* Big bitfield of all the fields we provide in radiotap */
7786         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7787              (1 << IEEE80211_RADIOTAP_TSFT) |
7788              (1 << IEEE80211_RADIOTAP_FLAGS) |
7789              (1 << IEEE80211_RADIOTAP_RATE) |
7790              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7791              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7792              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7793              (1 << IEEE80211_RADIOTAP_ANTENNA));
7794 
7795         /* Zero the flags, we'll add to them as we go */
7796         ipw_rt->rt_flags = 0;
7797         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7798                                frame->parent_tsf[2] << 16 |
7799                                frame->parent_tsf[1] << 8  |
7800                                frame->parent_tsf[0]);
7801 
7802         /* Convert signal to DBM */
7803         ipw_rt->rt_dbmsignal = antsignal;
7804         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7805 
7806         /* Convert the channel data and set the flags */
7807         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7808         if (received_channel > 14) {    /* 802.11a */
7809                 ipw_rt->rt_chbitmask =
7810                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7811         } else if (antennaAndPhy & 32) {        /* 802.11b */
7812                 ipw_rt->rt_chbitmask =
7813                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7814         } else {                /* 802.11g */
7815                 ipw_rt->rt_chbitmask =
7816                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7817         }
7818 
7819         /* set the rate in multiples of 500k/s */
7820         switch (pktrate) {
7821         case IPW_TX_RATE_1MB:
7822                 ipw_rt->rt_rate = 2;
7823                 break;
7824         case IPW_TX_RATE_2MB:
7825                 ipw_rt->rt_rate = 4;
7826                 break;
7827         case IPW_TX_RATE_5MB:
7828                 ipw_rt->rt_rate = 10;
7829                 break;
7830         case IPW_TX_RATE_6MB:
7831                 ipw_rt->rt_rate = 12;
7832                 break;
7833         case IPW_TX_RATE_9MB:
7834                 ipw_rt->rt_rate = 18;
7835                 break;
7836         case IPW_TX_RATE_11MB:
7837                 ipw_rt->rt_rate = 22;
7838                 break;
7839         case IPW_TX_RATE_12MB:
7840                 ipw_rt->rt_rate = 24;
7841                 break;
7842         case IPW_TX_RATE_18MB:
7843                 ipw_rt->rt_rate = 36;
7844                 break;
7845         case IPW_TX_RATE_24MB:
7846                 ipw_rt->rt_rate = 48;
7847                 break;
7848         case IPW_TX_RATE_36MB:
7849                 ipw_rt->rt_rate = 72;
7850                 break;
7851         case IPW_TX_RATE_48MB:
7852                 ipw_rt->rt_rate = 96;
7853                 break;
7854         case IPW_TX_RATE_54MB:
7855                 ipw_rt->rt_rate = 108;
7856                 break;
7857         default:
7858                 ipw_rt->rt_rate = 0;
7859                 break;
7860         }
7861 
7862         /* antenna number */
7863         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7864 
7865         /* set the preamble flag if we have it */
7866         if ((antennaAndPhy & 64))
7867                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7868 
7869         /* Set the size of the skb to the size of the frame */
7870         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7871 
7872         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7873 
7874         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7875                 dev->stats.rx_errors++;
7876         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7877                 rxb->skb = NULL;
7878                 /* no LED during capture */
7879         }
7880 }
7881 #endif
7882 
7883 #ifdef CONFIG_IPW2200_PROMISCUOUS
7884 #define libipw_is_probe_response(fc) \
7885    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7886     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7887 
7888 #define libipw_is_management(fc) \
7889    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7890 
7891 #define libipw_is_control(fc) \
7892    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7893 
7894 #define libipw_is_data(fc) \
7895    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7896 
7897 #define libipw_is_assoc_request(fc) \
7898    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7899 
7900 #define libipw_is_reassoc_request(fc) \
7901    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7902 
7903 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7904                                       struct ipw_rx_mem_buffer *rxb,
7905                                       struct libipw_rx_stats *stats)
7906 {
7907         struct net_device *dev = priv->prom_net_dev;
7908         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7909         struct ipw_rx_frame *frame = &pkt->u.frame;
7910         struct ipw_rt_hdr *ipw_rt;
7911 
7912         /* First cache any information we need before we overwrite
7913          * the information provided in the skb from the hardware */
7914         struct ieee80211_hdr *hdr;
7915         u16 channel = frame->received_channel;
7916         u8 phy_flags = frame->antennaAndPhy;
7917         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7918         s8 noise = (s8) le16_to_cpu(frame->noise);
7919         u8 rate = frame->rate;
7920         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7921         struct sk_buff *skb;
7922         int hdr_only = 0;
7923         u16 filter = priv->prom_priv->filter;
7924 
7925         /* If the filter is set to not include Rx frames then return */
7926         if (filter & IPW_PROM_NO_RX)
7927                 return;
7928 
7929         /* We received data from the HW, so stop the watchdog */
7930         netif_trans_update(dev);
7931 
7932         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7933                 dev->stats.rx_errors++;
7934                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7935                 return;
7936         }
7937 
7938         /* We only process data packets if the interface is open */
7939         if (unlikely(!netif_running(dev))) {
7940                 dev->stats.rx_dropped++;
7941                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7942                 return;
7943         }
7944 
7945         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7946          * that now */
7947         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7948                 /* FIXME: Should alloc bigger skb instead */
7949                 dev->stats.rx_dropped++;
7950                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7951                 return;
7952         }
7953 
7954         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7955         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7956                 if (filter & IPW_PROM_NO_MGMT)
7957                         return;
7958                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7959                         hdr_only = 1;
7960         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7961                 if (filter & IPW_PROM_NO_CTL)
7962                         return;
7963                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7964                         hdr_only = 1;
7965         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7966                 if (filter & IPW_PROM_NO_DATA)
7967                         return;
7968                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7969                         hdr_only = 1;
7970         }
7971 
7972         /* Copy the SKB since this is for the promiscuous side */
7973         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7974         if (skb == NULL) {
7975                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7976                 return;
7977         }
7978 
7979         /* copy the frame data to write after where the radiotap header goes */
7980         ipw_rt = (void *)skb->data;
7981 
7982         if (hdr_only)
7983                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7984 
7985         memcpy(ipw_rt->payload, hdr, len);
7986 
7987         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7988         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7989         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
7990 
7991         /* Set the size of the skb to the size of the frame */
7992         skb_put(skb, sizeof(*ipw_rt) + len);
7993 
7994         /* Big bitfield of all the fields we provide in radiotap */
7995         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7996              (1 << IEEE80211_RADIOTAP_TSFT) |
7997              (1 << IEEE80211_RADIOTAP_FLAGS) |
7998              (1 << IEEE80211_RADIOTAP_RATE) |
7999              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8000              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8001              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8002              (1 << IEEE80211_RADIOTAP_ANTENNA));
8003 
8004         /* Zero the flags, we'll add to them as we go */
8005         ipw_rt->rt_flags = 0;
8006         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8007                                frame->parent_tsf[2] << 16 |
8008                                frame->parent_tsf[1] << 8  |
8009                                frame->parent_tsf[0]);
8010 
8011         /* Convert to DBM */
8012         ipw_rt->rt_dbmsignal = signal;
8013         ipw_rt->rt_dbmnoise = noise;
8014 
8015         /* Convert the channel data and set the flags */
8016         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8017         if (channel > 14) {     /* 802.11a */
8018                 ipw_rt->rt_chbitmask =
8019                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8020         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8021                 ipw_rt->rt_chbitmask =
8022                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8023         } else {                /* 802.11g */
8024                 ipw_rt->rt_chbitmask =
8025                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8026         }
8027 
8028         /* set the rate in multiples of 500k/s */
8029         switch (rate) {
8030         case IPW_TX_RATE_1MB:
8031                 ipw_rt->rt_rate = 2;
8032                 break;
8033         case IPW_TX_RATE_2MB:
8034                 ipw_rt->rt_rate = 4;
8035                 break;
8036         case IPW_TX_RATE_5MB:
8037                 ipw_rt->rt_rate = 10;
8038                 break;
8039         case IPW_TX_RATE_6MB:
8040                 ipw_rt->rt_rate = 12;
8041                 break;
8042         case IPW_TX_RATE_9MB:
8043                 ipw_rt->rt_rate = 18;
8044                 break;
8045         case IPW_TX_RATE_11MB:
8046                 ipw_rt->rt_rate = 22;
8047                 break;
8048         case IPW_TX_RATE_12MB:
8049                 ipw_rt->rt_rate = 24;
8050                 break;
8051         case IPW_TX_RATE_18MB:
8052                 ipw_rt->rt_rate = 36;
8053                 break;
8054         case IPW_TX_RATE_24MB:
8055                 ipw_rt->rt_rate = 48;
8056                 break;
8057         case IPW_TX_RATE_36MB:
8058                 ipw_rt->rt_rate = 72;
8059                 break;
8060         case IPW_TX_RATE_48MB:
8061                 ipw_rt->rt_rate = 96;
8062                 break;
8063         case IPW_TX_RATE_54MB:
8064                 ipw_rt->rt_rate = 108;
8065                 break;
8066         default:
8067                 ipw_rt->rt_rate = 0;
8068                 break;
8069         }
8070 
8071         /* antenna number */
8072         ipw_rt->rt_antenna = (phy_flags & 3);
8073 
8074         /* set the preamble flag if we have it */
8075         if (phy_flags & (1 << 6))
8076                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8077 
8078         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8079 
8080         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8081                 dev->stats.rx_errors++;
8082                 dev_kfree_skb_any(skb);
8083         }
8084 }
8085 #endif
8086 
8087 static int is_network_packet(struct ipw_priv *priv,
8088                                     struct libipw_hdr_4addr *header)
8089 {
8090         /* Filter incoming packets to determine if they are targeted toward
8091          * this network, discarding packets coming from ourselves */
8092         switch (priv->ieee->iw_mode) {
8093         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8094                 /* packets from our adapter are dropped (echo) */
8095                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8096                         return 0;
8097 
8098                 /* {broad,multi}cast packets to our BSSID go through */
8099                 if (is_multicast_ether_addr(header->addr1))
8100                         return ether_addr_equal(header->addr3, priv->bssid);
8101 
8102                 /* packets to our adapter go through */
8103                 return ether_addr_equal(header->addr1,
8104                                         priv->net_dev->dev_addr);
8105 
8106         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8107                 /* packets from our adapter are dropped (echo) */
8108                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8109                         return 0;
8110 
8111                 /* {broad,multi}cast packets to our BSS go through */
8112                 if (is_multicast_ether_addr(header->addr1))
8113                         return ether_addr_equal(header->addr2, priv->bssid);
8114 
8115                 /* packets to our adapter go through */
8116                 return ether_addr_equal(header->addr1,
8117                                         priv->net_dev->dev_addr);
8118         }
8119 
8120         return 1;
8121 }
8122 
8123 #define IPW_PACKET_RETRY_TIME HZ
8124 
8125 static  int is_duplicate_packet(struct ipw_priv *priv,
8126                                       struct libipw_hdr_4addr *header)
8127 {
8128         u16 sc = le16_to_cpu(header->seq_ctl);
8129         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8130         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8131         u16 *last_seq, *last_frag;
8132         unsigned long *last_time;
8133 
8134         switch (priv->ieee->iw_mode) {
8135         case IW_MODE_ADHOC:
8136                 {
8137                         struct list_head *p;
8138                         struct ipw_ibss_seq *entry = NULL;
8139                         u8 *mac = header->addr2;
8140                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8141 
8142                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8143                                 entry =
8144                                     list_entry(p, struct ipw_ibss_seq, list);
8145                                 if (ether_addr_equal(entry->mac, mac))
8146                                         break;
8147                         }
8148                         if (p == &priv->ibss_mac_hash[index]) {
8149                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8150                                 if (!entry) {
8151                                         IPW_ERROR
8152                                             ("Cannot malloc new mac entry\n");
8153                                         return 0;
8154                                 }
8155                                 memcpy(entry->mac, mac, ETH_ALEN);
8156                                 entry->seq_num = seq;
8157                                 entry->frag_num = frag;
8158                                 entry->packet_time = jiffies;
8159                                 list_add(&entry->list,
8160                                          &priv->ibss_mac_hash[index]);
8161                                 return 0;
8162                         }
8163                         last_seq = &entry->seq_num;
8164                         last_frag = &entry->frag_num;
8165                         last_time = &entry->packet_time;
8166                         break;
8167                 }
8168         case IW_MODE_INFRA:
8169                 last_seq = &priv->last_seq_num;
8170                 last_frag = &priv->last_frag_num;
8171                 last_time = &priv->last_packet_time;
8172                 break;
8173         default:
8174                 return 0;
8175         }
8176         if ((*last_seq == seq) &&
8177             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8178                 if (*last_frag == frag)
8179                         goto drop;
8180                 if (*last_frag + 1 != frag)
8181                         /* out-of-order fragment */
8182                         goto drop;
8183         } else
8184                 *last_seq = seq;
8185 
8186         *last_frag = frag;
8187         *last_time = jiffies;
8188         return 0;
8189 
8190       drop:
8191         /* Comment this line now since we observed the card receives
8192          * duplicate packets but the FCTL_RETRY bit is not set in the
8193          * IBSS mode with fragmentation enabled.
8194          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8195         return 1;
8196 }
8197 
8198 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8199                                    struct ipw_rx_mem_buffer *rxb,
8200                                    struct libipw_rx_stats *stats)
8201 {
8202         struct sk_buff *skb = rxb->skb;
8203         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8204         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8205             (skb->data + IPW_RX_FRAME_SIZE);
8206 
8207         libipw_rx_mgt(priv->ieee, header, stats);
8208 
8209         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8210             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8211               IEEE80211_STYPE_PROBE_RESP) ||
8212              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8213               IEEE80211_STYPE_BEACON))) {
8214                 if (ether_addr_equal(header->addr3, priv->bssid))
8215                         ipw_add_station(priv, header->addr2);
8216         }
8217 
8218         if (priv->config & CFG_NET_STATS) {
8219                 IPW_DEBUG_HC("sending stat packet\n");
8220 
8221                 /* Set the size of the skb to the size of the full
8222                  * ipw header and 802.11 frame */
8223                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8224                         IPW_RX_FRAME_SIZE);
8225 
8226                 /* Advance past the ipw packet header to the 802.11 frame */
8227                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8228 
8229                 /* Push the libipw_rx_stats before the 802.11 frame */
8230                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8231 
8232                 skb->dev = priv->ieee->dev;
8233 
8234                 /* Point raw at the libipw_stats */
8235                 skb_reset_mac_header(skb);
8236 
8237                 skb->pkt_type = PACKET_OTHERHOST;
8238                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8239                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8240                 netif_rx(skb);
8241                 rxb->skb = NULL;
8242         }
8243 }
8244 
8245 /*
8246  * Main entry function for receiving a packet with 80211 headers.  This
8247  * should be called when ever the FW has notified us that there is a new
8248  * skb in the receive queue.
8249  */
8250 static void ipw_rx(struct ipw_priv *priv)
8251 {
8252         struct ipw_rx_mem_buffer *rxb;
8253         struct ipw_rx_packet *pkt;
8254         struct libipw_hdr_4addr *header;
8255         u32 r, w, i;
8256         u8 network_packet;
8257         u8 fill_rx = 0;
8258 
8259         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8260         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8261         i = priv->rxq->read;
8262 
8263         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8264                 fill_rx = 1;
8265 
8266         while (i != r) {
8267                 rxb = priv->rxq->queue[i];
8268                 if (unlikely(rxb == NULL)) {
8269                         printk(KERN_CRIT "Queue not allocated!\n");
8270                         break;
8271                 }
8272                 priv->rxq->queue[i] = NULL;
8273 
8274                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8275                                             IPW_RX_BUF_SIZE,
8276                                             PCI_DMA_FROMDEVICE);
8277 
8278                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8279                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8280                              pkt->header.message_type,
8281                              pkt->header.rx_seq_num, pkt->header.control_bits);
8282 
8283                 switch (pkt->header.message_type) {
8284                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8285                                 struct libipw_rx_stats stats = {
8286                                         .rssi = pkt->u.frame.rssi_dbm -
8287                                             IPW_RSSI_TO_DBM,
8288                                         .signal =
8289                                             pkt->u.frame.rssi_dbm -
8290                                             IPW_RSSI_TO_DBM + 0x100,
8291                                         .noise =
8292                                             le16_to_cpu(pkt->u.frame.noise),
8293                                         .rate = pkt->u.frame.rate,
8294                                         .mac_time = jiffies,
8295                                         .received_channel =
8296                                             pkt->u.frame.received_channel,
8297                                         .freq =
8298                                             (pkt->u.frame.
8299                                              control & (1 << 0)) ?
8300                                             LIBIPW_24GHZ_BAND :
8301                                             LIBIPW_52GHZ_BAND,
8302                                         .len = le16_to_cpu(pkt->u.frame.length),
8303                                 };
8304 
8305                                 if (stats.rssi != 0)
8306                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8307                                 if (stats.signal != 0)
8308                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8309                                 if (stats.noise != 0)
8310                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8311                                 if (stats.rate != 0)
8312                                         stats.mask |= LIBIPW_STATMASK_RATE;
8313 
8314                                 priv->rx_packets++;
8315 
8316 #ifdef CONFIG_IPW2200_PROMISCUOUS
8317         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8318                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8319 #endif
8320 
8321 #ifdef CONFIG_IPW2200_MONITOR
8322                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8323 #ifdef CONFIG_IPW2200_RADIOTAP
8324 
8325                 ipw_handle_data_packet_monitor(priv,
8326                                                rxb,
8327                                                &stats);
8328 #else
8329                 ipw_handle_data_packet(priv, rxb,
8330                                        &stats);
8331 #endif
8332                                         break;
8333                                 }
8334 #endif
8335 
8336                                 header =
8337                                     (struct libipw_hdr_4addr *)(rxb->skb->
8338                                                                    data +
8339                                                                    IPW_RX_FRAME_SIZE);
8340                                 /* TODO: Check Ad-Hoc dest/source and make sure
8341                                  * that we are actually parsing these packets
8342                                  * correctly -- we should probably use the
8343                                  * frame control of the packet and disregard
8344                                  * the current iw_mode */
8345 
8346                                 network_packet =
8347                                     is_network_packet(priv, header);
8348                                 if (network_packet && priv->assoc_network) {
8349                                         priv->assoc_network->stats.rssi =
8350                                             stats.rssi;
8351                                         priv->exp_avg_rssi =
8352                                             exponential_average(priv->exp_avg_rssi,
8353                                             stats.rssi, DEPTH_RSSI);
8354                                 }
8355 
8356                                 IPW_DEBUG_RX("Frame: len=%u\n",
8357                                              le16_to_cpu(pkt->u.frame.length));
8358 
8359                                 if (le16_to_cpu(pkt->u.frame.length) <
8360                                     libipw_get_hdrlen(le16_to_cpu(
8361                                                     header->frame_ctl))) {
8362                                         IPW_DEBUG_DROP
8363                                             ("Received packet is too small. "
8364                                              "Dropping.\n");
8365                                         priv->net_dev->stats.rx_errors++;
8366                                         priv->wstats.discard.misc++;
8367                                         break;
8368                                 }
8369 
8370                                 switch (WLAN_FC_GET_TYPE
8371                                         (le16_to_cpu(header->frame_ctl))) {
8372 
8373                                 case IEEE80211_FTYPE_MGMT:
8374                                         ipw_handle_mgmt_packet(priv, rxb,
8375                                                                &stats);
8376                                         break;
8377 
8378                                 case IEEE80211_FTYPE_CTL:
8379                                         break;
8380 
8381                                 case IEEE80211_FTYPE_DATA:
8382                                         if (unlikely(!network_packet ||
8383                                                      is_duplicate_packet(priv,
8384                                                                          header)))
8385                                         {
8386                                                 IPW_DEBUG_DROP("Dropping: "
8387                                                                "%pM, "
8388                                                                "%pM, "
8389                                                                "%pM\n",
8390                                                                header->addr1,
8391                                                                header->addr2,
8392                                                                header->addr3);
8393                                                 break;
8394                                         }
8395 
8396                                         ipw_handle_data_packet(priv, rxb,
8397                                                                &stats);
8398 
8399                                         break;
8400                                 }
8401                                 break;
8402                         }
8403 
8404                 case RX_HOST_NOTIFICATION_TYPE:{
8405                                 IPW_DEBUG_RX
8406                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8407                                      pkt->u.notification.subtype,
8408                                      pkt->u.notification.flags,
8409                                      le16_to_cpu(pkt->u.notification.size));
8410                                 ipw_rx_notification(priv, &pkt->u.notification);
8411                                 break;
8412                         }
8413 
8414                 default:
8415                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8416                                      pkt->header.message_type);
8417                         break;
8418                 }
8419 
8420                 /* For now we just don't re-use anything.  We can tweak this
8421                  * later to try and re-use notification packets and SKBs that
8422                  * fail to Rx correctly */
8423                 if (rxb->skb != NULL) {
8424                         dev_kfree_skb_any(rxb->skb);
8425                         rxb->skb = NULL;
8426                 }
8427 
8428                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8429                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8430                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8431 
8432                 i = (i + 1) % RX_QUEUE_SIZE;
8433 
8434                 /* If there are a lot of unsued frames, restock the Rx queue
8435                  * so the ucode won't assert */
8436                 if (fill_rx) {
8437                         priv->rxq->read = i;
8438                         ipw_rx_queue_replenish(priv);
8439                 }
8440         }
8441 
8442         /* Backtrack one entry */
8443         priv->rxq->read = i;
8444         ipw_rx_queue_restock(priv);
8445 }
8446 
8447 #define DEFAULT_RTS_THRESHOLD     2304U
8448 #define MIN_RTS_THRESHOLD         1U
8449 #define MAX_RTS_THRESHOLD         2304U
8450 #define DEFAULT_BEACON_INTERVAL   100U
8451 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8452 #define DEFAULT_LONG_RETRY_LIMIT  4U
8453 
8454 /**
8455  * ipw_sw_reset
8456  * @option: options to control different reset behaviour
8457  *          0 = reset everything except the 'disable' module_param
8458  *          1 = reset everything and print out driver info (for probe only)
8459  *          2 = reset everything
8460  */
8461 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8462 {
8463         int band, modulation;
8464         int old_mode = priv->ieee->iw_mode;
8465 
8466         /* Initialize module parameter values here */
8467         priv->config = 0;
8468 
8469         /* We default to disabling the LED code as right now it causes
8470          * too many systems to lock up... */
8471         if (!led_support)
8472                 priv->config |= CFG_NO_LED;
8473 
8474         if (associate)
8475                 priv->config |= CFG_ASSOCIATE;
8476         else
8477                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8478 
8479         if (auto_create)
8480                 priv->config |= CFG_ADHOC_CREATE;
8481         else
8482                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8483 
8484         priv->config &= ~CFG_STATIC_ESSID;
8485         priv->essid_len = 0;
8486         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8487 
8488         if (disable && option) {
8489                 priv->status |= STATUS_RF_KILL_SW;
8490                 IPW_DEBUG_INFO("Radio disabled.\n");
8491         }
8492 
8493         if (default_channel != 0) {
8494                 priv->config |= CFG_STATIC_CHANNEL;
8495                 priv->channel = default_channel;
8496                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8497                 /* TODO: Validate that provided channel is in range */
8498         }
8499 #ifdef CONFIG_IPW2200_QOS
8500         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8501                      burst_duration_CCK, burst_duration_OFDM);
8502 #endif                          /* CONFIG_IPW2200_QOS */
8503 
8504         switch (network_mode) {
8505         case 1:
8506                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8507                 priv->net_dev->type = ARPHRD_ETHER;
8508 
8509                 break;
8510 #ifdef CONFIG_IPW2200_MONITOR
8511         case 2:
8512                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8513 #ifdef CONFIG_IPW2200_RADIOTAP
8514                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8515 #else
8516                 priv->net_dev->type = ARPHRD_IEEE80211;
8517 #endif
8518                 break;
8519 #endif
8520         default:
8521         case 0:
8522                 priv->net_dev->type = ARPHRD_ETHER;
8523                 priv->ieee->iw_mode = IW_MODE_INFRA;
8524                 break;
8525         }
8526 
8527         if (hwcrypto) {
8528                 priv->ieee->host_encrypt = 0;
8529                 priv->ieee->host_encrypt_msdu = 0;
8530                 priv->ieee->host_decrypt = 0;
8531                 priv->ieee->host_mc_decrypt = 0;
8532         }
8533         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8534 
8535         /* IPW2200/2915 is abled to do hardware fragmentation. */
8536         priv->ieee->host_open_frag = 0;
8537 
8538         if ((priv->pci_dev->device == 0x4223) ||
8539             (priv->pci_dev->device == 0x4224)) {
8540                 if (option == 1)
8541                         printk(KERN_INFO DRV_NAME
8542                                ": Detected Intel PRO/Wireless 2915ABG Network "
8543                                "Connection\n");
8544                 priv->ieee->abg_true = 1;
8545                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8546                 modulation = LIBIPW_OFDM_MODULATION |
8547                     LIBIPW_CCK_MODULATION;
8548                 priv->adapter = IPW_2915ABG;
8549                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8550         } else {
8551                 if (option == 1)
8552                         printk(KERN_INFO DRV_NAME
8553                                ": Detected Intel PRO/Wireless 2200BG Network "
8554                                "Connection\n");
8555 
8556                 priv->ieee->abg_true = 0;
8557                 band = LIBIPW_24GHZ_BAND;
8558                 modulation = LIBIPW_OFDM_MODULATION |
8559                     LIBIPW_CCK_MODULATION;
8560                 priv->adapter = IPW_2200BG;
8561                 priv->ieee->mode = IEEE_G | IEEE_B;
8562         }
8563 
8564         priv->ieee->freq_band = band;
8565         priv->ieee->modulation = modulation;
8566 
8567         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8568 
8569         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8570         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8571 
8572         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8573         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8574         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8575 
8576         /* If power management is turned on, default to AC mode */
8577         priv->power_mode = IPW_POWER_AC;
8578         priv->tx_power = IPW_TX_POWER_DEFAULT;
8579 
8580         return old_mode == priv->ieee->iw_mode;
8581 }
8582 
8583 /*
8584  * This file defines the Wireless Extension handlers.  It does not
8585  * define any methods of hardware manipulation and relies on the
8586  * functions defined in ipw_main to provide the HW interaction.
8587  *
8588  * The exception to this is the use of the ipw_get_ordinal()
8589  * function used to poll the hardware vs. making unnecessary calls.
8590  *
8591  */
8592 
8593 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8594 {
8595         if (channel == 0) {
8596                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8597                 priv->config &= ~CFG_STATIC_CHANNEL;
8598                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8599                                 "parameters.\n");
8600                 ipw_associate(priv);
8601                 return 0;
8602         }
8603 
8604         priv->config |= CFG_STATIC_CHANNEL;
8605 
8606         if (priv->channel == channel) {
8607                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8608                                channel);
8609                 return 0;
8610         }
8611 
8612         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8613         priv->channel = channel;
8614 
8615 #ifdef CONFIG_IPW2200_MONITOR
8616         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8617                 int i;
8618                 if (priv->status & STATUS_SCANNING) {
8619                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8620                                        "channel change.\n");
8621                         ipw_abort_scan(priv);
8622                 }
8623 
8624                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8625                         udelay(10);
8626 
8627                 if (priv->status & STATUS_SCANNING)
8628                         IPW_DEBUG_SCAN("Still scanning...\n");
8629                 else
8630                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8631                                        1000 - i);
8632 
8633                 return 0;
8634         }
8635 #endif                          /* CONFIG_IPW2200_MONITOR */
8636 
8637         /* Network configuration changed -- force [re]association */
8638         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8639         if (!ipw_disassociate(priv))
8640                 ipw_associate(priv);
8641 
8642         return 0;
8643 }
8644 
8645 static int ipw_wx_set_freq(struct net_device *dev,
8646                            struct iw_request_info *info,
8647                            union iwreq_data *wrqu, char *extra)
8648 {
8649         struct ipw_priv *priv = libipw_priv(dev);
8650         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8651         struct iw_freq *fwrq = &wrqu->freq;
8652         int ret = 0, i;
8653         u8 channel, flags;
8654         int band;
8655 
8656         if (fwrq->m == 0) {
8657                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8658                 mutex_lock(&priv->mutex);
8659                 ret = ipw_set_channel(priv, 0);
8660                 mutex_unlock(&priv->mutex);
8661                 return ret;
8662         }
8663         /* if setting by freq convert to channel */
8664         if (fwrq->e == 1) {
8665                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8666                 if (channel == 0)
8667                         return -EINVAL;
8668         } else
8669                 channel = fwrq->m;
8670 
8671         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8672                 return -EINVAL;
8673 
8674         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8675                 i = libipw_channel_to_index(priv->ieee, channel);
8676                 if (i == -1)
8677                         return -EINVAL;
8678 
8679                 flags = (band == LIBIPW_24GHZ_BAND) ?
8680                     geo->bg[i].flags : geo->a[i].flags;
8681                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8682                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8683                         return -EINVAL;
8684                 }
8685         }
8686 
8687         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8688         mutex_lock(&priv->mutex);
8689         ret = ipw_set_channel(priv, channel);
8690         mutex_unlock(&priv->mutex);
8691         return ret;
8692 }
8693 
8694 static int ipw_wx_get_freq(struct net_device *dev,
8695                            struct iw_request_info *info,
8696                            union iwreq_data *wrqu, char *extra)
8697 {
8698         struct ipw_priv *priv = libipw_priv(dev);
8699 
8700         wrqu->freq.e = 0;
8701 
8702         /* If we are associated, trying to associate, or have a statically
8703          * configured CHANNEL then return that; otherwise return ANY */
8704         mutex_lock(&priv->mutex);
8705         if (priv->config & CFG_STATIC_CHANNEL ||
8706             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8707                 int i;
8708 
8709                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8710                 BUG_ON(i == -1);
8711                 wrqu->freq.e = 1;
8712 
8713                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8714                 case LIBIPW_52GHZ_BAND:
8715                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8716                         break;
8717 
8718                 case LIBIPW_24GHZ_BAND:
8719                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8720                         break;
8721 
8722                 default:
8723                         BUG();
8724                 }
8725         } else
8726                 wrqu->freq.m = 0;
8727 
8728         mutex_unlock(&priv->mutex);
8729         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8730         return 0;
8731 }
8732 
8733 static int ipw_wx_set_mode(struct net_device *dev,
8734                            struct iw_request_info *info,
8735                            union iwreq_data *wrqu, char *extra)
8736 {
8737         struct ipw_priv *priv = libipw_priv(dev);
8738         int err = 0;
8739 
8740         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8741 
8742         switch (wrqu->mode) {
8743 #ifdef CONFIG_IPW2200_MONITOR
8744         case IW_MODE_MONITOR:
8745 #endif
8746         case IW_MODE_ADHOC:
8747         case IW_MODE_INFRA:
8748                 break;
8749         case IW_MODE_AUTO:
8750                 wrqu->mode = IW_MODE_INFRA;
8751                 break;
8752         default:
8753                 return -EINVAL;
8754         }
8755         if (wrqu->mode == priv->ieee->iw_mode)
8756                 return 0;
8757 
8758         mutex_lock(&priv->mutex);
8759 
8760         ipw_sw_reset(priv, 0);
8761 
8762 #ifdef CONFIG_IPW2200_MONITOR
8763         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8764                 priv->net_dev->type = ARPHRD_ETHER;
8765 
8766         if (wrqu->mode == IW_MODE_MONITOR)
8767 #ifdef CONFIG_IPW2200_RADIOTAP
8768                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8769 #else
8770                 priv->net_dev->type = ARPHRD_IEEE80211;
8771 #endif
8772 #endif                          /* CONFIG_IPW2200_MONITOR */
8773 
8774         /* Free the existing firmware and reset the fw_loaded
8775          * flag so ipw_load() will bring in the new firmware */
8776         free_firmware();
8777 
8778         priv->ieee->iw_mode = wrqu->mode;
8779 
8780         schedule_work(&priv->adapter_restart);
8781         mutex_unlock(&priv->mutex);
8782         return err;
8783 }
8784 
8785 static int ipw_wx_get_mode(struct net_device *dev,
8786                            struct iw_request_info *info,
8787                            union iwreq_data *wrqu, char *extra)
8788 {
8789         struct ipw_priv *priv = libipw_priv(dev);
8790         mutex_lock(&priv->mutex);
8791         wrqu->mode = priv->ieee->iw_mode;
8792         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8793         mutex_unlock(&priv->mutex);
8794         return 0;
8795 }
8796 
8797 /* Values are in microsecond */
8798 static const s32 timeout_duration[] = {
8799         350000,
8800         250000,
8801         75000,
8802         37000,
8803         25000,
8804 };
8805 
8806 static const s32 period_duration[] = {
8807         400000,
8808         700000,
8809         1000000,
8810         1000000,
8811         1000000
8812 };
8813 
8814 static int ipw_wx_get_range(struct net_device *dev,
8815                             struct iw_request_info *info,
8816                             union iwreq_data *wrqu, char *extra)
8817 {
8818         struct ipw_priv *priv = libipw_priv(dev);
8819         struct iw_range *range = (struct iw_range *)extra;
8820         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8821         int i = 0, j;
8822 
8823         wrqu->data.length = sizeof(*range);
8824         memset(range, 0, sizeof(*range));
8825 
8826         /* 54Mbs == ~27 Mb/s real (802.11g) */
8827         range->throughput = 27 * 1000 * 1000;
8828 
8829         range->max_qual.qual = 100;
8830         /* TODO: Find real max RSSI and stick here */
8831         range->max_qual.level = 0;
8832         range->max_qual.noise = 0;
8833         range->max_qual.updated = 7;    /* Updated all three */
8834 
8835         range->avg_qual.qual = 70;
8836         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8837         range->avg_qual.level = 0;      /* FIXME to real average level */
8838         range->avg_qual.noise = 0;
8839         range->avg_qual.updated = 7;    /* Updated all three */
8840         mutex_lock(&priv->mutex);
8841         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8842 
8843         for (i = 0; i < range->num_bitrates; i++)
8844                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8845                     500000;
8846 
8847         range->max_rts = DEFAULT_RTS_THRESHOLD;
8848         range->min_frag = MIN_FRAG_THRESHOLD;
8849         range->max_frag = MAX_FRAG_THRESHOLD;
8850 
8851         range->encoding_size[0] = 5;
8852         range->encoding_size[1] = 13;
8853         range->num_encoding_sizes = 2;
8854         range->max_encoding_tokens = WEP_KEYS;
8855 
8856         /* Set the Wireless Extension versions */
8857         range->we_version_compiled = WIRELESS_EXT;
8858         range->we_version_source = 18;
8859 
8860         i = 0;
8861         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8862                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8863                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8864                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8865                                 continue;
8866 
8867                         range->freq[i].i = geo->bg[j].channel;
8868                         range->freq[i].m = geo->bg[j].freq * 100000;
8869                         range->freq[i].e = 1;
8870                         i++;
8871                 }
8872         }
8873 
8874         if (priv->ieee->mode & IEEE_A) {
8875                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8876                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8877                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8878                                 continue;
8879 
8880                         range->freq[i].i = geo->a[j].channel;
8881                         range->freq[i].m = geo->a[j].freq * 100000;
8882                         range->freq[i].e = 1;
8883                         i++;
8884                 }
8885         }
8886 
8887         range->num_channels = i;
8888         range->num_frequency = i;
8889 
8890         mutex_unlock(&priv->mutex);
8891 
8892         /* Event capability (kernel + driver) */
8893         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8894                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8895                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8896                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8897         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8898 
8899         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8900                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8901 
8902         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8903 
8904         IPW_DEBUG_WX("GET Range\n");
8905         return 0;
8906 }
8907 
8908 static int ipw_wx_set_wap(struct net_device *dev,
8909                           struct iw_request_info *info,
8910                           union iwreq_data *wrqu, char *extra)
8911 {
8912         struct ipw_priv *priv = libipw_priv(dev);
8913 
8914         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8915                 return -EINVAL;
8916         mutex_lock(&priv->mutex);
8917         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8918             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8919                 /* we disable mandatory BSSID association */
8920                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8921                 priv->config &= ~CFG_STATIC_BSSID;
8922                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8923                                 "parameters.\n");
8924                 ipw_associate(priv);
8925                 mutex_unlock(&priv->mutex);
8926                 return 0;
8927         }
8928 
8929         priv->config |= CFG_STATIC_BSSID;
8930         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8931                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8932                 mutex_unlock(&priv->mutex);
8933                 return 0;
8934         }
8935 
8936         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8937                      wrqu->ap_addr.sa_data);
8938 
8939         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8940 
8941         /* Network configuration changed -- force [re]association */
8942         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8943         if (!ipw_disassociate(priv))
8944                 ipw_associate(priv);
8945 
8946         mutex_unlock(&priv->mutex);
8947         return 0;
8948 }
8949 
8950 static int ipw_wx_get_wap(struct net_device *dev,
8951                           struct iw_request_info *info,
8952                           union iwreq_data *wrqu, char *extra)
8953 {
8954         struct ipw_priv *priv = libipw_priv(dev);
8955 
8956         /* If we are associated, trying to associate, or have a statically
8957          * configured BSSID then return that; otherwise return ANY */
8958         mutex_lock(&priv->mutex);
8959         if (priv->config & CFG_STATIC_BSSID ||
8960             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8961                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8962                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8963         } else
8964                 eth_zero_addr(wrqu->ap_addr.sa_data);
8965 
8966         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8967                      wrqu->ap_addr.sa_data);
8968         mutex_unlock(&priv->mutex);
8969         return 0;
8970 }
8971 
8972 static int ipw_wx_set_essid(struct net_device *dev,
8973                             struct iw_request_info *info,
8974                             union iwreq_data *wrqu, char *extra)
8975 {
8976         struct ipw_priv *priv = libipw_priv(dev);
8977         int length;
8978 
8979         mutex_lock(&priv->mutex);
8980 
8981         if (!wrqu->essid.flags)
8982         {
8983                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8984                 ipw_disassociate(priv);
8985                 priv->config &= ~CFG_STATIC_ESSID;
8986                 ipw_associate(priv);
8987                 mutex_unlock(&priv->mutex);
8988                 return 0;
8989         }
8990 
8991         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8992 
8993         priv->config |= CFG_STATIC_ESSID;
8994 
8995         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8996             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8997                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8998                 mutex_unlock(&priv->mutex);
8999                 return 0;
9000         }
9001 
9002         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9003 
9004         priv->essid_len = length;
9005         memcpy(priv->essid, extra, priv->essid_len);
9006 
9007         /* Network configuration changed -- force [re]association */
9008         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9009         if (!ipw_disassociate(priv))
9010                 ipw_associate(priv);
9011 
9012         mutex_unlock(&priv->mutex);
9013         return 0;
9014 }
9015 
9016 static int ipw_wx_get_essid(struct net_device *dev,
9017                             struct iw_request_info *info,
9018                             union iwreq_data *wrqu, char *extra)
9019 {
9020         struct ipw_priv *priv = libipw_priv(dev);
9021 
9022         /* If we are associated, trying to associate, or have a statically
9023          * configured ESSID then return that; otherwise return ANY */
9024         mutex_lock(&priv->mutex);
9025         if (priv->config & CFG_STATIC_ESSID ||
9026             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9027                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9028                              priv->essid_len, priv->essid);
9029                 memcpy(extra, priv->essid, priv->essid_len);
9030                 wrqu->essid.length = priv->essid_len;
9031                 wrqu->essid.flags = 1;  /* active */
9032         } else {
9033                 IPW_DEBUG_WX("Getting essid: ANY\n");
9034                 wrqu->essid.length = 0;
9035                 wrqu->essid.flags = 0;  /* active */
9036         }
9037         mutex_unlock(&priv->mutex);
9038         return 0;
9039 }
9040 
9041 static int ipw_wx_set_nick(struct net_device *dev,
9042                            struct iw_request_info *info,
9043                            union iwreq_data *wrqu, char *extra)
9044 {
9045         struct ipw_priv *priv = libipw_priv(dev);
9046 
9047         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9048         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9049                 return -E2BIG;
9050         mutex_lock(&priv->mutex);
9051         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9052         memset(priv->nick, 0, sizeof(priv->nick));
9053         memcpy(priv->nick, extra, wrqu->data.length);
9054         IPW_DEBUG_TRACE("<<\n");
9055         mutex_unlock(&priv->mutex);
9056         return 0;
9057 
9058 }
9059 
9060 static int ipw_wx_get_nick(struct net_device *dev,
9061                            struct iw_request_info *info,
9062                            union iwreq_data *wrqu, char *extra)
9063 {
9064         struct ipw_priv *priv = libipw_priv(dev);
9065         IPW_DEBUG_WX("Getting nick\n");
9066         mutex_lock(&priv->mutex);
9067         wrqu->data.length = strlen(priv->nick);
9068         memcpy(extra, priv->nick, wrqu->data.length);
9069         wrqu->data.flags = 1;   /* active */
9070         mutex_unlock(&priv->mutex);
9071         return 0;
9072 }
9073 
9074 static int ipw_wx_set_sens(struct net_device *dev,
9075                             struct iw_request_info *info,
9076                             union iwreq_data *wrqu, char *extra)
9077 {
9078         struct ipw_priv *priv = libipw_priv(dev);
9079         int err = 0;
9080 
9081         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9082         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9083         mutex_lock(&priv->mutex);
9084 
9085         if (wrqu->sens.fixed == 0)
9086         {
9087                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9088                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9089                 goto out;
9090         }
9091         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9092             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9093                 err = -EINVAL;
9094                 goto out;
9095         }
9096 
9097         priv->roaming_threshold = wrqu->sens.value;
9098         priv->disassociate_threshold = 3*wrqu->sens.value;
9099       out:
9100         mutex_unlock(&priv->mutex);
9101         return err;
9102 }
9103 
9104 static int ipw_wx_get_sens(struct net_device *dev,
9105                             struct iw_request_info *info,
9106                             union iwreq_data *wrqu, char *extra)
9107 {
9108         struct ipw_priv *priv = libipw_priv(dev);
9109         mutex_lock(&priv->mutex);
9110         wrqu->sens.fixed = 1;
9111         wrqu->sens.value = priv->roaming_threshold;
9112         mutex_unlock(&priv->mutex);
9113 
9114         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9115                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9116 
9117         return 0;
9118 }
9119 
9120 static int ipw_wx_set_rate(struct net_device *dev,
9121                            struct iw_request_info *info,
9122                            union iwreq_data *wrqu, char *extra)
9123 {
9124         /* TODO: We should use semaphores or locks for access to priv */
9125         struct ipw_priv *priv = libipw_priv(dev);
9126         u32 target_rate = wrqu->bitrate.value;
9127         u32 fixed, mask;
9128 
9129         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9130         /* value = X, fixed = 1 means only rate X */
9131         /* value = X, fixed = 0 means all rates lower equal X */
9132 
9133         if (target_rate == -1) {
9134                 fixed = 0;
9135                 mask = LIBIPW_DEFAULT_RATES_MASK;
9136                 /* Now we should reassociate */
9137                 goto apply;
9138         }
9139 
9140         mask = 0;
9141         fixed = wrqu->bitrate.fixed;
9142 
9143         if (target_rate == 1000000 || !fixed)
9144                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9145         if (target_rate == 1000000)
9146                 goto apply;
9147 
9148         if (target_rate == 2000000 || !fixed)
9149                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9150         if (target_rate == 2000000)
9151                 goto apply;
9152 
9153         if (target_rate == 5500000 || !fixed)
9154                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9155         if (target_rate == 5500000)
9156                 goto apply;
9157 
9158         if (target_rate == 6000000 || !fixed)
9159                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9160         if (target_rate == 6000000)
9161                 goto apply;
9162 
9163         if (target_rate == 9000000 || !fixed)
9164                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9165         if (target_rate == 9000000)
9166                 goto apply;
9167 
9168         if (target_rate == 11000000 || !fixed)
9169                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9170         if (target_rate == 11000000)
9171                 goto apply;
9172 
9173         if (target_rate == 12000000 || !fixed)
9174                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9175         if (target_rate == 12000000)
9176                 goto apply;
9177 
9178         if (target_rate == 18000000 || !fixed)
9179                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9180         if (target_rate == 18000000)
9181                 goto apply;
9182 
9183         if (target_rate == 24000000 || !fixed)
9184                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9185         if (target_rate == 24000000)
9186                 goto apply;
9187 
9188         if (target_rate == 36000000 || !fixed)
9189                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9190         if (target_rate == 36000000)
9191                 goto apply;
9192 
9193         if (target_rate == 48000000 || !fixed)
9194                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9195         if (target_rate == 48000000)
9196                 goto apply;
9197 
9198         if (target_rate == 54000000 || !fixed)
9199                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9200         if (target_rate == 54000000)
9201                 goto apply;
9202 
9203         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9204         return -EINVAL;
9205 
9206       apply:
9207         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9208                      mask, fixed ? "fixed" : "sub-rates");
9209         mutex_lock(&priv->mutex);
9210         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9211                 priv->config &= ~CFG_FIXED_RATE;
9212                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9213         } else
9214                 priv->config |= CFG_FIXED_RATE;
9215 
9216         if (priv->rates_mask == mask) {
9217                 IPW_DEBUG_WX("Mask set to current mask.\n");
9218                 mutex_unlock(&priv->mutex);
9219                 return 0;
9220         }
9221 
9222         priv->rates_mask = mask;
9223 
9224         /* Network configuration changed -- force [re]association */
9225         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9226         if (!ipw_disassociate(priv))
9227                 ipw_associate(priv);
9228 
9229         mutex_unlock(&priv->mutex);
9230         return 0;
9231 }
9232 
9233 static int ipw_wx_get_rate(struct net_device *dev,
9234                            struct iw_request_info *info,
9235                            union iwreq_data *wrqu, char *extra)
9236 {
9237         struct ipw_priv *priv = libipw_priv(dev);
9238         mutex_lock(&priv->mutex);
9239         wrqu->bitrate.value = priv->last_rate;
9240         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9241         mutex_unlock(&priv->mutex);
9242         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9243         return 0;
9244 }
9245 
9246 static int ipw_wx_set_rts(struct net_device *dev,
9247                           struct iw_request_info *info,
9248                           union iwreq_data *wrqu, char *extra)
9249 {
9250         struct ipw_priv *priv = libipw_priv(dev);
9251         mutex_lock(&priv->mutex);
9252         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9253                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9254         else {
9255                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9256                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9257                         mutex_unlock(&priv->mutex);
9258                         return -EINVAL;
9259                 }
9260                 priv->rts_threshold = wrqu->rts.value;
9261         }
9262 
9263         ipw_send_rts_threshold(priv, priv->rts_threshold);
9264         mutex_unlock(&priv->mutex);
9265         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9266         return 0;
9267 }
9268 
9269 static int ipw_wx_get_rts(struct net_device *dev,
9270                           struct iw_request_info *info,
9271                           union iwreq_data *wrqu, char *extra)
9272 {
9273         struct ipw_priv *priv = libipw_priv(dev);
9274         mutex_lock(&priv->mutex);
9275         wrqu->rts.value = priv->rts_threshold;
9276         wrqu->rts.fixed = 0;    /* no auto select */
9277         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9278         mutex_unlock(&priv->mutex);
9279         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9280         return 0;
9281 }
9282 
9283 static int ipw_wx_set_txpow(struct net_device *dev,
9284                             struct iw_request_info *info,
9285                             union iwreq_data *wrqu, char *extra)
9286 {
9287         struct ipw_priv *priv = libipw_priv(dev);
9288         int err = 0;
9289 
9290         mutex_lock(&priv->mutex);
9291         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9292                 err = -EINPROGRESS;
9293                 goto out;
9294         }
9295 
9296         if (!wrqu->power.fixed)
9297                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9298 
9299         if (wrqu->power.flags != IW_TXPOW_DBM) {
9300                 err = -EINVAL;
9301                 goto out;
9302         }
9303 
9304         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9305             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9306                 err = -EINVAL;
9307                 goto out;
9308         }
9309 
9310         priv->tx_power = wrqu->power.value;
9311         err = ipw_set_tx_power(priv);
9312       out:
9313         mutex_unlock(&priv->mutex);
9314         return err;
9315 }
9316 
9317 static int ipw_wx_get_txpow(struct net_device *dev,
9318                             struct iw_request_info *info,
9319                             union iwreq_data *wrqu, char *extra)
9320 {
9321         struct ipw_priv *priv = libipw_priv(dev);
9322         mutex_lock(&priv->mutex);
9323         wrqu->power.value = priv->tx_power;
9324         wrqu->power.fixed = 1;
9325         wrqu->power.flags = IW_TXPOW_DBM;
9326         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9327         mutex_unlock(&priv->mutex);
9328 
9329         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9330                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9331 
9332         return 0;
9333 }
9334 
9335 static int ipw_wx_set_frag(struct net_device *dev,
9336                            struct iw_request_info *info,
9337                            union iwreq_data *wrqu, char *extra)
9338 {
9339         struct ipw_priv *priv = libipw_priv(dev);
9340         mutex_lock(&priv->mutex);
9341         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9342                 priv->ieee->fts = DEFAULT_FTS;
9343         else {
9344                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9345                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9346                         mutex_unlock(&priv->mutex);
9347                         return -EINVAL;
9348                 }
9349 
9350                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9351         }
9352 
9353         ipw_send_frag_threshold(priv, wrqu->frag.value);
9354         mutex_unlock(&priv->mutex);
9355         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9356         return 0;
9357 }
9358 
9359 static int ipw_wx_get_frag(struct net_device *dev,
9360                            struct iw_request_info *info,
9361                            union iwreq_data *wrqu, char *extra)
9362 {
9363         struct ipw_priv *priv = libipw_priv(dev);
9364         mutex_lock(&priv->mutex);
9365         wrqu->frag.value = priv->ieee->fts;
9366         wrqu->frag.fixed = 0;   /* no auto select */
9367         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9368         mutex_unlock(&priv->mutex);
9369         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9370 
9371         return 0;
9372 }
9373 
9374 static int ipw_wx_set_retry(struct net_device *dev,
9375                             struct iw_request_info *info,
9376                             union iwreq_data *wrqu, char *extra)
9377 {
9378         struct ipw_priv *priv = libipw_priv(dev);
9379 
9380         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9381                 return -EINVAL;
9382 
9383         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9384                 return 0;
9385 
9386         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9387                 return -EINVAL;
9388 
9389         mutex_lock(&priv->mutex);
9390         if (wrqu->retry.flags & IW_RETRY_SHORT)
9391                 priv->short_retry_limit = (u8) wrqu->retry.value;
9392         else if (wrqu->retry.flags & IW_RETRY_LONG)
9393                 priv->long_retry_limit = (u8) wrqu->retry.value;
9394         else {
9395                 priv->short_retry_limit = (u8) wrqu->retry.value;
9396                 priv->long_retry_limit = (u8) wrqu->retry.value;
9397         }
9398 
9399         ipw_send_retry_limit(priv, priv->short_retry_limit,
9400                              priv->long_retry_limit);
9401         mutex_unlock(&priv->mutex);
9402         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9403                      priv->short_retry_limit, priv->long_retry_limit);
9404         return 0;
9405 }
9406 
9407 static int ipw_wx_get_retry(struct net_device *dev,
9408                             struct iw_request_info *info,
9409                             union iwreq_data *wrqu, char *extra)
9410 {
9411         struct ipw_priv *priv = libipw_priv(dev);
9412 
9413         mutex_lock(&priv->mutex);
9414         wrqu->retry.disabled = 0;
9415 
9416         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9417                 mutex_unlock(&priv->mutex);
9418                 return -EINVAL;
9419         }
9420 
9421         if (wrqu->retry.flags & IW_RETRY_LONG) {
9422                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9423                 wrqu->retry.value = priv->long_retry_limit;
9424         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9425                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9426                 wrqu->retry.value = priv->short_retry_limit;
9427         } else {
9428                 wrqu->retry.flags = IW_RETRY_LIMIT;
9429                 wrqu->retry.value = priv->short_retry_limit;
9430         }
9431         mutex_unlock(&priv->mutex);
9432 
9433         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9434 
9435         return 0;
9436 }
9437 
9438 static int ipw_wx_set_scan(struct net_device *dev,
9439                            struct iw_request_info *info,
9440                            union iwreq_data *wrqu, char *extra)
9441 {
9442         struct ipw_priv *priv = libipw_priv(dev);
9443         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9444         struct delayed_work *work = NULL;
9445 
9446         mutex_lock(&priv->mutex);
9447 
9448         priv->user_requested_scan = 1;
9449 
9450         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9451                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9452                         int len = min((int)req->essid_len,
9453                                       (int)sizeof(priv->direct_scan_ssid));
9454                         memcpy(priv->direct_scan_ssid, req->essid, len);
9455                         priv->direct_scan_ssid_len = len;
9456                         work = &priv->request_direct_scan;
9457                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9458                         work = &priv->request_passive_scan;
9459                 }
9460         } else {
9461                 /* Normal active broadcast scan */
9462                 work = &priv->request_scan;
9463         }
9464 
9465         mutex_unlock(&priv->mutex);
9466 
9467         IPW_DEBUG_WX("Start scan\n");
9468 
9469         schedule_delayed_work(work, 0);
9470 
9471         return 0;
9472 }
9473 
9474 static int ipw_wx_get_scan(struct net_device *dev,
9475                            struct iw_request_info *info,
9476                            union iwreq_data *wrqu, char *extra)
9477 {
9478         struct ipw_priv *priv = libipw_priv(dev);
9479         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9480 }
9481 
9482 static int ipw_wx_set_encode(struct net_device *dev,
9483                              struct iw_request_info *info,
9484                              union iwreq_data *wrqu, char *key)
9485 {
9486         struct ipw_priv *priv = libipw_priv(dev);
9487         int ret;
9488         u32 cap = priv->capability;
9489 
9490         mutex_lock(&priv->mutex);
9491         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9492 
9493         /* In IBSS mode, we need to notify the firmware to update
9494          * the beacon info after we changed the capability. */
9495         if (cap != priv->capability &&
9496             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9497             priv->status & STATUS_ASSOCIATED)
9498                 ipw_disassociate(priv);
9499 
9500         mutex_unlock(&priv->mutex);
9501         return ret;
9502 }
9503 
9504 static int ipw_wx_get_encode(struct net_device *dev,
9505                              struct iw_request_info *info,
9506                              union iwreq_data *wrqu, char *key)
9507 {
9508         struct ipw_priv *priv = libipw_priv(dev);
9509         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9510 }
9511 
9512 static int ipw_wx_set_power(struct net_device *dev,
9513                             struct iw_request_info *info,
9514                             union iwreq_data *wrqu, char *extra)
9515 {
9516         struct ipw_priv *priv = libipw_priv(dev);
9517         int err;
9518         mutex_lock(&priv->mutex);
9519         if (wrqu->power.disabled) {
9520                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9521                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9522                 if (err) {
9523                         IPW_DEBUG_WX("failed setting power mode.\n");
9524                         mutex_unlock(&priv->mutex);
9525                         return err;
9526                 }
9527                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9528                 mutex_unlock(&priv->mutex);
9529                 return 0;
9530         }
9531 
9532         switch (wrqu->power.flags & IW_POWER_MODE) {
9533         case IW_POWER_ON:       /* If not specified */
9534         case IW_POWER_MODE:     /* If set all mask */
9535         case IW_POWER_ALL_R:    /* If explicitly state all */
9536                 break;
9537         default:                /* Otherwise we don't support it */
9538                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9539                              wrqu->power.flags);
9540                 mutex_unlock(&priv->mutex);
9541                 return -EOPNOTSUPP;
9542         }
9543 
9544         /* If the user hasn't specified a power management mode yet, default
9545          * to BATTERY */
9546         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9547                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9548         else
9549                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9550 
9551         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9552         if (err) {
9553                 IPW_DEBUG_WX("failed setting power mode.\n");
9554                 mutex_unlock(&priv->mutex);
9555                 return err;
9556         }
9557 
9558         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9559         mutex_unlock(&priv->mutex);
9560         return 0;
9561 }
9562 
9563 static int ipw_wx_get_power(struct net_device *dev,
9564                             struct iw_request_info *info,
9565                             union iwreq_data *wrqu, char *extra)
9566 {
9567         struct ipw_priv *priv = libipw_priv(dev);
9568         mutex_lock(&priv->mutex);
9569         if (!(priv->power_mode & IPW_POWER_ENABLED))
9570                 wrqu->power.disabled = 1;
9571         else
9572                 wrqu->power.disabled = 0;
9573 
9574         mutex_unlock(&priv->mutex);
9575         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9576 
9577         return 0;
9578 }
9579 
9580 static int ipw_wx_set_powermode(struct net_device *dev,
9581                                 struct iw_request_info *info,
9582                                 union iwreq_data *wrqu, char *extra)
9583 {
9584         struct ipw_priv *priv = libipw_priv(dev);
9585         int mode = *(int *)extra;
9586         int err;
9587 
9588         mutex_lock(&priv->mutex);
9589         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9590                 mode = IPW_POWER_AC;
9591 
9592         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9593                 err = ipw_send_power_mode(priv, mode);
9594                 if (err) {
9595                         IPW_DEBUG_WX("failed setting power mode.\n");
9596                         mutex_unlock(&priv->mutex);
9597                         return err;
9598                 }
9599                 priv->power_mode = IPW_POWER_ENABLED | mode;
9600         }
9601         mutex_unlock(&priv->mutex);
9602         return 0;
9603 }
9604 
9605 #define MAX_WX_STRING 80
9606 static int ipw_wx_get_powermode(struct net_device *dev,
9607                                 struct iw_request_info *info,
9608                                 union iwreq_data *wrqu, char *extra)
9609 {
9610         struct ipw_priv *priv = libipw_priv(dev);
9611         int level = IPW_POWER_LEVEL(priv->power_mode);
9612         char *p = extra;
9613 
9614         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9615 
9616         switch (level) {
9617         case IPW_POWER_AC:
9618                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9619                 break;
9620         case IPW_POWER_BATTERY:
9621                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9622                 break;
9623         default:
9624                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9625                               "(Timeout %dms, Period %dms)",
9626                               timeout_duration[level - 1] / 1000,
9627                               period_duration[level - 1] / 1000);
9628         }
9629 
9630         if (!(priv->power_mode & IPW_POWER_ENABLED))
9631                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9632 
9633         wrqu->data.length = p - extra + 1;
9634 
9635         return 0;
9636 }
9637 
9638 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9639                                     struct iw_request_info *info,
9640                                     union iwreq_data *wrqu, char *extra)
9641 {
9642         struct ipw_priv *priv = libipw_priv(dev);
9643         int mode = *(int *)extra;
9644         u8 band = 0, modulation = 0;
9645 
9646         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9647                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9648                 return -EINVAL;
9649         }
9650         mutex_lock(&priv->mutex);
9651         if (priv->adapter == IPW_2915ABG) {
9652                 priv->ieee->abg_true = 1;
9653                 if (mode & IEEE_A) {
9654                         band |= LIBIPW_52GHZ_BAND;
9655                         modulation |= LIBIPW_OFDM_MODULATION;
9656                 } else
9657                         priv->ieee->abg_true = 0;
9658         } else {
9659                 if (mode & IEEE_A) {
9660                         IPW_WARNING("Attempt to set 2200BG into "
9661                                     "802.11a mode\n");
9662                         mutex_unlock(&priv->mutex);
9663                         return -EINVAL;
9664                 }
9665 
9666                 priv->ieee->abg_true = 0;
9667         }
9668 
9669         if (mode & IEEE_B) {
9670                 band |= LIBIPW_24GHZ_BAND;
9671                 modulation |= LIBIPW_CCK_MODULATION;
9672         } else
9673                 priv->ieee->abg_true = 0;
9674 
9675         if (mode & IEEE_G) {
9676                 band |= LIBIPW_24GHZ_BAND;
9677                 modulation |= LIBIPW_OFDM_MODULATION;
9678         } else
9679                 priv->ieee->abg_true = 0;
9680 
9681         priv->ieee->mode = mode;
9682         priv->ieee->freq_band = band;
9683         priv->ieee->modulation = modulation;
9684         init_supported_rates(priv, &priv->rates);
9685 
9686         /* Network configuration changed -- force [re]association */
9687         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9688         if (!ipw_disassociate(priv)) {
9689                 ipw_send_supported_rates(priv, &priv->rates);
9690                 ipw_associate(priv);
9691         }
9692 
9693         /* Update the band LEDs */
9694         ipw_led_band_on(priv);
9695 
9696         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9697                      mode & IEEE_A ? 'a' : '.',
9698                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9699         mutex_unlock(&priv->mutex);
9700         return 0;
9701 }
9702 
9703 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9704                                     struct iw_request_info *info,
9705                                     union iwreq_data *wrqu, char *extra)
9706 {
9707         struct ipw_priv *priv = libipw_priv(dev);
9708         mutex_lock(&priv->mutex);
9709         switch (priv->ieee->mode) {
9710         case IEEE_A:
9711                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9712                 break;
9713         case IEEE_B:
9714                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9715                 break;
9716         case IEEE_A | IEEE_B:
9717                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9718                 break;
9719         case IEEE_G:
9720                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9721                 break;
9722         case IEEE_A | IEEE_G:
9723                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9724                 break;
9725         case IEEE_B | IEEE_G:
9726                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9727                 break;
9728         case IEEE_A | IEEE_B | IEEE_G:
9729                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9730                 break;
9731         default:
9732                 strncpy(extra, "unknown", MAX_WX_STRING);
9733                 break;
9734         }
9735         extra[MAX_WX_STRING - 1] = '\0';
9736 
9737         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9738 
9739         wrqu->data.length = strlen(extra) + 1;
9740         mutex_unlock(&priv->mutex);
9741 
9742         return 0;
9743 }
9744 
9745 static int ipw_wx_set_preamble(struct net_device *dev,
9746                                struct iw_request_info *info,
9747                                union iwreq_data *wrqu, char *extra)
9748 {
9749         struct ipw_priv *priv = libipw_priv(dev);
9750         int mode = *(int *)extra;
9751         mutex_lock(&priv->mutex);
9752         /* Switching from SHORT -> LONG requires a disassociation */
9753         if (mode == 1) {
9754                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9755                         priv->config |= CFG_PREAMBLE_LONG;
9756 
9757                         /* Network configuration changed -- force [re]association */
9758                         IPW_DEBUG_ASSOC
9759                             ("[re]association triggered due to preamble change.\n");
9760                         if (!ipw_disassociate(priv))
9761                                 ipw_associate(priv);
9762                 }
9763                 goto done;
9764         }
9765 
9766         if (mode == 0) {
9767                 priv->config &= ~CFG_PREAMBLE_LONG;
9768                 goto done;
9769         }
9770         mutex_unlock(&priv->mutex);
9771         return -EINVAL;
9772 
9773       done:
9774         mutex_unlock(&priv->mutex);
9775         return 0;
9776 }
9777 
9778 static int ipw_wx_get_preamble(struct net_device *dev,
9779                                struct iw_request_info *info,
9780                                union iwreq_data *wrqu, char *extra)
9781 {
9782         struct ipw_priv *priv = libipw_priv(dev);
9783         mutex_lock(&priv->mutex);
9784         if (priv->config & CFG_PREAMBLE_LONG)
9785                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9786         else
9787                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9788         mutex_unlock(&priv->mutex);
9789         return 0;
9790 }
9791 
9792 #ifdef CONFIG_IPW2200_MONITOR
9793 static int ipw_wx_set_monitor(struct net_device *dev,
9794                               struct iw_request_info *info,
9795                               union iwreq_data *wrqu, char *extra)
9796 {
9797         struct ipw_priv *priv = libipw_priv(dev);
9798         int *parms = (int *)extra;
9799         int enable = (parms[0] > 0);
9800         mutex_lock(&priv->mutex);
9801         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9802         if (enable) {
9803                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9804 #ifdef CONFIG_IPW2200_RADIOTAP
9805                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9806 #else
9807                         priv->net_dev->type = ARPHRD_IEEE80211;
9808 #endif
9809                         schedule_work(&priv->adapter_restart);
9810                 }
9811 
9812                 ipw_set_channel(priv, parms[1]);
9813         } else {
9814                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9815                         mutex_unlock(&priv->mutex);
9816                         return 0;
9817                 }
9818                 priv->net_dev->type = ARPHRD_ETHER;
9819                 schedule_work(&priv->adapter_restart);
9820         }
9821         mutex_unlock(&priv->mutex);
9822         return 0;
9823 }
9824 
9825 #endif                          /* CONFIG_IPW2200_MONITOR */
9826 
9827 static int ipw_wx_reset(struct net_device *dev,
9828                         struct iw_request_info *info,
9829                         union iwreq_data *wrqu, char *extra)
9830 {
9831         struct ipw_priv *priv = libipw_priv(dev);
9832         IPW_DEBUG_WX("RESET\n");
9833         schedule_work(&priv->adapter_restart);
9834         return 0;
9835 }
9836 
9837 static int ipw_wx_sw_reset(struct net_device *dev,
9838                            struct iw_request_info *info,
9839                            union iwreq_data *wrqu, char *extra)
9840 {
9841         struct ipw_priv *priv = libipw_priv(dev);
9842         union iwreq_data wrqu_sec = {
9843                 .encoding = {
9844                              .flags = IW_ENCODE_DISABLED,
9845                              },
9846         };
9847         int ret;
9848 
9849         IPW_DEBUG_WX("SW_RESET\n");
9850 
9851         mutex_lock(&priv->mutex);
9852 
9853         ret = ipw_sw_reset(priv, 2);
9854         if (!ret) {
9855                 free_firmware();
9856                 ipw_adapter_restart(priv);
9857         }
9858 
9859         /* The SW reset bit might have been toggled on by the 'disable'
9860          * module parameter, so take appropriate action */
9861         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9862 
9863         mutex_unlock(&priv->mutex);
9864         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9865         mutex_lock(&priv->mutex);
9866 
9867         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9868                 /* Configuration likely changed -- force [re]association */
9869                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9870                                 "reset.\n");
9871                 if (!ipw_disassociate(priv))
9872                         ipw_associate(priv);
9873         }
9874 
9875         mutex_unlock(&priv->mutex);
9876 
9877         return 0;
9878 }
9879 
9880 /* Rebase the WE IOCTLs to zero for the handler array */
9881 static iw_handler ipw_wx_handlers[] = {
9882         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9883         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9884         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9885         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9886         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9887         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9888         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9889         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9890         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9891         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9892         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9893         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9894         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9895         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9896         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9897         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9898         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9899         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9900         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9901         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9902         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9903         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9904         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9905         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9906         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9907         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9908         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9909         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9910         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9911         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9912         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9913         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9914         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9915         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9916         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9917         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9918         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9919         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9920         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9921         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9922         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9923 };
9924 
9925 enum {
9926         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9927         IPW_PRIV_GET_POWER,
9928         IPW_PRIV_SET_MODE,
9929         IPW_PRIV_GET_MODE,
9930         IPW_PRIV_SET_PREAMBLE,
9931         IPW_PRIV_GET_PREAMBLE,
9932         IPW_PRIV_RESET,
9933         IPW_PRIV_SW_RESET,
9934 #ifdef CONFIG_IPW2200_MONITOR
9935         IPW_PRIV_SET_MONITOR,
9936 #endif
9937 };
9938 
9939 static struct iw_priv_args ipw_priv_args[] = {
9940         {
9941          .cmd = IPW_PRIV_SET_POWER,
9942          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9943          .name = "set_power"},
9944         {
9945          .cmd = IPW_PRIV_GET_POWER,
9946          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9947          .name = "get_power"},
9948         {
9949          .cmd = IPW_PRIV_SET_MODE,
9950          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9951          .name = "set_mode"},
9952         {
9953          .cmd = IPW_PRIV_GET_MODE,
9954          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9955          .name = "get_mode"},
9956         {
9957          .cmd = IPW_PRIV_SET_PREAMBLE,
9958          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9959          .name = "set_preamble"},
9960         {
9961          .cmd = IPW_PRIV_GET_PREAMBLE,
9962          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9963          .name = "get_preamble"},
9964         {
9965          IPW_PRIV_RESET,
9966          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9967         {
9968          IPW_PRIV_SW_RESET,
9969          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9970 #ifdef CONFIG_IPW2200_MONITOR
9971         {
9972          IPW_PRIV_SET_MONITOR,
9973          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9974 #endif                          /* CONFIG_IPW2200_MONITOR */
9975 };
9976 
9977 static iw_handler ipw_priv_handler[] = {
9978         ipw_wx_set_powermode,
9979         ipw_wx_get_powermode,
9980         ipw_wx_set_wireless_mode,
9981         ipw_wx_get_wireless_mode,
9982         ipw_wx_set_preamble,
9983         ipw_wx_get_preamble,
9984         ipw_wx_reset,
9985         ipw_wx_sw_reset,
9986 #ifdef CONFIG_IPW2200_MONITOR
9987         ipw_wx_set_monitor,
9988 #endif
9989 };
9990 
9991 static const struct iw_handler_def ipw_wx_handler_def = {
9992         .standard = ipw_wx_handlers,
9993         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9994         .num_private = ARRAY_SIZE(ipw_priv_handler),
9995         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9996         .private = ipw_priv_handler,
9997         .private_args = ipw_priv_args,
9998         .get_wireless_stats = ipw_get_wireless_stats,
9999 };
10000 
10001 /*
10002  * Get wireless statistics.
10003  * Called by /proc/net/wireless
10004  * Also called by SIOCGIWSTATS
10005  */
10006 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10007 {
10008         struct ipw_priv *priv = libipw_priv(dev);
10009         struct iw_statistics *wstats;
10010 
10011         wstats = &priv->wstats;
10012 
10013         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10014          * netdev->get_wireless_stats seems to be called before fw is
10015          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10016          * and associated; if not associcated, the values are all meaningless
10017          * anyway, so set them all to NULL and INVALID */
10018         if (!(priv->status & STATUS_ASSOCIATED)) {
10019                 wstats->miss.beacon = 0;
10020                 wstats->discard.retries = 0;
10021                 wstats->qual.qual = 0;
10022                 wstats->qual.level = 0;
10023                 wstats->qual.noise = 0;
10024                 wstats->qual.updated = 7;
10025                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10026                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10027                 return wstats;
10028         }
10029 
10030         wstats->qual.qual = priv->quality;
10031         wstats->qual.level = priv->exp_avg_rssi;
10032         wstats->qual.noise = priv->exp_avg_noise;
10033         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10034             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10035 
10036         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10037         wstats->discard.retries = priv->last_tx_failures;
10038         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10039 
10040 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10041         goto fail_get_ordinal;
10042         wstats->discard.retries += tx_retry; */
10043 
10044         return wstats;
10045 }
10046 
10047 /* net device stuff */
10048 
10049 static  void init_sys_config(struct ipw_sys_config *sys_config)
10050 {
10051         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10052         sys_config->bt_coexistence = 0;
10053         sys_config->answer_broadcast_ssid_probe = 0;
10054         sys_config->accept_all_data_frames = 0;
10055         sys_config->accept_non_directed_frames = 1;
10056         sys_config->exclude_unicast_unencrypted = 0;
10057         sys_config->disable_unicast_decryption = 1;
10058         sys_config->exclude_multicast_unencrypted = 0;
10059         sys_config->disable_multicast_decryption = 1;
10060         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10061                 antenna = CFG_SYS_ANTENNA_BOTH;
10062         sys_config->antenna_diversity = antenna;
10063         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10064         sys_config->dot11g_auto_detection = 0;
10065         sys_config->enable_cts_to_self = 0;
10066         sys_config->bt_coexist_collision_thr = 0;
10067         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10068         sys_config->silence_threshold = 0x1e;
10069 }
10070 
10071 static int ipw_net_open(struct net_device *dev)
10072 {
10073         IPW_DEBUG_INFO("dev->open\n");
10074         netif_start_queue(dev);
10075         return 0;
10076 }
10077 
10078 static int ipw_net_stop(struct net_device *dev)
10079 {
10080         IPW_DEBUG_INFO("dev->close\n");
10081         netif_stop_queue(dev);
10082         return 0;
10083 }
10084 
10085 /*
10086 todo:
10087 
10088 modify to send one tfd per fragment instead of using chunking.  otherwise
10089 we need to heavily modify the libipw_skb_to_txb.
10090 */
10091 
10092 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10093                              int pri)
10094 {
10095         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10096             txb->fragments[0]->data;
10097         int i = 0;
10098         struct tfd_frame *tfd;
10099 #ifdef CONFIG_IPW2200_QOS
10100         int tx_id = ipw_get_tx_queue_number(priv, pri);
10101         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10102 #else
10103         struct clx2_tx_queue *txq = &priv->txq[0];
10104 #endif
10105         struct clx2_queue *q = &txq->q;
10106         u8 id, hdr_len, unicast;
10107         int fc;
10108 
10109         if (!(priv->status & STATUS_ASSOCIATED))
10110                 goto drop;
10111 
10112         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10113         switch (priv->ieee->iw_mode) {
10114         case IW_MODE_ADHOC:
10115                 unicast = !is_multicast_ether_addr(hdr->addr1);
10116                 id = ipw_find_station(priv, hdr->addr1);
10117                 if (id == IPW_INVALID_STATION) {
10118                         id = ipw_add_station(priv, hdr->addr1);
10119                         if (id == IPW_INVALID_STATION) {
10120                                 IPW_WARNING("Attempt to send data to "
10121                                             "invalid cell: %pM\n",
10122                                             hdr->addr1);
10123                                 goto drop;
10124                         }
10125                 }
10126                 break;
10127 
10128         case IW_MODE_INFRA:
10129         default:
10130                 unicast = !is_multicast_ether_addr(hdr->addr3);
10131                 id = 0;
10132                 break;
10133         }
10134 
10135         tfd = &txq->bd[q->first_empty];
10136         txq->txb[q->first_empty] = txb;
10137         memset(tfd, 0, sizeof(*tfd));
10138         tfd->u.data.station_number = id;
10139 
10140         tfd->control_flags.message_type = TX_FRAME_TYPE;
10141         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10142 
10143         tfd->u.data.cmd_id = DINO_CMD_TX;
10144         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10145 
10146         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10147                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10148         else
10149                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10150 
10151         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10152                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10153 
10154         fc = le16_to_cpu(hdr->frame_ctl);
10155         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10156 
10157         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10158 
10159         if (likely(unicast))
10160                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10161 
10162         if (txb->encrypted && !priv->ieee->host_encrypt) {
10163                 switch (priv->ieee->sec.level) {
10164                 case SEC_LEVEL_3:
10165                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10166                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10167                         /* XXX: ACK flag must be set for CCMP even if it
10168                          * is a multicast/broadcast packet, because CCMP
10169                          * group communication encrypted by GTK is
10170                          * actually done by the AP. */
10171                         if (!unicast)
10172                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10173 
10174                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10175                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10176                         tfd->u.data.key_index = 0;
10177                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10178                         break;
10179                 case SEC_LEVEL_2:
10180                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10181                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10182                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10183                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10184                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10185                         break;
10186                 case SEC_LEVEL_1:
10187                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10188                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10189                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10190                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10191                             40)
10192                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10193                         else
10194                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10195                         break;
10196                 case SEC_LEVEL_0:
10197                         break;
10198                 default:
10199                         printk(KERN_ERR "Unknown security level %d\n",
10200                                priv->ieee->sec.level);
10201                         break;
10202                 }
10203         } else
10204                 /* No hardware encryption */
10205                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10206 
10207 #ifdef CONFIG_IPW2200_QOS
10208         if (fc & IEEE80211_STYPE_QOS_DATA)
10209                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10210 #endif                          /* CONFIG_IPW2200_QOS */
10211 
10212         /* payload */
10213         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10214                                                  txb->nr_frags));
10215         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10216                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10217         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10218                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10219                                i, le32_to_cpu(tfd->u.data.num_chunks),
10220                                txb->fragments[i]->len - hdr_len);
10221                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10222                              i, tfd->u.data.num_chunks,
10223                              txb->fragments[i]->len - hdr_len);
10224                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10225                            txb->fragments[i]->len - hdr_len);
10226 
10227                 tfd->u.data.chunk_ptr[i] =
10228                     cpu_to_le32(pci_map_single
10229                                 (priv->pci_dev,
10230                                  txb->fragments[i]->data + hdr_len,
10231                                  txb->fragments[i]->len - hdr_len,
10232                                  PCI_DMA_TODEVICE));
10233                 tfd->u.data.chunk_len[i] =
10234                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10235         }
10236 
10237         if (i != txb->nr_frags) {
10238                 struct sk_buff *skb;
10239                 u16 remaining_bytes = 0;
10240                 int j;
10241 
10242                 for (j = i; j < txb->nr_frags; j++)
10243                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10244 
10245                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10246                        remaining_bytes);
10247                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10248                 if (skb != NULL) {
10249                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10250                         for (j = i; j < txb->nr_frags; j++) {
10251                                 int size = txb->fragments[j]->len - hdr_len;
10252 
10253                                 printk(KERN_INFO "Adding frag %d %d...\n",
10254                                        j, size);
10255                                 skb_put_data(skb,
10256                                              txb->fragments[j]->data + hdr_len,
10257                                              size);
10258                         }
10259                         dev_kfree_skb_any(txb->fragments[i]);
10260                         txb->fragments[i] = skb;
10261                         tfd->u.data.chunk_ptr[i] =
10262                             cpu_to_le32(pci_map_single
10263                                         (priv->pci_dev, skb->data,
10264                                          remaining_bytes,
10265                                          PCI_DMA_TODEVICE));
10266 
10267                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10268                 }
10269         }
10270 
10271         /* kick DMA */
10272         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10273         ipw_write32(priv, q->reg_w, q->first_empty);
10274 
10275         if (ipw_tx_queue_space(q) < q->high_mark)
10276                 netif_stop_queue(priv->net_dev);
10277 
10278         return NETDEV_TX_OK;
10279 
10280       drop:
10281         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10282         libipw_txb_free(txb);
10283         return NETDEV_TX_OK;
10284 }
10285 
10286 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10287 {
10288         struct ipw_priv *priv = libipw_priv(dev);
10289 #ifdef CONFIG_IPW2200_QOS
10290         int tx_id = ipw_get_tx_queue_number(priv, pri);
10291         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10292 #else
10293         struct clx2_tx_queue *txq = &priv->txq[0];
10294 #endif                          /* CONFIG_IPW2200_QOS */
10295 
10296         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10297                 return 1;
10298 
10299         return 0;
10300 }
10301 
10302 #ifdef CONFIG_IPW2200_PROMISCUOUS
10303 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10304                                       struct libipw_txb *txb)
10305 {
10306         struct libipw_rx_stats dummystats;
10307         struct ieee80211_hdr *hdr;
10308         u8 n;
10309         u16 filter = priv->prom_priv->filter;
10310         int hdr_only = 0;
10311 
10312         if (filter & IPW_PROM_NO_TX)
10313                 return;
10314 
10315         memset(&dummystats, 0, sizeof(dummystats));
10316 
10317         /* Filtering of fragment chains is done against the first fragment */
10318         hdr = (void *)txb->fragments[0]->data;
10319         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10320                 if (filter & IPW_PROM_NO_MGMT)
10321                         return;
10322                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10323                         hdr_only = 1;
10324         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10325                 if (filter & IPW_PROM_NO_CTL)
10326                         return;
10327                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10328                         hdr_only = 1;
10329         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10330                 if (filter & IPW_PROM_NO_DATA)
10331                         return;
10332                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10333                         hdr_only = 1;
10334         }
10335 
10336         for(n=0; n<txb->nr_frags; ++n) {
10337                 struct sk_buff *src = txb->fragments[n];
10338                 struct sk_buff *dst;
10339                 struct ieee80211_radiotap_header *rt_hdr;
10340                 int len;
10341 
10342                 if (hdr_only) {
10343                         hdr = (void *)src->data;
10344                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10345                 } else
10346                         len = src->len;
10347 
10348                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10349                 if (!dst)
10350                         continue;
10351 
10352                 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10353 
10354                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10355                 rt_hdr->it_pad = 0;
10356                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10357                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10358 
10359                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10360                         ieee80211chan2mhz(priv->channel));
10361                 if (priv->channel > 14)         /* 802.11a */
10362                         *(__le16*)skb_put(dst, sizeof(u16)) =
10363                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10364                                              IEEE80211_CHAN_5GHZ);
10365                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10366                         *(__le16*)skb_put(dst, sizeof(u16)) =
10367                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10368                                              IEEE80211_CHAN_2GHZ);
10369                 else            /* 802.11g */
10370                         *(__le16*)skb_put(dst, sizeof(u16)) =
10371                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10372                                  IEEE80211_CHAN_2GHZ);
10373 
10374                 rt_hdr->it_len = cpu_to_le16(dst->len);
10375 
10376                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10377 
10378                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10379                         dev_kfree_skb_any(dst);
10380         }
10381 }
10382 #endif
10383 
10384 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10385                                            struct net_device *dev, int pri)
10386 {
10387         struct ipw_priv *priv = libipw_priv(dev);
10388         unsigned long flags;
10389         netdev_tx_t ret;
10390 
10391         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10392         spin_lock_irqsave(&priv->lock, flags);
10393 
10394 #ifdef CONFIG_IPW2200_PROMISCUOUS
10395         if (rtap_iface && netif_running(priv->prom_net_dev))
10396                 ipw_handle_promiscuous_tx(priv, txb);
10397 #endif
10398 
10399         ret = ipw_tx_skb(priv, txb, pri);
10400         if (ret == NETDEV_TX_OK)
10401                 __ipw_led_activity_on(priv);
10402         spin_unlock_irqrestore(&priv->lock, flags);
10403 
10404         return ret;
10405 }
10406 
10407 static void ipw_net_set_multicast_list(struct net_device *dev)
10408 {
10409 
10410 }
10411 
10412 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10413 {
10414         struct ipw_priv *priv = libipw_priv(dev);
10415         struct sockaddr *addr = p;
10416 
10417         if (!is_valid_ether_addr(addr->sa_data))
10418                 return -EADDRNOTAVAIL;
10419         mutex_lock(&priv->mutex);
10420         priv->config |= CFG_CUSTOM_MAC;
10421         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10422         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10423                priv->net_dev->name, priv->mac_addr);
10424         schedule_work(&priv->adapter_restart);
10425         mutex_unlock(&priv->mutex);
10426         return 0;
10427 }
10428 
10429 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10430                                     struct ethtool_drvinfo *info)
10431 {
10432         struct ipw_priv *p = libipw_priv(dev);
10433         char vers[64];
10434         char date[32];
10435         u32 len;
10436 
10437         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10438         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10439 
10440         len = sizeof(vers);
10441         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10442         len = sizeof(date);
10443         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10444 
10445         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10446                  vers, date);
10447         strlcpy(info->bus_info, pci_name(p->pci_dev),
10448                 sizeof(info->bus_info));
10449 }
10450 
10451 static u32 ipw_ethtool_get_link(struct net_device *dev)
10452 {
10453         struct ipw_priv *priv = libipw_priv(dev);
10454         return (priv->status & STATUS_ASSOCIATED) != 0;
10455 }
10456 
10457 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10458 {
10459         return IPW_EEPROM_IMAGE_SIZE;
10460 }
10461 
10462 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10463                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10464 {
10465         struct ipw_priv *p = libipw_priv(dev);
10466 
10467         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10468                 return -EINVAL;
10469         mutex_lock(&p->mutex);
10470         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10471         mutex_unlock(&p->mutex);
10472         return 0;
10473 }
10474 
10475 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10476                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10477 {
10478         struct ipw_priv *p = libipw_priv(dev);
10479         int i;
10480 
10481         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10482                 return -EINVAL;
10483         mutex_lock(&p->mutex);
10484         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10485         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10486                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10487         mutex_unlock(&p->mutex);
10488         return 0;
10489 }
10490 
10491 static const struct ethtool_ops ipw_ethtool_ops = {
10492         .get_link = ipw_ethtool_get_link,
10493         .get_drvinfo = ipw_ethtool_get_drvinfo,
10494         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10495         .get_eeprom = ipw_ethtool_get_eeprom,
10496         .set_eeprom = ipw_ethtool_set_eeprom,
10497 };
10498 
10499 static irqreturn_t ipw_isr(int irq, void *data)
10500 {
10501         struct ipw_priv *priv = data;
10502         u32 inta, inta_mask;
10503 
10504         if (!priv)
10505                 return IRQ_NONE;
10506 
10507         spin_lock(&priv->irq_lock);
10508 
10509         if (!(priv->status & STATUS_INT_ENABLED)) {
10510                 /* IRQ is disabled */
10511                 goto none;
10512         }
10513 
10514         inta = ipw_read32(priv, IPW_INTA_RW);
10515         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10516 
10517         if (inta == 0xFFFFFFFF) {
10518                 /* Hardware disappeared */
10519                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10520                 goto none;
10521         }
10522 
10523         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10524                 /* Shared interrupt */
10525                 goto none;
10526         }
10527 
10528         /* tell the device to stop sending interrupts */
10529         __ipw_disable_interrupts(priv);
10530 
10531         /* ack current interrupts */
10532         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10533         ipw_write32(priv, IPW_INTA_RW, inta);
10534 
10535         /* Cache INTA value for our tasklet */
10536         priv->isr_inta = inta;
10537 
10538         tasklet_schedule(&priv->irq_tasklet);
10539 
10540         spin_unlock(&priv->irq_lock);
10541 
10542         return IRQ_HANDLED;
10543       none:
10544         spin_unlock(&priv->irq_lock);
10545         return IRQ_NONE;
10546 }
10547 
10548 static void ipw_rf_kill(void *adapter)
10549 {
10550         struct ipw_priv *priv = adapter;
10551         unsigned long flags;
10552 
10553         spin_lock_irqsave(&priv->lock, flags);
10554 
10555         if (rf_kill_active(priv)) {
10556                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10557                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10558                 goto exit_unlock;
10559         }
10560 
10561         /* RF Kill is now disabled, so bring the device back up */
10562 
10563         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10564                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10565                                   "device\n");
10566 
10567                 /* we can not do an adapter restart while inside an irq lock */
10568                 schedule_work(&priv->adapter_restart);
10569         } else
10570                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10571                                   "enabled\n");
10572 
10573       exit_unlock:
10574         spin_unlock_irqrestore(&priv->lock, flags);
10575 }
10576 
10577 static void ipw_bg_rf_kill(struct work_struct *work)
10578 {
10579         struct ipw_priv *priv =
10580                 container_of(work, struct ipw_priv, rf_kill.work);
10581         mutex_lock(&priv->mutex);
10582         ipw_rf_kill(priv);
10583         mutex_unlock(&priv->mutex);
10584 }
10585 
10586 static void ipw_link_up(struct ipw_priv *priv)
10587 {
10588         priv->last_seq_num = -1;
10589         priv->last_frag_num = -1;
10590         priv->last_packet_time = 0;
10591 
10592         netif_carrier_on(priv->net_dev);
10593 
10594         cancel_delayed_work(&priv->request_scan);
10595         cancel_delayed_work(&priv->request_direct_scan);
10596         cancel_delayed_work(&priv->request_passive_scan);
10597         cancel_delayed_work(&priv->scan_event);
10598         ipw_reset_stats(priv);
10599         /* Ensure the rate is updated immediately */
10600         priv->last_rate = ipw_get_current_rate(priv);
10601         ipw_gather_stats(priv);
10602         ipw_led_link_up(priv);
10603         notify_wx_assoc_event(priv);
10604 
10605         if (priv->config & CFG_BACKGROUND_SCAN)
10606                 schedule_delayed_work(&priv->request_scan, HZ);
10607 }
10608 
10609 static void ipw_bg_link_up(struct work_struct *work)
10610 {
10611         struct ipw_priv *priv =
10612                 container_of(work, struct ipw_priv, link_up);
10613         mutex_lock(&priv->mutex);
10614         ipw_link_up(priv);
10615         mutex_unlock(&priv->mutex);
10616 }
10617 
10618 static void ipw_link_down(struct ipw_priv *priv)
10619 {
10620         ipw_led_link_down(priv);
10621         netif_carrier_off(priv->net_dev);
10622         notify_wx_assoc_event(priv);
10623 
10624         /* Cancel any queued work ... */
10625         cancel_delayed_work(&priv->request_scan);
10626         cancel_delayed_work(&priv->request_direct_scan);
10627         cancel_delayed_work(&priv->request_passive_scan);
10628         cancel_delayed_work(&priv->adhoc_check);
10629         cancel_delayed_work(&priv->gather_stats);
10630 
10631         ipw_reset_stats(priv);
10632 
10633         if (!(priv->status & STATUS_EXIT_PENDING)) {
10634                 /* Queue up another scan... */
10635                 schedule_delayed_work(&priv->request_scan, 0);
10636         } else
10637                 cancel_delayed_work(&priv->scan_event);
10638 }
10639 
10640 static void ipw_bg_link_down(struct work_struct *work)
10641 {
10642         struct ipw_priv *priv =
10643                 container_of(work, struct ipw_priv, link_down);
10644         mutex_lock(&priv->mutex);
10645         ipw_link_down(priv);
10646         mutex_unlock(&priv->mutex);
10647 }
10648 
10649 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10650 {
10651         int ret = 0;
10652 
10653         init_waitqueue_head(&priv->wait_command_queue);
10654         init_waitqueue_head(&priv->wait_state);
10655 
10656         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10657         INIT_WORK(&priv->associate, ipw_bg_associate);
10658         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10659         INIT_WORK(&priv->system_config, ipw_system_config);
10660         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10661         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10662         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10663         INIT_WORK(&priv->up, ipw_bg_up);
10664         INIT_WORK(&priv->down, ipw_bg_down);
10665         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10666         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10667         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10668         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10669         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10670         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10671         INIT_WORK(&priv->roam, ipw_bg_roam);
10672         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10673         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10674         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10675         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10676         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10677         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10678         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10679 
10680 #ifdef CONFIG_IPW2200_QOS
10681         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10682 #endif                          /* CONFIG_IPW2200_QOS */
10683 
10684         tasklet_init(&priv->irq_tasklet,
10685                      ipw_irq_tasklet, (unsigned long)priv);
10686 
10687         return ret;
10688 }
10689 
10690 static void shim__set_security(struct net_device *dev,
10691                                struct libipw_security *sec)
10692 {
10693         struct ipw_priv *priv = libipw_priv(dev);
10694         int i;
10695         for (i = 0; i < 4; i++) {
10696                 if (sec->flags & (1 << i)) {
10697                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10698                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10699                         if (sec->key_sizes[i] == 0)
10700                                 priv->ieee->sec.flags &= ~(1 << i);
10701                         else {
10702                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10703                                        sec->key_sizes[i]);
10704                                 priv->ieee->sec.flags |= (1 << i);
10705                         }
10706                         priv->status |= STATUS_SECURITY_UPDATED;
10707                 } else if (sec->level != SEC_LEVEL_1)
10708                         priv->ieee->sec.flags &= ~(1 << i);
10709         }
10710 
10711         if (sec->flags & SEC_ACTIVE_KEY) {
10712                 priv->ieee->sec.active_key = sec->active_key;
10713                 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10714                 priv->status |= STATUS_SECURITY_UPDATED;
10715         } else
10716                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10717 
10718         if ((sec->flags & SEC_AUTH_MODE) &&
10719             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10720                 priv->ieee->sec.auth_mode = sec->auth_mode;
10721                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10722                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10723                         priv->capability |= CAP_SHARED_KEY;
10724                 else
10725                         priv->capability &= ~CAP_SHARED_KEY;
10726                 priv->status |= STATUS_SECURITY_UPDATED;
10727         }
10728 
10729         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10730                 priv->ieee->sec.flags |= SEC_ENABLED;
10731                 priv->ieee->sec.enabled = sec->enabled;
10732                 priv->status |= STATUS_SECURITY_UPDATED;
10733                 if (sec->enabled)
10734                         priv->capability |= CAP_PRIVACY_ON;
10735                 else
10736                         priv->capability &= ~CAP_PRIVACY_ON;
10737         }
10738 
10739         if (sec->flags & SEC_ENCRYPT)
10740                 priv->ieee->sec.encrypt = sec->encrypt;
10741 
10742         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10743                 priv->ieee->sec.level = sec->level;
10744                 priv->ieee->sec.flags |= SEC_LEVEL;
10745                 priv->status |= STATUS_SECURITY_UPDATED;
10746         }
10747 
10748         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10749                 ipw_set_hwcrypto_keys(priv);
10750 
10751         /* To match current functionality of ipw2100 (which works well w/
10752          * various supplicants, we don't force a disassociate if the
10753          * privacy capability changes ... */
10754 #if 0
10755         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10756             (((priv->assoc_request.capability &
10757                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10758              (!(priv->assoc_request.capability &
10759                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10760                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10761                                 "change.\n");
10762                 ipw_disassociate(priv);
10763         }
10764 #endif
10765 }
10766 
10767 static int init_supported_rates(struct ipw_priv *priv,
10768                                 struct ipw_supported_rates *rates)
10769 {
10770         /* TODO: Mask out rates based on priv->rates_mask */
10771 
10772         memset(rates, 0, sizeof(*rates));
10773         /* configure supported rates */
10774         switch (priv->ieee->freq_band) {
10775         case LIBIPW_52GHZ_BAND:
10776                 rates->ieee_mode = IPW_A_MODE;
10777                 rates->purpose = IPW_RATE_CAPABILITIES;
10778                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10779                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10780                 break;
10781 
10782         default:                /* Mixed or 2.4Ghz */
10783                 rates->ieee_mode = IPW_G_MODE;
10784                 rates->purpose = IPW_RATE_CAPABILITIES;
10785                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10786                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10787                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10788                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10789                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10790                 }
10791                 break;
10792         }
10793 
10794         return 0;
10795 }
10796 
10797 static int ipw_config(struct ipw_priv *priv)
10798 {
10799         /* This is only called from ipw_up, which resets/reloads the firmware
10800            so, we don't need to first disable the card before we configure
10801            it */
10802         if (ipw_set_tx_power(priv))
10803                 goto error;
10804 
10805         /* initialize adapter address */
10806         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10807                 goto error;
10808 
10809         /* set basic system config settings */
10810         init_sys_config(&priv->sys_config);
10811 
10812         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10813          * Does not support BT priority yet (don't abort or defer our Tx) */
10814         if (bt_coexist) {
10815                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10816 
10817                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10818                         priv->sys_config.bt_coexistence
10819                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10820                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10821                         priv->sys_config.bt_coexistence
10822                             |= CFG_BT_COEXISTENCE_OOB;
10823         }
10824 
10825 #ifdef CONFIG_IPW2200_PROMISCUOUS
10826         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10827                 priv->sys_config.accept_all_data_frames = 1;
10828                 priv->sys_config.accept_non_directed_frames = 1;
10829                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10830                 priv->sys_config.accept_all_mgmt_frames = 1;
10831         }
10832 #endif
10833 
10834         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10835                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10836         else
10837                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10838 
10839         if (ipw_send_system_config(priv))
10840                 goto error;
10841 
10842         init_supported_rates(priv, &priv->rates);
10843         if (ipw_send_supported_rates(priv, &priv->rates))
10844                 goto error;
10845 
10846         /* Set request-to-send threshold */
10847         if (priv->rts_threshold) {
10848                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10849                         goto error;
10850         }
10851 #ifdef CONFIG_IPW2200_QOS
10852         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10853         ipw_qos_activate(priv, NULL);
10854 #endif                          /* CONFIG_IPW2200_QOS */
10855 
10856         if (ipw_set_random_seed(priv))
10857                 goto error;
10858 
10859         /* final state transition to the RUN state */
10860         if (ipw_send_host_complete(priv))
10861                 goto error;
10862 
10863         priv->status |= STATUS_INIT;
10864 
10865         ipw_led_init(priv);
10866         ipw_led_radio_on(priv);
10867         priv->notif_missed_beacons = 0;
10868 
10869         /* Set hardware WEP key if it is configured. */
10870         if ((priv->capability & CAP_PRIVACY_ON) &&
10871             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10872             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10873                 ipw_set_hwcrypto_keys(priv);
10874 
10875         return 0;
10876 
10877       error:
10878         return -EIO;
10879 }
10880 
10881 /*
10882  * NOTE:
10883  *
10884  * These tables have been tested in conjunction with the
10885  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10886  *
10887  * Altering this values, using it on other hardware, or in geographies
10888  * not intended for resale of the above mentioned Intel adapters has
10889  * not been tested.
10890  *
10891  * Remember to update the table in README.ipw2200 when changing this
10892  * table.
10893  *
10894  */
10895 static const struct libipw_geo ipw_geos[] = {
10896         {                       /* Restricted */
10897          "---",
10898          .bg_channels = 11,
10899          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10900                 {2427, 4}, {2432, 5}, {2437, 6},
10901                 {2442, 7}, {2447, 8}, {2452, 9},
10902                 {2457, 10}, {2462, 11}},
10903          },
10904 
10905         {                       /* Custom US/Canada */
10906          "ZZF",
10907          .bg_channels = 11,
10908          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10909                 {2427, 4}, {2432, 5}, {2437, 6},
10910                 {2442, 7}, {2447, 8}, {2452, 9},
10911                 {2457, 10}, {2462, 11}},
10912          .a_channels = 8,
10913          .a = {{5180, 36},
10914                {5200, 40},
10915                {5220, 44},
10916                {5240, 48},
10917                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10918                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10919                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10920                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10921          },
10922 
10923         {                       /* Rest of World */
10924          "ZZD",
10925          .bg_channels = 13,
10926          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10927                 {2427, 4}, {2432, 5}, {2437, 6},
10928                 {2442, 7}, {2447, 8}, {2452, 9},
10929                 {2457, 10}, {2462, 11}, {2467, 12},
10930                 {2472, 13}},
10931          },
10932 
10933         {                       /* Custom USA & Europe & High */
10934          "ZZA",
10935          .bg_channels = 11,
10936          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10937                 {2427, 4}, {2432, 5}, {2437, 6},
10938                 {2442, 7}, {2447, 8}, {2452, 9},
10939                 {2457, 10}, {2462, 11}},
10940          .a_channels = 13,
10941          .a = {{5180, 36},
10942                {5200, 40},
10943                {5220, 44},
10944                {5240, 48},
10945                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10946                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10947                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10948                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10949                {5745, 149},
10950                {5765, 153},
10951                {5785, 157},
10952                {5805, 161},
10953                {5825, 165}},
10954          },
10955 
10956         {                       /* Custom NA & Europe */
10957          "ZZB",
10958          .bg_channels = 11,
10959          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10960                 {2427, 4}, {2432, 5}, {2437, 6},
10961                 {2442, 7}, {2447, 8}, {2452, 9},
10962                 {2457, 10}, {2462, 11}},
10963          .a_channels = 13,
10964          .a = {{5180, 36},
10965                {5200, 40},
10966                {5220, 44},
10967                {5240, 48},
10968                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10969                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10970                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10971                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10972                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10973                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10974                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10975                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10976                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10977          },
10978 
10979         {                       /* Custom Japan */
10980          "ZZC",
10981          .bg_channels = 11,
10982          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10983                 {2427, 4}, {2432, 5}, {2437, 6},
10984                 {2442, 7}, {2447, 8}, {2452, 9},
10985                 {2457, 10}, {2462, 11}},
10986          .a_channels = 4,
10987          .a = {{5170, 34}, {5190, 38},
10988                {5210, 42}, {5230, 46}},
10989          },
10990 
10991         {                       /* Custom */
10992          "ZZM",
10993          .bg_channels = 11,
10994          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10995                 {2427, 4}, {2432, 5}, {2437, 6},
10996                 {2442, 7}, {2447, 8}, {2452, 9},
10997                 {2457, 10}, {2462, 11}},
10998          },
10999 
11000         {                       /* Europe */
11001          "ZZE",
11002          .bg_channels = 13,
11003          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11004                 {2427, 4}, {2432, 5}, {2437, 6},
11005                 {2442, 7}, {2447, 8}, {2452, 9},
11006                 {2457, 10}, {2462, 11}, {2467, 12},
11007                 {2472, 13}},
11008          .a_channels = 19,
11009          .a = {{5180, 36},
11010                {5200, 40},
11011                {5220, 44},
11012                {5240, 48},
11013                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11014                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11015                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11016                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11017                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11018                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11019                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11020                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11021                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11022                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11023                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11024                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11025                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11026                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11027                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11028          },
11029 
11030         {                       /* Custom Japan */
11031          "ZZJ",
11032          .bg_channels = 14,
11033          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11034                 {2427, 4}, {2432, 5}, {2437, 6},
11035                 {2442, 7}, {2447, 8}, {2452, 9},
11036                 {2457, 10}, {2462, 11}, {2467, 12},
11037                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11038          .a_channels = 4,
11039          .a = {{5170, 34}, {5190, 38},
11040                {5210, 42}, {5230, 46}},
11041          },
11042 
11043         {                       /* Rest of World */
11044          "ZZR",
11045          .bg_channels = 14,
11046          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11047                 {2427, 4}, {2432, 5}, {2437, 6},
11048                 {2442, 7}, {2447, 8}, {2452, 9},
11049                 {2457, 10}, {2462, 11}, {2467, 12},
11050                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11051                              LIBIPW_CH_PASSIVE_ONLY}},
11052          },
11053 
11054         {                       /* High Band */
11055          "ZZH",
11056          .bg_channels = 13,
11057          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058                 {2427, 4}, {2432, 5}, {2437, 6},
11059                 {2442, 7}, {2447, 8}, {2452, 9},
11060                 {2457, 10}, {2462, 11},
11061                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11062                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11063          .a_channels = 4,
11064          .a = {{5745, 149}, {5765, 153},
11065                {5785, 157}, {5805, 161}},
11066          },
11067 
11068         {                       /* Custom Europe */
11069          "ZZG",
11070          .bg_channels = 13,
11071          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072                 {2427, 4}, {2432, 5}, {2437, 6},
11073                 {2442, 7}, {2447, 8}, {2452, 9},
11074                 {2457, 10}, {2462, 11},
11075                 {2467, 12}, {2472, 13}},
11076          .a_channels = 4,
11077          .a = {{5180, 36}, {5200, 40},
11078                {5220, 44}, {5240, 48}},
11079          },
11080 
11081         {                       /* Europe */
11082          "ZZK",
11083          .bg_channels = 13,
11084          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11085                 {2427, 4}, {2432, 5}, {2437, 6},
11086                 {2442, 7}, {2447, 8}, {2452, 9},
11087                 {2457, 10}, {2462, 11},
11088                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11089                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11090          .a_channels = 24,
11091          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11092                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11093                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11094                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11095                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11096                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11097                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11098                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11099                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11100                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11101                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11102                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11103                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11104                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11105                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11106                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11107                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11108                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11109                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11110                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11111                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11112                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11113                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11114                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11115          },
11116 
11117         {                       /* Europe */
11118          "ZZL",
11119          .bg_channels = 11,
11120          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11121                 {2427, 4}, {2432, 5}, {2437, 6},
11122                 {2442, 7}, {2447, 8}, {2452, 9},
11123                 {2457, 10}, {2462, 11}},
11124          .a_channels = 13,
11125          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11126                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11127                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11128                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11129                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11130                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11131                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11132                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11133                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11134                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11135                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11136                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11137                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11138          }
11139 };
11140 
11141 static void ipw_set_geo(struct ipw_priv *priv)
11142 {
11143         int j;
11144 
11145         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11146                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11147                             ipw_geos[j].name, 3))
11148                         break;
11149         }
11150 
11151         if (j == ARRAY_SIZE(ipw_geos)) {
11152                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11153                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11154                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11155                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11156                 j = 0;
11157         }
11158 
11159         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11160 }
11161 
11162 #define MAX_HW_RESTARTS 5
11163 static int ipw_up(struct ipw_priv *priv)
11164 {
11165         int rc, i;
11166 
11167         /* Age scan list entries found before suspend */
11168         if (priv->suspend_time) {
11169                 libipw_networks_age(priv->ieee, priv->suspend_time);
11170                 priv->suspend_time = 0;
11171         }
11172 
11173         if (priv->status & STATUS_EXIT_PENDING)
11174                 return -EIO;
11175 
11176         if (cmdlog && !priv->cmdlog) {
11177                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11178                                        GFP_KERNEL);
11179                 if (priv->cmdlog == NULL) {
11180                         IPW_ERROR("Error allocating %d command log entries.\n",
11181                                   cmdlog);
11182                         return -ENOMEM;
11183                 } else {
11184                         priv->cmdlog_len = cmdlog;
11185                 }
11186         }
11187 
11188         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11189                 /* Load the microcode, firmware, and eeprom.
11190                  * Also start the clocks. */
11191                 rc = ipw_load(priv);
11192                 if (rc) {
11193                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11194                         return rc;
11195                 }
11196 
11197                 ipw_init_ordinals(priv);
11198                 if (!(priv->config & CFG_CUSTOM_MAC))
11199                         eeprom_parse_mac(priv, priv->mac_addr);
11200                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11201 
11202                 ipw_set_geo(priv);
11203 
11204                 if (priv->status & STATUS_RF_KILL_SW) {
11205                         IPW_WARNING("Radio disabled by module parameter.\n");
11206                         return 0;
11207                 } else if (rf_kill_active(priv)) {
11208                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11209                                     "Kill switch must be turned off for "
11210                                     "wireless networking to work.\n");
11211                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11212                         return 0;
11213                 }
11214 
11215                 rc = ipw_config(priv);
11216                 if (!rc) {
11217                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11218 
11219                         /* If configure to try and auto-associate, kick
11220                          * off a scan. */
11221                         schedule_delayed_work(&priv->request_scan, 0);
11222 
11223                         return 0;
11224                 }
11225 
11226                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11227                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11228                                i, MAX_HW_RESTARTS);
11229 
11230                 /* We had an error bringing up the hardware, so take it
11231                  * all the way back down so we can try again */
11232                 ipw_down(priv);
11233         }
11234 
11235         /* tried to restart and config the device for as long as our
11236          * patience could withstand */
11237         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11238 
11239         return -EIO;
11240 }
11241 
11242 static void ipw_bg_up(struct work_struct *work)
11243 {
11244         struct ipw_priv *priv =
11245                 container_of(work, struct ipw_priv, up);
11246         mutex_lock(&priv->mutex);
11247         ipw_up(priv);
11248         mutex_unlock(&priv->mutex);
11249 }
11250 
11251 static void ipw_deinit(struct ipw_priv *priv)
11252 {
11253         int i;
11254 
11255         if (priv->status & STATUS_SCANNING) {
11256                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11257                 ipw_abort_scan(priv);
11258         }
11259 
11260         if (priv->status & STATUS_ASSOCIATED) {
11261                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11262                 ipw_disassociate(priv);
11263         }
11264 
11265         ipw_led_shutdown(priv);
11266 
11267         /* Wait up to 1s for status to change to not scanning and not
11268          * associated (disassociation can take a while for a ful 802.11
11269          * exchange */
11270         for (i = 1000; i && (priv->status &
11271                              (STATUS_DISASSOCIATING |
11272                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11273                 udelay(10);
11274 
11275         if (priv->status & (STATUS_DISASSOCIATING |
11276                             STATUS_ASSOCIATED | STATUS_SCANNING))
11277                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11278         else
11279                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11280 
11281         /* Attempt to disable the card */
11282         ipw_send_card_disable(priv, 0);
11283 
11284         priv->status &= ~STATUS_INIT;
11285 }
11286 
11287 static void ipw_down(struct ipw_priv *priv)
11288 {
11289         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11290 
11291         priv->status |= STATUS_EXIT_PENDING;
11292 
11293         if (ipw_is_init(priv))
11294                 ipw_deinit(priv);
11295 
11296         /* Wipe out the EXIT_PENDING status bit if we are not actually
11297          * exiting the module */
11298         if (!exit_pending)
11299                 priv->status &= ~STATUS_EXIT_PENDING;
11300 
11301         /* tell the device to stop sending interrupts */
11302         ipw_disable_interrupts(priv);
11303 
11304         /* Clear all bits but the RF Kill */
11305         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11306         netif_carrier_off(priv->net_dev);
11307 
11308         ipw_stop_nic(priv);
11309 
11310         ipw_led_radio_off(priv);
11311 }
11312 
11313 static void ipw_bg_down(struct work_struct *work)
11314 {
11315         struct ipw_priv *priv =
11316                 container_of(work, struct ipw_priv, down);
11317         mutex_lock(&priv->mutex);
11318         ipw_down(priv);
11319         mutex_unlock(&priv->mutex);
11320 }
11321 
11322 static int ipw_wdev_init(struct net_device *dev)
11323 {
11324         int i, rc = 0;
11325         struct ipw_priv *priv = libipw_priv(dev);
11326         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11327         struct wireless_dev *wdev = &priv->ieee->wdev;
11328 
11329         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11330 
11331         /* fill-out priv->ieee->bg_band */
11332         if (geo->bg_channels) {
11333                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11334 
11335                 bg_band->band = NL80211_BAND_2GHZ;
11336                 bg_band->n_channels = geo->bg_channels;
11337                 bg_band->channels = kcalloc(geo->bg_channels,
11338                                             sizeof(struct ieee80211_channel),
11339                                             GFP_KERNEL);
11340                 if (!bg_band->channels) {
11341                         rc = -ENOMEM;
11342                         goto out;
11343                 }
11344                 /* translate geo->bg to bg_band.channels */
11345                 for (i = 0; i < geo->bg_channels; i++) {
11346                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11347                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11348                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11349                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11350                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11351                                 bg_band->channels[i].flags |=
11352                                         IEEE80211_CHAN_NO_IR;
11353                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11354                                 bg_band->channels[i].flags |=
11355                                         IEEE80211_CHAN_NO_IR;
11356                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11357                                 bg_band->channels[i].flags |=
11358                                         IEEE80211_CHAN_RADAR;
11359                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11360                            LIBIPW_CH_UNIFORM_SPREADING, or
11361                            LIBIPW_CH_B_ONLY... */
11362                 }
11363                 /* point at bitrate info */
11364                 bg_band->bitrates = ipw2200_bg_rates;
11365                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11366 
11367                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11368         }
11369 
11370         /* fill-out priv->ieee->a_band */
11371         if (geo->a_channels) {
11372                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11373 
11374                 a_band->band = NL80211_BAND_5GHZ;
11375                 a_band->n_channels = geo->a_channels;
11376                 a_band->channels = kcalloc(geo->a_channels,
11377                                            sizeof(struct ieee80211_channel),
11378                                            GFP_KERNEL);
11379                 if (!a_band->channels) {
11380                         rc = -ENOMEM;
11381                         goto out;
11382                 }
11383                 /* translate geo->a to a_band.channels */
11384                 for (i = 0; i < geo->a_channels; i++) {
11385                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11386                         a_band->channels[i].center_freq = geo->a[i].freq;
11387                         a_band->channels[i].hw_value = geo->a[i].channel;
11388                         a_band->channels[i].max_power = geo->a[i].max_power;
11389                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11390                                 a_band->channels[i].flags |=
11391                                         IEEE80211_CHAN_NO_IR;
11392                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11393                                 a_band->channels[i].flags |=
11394                                         IEEE80211_CHAN_NO_IR;
11395                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11396                                 a_band->channels[i].flags |=
11397                                         IEEE80211_CHAN_RADAR;
11398                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11399                            LIBIPW_CH_UNIFORM_SPREADING, or
11400                            LIBIPW_CH_B_ONLY... */
11401                 }
11402                 /* point at bitrate info */
11403                 a_band->bitrates = ipw2200_a_rates;
11404                 a_band->n_bitrates = ipw2200_num_a_rates;
11405 
11406                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11407         }
11408 
11409         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11410         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11411 
11412         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11413 
11414         /* With that information in place, we can now register the wiphy... */
11415         if (wiphy_register(wdev->wiphy))
11416                 rc = -EIO;
11417 out:
11418         return rc;
11419 }
11420 
11421 /* PCI driver stuff */
11422 static const struct pci_device_id card_ids[] = {
11423         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11424         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11425         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11426         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11427         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11428         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11435         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11437         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11438         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11440         {PCI_VDEVICE(INTEL, 0x104f), 0},
11441         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11442         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11443         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11444         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11445 
11446         /* required last entry */
11447         {0,}
11448 };
11449 
11450 MODULE_DEVICE_TABLE(pci, card_ids);
11451 
11452 static struct attribute *ipw_sysfs_entries[] = {
11453         &dev_attr_rf_kill.attr,
11454         &dev_attr_direct_dword.attr,
11455         &dev_attr_indirect_byte.attr,
11456         &dev_attr_indirect_dword.attr,
11457         &dev_attr_mem_gpio_reg.attr,
11458         &dev_attr_command_event_reg.attr,
11459         &dev_attr_nic_type.attr,
11460         &dev_attr_status.attr,
11461         &dev_attr_cfg.attr,
11462         &dev_attr_error.attr,
11463         &dev_attr_event_log.attr,
11464         &dev_attr_cmd_log.attr,
11465         &dev_attr_eeprom_delay.attr,
11466         &dev_attr_ucode_version.attr,
11467         &dev_attr_rtc.attr,
11468         &dev_attr_scan_age.attr,
11469         &dev_attr_led.attr,
11470         &dev_attr_speed_scan.attr,
11471         &dev_attr_net_stats.attr,
11472         &dev_attr_channels.attr,
11473 #ifdef CONFIG_IPW2200_PROMISCUOUS
11474         &dev_attr_rtap_iface.attr,
11475         &dev_attr_rtap_filter.attr,
11476 #endif
11477         NULL
11478 };
11479 
11480 static const struct attribute_group ipw_attribute_group = {
11481         .name = NULL,           /* put in device directory */
11482         .attrs = ipw_sysfs_entries,
11483 };
11484 
11485 #ifdef CONFIG_IPW2200_PROMISCUOUS
11486 static int ipw_prom_open(struct net_device *dev)
11487 {
11488         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11489         struct ipw_priv *priv = prom_priv->priv;
11490 
11491         IPW_DEBUG_INFO("prom dev->open\n");
11492         netif_carrier_off(dev);
11493 
11494         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11495                 priv->sys_config.accept_all_data_frames = 1;
11496                 priv->sys_config.accept_non_directed_frames = 1;
11497                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11498                 priv->sys_config.accept_all_mgmt_frames = 1;
11499 
11500                 ipw_send_system_config(priv);
11501         }
11502 
11503         return 0;
11504 }
11505 
11506 static int ipw_prom_stop(struct net_device *dev)
11507 {
11508         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11509         struct ipw_priv *priv = prom_priv->priv;
11510 
11511         IPW_DEBUG_INFO("prom dev->stop\n");
11512 
11513         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11514                 priv->sys_config.accept_all_data_frames = 0;
11515                 priv->sys_config.accept_non_directed_frames = 0;
11516                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11517                 priv->sys_config.accept_all_mgmt_frames = 0;
11518 
11519                 ipw_send_system_config(priv);
11520         }
11521 
11522         return 0;
11523 }
11524 
11525 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11526                                             struct net_device *dev)
11527 {
11528         IPW_DEBUG_INFO("prom dev->xmit\n");
11529         dev_kfree_skb(skb);
11530         return NETDEV_TX_OK;
11531 }
11532 
11533 static const struct net_device_ops ipw_prom_netdev_ops = {
11534         .ndo_open               = ipw_prom_open,
11535         .ndo_stop               = ipw_prom_stop,
11536         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11537         .ndo_set_mac_address    = eth_mac_addr,
11538         .ndo_validate_addr      = eth_validate_addr,
11539 };
11540 
11541 static int ipw_prom_alloc(struct ipw_priv *priv)
11542 {
11543         int rc = 0;
11544 
11545         if (priv->prom_net_dev)
11546                 return -EPERM;
11547 
11548         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11549         if (priv->prom_net_dev == NULL)
11550                 return -ENOMEM;
11551 
11552         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11553         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11554         priv->prom_priv->priv = priv;
11555 
11556         strcpy(priv->prom_net_dev->name, "rtap%d");
11557         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11558 
11559         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11560         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11561 
11562         priv->prom_net_dev->min_mtu = 68;
11563         priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11564 
11565         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11566         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11567 
11568         rc = register_netdev(priv->prom_net_dev);
11569         if (rc) {
11570                 free_libipw(priv->prom_net_dev, 1);
11571                 priv->prom_net_dev = NULL;
11572                 return rc;
11573         }
11574 
11575         return 0;
11576 }
11577 
11578 static void ipw_prom_free(struct ipw_priv *priv)
11579 {
11580         if (!priv->prom_net_dev)
11581                 return;
11582 
11583         unregister_netdev(priv->prom_net_dev);
11584         free_libipw(priv->prom_net_dev, 1);
11585 
11586         priv->prom_net_dev = NULL;
11587 }
11588 
11589 #endif
11590 
11591 static const struct net_device_ops ipw_netdev_ops = {
11592         .ndo_open               = ipw_net_open,
11593         .ndo_stop               = ipw_net_stop,
11594         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11595         .ndo_set_mac_address    = ipw_net_set_mac_address,
11596         .ndo_start_xmit         = libipw_xmit,
11597         .ndo_validate_addr      = eth_validate_addr,
11598 };
11599 
11600 static int ipw_pci_probe(struct pci_dev *pdev,
11601                                    const struct pci_device_id *ent)
11602 {
11603         int err = 0;
11604         struct net_device *net_dev;
11605         void __iomem *base;
11606         u32 length, val;
11607         struct ipw_priv *priv;
11608         int i;
11609 
11610         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11611         if (net_dev == NULL) {
11612                 err = -ENOMEM;
11613                 goto out;
11614         }
11615 
11616         priv = libipw_priv(net_dev);
11617         priv->ieee = netdev_priv(net_dev);
11618 
11619         priv->net_dev = net_dev;
11620         priv->pci_dev = pdev;
11621         ipw_debug_level = debug;
11622         spin_lock_init(&priv->irq_lock);
11623         spin_lock_init(&priv->lock);
11624         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11625                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11626 
11627         mutex_init(&priv->mutex);
11628         if (pci_enable_device(pdev)) {
11629                 err = -ENODEV;
11630                 goto out_free_libipw;
11631         }
11632 
11633         pci_set_master(pdev);
11634 
11635         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11636         if (!err)
11637                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11638         if (err) {
11639                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11640                 goto out_pci_disable_device;
11641         }
11642 
11643         pci_set_drvdata(pdev, priv);
11644 
11645         err = pci_request_regions(pdev, DRV_NAME);
11646         if (err)
11647                 goto out_pci_disable_device;
11648 
11649         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11650          * PCI Tx retries from interfering with C3 CPU state */
11651         pci_read_config_dword(pdev, 0x40, &val);
11652         if ((val & 0x0000ff00) != 0)
11653                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11654 
11655         length = pci_resource_len(pdev, 0);
11656         priv->hw_len = length;
11657 
11658         base = pci_ioremap_bar(pdev, 0);
11659         if (!base) {
11660                 err = -ENODEV;
11661                 goto out_pci_release_regions;
11662         }
11663 
11664         priv->hw_base = base;
11665         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11666         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11667 
11668         err = ipw_setup_deferred_work(priv);
11669         if (err) {
11670                 IPW_ERROR("Unable to setup deferred work\n");
11671                 goto out_iounmap;
11672         }
11673 
11674         ipw_sw_reset(priv, 1);
11675 
11676         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11677         if (err) {
11678                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11679                 goto out_iounmap;
11680         }
11681 
11682         SET_NETDEV_DEV(net_dev, &pdev->dev);
11683 
11684         mutex_lock(&priv->mutex);
11685 
11686         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11687         priv->ieee->set_security = shim__set_security;
11688         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11689 
11690 #ifdef CONFIG_IPW2200_QOS
11691         priv->ieee->is_qos_active = ipw_is_qos_active;
11692         priv->ieee->handle_probe_response = ipw_handle_beacon;
11693         priv->ieee->handle_beacon = ipw_handle_probe_response;
11694         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11695 #endif                          /* CONFIG_IPW2200_QOS */
11696 
11697         priv->ieee->perfect_rssi = -20;
11698         priv->ieee->worst_rssi = -85;
11699 
11700         net_dev->netdev_ops = &ipw_netdev_ops;
11701         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11702         net_dev->wireless_data = &priv->wireless_data;
11703         net_dev->wireless_handlers = &ipw_wx_handler_def;
11704         net_dev->ethtool_ops = &ipw_ethtool_ops;
11705 
11706         net_dev->min_mtu = 68;
11707         net_dev->max_mtu = LIBIPW_DATA_LEN;
11708 
11709         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11710         if (err) {
11711                 IPW_ERROR("failed to create sysfs device attributes\n");
11712                 mutex_unlock(&priv->mutex);
11713                 goto out_release_irq;
11714         }
11715 
11716         if (ipw_up(priv)) {
11717                 mutex_unlock(&priv->mutex);
11718                 err = -EIO;
11719                 goto out_remove_sysfs;
11720         }
11721 
11722         mutex_unlock(&priv->mutex);
11723 
11724         err = ipw_wdev_init(net_dev);
11725         if (err) {
11726                 IPW_ERROR("failed to register wireless device\n");
11727                 goto out_remove_sysfs;
11728         }
11729 
11730         err = register_netdev(net_dev);
11731         if (err) {
11732                 IPW_ERROR("failed to register network device\n");
11733                 goto out_unregister_wiphy;
11734         }
11735 
11736 #ifdef CONFIG_IPW2200_PROMISCUOUS
11737         if (rtap_iface) {
11738                 err = ipw_prom_alloc(priv);
11739                 if (err) {
11740                         IPW_ERROR("Failed to register promiscuous network "
11741                                   "device (error %d).\n", err);
11742                         unregister_netdev(priv->net_dev);
11743                         goto out_unregister_wiphy;
11744                 }
11745         }
11746 #endif
11747 
11748         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11749                "channels, %d 802.11a channels)\n",
11750                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11751                priv->ieee->geo.a_channels);
11752 
11753         return 0;
11754 
11755       out_unregister_wiphy:
11756         wiphy_unregister(priv->ieee->wdev.wiphy);
11757         kfree(priv->ieee->a_band.channels);
11758         kfree(priv->ieee->bg_band.channels);
11759       out_remove_sysfs:
11760         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11761       out_release_irq:
11762         free_irq(pdev->irq, priv);
11763       out_iounmap:
11764         iounmap(priv->hw_base);
11765       out_pci_release_regions:
11766         pci_release_regions(pdev);
11767       out_pci_disable_device:
11768         pci_disable_device(pdev);
11769       out_free_libipw:
11770         free_libipw(priv->net_dev, 0);
11771       out:
11772         return err;
11773 }
11774 
11775 static void ipw_pci_remove(struct pci_dev *pdev)
11776 {
11777         struct ipw_priv *priv = pci_get_drvdata(pdev);
11778         struct list_head *p, *q;
11779         int i;
11780 
11781         if (!priv)
11782                 return;
11783 
11784         mutex_lock(&priv->mutex);
11785 
11786         priv->status |= STATUS_EXIT_PENDING;
11787         ipw_down(priv);
11788         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11789 
11790         mutex_unlock(&priv->mutex);
11791 
11792         unregister_netdev(priv->net_dev);
11793 
11794         if (priv->rxq) {
11795                 ipw_rx_queue_free(priv, priv->rxq);
11796                 priv->rxq = NULL;
11797         }
11798         ipw_tx_queue_free(priv);
11799 
11800         if (priv->cmdlog) {
11801                 kfree(priv->cmdlog);
11802                 priv->cmdlog = NULL;
11803         }
11804 
11805         /* make sure all works are inactive */
11806         cancel_delayed_work_sync(&priv->adhoc_check);
11807         cancel_work_sync(&priv->associate);
11808         cancel_work_sync(&priv->disassociate);
11809         cancel_work_sync(&priv->system_config);
11810         cancel_work_sync(&priv->rx_replenish);
11811         cancel_work_sync(&priv->adapter_restart);
11812         cancel_delayed_work_sync(&priv->rf_kill);
11813         cancel_work_sync(&priv->up);
11814         cancel_work_sync(&priv->down);
11815         cancel_delayed_work_sync(&priv->request_scan);
11816         cancel_delayed_work_sync(&priv->request_direct_scan);
11817         cancel_delayed_work_sync(&priv->request_passive_scan);
11818         cancel_delayed_work_sync(&priv->scan_event);
11819         cancel_delayed_work_sync(&priv->gather_stats);
11820         cancel_work_sync(&priv->abort_scan);
11821         cancel_work_sync(&priv->roam);
11822         cancel_delayed_work_sync(&priv->scan_check);
11823         cancel_work_sync(&priv->link_up);
11824         cancel_work_sync(&priv->link_down);
11825         cancel_delayed_work_sync(&priv->led_link_on);
11826         cancel_delayed_work_sync(&priv->led_link_off);
11827         cancel_delayed_work_sync(&priv->led_act_off);
11828         cancel_work_sync(&priv->merge_networks);
11829 
11830         /* Free MAC hash list for ADHOC */
11831         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11832                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11833                         list_del(p);
11834                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11835                 }
11836         }
11837 
11838         kfree(priv->error);
11839         priv->error = NULL;
11840 
11841 #ifdef CONFIG_IPW2200_PROMISCUOUS
11842         ipw_prom_free(priv);
11843 #endif
11844 
11845         free_irq(pdev->irq, priv);
11846         iounmap(priv->hw_base);
11847         pci_release_regions(pdev);
11848         pci_disable_device(pdev);
11849         /* wiphy_unregister needs to be here, before free_libipw */
11850         wiphy_unregister(priv->ieee->wdev.wiphy);
11851         kfree(priv->ieee->a_band.channels);
11852         kfree(priv->ieee->bg_band.channels);
11853         free_libipw(priv->net_dev, 0);
11854         free_firmware();
11855 }
11856 
11857 #ifdef CONFIG_PM
11858 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11859 {
11860         struct ipw_priv *priv = pci_get_drvdata(pdev);
11861         struct net_device *dev = priv->net_dev;
11862 
11863         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11864 
11865         /* Take down the device; powers it off, etc. */
11866         ipw_down(priv);
11867 
11868         /* Remove the PRESENT state of the device */
11869         netif_device_detach(dev);
11870 
11871         pci_save_state(pdev);
11872         pci_disable_device(pdev);
11873         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11874 
11875         priv->suspend_at = ktime_get_boottime_seconds();
11876 
11877         return 0;
11878 }
11879 
11880 static int ipw_pci_resume(struct pci_dev *pdev)
11881 {
11882         struct ipw_priv *priv = pci_get_drvdata(pdev);
11883         struct net_device *dev = priv->net_dev;
11884         int err;
11885         u32 val;
11886 
11887         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11888 
11889         pci_set_power_state(pdev, PCI_D0);
11890         err = pci_enable_device(pdev);
11891         if (err) {
11892                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11893                        dev->name);
11894                 return err;
11895         }
11896         pci_restore_state(pdev);
11897 
11898         /*
11899          * Suspend/Resume resets the PCI configuration space, so we have to
11900          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11901          * from interfering with C3 CPU state. pci_restore_state won't help
11902          * here since it only restores the first 64 bytes pci config header.
11903          */
11904         pci_read_config_dword(pdev, 0x40, &val);
11905         if ((val & 0x0000ff00) != 0)
11906                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11907 
11908         /* Set the device back into the PRESENT state; this will also wake
11909          * the queue of needed */
11910         netif_device_attach(dev);
11911 
11912         priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11913 
11914         /* Bring the device back up */
11915         schedule_work(&priv->up);
11916 
11917         return 0;
11918 }
11919 #endif
11920 
11921 static void ipw_pci_shutdown(struct pci_dev *pdev)
11922 {
11923         struct ipw_priv *priv = pci_get_drvdata(pdev);
11924 
11925         /* Take down the device; powers it off, etc. */
11926         ipw_down(priv);
11927 
11928         pci_disable_device(pdev);
11929 }
11930 
11931 /* driver initialization stuff */
11932 static struct pci_driver ipw_driver = {
11933         .name = DRV_NAME,
11934         .id_table = card_ids,
11935         .probe = ipw_pci_probe,
11936         .remove = ipw_pci_remove,
11937 #ifdef CONFIG_PM
11938         .suspend = ipw_pci_suspend,
11939         .resume = ipw_pci_resume,
11940 #endif
11941         .shutdown = ipw_pci_shutdown,
11942 };
11943 
11944 static int __init ipw_init(void)
11945 {
11946         int ret;
11947 
11948         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11949         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11950 
11951         ret = pci_register_driver(&ipw_driver);
11952         if (ret) {
11953                 IPW_ERROR("Unable to initialize PCI module\n");
11954                 return ret;
11955         }
11956 
11957         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11958         if (ret) {
11959                 IPW_ERROR("Unable to create driver sysfs file\n");
11960                 pci_unregister_driver(&ipw_driver);
11961                 return ret;
11962         }
11963 
11964         return ret;
11965 }
11966 
11967 static void __exit ipw_exit(void)
11968 {
11969         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11970         pci_unregister_driver(&ipw_driver);
11971 }
11972 
11973 module_param(disable, int, 0444);
11974 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11975 
11976 module_param(associate, int, 0444);
11977 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11978 
11979 module_param(auto_create, int, 0444);
11980 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11981 
11982 module_param_named(led, led_support, int, 0444);
11983 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11984 
11985 module_param(debug, int, 0444);
11986 MODULE_PARM_DESC(debug, "debug output mask");
11987 
11988 module_param_named(channel, default_channel, int, 0444);
11989 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11990 
11991 #ifdef CONFIG_IPW2200_PROMISCUOUS
11992 module_param(rtap_iface, int, 0444);
11993 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11994 #endif
11995 
11996 #ifdef CONFIG_IPW2200_QOS
11997 module_param(qos_enable, int, 0444);
11998 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11999 
12000 module_param(qos_burst_enable, int, 0444);
12001 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12002 
12003 module_param(qos_no_ack_mask, int, 0444);
12004 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12005 
12006 module_param(burst_duration_CCK, int, 0444);
12007 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12008 
12009 module_param(burst_duration_OFDM, int, 0444);
12010 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12011 #endif                          /* CONFIG_IPW2200_QOS */
12012 
12013 #ifdef CONFIG_IPW2200_MONITOR
12014 module_param_named(mode, network_mode, int, 0444);
12015 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12016 #else
12017 module_param_named(mode, network_mode, int, 0444);
12018 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12019 #endif
12020 
12021 module_param(bt_coexist, int, 0444);
12022 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12023 
12024 module_param(hwcrypto, int, 0444);
12025 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12026 
12027 module_param(cmdlog, int, 0444);
12028 MODULE_PARM_DESC(cmdlog,
12029                  "allocate a ring buffer for logging firmware commands");
12030 
12031 module_param(roaming, int, 0444);
12032 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12033 
12034 module_param(antenna, int, 0444);
12035 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12036 
12037 module_exit(ipw_exit);
12038 module_init(ipw_init);

/* [<][>][^][v][top][bottom][index][help] */