This source file includes following definitions.
- parity32
- dma64_dd_parity
- xxd
- txd
- rxd
- nexttxd
- prevtxd
- nextrxd
- ntxdactive
- nrxdactive
- _dma_ctrlflags
- _dma64_addrext
- _dma_isaddrext
- _dma_descriptor_align
- dma_alloc_consistent
- dma_align_sizetobits
- dma_ringalloc
- dma64_alloc
- _dma_alloc
- dma_attach
- dma64_dd_upd
- dma_detach
- _dma_ddtable_init
- _dma_rxenable
- dma_rxinit
- dma64_getnextrxp
- _dma_getnextrxp
- dma_rx
- dma64_rxidle
- dma64_txidle
- dma_rxfill
- dma_rxreclaim
- dma_counterreset
- dma_getvar
- dma_txinit
- dma_txsuspend
- dma_txresume
- dma_txsuspended
- dma_txreclaim
- dma_txreset
- dma_rxreset
- dma_txenq
- ampdu_finalize
- prep_ampdu_frame
- dma_update_txavail
- dma_txfast
- dma_txflush
- dma_txpending
- dma_kick_tx
- dma_getnexttxp
- dma_walk_packets
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/pci.h>
20 #include <net/cfg80211.h>
21 #include <net/mac80211.h>
22
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "main.h"
27 #include "dma.h"
28 #include "soc.h"
29 #include "scb.h"
30 #include "ampdu.h"
31 #include "debug.h"
32 #include "brcms_trace_events.h"
33
34
35
36
37 #define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
38 #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
39 #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
40
41
42
43
44
45 #define D64RINGALIGN_BITS 13
46 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
47 #define D64RINGALIGN (1 << D64RINGALIGN_BITS)
48
49 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
50
51
52 #define D64_XC_XE 0x00000001
53 #define D64_XC_SE 0x00000002
54 #define D64_XC_LE 0x00000004
55 #define D64_XC_FL 0x00000010
56 #define D64_XC_PD 0x00000800
57 #define D64_XC_AE 0x00030000
58 #define D64_XC_AE_SHIFT 16
59
60
61 #define D64_XP_LD_MASK 0x00000fff
62
63
64 #define D64_XS0_CD_MASK 0x00001fff
65 #define D64_XS0_XS_MASK 0xf0000000
66 #define D64_XS0_XS_SHIFT 28
67 #define D64_XS0_XS_DISABLED 0x00000000
68 #define D64_XS0_XS_ACTIVE 0x10000000
69 #define D64_XS0_XS_IDLE 0x20000000
70 #define D64_XS0_XS_STOPPED 0x30000000
71 #define D64_XS0_XS_SUSP 0x40000000
72
73 #define D64_XS1_AD_MASK 0x00001fff
74 #define D64_XS1_XE_MASK 0xf0000000
75 #define D64_XS1_XE_SHIFT 28
76 #define D64_XS1_XE_NOERR 0x00000000
77 #define D64_XS1_XE_DPE 0x10000000
78 #define D64_XS1_XE_DFU 0x20000000
79 #define D64_XS1_XE_DTE 0x30000000
80 #define D64_XS1_XE_DESRE 0x40000000
81 #define D64_XS1_XE_COREE 0x50000000
82
83
84
85 #define D64_RC_RE 0x00000001
86
87 #define D64_RC_RO_MASK 0x000000fe
88 #define D64_RC_RO_SHIFT 1
89
90 #define D64_RC_FM 0x00000100
91
92 #define D64_RC_SH 0x00000200
93
94 #define D64_RC_OC 0x00000400
95
96 #define D64_RC_PD 0x00000800
97
98 #define D64_RC_AE 0x00030000
99 #define D64_RC_AE_SHIFT 16
100
101
102
103 #define DMA_CTRL_PEN (1 << 0)
104
105 #define DMA_CTRL_ROC (1 << 1)
106
107 #define DMA_CTRL_RXMULTI (1 << 2)
108
109 #define DMA_CTRL_UNFRAMED (1 << 3)
110
111
112 #define D64_RP_LD_MASK 0x00000fff
113
114
115 #define D64_RS0_CD_MASK 0x00001fff
116 #define D64_RS0_RS_MASK 0xf0000000
117 #define D64_RS0_RS_SHIFT 28
118 #define D64_RS0_RS_DISABLED 0x00000000
119 #define D64_RS0_RS_ACTIVE 0x10000000
120 #define D64_RS0_RS_IDLE 0x20000000
121 #define D64_RS0_RS_STOPPED 0x30000000
122 #define D64_RS0_RS_SUSP 0x40000000
123
124 #define D64_RS1_AD_MASK 0x0001ffff
125 #define D64_RS1_RE_MASK 0xf0000000
126 #define D64_RS1_RE_SHIFT 28
127 #define D64_RS1_RE_NOERR 0x00000000
128 #define D64_RS1_RE_DPO 0x10000000
129 #define D64_RS1_RE_DFU 0x20000000
130 #define D64_RS1_RE_DTE 0x30000000
131 #define D64_RS1_RE_DESRE 0x40000000
132 #define D64_RS1_RE_COREE 0x50000000
133
134
135 #define D64_FA_OFF_MASK 0xffff
136 #define D64_FA_SEL_MASK 0xf0000
137 #define D64_FA_SEL_SHIFT 16
138 #define D64_FA_SEL_XDD 0x00000
139 #define D64_FA_SEL_XDP 0x10000
140 #define D64_FA_SEL_RDD 0x40000
141 #define D64_FA_SEL_RDP 0x50000
142 #define D64_FA_SEL_XFD 0x80000
143 #define D64_FA_SEL_XFP 0x90000
144 #define D64_FA_SEL_RFD 0xc0000
145 #define D64_FA_SEL_RFP 0xd0000
146 #define D64_FA_SEL_RSD 0xe0000
147 #define D64_FA_SEL_RSP 0xf0000
148
149
150 #define D64_CTRL_COREFLAGS 0x0ff00000
151 #define D64_CTRL1_EOT ((u32)1 << 28)
152 #define D64_CTRL1_IOC ((u32)1 << 29)
153 #define D64_CTRL1_EOF ((u32)1 << 30)
154 #define D64_CTRL1_SOF ((u32)1 << 31)
155
156
157
158 #define D64_CTRL2_BC_MASK 0x00007fff
159
160 #define D64_CTRL2_AE 0x00030000
161 #define D64_CTRL2_AE_SHIFT 16
162
163 #define D64_CTRL2_PARITY 0x00040000
164
165
166 #define D64_CTRL_CORE_MASK 0x0ff00000
167
168 #define D64_RX_FRM_STS_LEN 0x0000ffff
169 #define D64_RX_FRM_STS_OVFL 0x00800000
170 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000
171 #define D64_RX_FRM_STS_DATATYPE 0xf0000000
172
173
174
175
176
177
178
179
180
181
182 #define BCMEXTRAHDROOM 172
183
184 #define MAXNAMEL 8
185
186
187 #define B2I(bytes, type) ((bytes) / sizeof(type))
188 #define I2B(index, type) ((index) * sizeof(type))
189
190 #define PCI32ADDR_HIGH 0xc0000000
191 #define PCI32ADDR_HIGH_SHIFT 30
192
193 #define PCI64ADDR_HIGH 0x80000000
194 #define PCI64ADDR_HIGH_SHIFT 31
195
196
197
198
199
200 struct dma64desc {
201 __le32 ctrl1;
202 __le32 ctrl2;
203 __le32 addrlow;
204 __le32 addrhigh;
205 };
206
207
208 struct dma_info {
209 struct dma_pub dma;
210 char name[MAXNAMEL];
211
212 struct bcma_device *core;
213 struct device *dmadev;
214
215
216 struct brcms_ampdu_session ampdu_session;
217
218 bool dma64;
219 bool addrext;
220
221
222 uint d64txregbase;
223
224 uint d64rxregbase;
225
226 struct dma64desc *txd64;
227
228 struct dma64desc *rxd64;
229
230 u16 dmadesc_align;
231
232 u16 ntxd;
233 u16 txin;
234 u16 txout;
235
236 struct sk_buff **txp;
237
238 dma_addr_t txdpa;
239
240 dma_addr_t txdpaorig;
241 u16 txdalign;
242 u32 txdalloc;
243 u32 xmtptrbase;
244
245
246
247
248 u16 nrxd;
249 u16 rxin;
250 u16 rxout;
251
252 struct sk_buff **rxp;
253
254 dma_addr_t rxdpa;
255
256 dma_addr_t rxdpaorig;
257 u16 rxdalign;
258 u32 rxdalloc;
259 u32 rcvptrbase;
260
261
262 unsigned int rxbufsize;
263
264
265 uint rxextrahdrroom;
266
267
268
269
270
271
272 uint nrxpost;
273 unsigned int rxoffset;
274
275 uint ddoffsetlow;
276
277 uint ddoffsethigh;
278
279 uint dataoffsetlow;
280
281 uint dataoffsethigh;
282
283 bool aligndesc_4k;
284 };
285
286
287 static u32 parity32(__le32 data)
288 {
289
290 u32 par_data = *(u32 *)&data;
291
292 par_data ^= par_data >> 16;
293 par_data ^= par_data >> 8;
294 par_data ^= par_data >> 4;
295 par_data ^= par_data >> 2;
296 par_data ^= par_data >> 1;
297
298 return par_data & 1;
299 }
300
301 static bool dma64_dd_parity(struct dma64desc *dd)
302 {
303 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
304 }
305
306
307
308 static uint xxd(uint x, uint n)
309 {
310 return x & (n - 1);
311 }
312
313 static uint txd(struct dma_info *di, uint x)
314 {
315 return xxd(x, di->ntxd);
316 }
317
318 static uint rxd(struct dma_info *di, uint x)
319 {
320 return xxd(x, di->nrxd);
321 }
322
323 static uint nexttxd(struct dma_info *di, uint i)
324 {
325 return txd(di, i + 1);
326 }
327
328 static uint prevtxd(struct dma_info *di, uint i)
329 {
330 return txd(di, i - 1);
331 }
332
333 static uint nextrxd(struct dma_info *di, uint i)
334 {
335 return rxd(di, i + 1);
336 }
337
338 static uint ntxdactive(struct dma_info *di, uint h, uint t)
339 {
340 return txd(di, t-h);
341 }
342
343 static uint nrxdactive(struct dma_info *di, uint h, uint t)
344 {
345 return rxd(di, t-h);
346 }
347
348 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
349 {
350 uint dmactrlflags;
351
352 if (di == NULL)
353 return 0;
354
355 dmactrlflags = di->dma.dmactrlflags;
356 dmactrlflags &= ~mask;
357 dmactrlflags |= flags;
358
359
360 if (dmactrlflags & DMA_CTRL_PEN) {
361 u32 control;
362
363 control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
364 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
365 control | D64_XC_PD);
366 if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
367 D64_XC_PD)
368
369
370
371 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
372 control);
373 else
374
375 dmactrlflags &= ~DMA_CTRL_PEN;
376 }
377
378 di->dma.dmactrlflags = dmactrlflags;
379
380 return dmactrlflags;
381 }
382
383 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
384 {
385 u32 w;
386 bcma_set32(di->core, ctrl_offset, D64_XC_AE);
387 w = bcma_read32(di->core, ctrl_offset);
388 bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
389 return (w & D64_XC_AE) == D64_XC_AE;
390 }
391
392
393
394
395
396 static bool _dma_isaddrext(struct dma_info *di)
397 {
398
399
400
401 if (di->d64txregbase != 0) {
402 if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
403 brcms_dbg_dma(di->core,
404 "%s: DMA64 tx doesn't have AE set\n",
405 di->name);
406 return true;
407 } else if (di->d64rxregbase != 0) {
408 if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
409 brcms_dbg_dma(di->core,
410 "%s: DMA64 rx doesn't have AE set\n",
411 di->name);
412 return true;
413 }
414
415 return false;
416 }
417
418 static bool _dma_descriptor_align(struct dma_info *di)
419 {
420 u32 addrl;
421
422
423 if (di->d64txregbase != 0) {
424 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
425 addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
426 if (addrl != 0)
427 return false;
428 } else if (di->d64rxregbase != 0) {
429 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
430 addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
431 if (addrl != 0)
432 return false;
433 }
434 return true;
435 }
436
437
438
439
440
441 static void *dma_alloc_consistent(struct dma_info *di, uint size,
442 u16 align_bits, uint *alloced,
443 dma_addr_t *pap)
444 {
445 if (align_bits) {
446 u16 align = (1 << align_bits);
447 if (!IS_ALIGNED(PAGE_SIZE, align))
448 size += align;
449 *alloced = size;
450 }
451 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
452 }
453
454 static
455 u8 dma_align_sizetobits(uint size)
456 {
457 u8 bitpos = 0;
458 while (size >>= 1)
459 bitpos++;
460 return bitpos;
461 }
462
463
464
465
466
467
468
469 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
470 u16 *alignbits, uint *alloced,
471 dma_addr_t *descpa)
472 {
473 void *va;
474 u32 desc_strtaddr;
475 u32 alignbytes = 1 << *alignbits;
476
477 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
478
479 if (NULL == va)
480 return NULL;
481
482 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
483 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
484 & boundary)) {
485 *alignbits = dma_align_sizetobits(size);
486 dma_free_coherent(di->dmadev, size, va, *descpa);
487 va = dma_alloc_consistent(di, size, *alignbits,
488 alloced, descpa);
489 }
490 return va;
491 }
492
493 static bool dma64_alloc(struct dma_info *di, uint direction)
494 {
495 u16 size;
496 uint ddlen;
497 void *va;
498 uint alloced = 0;
499 u16 align;
500 u16 align_bits;
501
502 ddlen = sizeof(struct dma64desc);
503
504 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
505 align_bits = di->dmadesc_align;
506 align = (1 << align_bits);
507
508 if (direction == DMA_TX) {
509 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
510 &alloced, &di->txdpaorig);
511 if (va == NULL) {
512 brcms_dbg_dma(di->core,
513 "%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
514 di->name);
515 return false;
516 }
517 align = (1 << align_bits);
518 di->txd64 = (struct dma64desc *)
519 roundup((unsigned long)va, align);
520 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
521 di->txdpa = di->txdpaorig + di->txdalign;
522 di->txdalloc = alloced;
523 } else {
524 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
525 &alloced, &di->rxdpaorig);
526 if (va == NULL) {
527 brcms_dbg_dma(di->core,
528 "%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
529 di->name);
530 return false;
531 }
532 align = (1 << align_bits);
533 di->rxd64 = (struct dma64desc *)
534 roundup((unsigned long)va, align);
535 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
536 di->rxdpa = di->rxdpaorig + di->rxdalign;
537 di->rxdalloc = alloced;
538 }
539
540 return true;
541 }
542
543 static bool _dma_alloc(struct dma_info *di, uint direction)
544 {
545 return dma64_alloc(di, direction);
546 }
547
548 struct dma_pub *dma_attach(char *name, struct brcms_c_info *wlc,
549 uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
550 uint rxbufsize, int rxextheadroom,
551 uint nrxpost, uint rxoffset)
552 {
553 struct si_pub *sih = wlc->hw->sih;
554 struct bcma_device *core = wlc->hw->d11core;
555 struct dma_info *di;
556 u8 rev = core->id.rev;
557 uint size;
558 struct si_info *sii = container_of(sih, struct si_info, pub);
559
560
561 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
562 if (di == NULL)
563 return NULL;
564
565 di->dma64 =
566 ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
567
568
569 di->core = core;
570 di->d64txregbase = txregbase;
571 di->d64rxregbase = rxregbase;
572
573
574
575
576
577
578 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
579
580 brcms_dbg_dma(di->core, "%s: %s flags 0x%x ntxd %d nrxd %d "
581 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
582 "txregbase %u rxregbase %u\n", name, "DMA64",
583 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
584 rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
585
586
587 strncpy(di->name, name, MAXNAMEL);
588 di->name[MAXNAMEL - 1] = '\0';
589
590 di->dmadev = core->dma_dev;
591
592
593 di->ntxd = (u16) ntxd;
594 di->nrxd = (u16) nrxd;
595
596
597 di->rxextrahdrroom =
598 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
599 if (rxbufsize > BCMEXTRAHDROOM)
600 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
601 else
602 di->rxbufsize = (u16) rxbufsize;
603
604 di->nrxpost = (u16) nrxpost;
605 di->rxoffset = (u8) rxoffset;
606
607
608
609
610
611
612
613
614 di->ddoffsetlow = 0;
615 di->dataoffsetlow = 0;
616
617 if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
618
619 di->ddoffsetlow = 0;
620 di->ddoffsethigh = SI_PCIE_DMA_H32;
621 }
622 di->dataoffsetlow = di->ddoffsetlow;
623 di->dataoffsethigh = di->ddoffsethigh;
624
625
626 if ((core->id.id == BCMA_CORE_SDIO_DEV)
627 && ((rev > 0) && (rev <= 2)))
628 di->addrext = false;
629 else if ((core->id.id == BCMA_CORE_I2S) &&
630 ((rev == 0) || (rev == 1)))
631 di->addrext = false;
632 else
633 di->addrext = _dma_isaddrext(di);
634
635
636 di->aligndesc_4k = _dma_descriptor_align(di);
637 if (di->aligndesc_4k) {
638 di->dmadesc_align = D64RINGALIGN_BITS;
639 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
640
641 di->dmadesc_align = D64RINGALIGN_BITS - 1;
642 } else {
643 di->dmadesc_align = 4;
644 }
645
646 brcms_dbg_dma(di->core, "DMA descriptor align_needed %d, align %d\n",
647 di->aligndesc_4k, di->dmadesc_align);
648
649
650 if (ntxd) {
651 size = ntxd * sizeof(void *);
652 di->txp = kzalloc(size, GFP_ATOMIC);
653 if (di->txp == NULL)
654 goto fail;
655 }
656
657
658 if (nrxd) {
659 size = nrxd * sizeof(void *);
660 di->rxp = kzalloc(size, GFP_ATOMIC);
661 if (di->rxp == NULL)
662 goto fail;
663 }
664
665
666
667
668
669 if (ntxd) {
670 if (!_dma_alloc(di, DMA_TX))
671 goto fail;
672 }
673
674
675
676
677
678 if (nrxd) {
679 if (!_dma_alloc(di, DMA_RX))
680 goto fail;
681 }
682
683 if ((di->ddoffsetlow != 0) && !di->addrext) {
684 if (di->txdpa > SI_PCI_DMA_SZ) {
685 brcms_dbg_dma(di->core,
686 "%s: txdpa 0x%x: addrext not supported\n",
687 di->name, (u32)di->txdpa);
688 goto fail;
689 }
690 if (di->rxdpa > SI_PCI_DMA_SZ) {
691 brcms_dbg_dma(di->core,
692 "%s: rxdpa 0x%x: addrext not supported\n",
693 di->name, (u32)di->rxdpa);
694 goto fail;
695 }
696 }
697
698
699 brcms_c_ampdu_reset_session(&di->ampdu_session, wlc);
700
701 brcms_dbg_dma(di->core,
702 "ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
703 di->ddoffsetlow, di->ddoffsethigh,
704 di->dataoffsetlow, di->dataoffsethigh,
705 di->addrext);
706
707 return (struct dma_pub *) di;
708
709 fail:
710 dma_detach((struct dma_pub *)di);
711 return NULL;
712 }
713
714 static inline void
715 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
716 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
717 {
718 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
719
720
721 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
722 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
723 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
724 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
725 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
726 } else {
727
728 u32 ae;
729
730 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
731 pa &= ~PCI32ADDR_HIGH;
732
733 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
734 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
735 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
736 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
737 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
738 }
739 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
740 if (dma64_dd_parity(&ddring[outidx]))
741 ddring[outidx].ctrl2 =
742 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
743 }
744 }
745
746
747 void dma_detach(struct dma_pub *pub)
748 {
749 struct dma_info *di = container_of(pub, struct dma_info, dma);
750
751 brcms_dbg_dma(di->core, "%s:\n", di->name);
752
753
754 if (di->txd64)
755 dma_free_coherent(di->dmadev, di->txdalloc,
756 ((s8 *)di->txd64 - di->txdalign),
757 (di->txdpaorig));
758 if (di->rxd64)
759 dma_free_coherent(di->dmadev, di->rxdalloc,
760 ((s8 *)di->rxd64 - di->rxdalign),
761 (di->rxdpaorig));
762
763
764 kfree(di->txp);
765 kfree(di->rxp);
766
767
768 kfree(di);
769
770 }
771
772
773 static void
774 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
775 {
776 if (!di->aligndesc_4k) {
777 if (direction == DMA_TX)
778 di->xmtptrbase = pa;
779 else
780 di->rcvptrbase = pa;
781 }
782
783 if ((di->ddoffsetlow == 0)
784 || !(pa & PCI32ADDR_HIGH)) {
785 if (direction == DMA_TX) {
786 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
787 pa + di->ddoffsetlow);
788 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
789 di->ddoffsethigh);
790 } else {
791 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
792 pa + di->ddoffsetlow);
793 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
794 di->ddoffsethigh);
795 }
796 } else {
797
798 u32 ae;
799
800
801 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
802 pa &= ~PCI32ADDR_HIGH;
803
804 if (direction == DMA_TX) {
805 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
806 pa + di->ddoffsetlow);
807 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
808 di->ddoffsethigh);
809 bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
810 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
811 } else {
812 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
813 pa + di->ddoffsetlow);
814 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
815 di->ddoffsethigh);
816 bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
817 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
818 }
819 }
820 }
821
822 static void _dma_rxenable(struct dma_info *di)
823 {
824 uint dmactrlflags = di->dma.dmactrlflags;
825 u32 control;
826
827 brcms_dbg_dma(di->core, "%s:\n", di->name);
828
829 control = D64_RC_RE | (bcma_read32(di->core,
830 DMA64RXREGOFFS(di, control)) &
831 D64_RC_AE);
832
833 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
834 control |= D64_RC_PD;
835
836 if (dmactrlflags & DMA_CTRL_ROC)
837 control |= D64_RC_OC;
838
839 bcma_write32(di->core, DMA64RXREGOFFS(di, control),
840 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
841 }
842
843 void dma_rxinit(struct dma_pub *pub)
844 {
845 struct dma_info *di = container_of(pub, struct dma_info, dma);
846
847 brcms_dbg_dma(di->core, "%s:\n", di->name);
848
849 if (di->nrxd == 0)
850 return;
851
852 di->rxin = di->rxout = 0;
853
854
855 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
856
857
858
859
860 if (!di->aligndesc_4k)
861 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
862
863 _dma_rxenable(di);
864
865 if (di->aligndesc_4k)
866 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
867 }
868
869 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
870 {
871 uint i, curr;
872 struct sk_buff *rxp;
873 dma_addr_t pa;
874
875 i = di->rxin;
876
877
878 if (i == di->rxout)
879 return NULL;
880
881 curr =
882 B2I(((bcma_read32(di->core,
883 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
884 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
885
886
887 if (!forceall && (i == curr))
888 return NULL;
889
890
891 rxp = di->rxp[i];
892 di->rxp[i] = NULL;
893
894 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
895
896
897 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
898
899 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
900 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
901
902 di->rxin = nextrxd(di, i);
903
904 return rxp;
905 }
906
907 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
908 {
909 if (di->nrxd == 0)
910 return NULL;
911
912 return dma64_getnextrxp(di, forceall);
913 }
914
915
916
917
918
919
920
921
922
923
924
925 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
926 {
927 struct dma_info *di = container_of(pub, struct dma_info, dma);
928 struct sk_buff_head dma_frames;
929 struct sk_buff *p, *next;
930 uint len;
931 uint pkt_len;
932 int resid = 0;
933 int pktcnt = 1;
934
935 skb_queue_head_init(&dma_frames);
936 next_frame:
937 p = _dma_getnextrxp(di, false);
938 if (p == NULL)
939 return 0;
940
941 len = le16_to_cpu(*(__le16 *) (p->data));
942 brcms_dbg_dma(di->core, "%s: dma_rx len %d\n", di->name, len);
943 dma_spin_for_len(len, p);
944
945
946 pkt_len = min((di->rxoffset + len), di->rxbufsize);
947 __skb_trim(p, pkt_len);
948 skb_queue_tail(&dma_frames, p);
949 resid = len - (di->rxbufsize - di->rxoffset);
950
951
952 if (resid > 0) {
953 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
954 pkt_len = min_t(uint, resid, di->rxbufsize);
955 __skb_trim(p, pkt_len);
956 skb_queue_tail(&dma_frames, p);
957 resid -= di->rxbufsize;
958 pktcnt++;
959 }
960
961 #ifdef DEBUG
962 if (resid > 0) {
963 uint cur;
964 cur =
965 B2I(((bcma_read32(di->core,
966 DMA64RXREGOFFS(di, status0)) &
967 D64_RS0_CD_MASK) - di->rcvptrbase) &
968 D64_RS0_CD_MASK, struct dma64desc);
969 brcms_dbg_dma(di->core,
970 "rxin %d rxout %d, hw_curr %d\n",
971 di->rxin, di->rxout, cur);
972 }
973 #endif
974
975 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
976 brcms_dbg_dma(di->core, "%s: bad frame length (%d)\n",
977 di->name, len);
978 skb_queue_walk_safe(&dma_frames, p, next) {
979 skb_unlink(p, &dma_frames);
980 brcmu_pkt_buf_free_skb(p);
981 }
982 di->dma.rxgiants++;
983 pktcnt = 1;
984 goto next_frame;
985 }
986 }
987
988 skb_queue_splice_tail(&dma_frames, skb_list);
989 return pktcnt;
990 }
991
992 static bool dma64_rxidle(struct dma_info *di)
993 {
994 brcms_dbg_dma(di->core, "%s:\n", di->name);
995
996 if (di->nrxd == 0)
997 return true;
998
999 return ((bcma_read32(di->core,
1000 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1001 (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1002 D64_RS0_CD_MASK));
1003 }
1004
1005 static bool dma64_txidle(struct dma_info *di)
1006 {
1007 if (di->ntxd == 0)
1008 return true;
1009
1010 return ((bcma_read32(di->core,
1011 DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) ==
1012 (bcma_read32(di->core, DMA64TXREGOFFS(di, ptr)) &
1013 D64_XS0_CD_MASK));
1014 }
1015
1016
1017
1018
1019
1020
1021
1022
1023 bool dma_rxfill(struct dma_pub *pub)
1024 {
1025 struct dma_info *di = container_of(pub, struct dma_info, dma);
1026 struct sk_buff *p;
1027 u16 rxin, rxout;
1028 u32 flags = 0;
1029 uint n;
1030 uint i;
1031 dma_addr_t pa;
1032 uint extra_offset = 0;
1033 bool ring_empty;
1034
1035 ring_empty = false;
1036
1037
1038
1039
1040
1041
1042
1043 rxin = di->rxin;
1044 rxout = di->rxout;
1045
1046 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1047
1048 brcms_dbg_dma(di->core, "%s: post %d\n", di->name, n);
1049
1050 if (di->rxbufsize > BCMEXTRAHDROOM)
1051 extra_offset = di->rxextrahdrroom;
1052
1053 for (i = 0; i < n; i++) {
1054
1055
1056
1057
1058 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1059
1060 if (p == NULL) {
1061 brcms_dbg_dma(di->core, "%s: out of rxbufs\n",
1062 di->name);
1063 if (i == 0 && dma64_rxidle(di)) {
1064 brcms_dbg_dma(di->core, "%s: ring is empty !\n",
1065 di->name);
1066 ring_empty = true;
1067 }
1068 di->dma.rxnobuf++;
1069 break;
1070 }
1071
1072 if (extra_offset)
1073 skb_pull(p, extra_offset);
1074
1075
1076
1077
1078 *(u32 *) (p->data) = 0;
1079
1080 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1081 DMA_FROM_DEVICE);
1082 if (dma_mapping_error(di->dmadev, pa)) {
1083 brcmu_pkt_buf_free_skb(p);
1084 return false;
1085 }
1086
1087
1088 di->rxp[rxout] = p;
1089
1090
1091 flags = 0;
1092 if (rxout == (di->nrxd - 1))
1093 flags = D64_CTRL1_EOT;
1094
1095 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1096 di->rxbufsize);
1097 rxout = nextrxd(di, rxout);
1098 }
1099
1100 di->rxout = rxout;
1101
1102
1103 bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1104 di->rcvptrbase + I2B(rxout, struct dma64desc));
1105
1106 return ring_empty;
1107 }
1108
1109 void dma_rxreclaim(struct dma_pub *pub)
1110 {
1111 struct dma_info *di = container_of(pub, struct dma_info, dma);
1112 struct sk_buff *p;
1113
1114 brcms_dbg_dma(di->core, "%s:\n", di->name);
1115
1116 while ((p = _dma_getnextrxp(di, true)))
1117 brcmu_pkt_buf_free_skb(p);
1118 }
1119
1120 void dma_counterreset(struct dma_pub *pub)
1121 {
1122
1123 pub->rxgiants = 0;
1124 pub->rxnobuf = 0;
1125 pub->txnobuf = 0;
1126 }
1127
1128
1129 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1130 {
1131 struct dma_info *di = container_of(pub, struct dma_info, dma);
1132
1133 if (!strcmp(name, "&txavail"))
1134 return (unsigned long)&(di->dma.txavail);
1135 return 0;
1136 }
1137
1138
1139
1140 void dma_txinit(struct dma_pub *pub)
1141 {
1142 struct dma_info *di = container_of(pub, struct dma_info, dma);
1143 u32 control = D64_XC_XE;
1144
1145 brcms_dbg_dma(di->core, "%s:\n", di->name);
1146
1147 if (di->ntxd == 0)
1148 return;
1149
1150 di->txin = di->txout = 0;
1151 di->dma.txavail = di->ntxd - 1;
1152
1153
1154 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1155
1156
1157
1158
1159 if (!di->aligndesc_4k)
1160 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1161
1162 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1163 control |= D64_XC_PD;
1164 bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1165
1166
1167
1168
1169 if (di->aligndesc_4k)
1170 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1171 }
1172
1173 void dma_txsuspend(struct dma_pub *pub)
1174 {
1175 struct dma_info *di = container_of(pub, struct dma_info, dma);
1176
1177 brcms_dbg_dma(di->core, "%s:\n", di->name);
1178
1179 if (di->ntxd == 0)
1180 return;
1181
1182 bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1183 }
1184
1185 void dma_txresume(struct dma_pub *pub)
1186 {
1187 struct dma_info *di = container_of(pub, struct dma_info, dma);
1188
1189 brcms_dbg_dma(di->core, "%s:\n", di->name);
1190
1191 if (di->ntxd == 0)
1192 return;
1193
1194 bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1195 }
1196
1197 bool dma_txsuspended(struct dma_pub *pub)
1198 {
1199 struct dma_info *di = container_of(pub, struct dma_info, dma);
1200
1201 return (di->ntxd == 0) ||
1202 ((bcma_read32(di->core,
1203 DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1204 D64_XC_SE);
1205 }
1206
1207 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1208 {
1209 struct dma_info *di = container_of(pub, struct dma_info, dma);
1210 struct sk_buff *p;
1211
1212 brcms_dbg_dma(di->core, "%s: %s\n",
1213 di->name,
1214 range == DMA_RANGE_ALL ? "all" :
1215 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1216 "transferred");
1217
1218 if (di->txin == di->txout)
1219 return;
1220
1221 while ((p = dma_getnexttxp(pub, range))) {
1222
1223 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1224 brcmu_pkt_buf_free_skb(p);
1225 }
1226 }
1227
1228 bool dma_txreset(struct dma_pub *pub)
1229 {
1230 struct dma_info *di = container_of(pub, struct dma_info, dma);
1231 u32 status;
1232
1233 if (di->ntxd == 0)
1234 return true;
1235
1236
1237 bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1238 SPINWAIT(((status =
1239 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1240 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1241 (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1242 10000);
1243
1244 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1245 SPINWAIT(((status =
1246 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1247 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1248
1249
1250 udelay(300);
1251
1252 return status == D64_XS0_XS_DISABLED;
1253 }
1254
1255 bool dma_rxreset(struct dma_pub *pub)
1256 {
1257 struct dma_info *di = container_of(pub, struct dma_info, dma);
1258 u32 status;
1259
1260 if (di->nrxd == 0)
1261 return true;
1262
1263 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1264 SPINWAIT(((status =
1265 (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1266 D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1267
1268 return status == D64_RS0_RS_DISABLED;
1269 }
1270
1271 static void dma_txenq(struct dma_info *di, struct sk_buff *p)
1272 {
1273 unsigned char *data;
1274 uint len;
1275 u16 txout;
1276 u32 flags = 0;
1277 dma_addr_t pa;
1278
1279 txout = di->txout;
1280
1281 if (WARN_ON(nexttxd(di, txout) == di->txin))
1282 return;
1283
1284
1285
1286
1287 data = p->data;
1288 len = p->len;
1289
1290
1291 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1292
1293 if (dma_mapping_error(di->dmadev, pa)) {
1294 brcmu_pkt_buf_free_skb(p);
1295 return;
1296 }
1297
1298
1299
1300
1301
1302 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1303 if (txout == (di->ntxd - 1))
1304 flags |= D64_CTRL1_EOT;
1305
1306 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1307
1308 txout = nexttxd(di, txout);
1309
1310
1311 di->txp[prevtxd(di, txout)] = p;
1312
1313
1314 di->txout = txout;
1315 }
1316
1317 static void ampdu_finalize(struct dma_info *di)
1318 {
1319 struct brcms_ampdu_session *session = &di->ampdu_session;
1320 struct sk_buff *p;
1321
1322 trace_brcms_ampdu_session(&session->wlc->hw->d11core->dev,
1323 session->max_ampdu_len,
1324 session->max_ampdu_frames,
1325 session->ampdu_len,
1326 skb_queue_len(&session->skb_list),
1327 session->dma_len);
1328
1329 if (WARN_ON(skb_queue_empty(&session->skb_list)))
1330 return;
1331
1332 brcms_c_ampdu_finalize(session);
1333
1334 while (!skb_queue_empty(&session->skb_list)) {
1335 p = skb_dequeue(&session->skb_list);
1336 dma_txenq(di, p);
1337 }
1338
1339 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1340 di->xmtptrbase + I2B(di->txout, struct dma64desc));
1341 brcms_c_ampdu_reset_session(session, session->wlc);
1342 }
1343
1344 static void prep_ampdu_frame(struct dma_info *di, struct sk_buff *p)
1345 {
1346 struct brcms_ampdu_session *session = &di->ampdu_session;
1347 int ret;
1348
1349 ret = brcms_c_ampdu_add_frame(session, p);
1350 if (ret == -ENOSPC) {
1351
1352
1353
1354
1355 ampdu_finalize(di);
1356 ret = brcms_c_ampdu_add_frame(session, p);
1357 }
1358
1359 WARN_ON(ret);
1360 }
1361
1362
1363 static void dma_update_txavail(struct dma_info *di)
1364 {
1365
1366
1367
1368
1369 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) -
1370 skb_queue_len(&di->ampdu_session.skb_list) - 1;
1371 }
1372
1373
1374
1375
1376
1377
1378
1379 int dma_txfast(struct brcms_c_info *wlc, struct dma_pub *pub,
1380 struct sk_buff *p)
1381 {
1382 struct dma_info *di = container_of(pub, struct dma_info, dma);
1383 struct brcms_ampdu_session *session = &di->ampdu_session;
1384 struct ieee80211_tx_info *tx_info;
1385 bool is_ampdu;
1386
1387
1388 if (p->len == 0)
1389 return 0;
1390
1391
1392 if (di->dma.txavail == 0 || nexttxd(di, di->txout) == di->txin)
1393 goto outoftxd;
1394
1395 tx_info = IEEE80211_SKB_CB(p);
1396 is_ampdu = tx_info->flags & IEEE80211_TX_CTL_AMPDU;
1397 if (is_ampdu)
1398 prep_ampdu_frame(di, p);
1399 else
1400 dma_txenq(di, p);
1401
1402
1403 dma_update_txavail(di);
1404
1405
1406 if (is_ampdu) {
1407
1408
1409
1410
1411
1412 if (skb_queue_len(&session->skb_list) == session->max_ampdu_frames ||
1413 di->dma.txavail == 0 || dma64_txidle(di))
1414 ampdu_finalize(di);
1415 } else {
1416 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1417 di->xmtptrbase + I2B(di->txout, struct dma64desc));
1418 }
1419
1420 return 0;
1421
1422 outoftxd:
1423 brcms_dbg_dma(di->core, "%s: out of txds !!!\n", di->name);
1424 brcmu_pkt_buf_free_skb(p);
1425 di->dma.txavail = 0;
1426 di->dma.txnobuf++;
1427 return -ENOSPC;
1428 }
1429
1430 void dma_txflush(struct dma_pub *pub)
1431 {
1432 struct dma_info *di = container_of(pub, struct dma_info, dma);
1433 struct brcms_ampdu_session *session = &di->ampdu_session;
1434
1435 if (!skb_queue_empty(&session->skb_list))
1436 ampdu_finalize(di);
1437 }
1438
1439 int dma_txpending(struct dma_pub *pub)
1440 {
1441 struct dma_info *di = container_of(pub, struct dma_info, dma);
1442 return ntxdactive(di, di->txin, di->txout);
1443 }
1444
1445
1446
1447
1448
1449 void dma_kick_tx(struct dma_pub *pub)
1450 {
1451 struct dma_info *di = container_of(pub, struct dma_info, dma);
1452 struct brcms_ampdu_session *session = &di->ampdu_session;
1453
1454 if (!skb_queue_empty(&session->skb_list) && dma64_txidle(di))
1455 ampdu_finalize(di);
1456 }
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1469 {
1470 struct dma_info *di = container_of(pub, struct dma_info, dma);
1471 u16 start, end, i;
1472 u16 active_desc;
1473 struct sk_buff *txp;
1474
1475 brcms_dbg_dma(di->core, "%s: %s\n",
1476 di->name,
1477 range == DMA_RANGE_ALL ? "all" :
1478 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1479 "transferred");
1480
1481 if (di->ntxd == 0)
1482 return NULL;
1483
1484 txp = NULL;
1485
1486 start = di->txin;
1487 if (range == DMA_RANGE_ALL)
1488 end = di->txout;
1489 else {
1490 end = (u16) (B2I(((bcma_read32(di->core,
1491 DMA64TXREGOFFS(di, status0)) &
1492 D64_XS0_CD_MASK) - di->xmtptrbase) &
1493 D64_XS0_CD_MASK, struct dma64desc));
1494
1495 if (range == DMA_RANGE_TRANSFERED) {
1496 active_desc =
1497 (u16)(bcma_read32(di->core,
1498 DMA64TXREGOFFS(di, status1)) &
1499 D64_XS1_AD_MASK);
1500 active_desc =
1501 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1502 active_desc = B2I(active_desc, struct dma64desc);
1503 if (end != active_desc)
1504 end = prevtxd(di, active_desc);
1505 }
1506 }
1507
1508 if ((start == 0) && (end > di->txout))
1509 goto bogus;
1510
1511 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1512 dma_addr_t pa;
1513 uint size;
1514
1515 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1516
1517 size =
1518 (le32_to_cpu(di->txd64[i].ctrl2) &
1519 D64_CTRL2_BC_MASK);
1520
1521 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1522 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1523
1524 txp = di->txp[i];
1525 di->txp[i] = NULL;
1526
1527 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1528 }
1529
1530 di->txin = i;
1531
1532
1533 dma_update_txavail(di);
1534
1535 return txp;
1536
1537 bogus:
1538 brcms_dbg_dma(di->core, "bogus curr: start %d end %d txout %d\n",
1539 start, end, di->txout);
1540 return NULL;
1541 }
1542
1543
1544
1545
1546
1547
1548
1549 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1550 (void *pkt, void *arg_a), void *arg_a)
1551 {
1552 struct dma_info *di = container_of(dmah, struct dma_info, dma);
1553 uint i = di->txin;
1554 uint end = di->txout;
1555 struct sk_buff *skb;
1556 struct ieee80211_tx_info *tx_info;
1557
1558 while (i != end) {
1559 skb = di->txp[i];
1560 if (skb != NULL) {
1561 tx_info = (struct ieee80211_tx_info *)skb->cb;
1562 (callback_fnc)(tx_info, arg_a);
1563 }
1564 i = nexttxd(di, i);
1565 }
1566 }