root/drivers/net/wireless/zydas/zd1211rw/zd_chip.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. zd_chip_init
  2. zd_chip_clear
  3. scnprint_mac_oui
  4. scnprint_id
  5. print_id
  6. inc_addr
  7. zd_ioread32v_locked
  8. _zd_iowrite32v_async_locked
  9. _zd_iowrite32v_locked
  10. zd_iowrite16a_locked
  11. zd_iowrite32a_locked
  12. zd_ioread16
  13. zd_ioread32
  14. zd_iowrite16
  15. zd_iowrite32
  16. zd_ioread32v
  17. zd_iowrite32a
  18. read_pod
  19. zd_write_mac_addr_common
  20. zd_write_mac_addr
  21. zd_write_bssid
  22. zd_read_regdomain
  23. read_values
  24. read_pwr_cal_values
  25. read_pwr_int_values
  26. read_ofdm_cal_values
  27. read_cal_int_tables
  28. zd_chip_lock_phy_regs
  29. zd_chip_unlock_phy_regs
  30. patch_cr157
  31. patch_6m_band_edge
  32. zd_chip_generic_patch_6m_band
  33. zd1211_hw_reset_phy
  34. zd1211b_hw_reset_phy
  35. hw_reset_phy
  36. zd1211_hw_init_hmac
  37. zd1211b_hw_init_hmac
  38. hw_init_hmac
  39. get_aw_pt_bi
  40. set_aw_pt_bi
  41. set_beacon_interval
  42. zd_set_beacon_interval
  43. hw_init
  44. fw_reg_addr
  45. dump_cr
  46. test_init
  47. dump_fw_registers
  48. print_fw_version
  49. set_mandatory_rates
  50. zd_chip_set_rts_cts_rate_locked
  51. zd_chip_enable_hwint
  52. disable_hwint
  53. zd_chip_disable_hwint
  54. read_fw_regs_offset
  55. zd_chip_read_mac_addr_fw
  56. zd_chip_init_hw
  57. update_pwr_int
  58. update_pwr_cal
  59. update_ofdm_cal
  60. update_channel_integration_and_calibration
  61. patch_cck_gain
  62. zd_chip_set_channel
  63. zd_chip_get_channel
  64. zd_chip_control_leds
  65. zd_chip_set_basic_rates
  66. zd_rate_from_ofdm_plcp_header
  67. zd_rx_rate
  68. zd_chip_switch_radio_on
  69. zd_chip_switch_radio_off
  70. zd_chip_enable_int
  71. zd_chip_disable_int
  72. zd_chip_enable_rxtx
  73. zd_chip_disable_rxtx
  74. zd_rfwritev_locked
  75. zd_rfwrite_cr_locked
  76. zd_rfwritev_cr_locked
  77. zd_chip_set_multicast_hash
  78. zd_chip_get_tsf

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* ZD1211 USB-WLAN driver for Linux
   3  *
   4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   6  */
   7 
   8 /* This file implements all the hardware specific functions for the ZD1211
   9  * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
  10  * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
  11  */
  12 
  13 #include <linux/kernel.h>
  14 #include <linux/errno.h>
  15 #include <linux/slab.h>
  16 
  17 #include "zd_def.h"
  18 #include "zd_chip.h"
  19 #include "zd_mac.h"
  20 #include "zd_rf.h"
  21 
  22 void zd_chip_init(struct zd_chip *chip,
  23                  struct ieee80211_hw *hw,
  24                  struct usb_interface *intf)
  25 {
  26         memset(chip, 0, sizeof(*chip));
  27         mutex_init(&chip->mutex);
  28         zd_usb_init(&chip->usb, hw, intf);
  29         zd_rf_init(&chip->rf);
  30 }
  31 
  32 void zd_chip_clear(struct zd_chip *chip)
  33 {
  34         ZD_ASSERT(!mutex_is_locked(&chip->mutex));
  35         zd_usb_clear(&chip->usb);
  36         zd_rf_clear(&chip->rf);
  37         mutex_destroy(&chip->mutex);
  38         ZD_MEMCLEAR(chip, sizeof(*chip));
  39 }
  40 
  41 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
  42 {
  43         u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
  44         return scnprintf(buffer, size, "%3phD", addr);
  45 }
  46 
  47 /* Prints an identifier line, which will support debugging. */
  48 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
  49 {
  50         int i = 0;
  51 
  52         i = scnprintf(buffer, size, "zd1211%s chip ",
  53                       zd_chip_is_zd1211b(chip) ? "b" : "");
  54         i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
  55         i += scnprintf(buffer+i, size-i, " ");
  56         i += scnprint_mac_oui(chip, buffer+i, size-i);
  57         i += scnprintf(buffer+i, size-i, " ");
  58         i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
  59         i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
  60                 chip->patch_cck_gain ? 'g' : '-',
  61                 chip->patch_cr157 ? '7' : '-',
  62                 chip->patch_6m_band_edge ? '6' : '-',
  63                 chip->new_phy_layout ? 'N' : '-',
  64                 chip->al2230s_bit ? 'S' : '-');
  65         return i;
  66 }
  67 
  68 static void print_id(struct zd_chip *chip)
  69 {
  70         char buffer[80];
  71 
  72         scnprint_id(chip, buffer, sizeof(buffer));
  73         buffer[sizeof(buffer)-1] = 0;
  74         dev_info(zd_chip_dev(chip), "%s\n", buffer);
  75 }
  76 
  77 static zd_addr_t inc_addr(zd_addr_t addr)
  78 {
  79         u16 a = (u16)addr;
  80         /* Control registers use byte addressing, but everything else uses word
  81          * addressing. */
  82         if ((a & 0xf000) == CR_START)
  83                 a += 2;
  84         else
  85                 a += 1;
  86         return (zd_addr_t)a;
  87 }
  88 
  89 /* Read a variable number of 32-bit values. Parameter count is not allowed to
  90  * exceed USB_MAX_IOREAD32_COUNT.
  91  */
  92 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
  93                  unsigned int count)
  94 {
  95         int r;
  96         int i;
  97         zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
  98         u16 v16[USB_MAX_IOREAD32_COUNT * 2];
  99         unsigned int count16;
 100 
 101         if (count > USB_MAX_IOREAD32_COUNT)
 102                 return -EINVAL;
 103 
 104         /* Use stack for values and addresses. */
 105         count16 = 2 * count;
 106         BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
 107         BUG_ON(count16 * sizeof(u16) > sizeof(v16));
 108 
 109         for (i = 0; i < count; i++) {
 110                 int j = 2*i;
 111                 /* We read the high word always first. */
 112                 a16[j] = inc_addr(addr[i]);
 113                 a16[j+1] = addr[i];
 114         }
 115 
 116         r = zd_ioread16v_locked(chip, v16, a16, count16);
 117         if (r) {
 118                 dev_dbg_f(zd_chip_dev(chip),
 119                           "error: %s. Error number %d\n", __func__, r);
 120                 return r;
 121         }
 122 
 123         for (i = 0; i < count; i++) {
 124                 int j = 2*i;
 125                 values[i] = (v16[j] << 16) | v16[j+1];
 126         }
 127 
 128         return 0;
 129 }
 130 
 131 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
 132                                        const struct zd_ioreq32 *ioreqs,
 133                                        unsigned int count)
 134 {
 135         int i, j, r;
 136         struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
 137         unsigned int count16;
 138 
 139         /* Use stack for values and addresses. */
 140 
 141         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 142 
 143         if (count == 0)
 144                 return 0;
 145         if (count > USB_MAX_IOWRITE32_COUNT)
 146                 return -EINVAL;
 147 
 148         count16 = 2 * count;
 149         BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
 150 
 151         for (i = 0; i < count; i++) {
 152                 j = 2*i;
 153                 /* We write the high word always first. */
 154                 ioreqs16[j].value   = ioreqs[i].value >> 16;
 155                 ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
 156                 ioreqs16[j+1].value = ioreqs[i].value;
 157                 ioreqs16[j+1].addr  = ioreqs[i].addr;
 158         }
 159 
 160         r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
 161 #ifdef DEBUG
 162         if (r) {
 163                 dev_dbg_f(zd_chip_dev(chip),
 164                           "error %d in zd_usb_write16v\n", r);
 165         }
 166 #endif /* DEBUG */
 167         return r;
 168 }
 169 
 170 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 171                           unsigned int count)
 172 {
 173         int r;
 174 
 175         zd_usb_iowrite16v_async_start(&chip->usb);
 176         r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
 177         if (r) {
 178                 zd_usb_iowrite16v_async_end(&chip->usb, 0);
 179                 return r;
 180         }
 181         return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 182 }
 183 
 184 int zd_iowrite16a_locked(struct zd_chip *chip,
 185                   const struct zd_ioreq16 *ioreqs, unsigned int count)
 186 {
 187         int r;
 188         unsigned int i, j, t, max;
 189 
 190         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 191         zd_usb_iowrite16v_async_start(&chip->usb);
 192 
 193         for (i = 0; i < count; i += j + t) {
 194                 t = 0;
 195                 max = count-i;
 196                 if (max > USB_MAX_IOWRITE16_COUNT)
 197                         max = USB_MAX_IOWRITE16_COUNT;
 198                 for (j = 0; j < max; j++) {
 199                         if (!ioreqs[i+j].addr) {
 200                                 t = 1;
 201                                 break;
 202                         }
 203                 }
 204 
 205                 r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
 206                 if (r) {
 207                         zd_usb_iowrite16v_async_end(&chip->usb, 0);
 208                         dev_dbg_f(zd_chip_dev(chip),
 209                                   "error zd_usb_iowrite16v. Error number %d\n",
 210                                   r);
 211                         return r;
 212                 }
 213         }
 214 
 215         return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 216 }
 217 
 218 /* Writes a variable number of 32 bit registers. The functions will split
 219  * that in several USB requests. A split can be forced by inserting an IO
 220  * request with an zero address field.
 221  */
 222 int zd_iowrite32a_locked(struct zd_chip *chip,
 223                   const struct zd_ioreq32 *ioreqs, unsigned int count)
 224 {
 225         int r;
 226         unsigned int i, j, t, max;
 227 
 228         zd_usb_iowrite16v_async_start(&chip->usb);
 229 
 230         for (i = 0; i < count; i += j + t) {
 231                 t = 0;
 232                 max = count-i;
 233                 if (max > USB_MAX_IOWRITE32_COUNT)
 234                         max = USB_MAX_IOWRITE32_COUNT;
 235                 for (j = 0; j < max; j++) {
 236                         if (!ioreqs[i+j].addr) {
 237                                 t = 1;
 238                                 break;
 239                         }
 240                 }
 241 
 242                 r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
 243                 if (r) {
 244                         zd_usb_iowrite16v_async_end(&chip->usb, 0);
 245                         dev_dbg_f(zd_chip_dev(chip),
 246                                 "error _%s. Error number %d\n", __func__,
 247                                 r);
 248                         return r;
 249                 }
 250         }
 251 
 252         return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 253 }
 254 
 255 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
 256 {
 257         int r;
 258 
 259         mutex_lock(&chip->mutex);
 260         r = zd_ioread16_locked(chip, value, addr);
 261         mutex_unlock(&chip->mutex);
 262         return r;
 263 }
 264 
 265 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
 266 {
 267         int r;
 268 
 269         mutex_lock(&chip->mutex);
 270         r = zd_ioread32_locked(chip, value, addr);
 271         mutex_unlock(&chip->mutex);
 272         return r;
 273 }
 274 
 275 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
 276 {
 277         int r;
 278 
 279         mutex_lock(&chip->mutex);
 280         r = zd_iowrite16_locked(chip, value, addr);
 281         mutex_unlock(&chip->mutex);
 282         return r;
 283 }
 284 
 285 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
 286 {
 287         int r;
 288 
 289         mutex_lock(&chip->mutex);
 290         r = zd_iowrite32_locked(chip, value, addr);
 291         mutex_unlock(&chip->mutex);
 292         return r;
 293 }
 294 
 295 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
 296                   u32 *values, unsigned int count)
 297 {
 298         int r;
 299 
 300         mutex_lock(&chip->mutex);
 301         r = zd_ioread32v_locked(chip, values, addresses, count);
 302         mutex_unlock(&chip->mutex);
 303         return r;
 304 }
 305 
 306 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 307                   unsigned int count)
 308 {
 309         int r;
 310 
 311         mutex_lock(&chip->mutex);
 312         r = zd_iowrite32a_locked(chip, ioreqs, count);
 313         mutex_unlock(&chip->mutex);
 314         return r;
 315 }
 316 
 317 static int read_pod(struct zd_chip *chip, u8 *rf_type)
 318 {
 319         int r;
 320         u32 value;
 321 
 322         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 323         r = zd_ioread32_locked(chip, &value, E2P_POD);
 324         if (r)
 325                 goto error;
 326         dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
 327 
 328         /* FIXME: AL2230 handling (Bit 7 in POD) */
 329         *rf_type = value & 0x0f;
 330         chip->pa_type = (value >> 16) & 0x0f;
 331         chip->patch_cck_gain = (value >> 8) & 0x1;
 332         chip->patch_cr157 = (value >> 13) & 0x1;
 333         chip->patch_6m_band_edge = (value >> 21) & 0x1;
 334         chip->new_phy_layout = (value >> 31) & 0x1;
 335         chip->al2230s_bit = (value >> 7) & 0x1;
 336         chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
 337         chip->supports_tx_led = 1;
 338         if (value & (1 << 24)) { /* LED scenario */
 339                 if (value & (1 << 29))
 340                         chip->supports_tx_led = 0;
 341         }
 342 
 343         dev_dbg_f(zd_chip_dev(chip),
 344                 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
 345                 "patch 6M %d new PHY %d link LED%d tx led %d\n",
 346                 zd_rf_name(*rf_type), *rf_type,
 347                 chip->pa_type, chip->patch_cck_gain,
 348                 chip->patch_cr157, chip->patch_6m_band_edge,
 349                 chip->new_phy_layout,
 350                 chip->link_led == LED1 ? 1 : 2,
 351                 chip->supports_tx_led);
 352         return 0;
 353 error:
 354         *rf_type = 0;
 355         chip->pa_type = 0;
 356         chip->patch_cck_gain = 0;
 357         chip->patch_cr157 = 0;
 358         chip->patch_6m_band_edge = 0;
 359         chip->new_phy_layout = 0;
 360         return r;
 361 }
 362 
 363 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
 364                                     const struct zd_ioreq32 *in_reqs,
 365                                     const char *type)
 366 {
 367         int r;
 368         struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
 369 
 370         if (mac_addr) {
 371                 reqs[0].value = (mac_addr[3] << 24)
 372                               | (mac_addr[2] << 16)
 373                               | (mac_addr[1] <<  8)
 374                               |  mac_addr[0];
 375                 reqs[1].value = (mac_addr[5] <<  8)
 376                               |  mac_addr[4];
 377                 dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
 378         } else {
 379                 dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
 380         }
 381 
 382         mutex_lock(&chip->mutex);
 383         r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 384         mutex_unlock(&chip->mutex);
 385         return r;
 386 }
 387 
 388 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
 389  *              CR_MAC_ADDR_P2 must be overwritten
 390  */
 391 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
 392 {
 393         static const struct zd_ioreq32 reqs[2] = {
 394                 [0] = { .addr = CR_MAC_ADDR_P1 },
 395                 [1] = { .addr = CR_MAC_ADDR_P2 },
 396         };
 397 
 398         return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
 399 }
 400 
 401 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
 402 {
 403         static const struct zd_ioreq32 reqs[2] = {
 404                 [0] = { .addr = CR_BSSID_P1 },
 405                 [1] = { .addr = CR_BSSID_P2 },
 406         };
 407 
 408         return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
 409 }
 410 
 411 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
 412 {
 413         int r;
 414         u32 value;
 415 
 416         mutex_lock(&chip->mutex);
 417         r = zd_ioread32_locked(chip, &value, E2P_SUBID);
 418         mutex_unlock(&chip->mutex);
 419         if (r)
 420                 return r;
 421 
 422         *regdomain = value >> 16;
 423         dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
 424 
 425         return 0;
 426 }
 427 
 428 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
 429                        zd_addr_t e2p_addr, u32 guard)
 430 {
 431         int r;
 432         int i;
 433         u32 v;
 434 
 435         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 436         for (i = 0;;) {
 437                 r = zd_ioread32_locked(chip, &v,
 438                                        (zd_addr_t)((u16)e2p_addr+i/2));
 439                 if (r)
 440                         return r;
 441                 v -= guard;
 442                 if (i+4 < count) {
 443                         values[i++] = v;
 444                         values[i++] = v >>  8;
 445                         values[i++] = v >> 16;
 446                         values[i++] = v >> 24;
 447                         continue;
 448                 }
 449                 for (;i < count; i++)
 450                         values[i] = v >> (8*(i%3));
 451                 return 0;
 452         }
 453 }
 454 
 455 static int read_pwr_cal_values(struct zd_chip *chip)
 456 {
 457         return read_values(chip, chip->pwr_cal_values,
 458                         E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
 459                         0);
 460 }
 461 
 462 static int read_pwr_int_values(struct zd_chip *chip)
 463 {
 464         return read_values(chip, chip->pwr_int_values,
 465                         E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
 466                         E2P_PWR_INT_GUARD);
 467 }
 468 
 469 static int read_ofdm_cal_values(struct zd_chip *chip)
 470 {
 471         int r;
 472         int i;
 473         static const zd_addr_t addresses[] = {
 474                 E2P_36M_CAL_VALUE1,
 475                 E2P_48M_CAL_VALUE1,
 476                 E2P_54M_CAL_VALUE1,
 477         };
 478 
 479         for (i = 0; i < 3; i++) {
 480                 r = read_values(chip, chip->ofdm_cal_values[i],
 481                                 E2P_CHANNEL_COUNT, addresses[i], 0);
 482                 if (r)
 483                         return r;
 484         }
 485         return 0;
 486 }
 487 
 488 static int read_cal_int_tables(struct zd_chip *chip)
 489 {
 490         int r;
 491 
 492         r = read_pwr_cal_values(chip);
 493         if (r)
 494                 return r;
 495         r = read_pwr_int_values(chip);
 496         if (r)
 497                 return r;
 498         r = read_ofdm_cal_values(chip);
 499         if (r)
 500                 return r;
 501         return 0;
 502 }
 503 
 504 /* phy means physical registers */
 505 int zd_chip_lock_phy_regs(struct zd_chip *chip)
 506 {
 507         int r;
 508         u32 tmp;
 509 
 510         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 511         r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 512         if (r) {
 513                 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
 514                 return r;
 515         }
 516 
 517         tmp &= ~UNLOCK_PHY_REGS;
 518 
 519         r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 520         if (r)
 521                 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 522         return r;
 523 }
 524 
 525 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
 526 {
 527         int r;
 528         u32 tmp;
 529 
 530         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 531         r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 532         if (r) {
 533                 dev_err(zd_chip_dev(chip),
 534                         "error ioread32(CR_REG1): %d\n", r);
 535                 return r;
 536         }
 537 
 538         tmp |= UNLOCK_PHY_REGS;
 539 
 540         r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 541         if (r)
 542                 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 543         return r;
 544 }
 545 
 546 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
 547 static int patch_cr157(struct zd_chip *chip)
 548 {
 549         int r;
 550         u16 value;
 551 
 552         if (!chip->patch_cr157)
 553                 return 0;
 554 
 555         r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
 556         if (r)
 557                 return r;
 558 
 559         dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
 560         return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
 561 }
 562 
 563 /*
 564  * 6M band edge can be optionally overwritten for certain RF's
 565  * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
 566  * bit (for AL2230, AL2230S)
 567  */
 568 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
 569 {
 570         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 571         if (!chip->patch_6m_band_edge)
 572                 return 0;
 573 
 574         return zd_rf_patch_6m_band_edge(&chip->rf, channel);
 575 }
 576 
 577 /* Generic implementation of 6M band edge patching, used by most RFs via
 578  * zd_rf_generic_patch_6m() */
 579 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
 580 {
 581         struct zd_ioreq16 ioreqs[] = {
 582                 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 583                 { ZD_CR47,  0x1e },
 584         };
 585 
 586         /* FIXME: Channel 11 is not the edge for all regulatory domains. */
 587         if (channel == 1 || channel == 11)
 588                 ioreqs[0].value = 0x12;
 589 
 590         dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
 591         return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 592 }
 593 
 594 static int zd1211_hw_reset_phy(struct zd_chip *chip)
 595 {
 596         static const struct zd_ioreq16 ioreqs[] = {
 597                 { ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 598                 { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
 599                 { ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
 600                 { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
 601                 { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
 602                 { ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
 603                 { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
 604                 { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
 605                 { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
 606                 { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 607                 { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 608                 { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 609                 { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 610                 { ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
 611                 { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 612                 { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 613                 { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 614                 { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 615                 { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 616                 { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 617                 { ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 618                 { ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
 619                 { ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
 620                 { ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
 621                 { ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
 622                 { ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
 623                 { ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
 624                 { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
 625                 { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
 626                 { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
 627                 { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
 628                 { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
 629                 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 630                 { },
 631                 { ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
 632                 { ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
 633                 { ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
 634                 { ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
 635                 { ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
 636                 { ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
 637                 { ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
 638                 { ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
 639                 { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
 640                 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 641                 { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 642                 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 643                 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 644                 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
 645                 { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
 646                 { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
 647                 { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
 648                 { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
 649                 { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
 650                 { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
 651                 { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
 652                 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 653                 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 654                 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 655                 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 656                 /* Note: ZD_CR204 must lead the ZD_CR203 */
 657                 { ZD_CR204, 0x7d },
 658                 { },
 659                 { ZD_CR203, 0x30 },
 660         };
 661 
 662         int r, t;
 663 
 664         dev_dbg_f(zd_chip_dev(chip), "\n");
 665 
 666         r = zd_chip_lock_phy_regs(chip);
 667         if (r)
 668                 goto out;
 669 
 670         r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 671         if (r)
 672                 goto unlock;
 673 
 674         r = patch_cr157(chip);
 675 unlock:
 676         t = zd_chip_unlock_phy_regs(chip);
 677         if (t && !r)
 678                 r = t;
 679 out:
 680         return r;
 681 }
 682 
 683 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
 684 {
 685         static const struct zd_ioreq16 ioreqs[] = {
 686                 { ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 687                 { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
 688                 { ZD_CR10,  0x81 },
 689                 /* power control { { ZD_CR11,  1 << 6 }, */
 690                 { ZD_CR11,  0x00 },
 691                 { ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
 692                 { ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
 693                 { ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
 694                 { ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
 695                 { ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
 696                 { ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
 697                 { ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
 698                 { ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
 699                 { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 700                 { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 701                 { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 702                 { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 703                 { ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
 704                 { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 705                 { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 706                 { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 707                 { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 708                 { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 709                 { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 710                 { ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 711                 { ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
 712                 { ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
 713                 { ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
 714                 { ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
 715                 { ZD_CR94,  0x01 },
 716                 { ZD_CR95,  0x20 }, /* ZD1211B */
 717                 { ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
 718                 { ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
 719                 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 720                 { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
 721                 { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 722                 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 723                 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 724                 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
 725                 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 726                 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 727                 { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
 728                 { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
 729                 { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
 730                 { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
 731                 { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
 732                 { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
 733                 { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
 734                 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 735                 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 736                 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 737                 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 738                 /* Note: ZD_CR204 must lead the ZD_CR203 */
 739                 { ZD_CR204, 0x7d },
 740                 {},
 741                 { ZD_CR203, 0x30 },
 742         };
 743 
 744         int r, t;
 745 
 746         dev_dbg_f(zd_chip_dev(chip), "\n");
 747 
 748         r = zd_chip_lock_phy_regs(chip);
 749         if (r)
 750                 goto out;
 751 
 752         r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 753         t = zd_chip_unlock_phy_regs(chip);
 754         if (t && !r)
 755                 r = t;
 756 out:
 757         return r;
 758 }
 759 
 760 static int hw_reset_phy(struct zd_chip *chip)
 761 {
 762         return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
 763                                   zd1211_hw_reset_phy(chip);
 764 }
 765 
 766 static int zd1211_hw_init_hmac(struct zd_chip *chip)
 767 {
 768         static const struct zd_ioreq32 ioreqs[] = {
 769                 { CR_ZD1211_RETRY_MAX,          ZD1211_RETRY_COUNT },
 770                 { CR_RX_THRESHOLD,              0x000c0640 },
 771         };
 772 
 773         dev_dbg_f(zd_chip_dev(chip), "\n");
 774         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 775         return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 776 }
 777 
 778 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
 779 {
 780         static const struct zd_ioreq32 ioreqs[] = {
 781                 { CR_ZD1211B_RETRY_MAX,         ZD1211B_RETRY_COUNT },
 782                 { CR_ZD1211B_CWIN_MAX_MIN_AC0,  0x007f003f },
 783                 { CR_ZD1211B_CWIN_MAX_MIN_AC1,  0x007f003f },
 784                 { CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
 785                 { CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
 786                 { CR_ZD1211B_AIFS_CTL1,         0x00280028 },
 787                 { CR_ZD1211B_AIFS_CTL2,         0x008C003C },
 788                 { CR_ZD1211B_TXOP,              0x01800824 },
 789                 { CR_RX_THRESHOLD,              0x000c0eff, },
 790         };
 791 
 792         dev_dbg_f(zd_chip_dev(chip), "\n");
 793         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 794         return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 795 }
 796 
 797 static int hw_init_hmac(struct zd_chip *chip)
 798 {
 799         int r;
 800         static const struct zd_ioreq32 ioreqs[] = {
 801                 { CR_ACK_TIMEOUT_EXT,           0x20 },
 802                 { CR_ADDA_MBIAS_WARMTIME,       0x30000808 },
 803                 { CR_SNIFFER_ON,                0 },
 804                 { CR_RX_FILTER,                 STA_RX_FILTER },
 805                 { CR_GROUP_HASH_P1,             0x00 },
 806                 { CR_GROUP_HASH_P2,             0x80000000 },
 807                 { CR_REG1,                      0xa4 },
 808                 { CR_ADDA_PWR_DWN,              0x7f },
 809                 { CR_BCN_PLCP_CFG,              0x00f00401 },
 810                 { CR_PHY_DELAY,                 0x00 },
 811                 { CR_ACK_TIMEOUT_EXT,           0x80 },
 812                 { CR_ADDA_PWR_DWN,              0x00 },
 813                 { CR_ACK_TIME_80211,            0x100 },
 814                 { CR_RX_PE_DELAY,               0x70 },
 815                 { CR_PS_CTRL,                   0x10000000 },
 816                 { CR_RTS_CTS_RATE,              0x02030203 },
 817                 { CR_AFTER_PNP,                 0x1 },
 818                 { CR_WEP_PROTECT,               0x114 },
 819                 { CR_IFS_VALUE,                 IFS_VALUE_DEFAULT },
 820                 { CR_CAM_MODE,                  MODE_AP_WDS},
 821         };
 822 
 823         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 824         r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 825         if (r)
 826                 return r;
 827 
 828         return zd_chip_is_zd1211b(chip) ?
 829                 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
 830 }
 831 
 832 struct aw_pt_bi {
 833         u32 atim_wnd_period;
 834         u32 pre_tbtt;
 835         u32 beacon_interval;
 836 };
 837 
 838 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 839 {
 840         int r;
 841         static const zd_addr_t aw_pt_bi_addr[] =
 842                 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
 843         u32 values[3];
 844 
 845         r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
 846                          ARRAY_SIZE(aw_pt_bi_addr));
 847         if (r) {
 848                 memset(s, 0, sizeof(*s));
 849                 return r;
 850         }
 851 
 852         s->atim_wnd_period = values[0];
 853         s->pre_tbtt = values[1];
 854         s->beacon_interval = values[2];
 855         return 0;
 856 }
 857 
 858 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 859 {
 860         struct zd_ioreq32 reqs[3];
 861         u16 b_interval = s->beacon_interval & 0xffff;
 862 
 863         if (b_interval <= 5)
 864                 b_interval = 5;
 865         if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
 866                 s->pre_tbtt = b_interval - 1;
 867         if (s->atim_wnd_period >= s->pre_tbtt)
 868                 s->atim_wnd_period = s->pre_tbtt - 1;
 869 
 870         reqs[0].addr = CR_ATIM_WND_PERIOD;
 871         reqs[0].value = s->atim_wnd_period;
 872         reqs[1].addr = CR_PRE_TBTT;
 873         reqs[1].value = s->pre_tbtt;
 874         reqs[2].addr = CR_BCN_INTERVAL;
 875         reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
 876 
 877         return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 878 }
 879 
 880 
 881 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
 882                                u8 dtim_period, int type)
 883 {
 884         int r;
 885         struct aw_pt_bi s;
 886         u32 b_interval, mode_flag;
 887 
 888         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 889 
 890         if (interval > 0) {
 891                 switch (type) {
 892                 case NL80211_IFTYPE_ADHOC:
 893                 case NL80211_IFTYPE_MESH_POINT:
 894                         mode_flag = BCN_MODE_IBSS;
 895                         break;
 896                 case NL80211_IFTYPE_AP:
 897                         mode_flag = BCN_MODE_AP;
 898                         break;
 899                 default:
 900                         mode_flag = 0;
 901                         break;
 902                 }
 903         } else {
 904                 dtim_period = 0;
 905                 mode_flag = 0;
 906         }
 907 
 908         b_interval = mode_flag | (dtim_period << 16) | interval;
 909 
 910         r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
 911         if (r)
 912                 return r;
 913         r = get_aw_pt_bi(chip, &s);
 914         if (r)
 915                 return r;
 916         return set_aw_pt_bi(chip, &s);
 917 }
 918 
 919 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
 920                            int type)
 921 {
 922         int r;
 923 
 924         mutex_lock(&chip->mutex);
 925         r = set_beacon_interval(chip, interval, dtim_period, type);
 926         mutex_unlock(&chip->mutex);
 927         return r;
 928 }
 929 
 930 static int hw_init(struct zd_chip *chip)
 931 {
 932         int r;
 933 
 934         dev_dbg_f(zd_chip_dev(chip), "\n");
 935         ZD_ASSERT(mutex_is_locked(&chip->mutex));
 936         r = hw_reset_phy(chip);
 937         if (r)
 938                 return r;
 939 
 940         r = hw_init_hmac(chip);
 941         if (r)
 942                 return r;
 943 
 944         return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
 945 }
 946 
 947 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
 948 {
 949         return (zd_addr_t)((u16)chip->fw_regs_base + offset);
 950 }
 951 
 952 #ifdef DEBUG
 953 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
 954                    const char *addr_string)
 955 {
 956         int r;
 957         u32 value;
 958 
 959         r = zd_ioread32_locked(chip, &value, addr);
 960         if (r) {
 961                 dev_dbg_f(zd_chip_dev(chip),
 962                         "error reading %s. Error number %d\n", addr_string, r);
 963                 return r;
 964         }
 965 
 966         dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
 967                 addr_string, (unsigned int)value);
 968         return 0;
 969 }
 970 
 971 static int test_init(struct zd_chip *chip)
 972 {
 973         int r;
 974 
 975         r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
 976         if (r)
 977                 return r;
 978         r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
 979         if (r)
 980                 return r;
 981         return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
 982 }
 983 
 984 static void dump_fw_registers(struct zd_chip *chip)
 985 {
 986         const zd_addr_t addr[4] = {
 987                 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
 988                 fw_reg_addr(chip, FW_REG_USB_SPEED),
 989                 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
 990                 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
 991         };
 992 
 993         int r;
 994         u16 values[4];
 995 
 996         r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
 997                          ARRAY_SIZE(addr));
 998         if (r) {
 999                 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1000                          r);
1001                 return;
1002         }
1003 
1004         dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1005         dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1006         dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1007         dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1008 }
1009 #endif /* DEBUG */
1010 
1011 static int print_fw_version(struct zd_chip *chip)
1012 {
1013         struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1014         int r;
1015         u16 version;
1016 
1017         r = zd_ioread16_locked(chip, &version,
1018                 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1019         if (r)
1020                 return r;
1021 
1022         dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1023 
1024         snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1025                         "%04hx", version);
1026 
1027         return 0;
1028 }
1029 
1030 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1031 {
1032         u32 rates;
1033         ZD_ASSERT(mutex_is_locked(&chip->mutex));
1034         /* This sets the mandatory rates, which only depend from the standard
1035          * that the device is supporting. Until further notice we should try
1036          * to support 802.11g also for full speed USB.
1037          */
1038         if (!gmode)
1039                 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1040         else
1041                 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1042                         CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1043 
1044         return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1045 }
1046 
1047 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1048                                     int preamble)
1049 {
1050         u32 value = 0;
1051 
1052         dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1053         value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1054         value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1055 
1056         /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1057         value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1058         value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1059         value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1060         value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1061 
1062         return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1063 }
1064 
1065 int zd_chip_enable_hwint(struct zd_chip *chip)
1066 {
1067         int r;
1068 
1069         mutex_lock(&chip->mutex);
1070         r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1071         mutex_unlock(&chip->mutex);
1072         return r;
1073 }
1074 
1075 static int disable_hwint(struct zd_chip *chip)
1076 {
1077         return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1078 }
1079 
1080 int zd_chip_disable_hwint(struct zd_chip *chip)
1081 {
1082         int r;
1083 
1084         mutex_lock(&chip->mutex);
1085         r = disable_hwint(chip);
1086         mutex_unlock(&chip->mutex);
1087         return r;
1088 }
1089 
1090 static int read_fw_regs_offset(struct zd_chip *chip)
1091 {
1092         int r;
1093 
1094         ZD_ASSERT(mutex_is_locked(&chip->mutex));
1095         r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1096                                FWRAW_REGS_ADDR);
1097         if (r)
1098                 return r;
1099         dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1100                   (u16)chip->fw_regs_base);
1101 
1102         return 0;
1103 }
1104 
1105 /* Read mac address using pre-firmware interface */
1106 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1107 {
1108         dev_dbg_f(zd_chip_dev(chip), "\n");
1109         return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1110                 ETH_ALEN);
1111 }
1112 
1113 int zd_chip_init_hw(struct zd_chip *chip)
1114 {
1115         int r;
1116         u8 rf_type;
1117 
1118         dev_dbg_f(zd_chip_dev(chip), "\n");
1119 
1120         mutex_lock(&chip->mutex);
1121 
1122 #ifdef DEBUG
1123         r = test_init(chip);
1124         if (r)
1125                 goto out;
1126 #endif
1127         r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1128         if (r)
1129                 goto out;
1130 
1131         r = read_fw_regs_offset(chip);
1132         if (r)
1133                 goto out;
1134 
1135         /* GPI is always disabled, also in the other driver.
1136          */
1137         r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1138         if (r)
1139                 goto out;
1140         r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1141         if (r)
1142                 goto out;
1143         /* Currently we support IEEE 802.11g for full and high speed USB.
1144          * It might be discussed, whether we should support pure b mode for
1145          * full speed USB.
1146          */
1147         r = set_mandatory_rates(chip, 1);
1148         if (r)
1149                 goto out;
1150         /* Disabling interrupts is certainly a smart thing here.
1151          */
1152         r = disable_hwint(chip);
1153         if (r)
1154                 goto out;
1155         r = read_pod(chip, &rf_type);
1156         if (r)
1157                 goto out;
1158         r = hw_init(chip);
1159         if (r)
1160                 goto out;
1161         r = zd_rf_init_hw(&chip->rf, rf_type);
1162         if (r)
1163                 goto out;
1164 
1165         r = print_fw_version(chip);
1166         if (r)
1167                 goto out;
1168 
1169 #ifdef DEBUG
1170         dump_fw_registers(chip);
1171         r = test_init(chip);
1172         if (r)
1173                 goto out;
1174 #endif /* DEBUG */
1175 
1176         r = read_cal_int_tables(chip);
1177         if (r)
1178                 goto out;
1179 
1180         print_id(chip);
1181 out:
1182         mutex_unlock(&chip->mutex);
1183         return r;
1184 }
1185 
1186 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1187 {
1188         u8 value = chip->pwr_int_values[channel - 1];
1189         return zd_iowrite16_locked(chip, value, ZD_CR31);
1190 }
1191 
1192 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1193 {
1194         u8 value = chip->pwr_cal_values[channel-1];
1195         return zd_iowrite16_locked(chip, value, ZD_CR68);
1196 }
1197 
1198 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1199 {
1200         struct zd_ioreq16 ioreqs[3];
1201 
1202         ioreqs[0].addr = ZD_CR67;
1203         ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1204         ioreqs[1].addr = ZD_CR66;
1205         ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1206         ioreqs[2].addr = ZD_CR65;
1207         ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1208 
1209         return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1210 }
1211 
1212 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1213                                                       u8 channel)
1214 {
1215         int r;
1216 
1217         if (!zd_rf_should_update_pwr_int(&chip->rf))
1218                 return 0;
1219 
1220         r = update_pwr_int(chip, channel);
1221         if (r)
1222                 return r;
1223         if (zd_chip_is_zd1211b(chip)) {
1224                 static const struct zd_ioreq16 ioreqs[] = {
1225                         { ZD_CR69, 0x28 },
1226                         {},
1227                         { ZD_CR69, 0x2a },
1228                 };
1229 
1230                 r = update_ofdm_cal(chip, channel);
1231                 if (r)
1232                         return r;
1233                 r = update_pwr_cal(chip, channel);
1234                 if (r)
1235                         return r;
1236                 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1237                 if (r)
1238                         return r;
1239         }
1240 
1241         return 0;
1242 }
1243 
1244 /* The CCK baseband gain can be optionally patched by the EEPROM */
1245 static int patch_cck_gain(struct zd_chip *chip)
1246 {
1247         int r;
1248         u32 value;
1249 
1250         if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1251                 return 0;
1252 
1253         ZD_ASSERT(mutex_is_locked(&chip->mutex));
1254         r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1255         if (r)
1256                 return r;
1257         dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1258         return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1259 }
1260 
1261 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1262 {
1263         int r, t;
1264 
1265         mutex_lock(&chip->mutex);
1266         r = zd_chip_lock_phy_regs(chip);
1267         if (r)
1268                 goto out;
1269         r = zd_rf_set_channel(&chip->rf, channel);
1270         if (r)
1271                 goto unlock;
1272         r = update_channel_integration_and_calibration(chip, channel);
1273         if (r)
1274                 goto unlock;
1275         r = patch_cck_gain(chip);
1276         if (r)
1277                 goto unlock;
1278         r = patch_6m_band_edge(chip, channel);
1279         if (r)
1280                 goto unlock;
1281         r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1282 unlock:
1283         t = zd_chip_unlock_phy_regs(chip);
1284         if (t && !r)
1285                 r = t;
1286 out:
1287         mutex_unlock(&chip->mutex);
1288         return r;
1289 }
1290 
1291 u8 zd_chip_get_channel(struct zd_chip *chip)
1292 {
1293         u8 channel;
1294 
1295         mutex_lock(&chip->mutex);
1296         channel = chip->rf.channel;
1297         mutex_unlock(&chip->mutex);
1298         return channel;
1299 }
1300 
1301 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1302 {
1303         const zd_addr_t a[] = {
1304                 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1305                 CR_LED,
1306         };
1307 
1308         int r;
1309         u16 v[ARRAY_SIZE(a)];
1310         struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1311                 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1312                 [1] = { CR_LED },
1313         };
1314         u16 other_led;
1315 
1316         mutex_lock(&chip->mutex);
1317         r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1318         if (r)
1319                 goto out;
1320 
1321         other_led = chip->link_led == LED1 ? LED2 : LED1;
1322 
1323         switch (status) {
1324         case ZD_LED_OFF:
1325                 ioreqs[0].value = FW_LINK_OFF;
1326                 ioreqs[1].value = v[1] & ~(LED1|LED2);
1327                 break;
1328         case ZD_LED_SCANNING:
1329                 ioreqs[0].value = FW_LINK_OFF;
1330                 ioreqs[1].value = v[1] & ~other_led;
1331                 if ((u32)ktime_get_seconds() % 3 == 0) {
1332                         ioreqs[1].value &= ~chip->link_led;
1333                 } else {
1334                         ioreqs[1].value |= chip->link_led;
1335                 }
1336                 break;
1337         case ZD_LED_ASSOCIATED:
1338                 ioreqs[0].value = FW_LINK_TX;
1339                 ioreqs[1].value = v[1] & ~other_led;
1340                 ioreqs[1].value |= chip->link_led;
1341                 break;
1342         default:
1343                 r = -EINVAL;
1344                 goto out;
1345         }
1346 
1347         if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1348                 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1349                 if (r)
1350                         goto out;
1351         }
1352         r = 0;
1353 out:
1354         mutex_unlock(&chip->mutex);
1355         return r;
1356 }
1357 
1358 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1359 {
1360         int r;
1361 
1362         if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1363                 return -EINVAL;
1364 
1365         mutex_lock(&chip->mutex);
1366         r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1367         mutex_unlock(&chip->mutex);
1368         return r;
1369 }
1370 
1371 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1372 {
1373         return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1374 }
1375 
1376 /**
1377  * zd_rx_rate - report zd-rate
1378  * @rx_frame - received frame
1379  * @rx_status - rx_status as given by the device
1380  *
1381  * This function converts the rate as encoded in the received packet to the
1382  * zd-rate, we are using on other places in the driver.
1383  */
1384 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1385 {
1386         u8 zd_rate;
1387         if (status->frame_status & ZD_RX_OFDM) {
1388                 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1389         } else {
1390                 switch (zd_cck_plcp_header_signal(rx_frame)) {
1391                 case ZD_CCK_PLCP_SIGNAL_1M:
1392                         zd_rate = ZD_CCK_RATE_1M;
1393                         break;
1394                 case ZD_CCK_PLCP_SIGNAL_2M:
1395                         zd_rate = ZD_CCK_RATE_2M;
1396                         break;
1397                 case ZD_CCK_PLCP_SIGNAL_5M5:
1398                         zd_rate = ZD_CCK_RATE_5_5M;
1399                         break;
1400                 case ZD_CCK_PLCP_SIGNAL_11M:
1401                         zd_rate = ZD_CCK_RATE_11M;
1402                         break;
1403                 default:
1404                         zd_rate = 0;
1405                 }
1406         }
1407 
1408         return zd_rate;
1409 }
1410 
1411 int zd_chip_switch_radio_on(struct zd_chip *chip)
1412 {
1413         int r;
1414 
1415         mutex_lock(&chip->mutex);
1416         r = zd_switch_radio_on(&chip->rf);
1417         mutex_unlock(&chip->mutex);
1418         return r;
1419 }
1420 
1421 int zd_chip_switch_radio_off(struct zd_chip *chip)
1422 {
1423         int r;
1424 
1425         mutex_lock(&chip->mutex);
1426         r = zd_switch_radio_off(&chip->rf);
1427         mutex_unlock(&chip->mutex);
1428         return r;
1429 }
1430 
1431 int zd_chip_enable_int(struct zd_chip *chip)
1432 {
1433         int r;
1434 
1435         mutex_lock(&chip->mutex);
1436         r = zd_usb_enable_int(&chip->usb);
1437         mutex_unlock(&chip->mutex);
1438         return r;
1439 }
1440 
1441 void zd_chip_disable_int(struct zd_chip *chip)
1442 {
1443         mutex_lock(&chip->mutex);
1444         zd_usb_disable_int(&chip->usb);
1445         mutex_unlock(&chip->mutex);
1446 
1447         /* cancel pending interrupt work */
1448         cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1449 }
1450 
1451 int zd_chip_enable_rxtx(struct zd_chip *chip)
1452 {
1453         int r;
1454 
1455         mutex_lock(&chip->mutex);
1456         zd_usb_enable_tx(&chip->usb);
1457         r = zd_usb_enable_rx(&chip->usb);
1458         zd_tx_watchdog_enable(&chip->usb);
1459         mutex_unlock(&chip->mutex);
1460         return r;
1461 }
1462 
1463 void zd_chip_disable_rxtx(struct zd_chip *chip)
1464 {
1465         mutex_lock(&chip->mutex);
1466         zd_tx_watchdog_disable(&chip->usb);
1467         zd_usb_disable_rx(&chip->usb);
1468         zd_usb_disable_tx(&chip->usb);
1469         mutex_unlock(&chip->mutex);
1470 }
1471 
1472 int zd_rfwritev_locked(struct zd_chip *chip,
1473                        const u32* values, unsigned int count, u8 bits)
1474 {
1475         int r;
1476         unsigned int i;
1477 
1478         for (i = 0; i < count; i++) {
1479                 r = zd_rfwrite_locked(chip, values[i], bits);
1480                 if (r)
1481                         return r;
1482         }
1483 
1484         return 0;
1485 }
1486 
1487 /*
1488  * We can optionally program the RF directly through CR regs, if supported by
1489  * the hardware. This is much faster than the older method.
1490  */
1491 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1492 {
1493         const struct zd_ioreq16 ioreqs[] = {
1494                 { ZD_CR244, (value >> 16) & 0xff },
1495                 { ZD_CR243, (value >>  8) & 0xff },
1496                 { ZD_CR242,  value        & 0xff },
1497         };
1498         ZD_ASSERT(mutex_is_locked(&chip->mutex));
1499         return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1500 }
1501 
1502 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1503                           const u32 *values, unsigned int count)
1504 {
1505         int r;
1506         unsigned int i;
1507 
1508         for (i = 0; i < count; i++) {
1509                 r = zd_rfwrite_cr_locked(chip, values[i]);
1510                 if (r)
1511                         return r;
1512         }
1513 
1514         return 0;
1515 }
1516 
1517 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1518                                struct zd_mc_hash *hash)
1519 {
1520         const struct zd_ioreq32 ioreqs[] = {
1521                 { CR_GROUP_HASH_P1, hash->low },
1522                 { CR_GROUP_HASH_P2, hash->high },
1523         };
1524 
1525         return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1526 }
1527 
1528 u64 zd_chip_get_tsf(struct zd_chip *chip)
1529 {
1530         int r;
1531         static const zd_addr_t aw_pt_bi_addr[] =
1532                 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1533         u32 values[2];
1534         u64 tsf;
1535 
1536         mutex_lock(&chip->mutex);
1537         r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1538                                 ARRAY_SIZE(aw_pt_bi_addr));
1539         mutex_unlock(&chip->mutex);
1540         if (r)
1541                 return 0;
1542 
1543         tsf = values[1];
1544         tsf = (tsf << 32) | values[0];
1545 
1546         return tsf;
1547 }

/* [<][>][^][v][top][bottom][index][help] */