root/drivers/net/wireless/zydas/zd1211rw/zd_mac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. zd_reg2alpha2
  2. zd_check_signal
  3. zd_mac_preinit_hw
  4. zd_mac_init_hw
  5. zd_mac_clear
  6. set_rx_filter
  7. set_mac_and_bssid
  8. set_mc_hash
  9. zd_op_start
  10. zd_op_stop
  11. zd_restore_settings
  12. zd_mac_tx_status
  13. zd_mac_tx_failed
  14. zd_mac_tx_to_dev
  15. zd_calc_tx_length_us
  16. cs_set_control
  17. zd_mac_match_cur_beacon
  18. zd_mac_free_cur_beacon_locked
  19. zd_mac_free_cur_beacon
  20. zd_mac_config_beacon
  21. fill_ctrlset
  22. zd_op_tx
  23. filter_ack
  24. zd_mac_rx
  25. zd_op_add_interface
  26. zd_op_remove_interface
  27. zd_op_config
  28. zd_beacon_done
  29. zd_process_intr
  30. zd_op_prepare_multicast
  31. zd_op_configure_filter
  32. set_rts_cts
  33. zd_op_bss_info_changed
  34. zd_op_get_tsf
  35. zd_mac_alloc_hw
  36. beacon_watchdog_handler
  37. beacon_init
  38. beacon_enable
  39. beacon_disable
  40. link_led_handler
  41. housekeeping_init
  42. housekeeping_enable
  43. housekeeping_disable

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* ZD1211 USB-WLAN driver for Linux
   3  *
   4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   6  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
   7  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   8  */
   9 
  10 #include <linux/netdevice.h>
  11 #include <linux/etherdevice.h>
  12 #include <linux/slab.h>
  13 #include <linux/usb.h>
  14 #include <linux/jiffies.h>
  15 #include <net/ieee80211_radiotap.h>
  16 
  17 #include "zd_def.h"
  18 #include "zd_chip.h"
  19 #include "zd_mac.h"
  20 #include "zd_rf.h"
  21 
  22 struct zd_reg_alpha2_map {
  23         u32 reg;
  24         char alpha2[2];
  25 };
  26 
  27 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
  28         { ZD_REGDOMAIN_FCC, "US" },
  29         { ZD_REGDOMAIN_IC, "CA" },
  30         { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
  31         { ZD_REGDOMAIN_JAPAN, "JP" },
  32         { ZD_REGDOMAIN_JAPAN_2, "JP" },
  33         { ZD_REGDOMAIN_JAPAN_3, "JP" },
  34         { ZD_REGDOMAIN_SPAIN, "ES" },
  35         { ZD_REGDOMAIN_FRANCE, "FR" },
  36 };
  37 
  38 /* This table contains the hardware specific values for the modulation rates. */
  39 static const struct ieee80211_rate zd_rates[] = {
  40         { .bitrate = 10,
  41           .hw_value = ZD_CCK_RATE_1M, },
  42         { .bitrate = 20,
  43           .hw_value = ZD_CCK_RATE_2M,
  44           .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
  45           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  46         { .bitrate = 55,
  47           .hw_value = ZD_CCK_RATE_5_5M,
  48           .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
  49           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  50         { .bitrate = 110,
  51           .hw_value = ZD_CCK_RATE_11M,
  52           .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
  53           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  54         { .bitrate = 60,
  55           .hw_value = ZD_OFDM_RATE_6M,
  56           .flags = 0 },
  57         { .bitrate = 90,
  58           .hw_value = ZD_OFDM_RATE_9M,
  59           .flags = 0 },
  60         { .bitrate = 120,
  61           .hw_value = ZD_OFDM_RATE_12M,
  62           .flags = 0 },
  63         { .bitrate = 180,
  64           .hw_value = ZD_OFDM_RATE_18M,
  65           .flags = 0 },
  66         { .bitrate = 240,
  67           .hw_value = ZD_OFDM_RATE_24M,
  68           .flags = 0 },
  69         { .bitrate = 360,
  70           .hw_value = ZD_OFDM_RATE_36M,
  71           .flags = 0 },
  72         { .bitrate = 480,
  73           .hw_value = ZD_OFDM_RATE_48M,
  74           .flags = 0 },
  75         { .bitrate = 540,
  76           .hw_value = ZD_OFDM_RATE_54M,
  77           .flags = 0 },
  78 };
  79 
  80 /*
  81  * Zydas retry rates table. Each line is listed in the same order as
  82  * in zd_rates[] and contains all the rate used when a packet is sent
  83  * starting with a given rates. Let's consider an example :
  84  *
  85  * "11 Mbits : 4, 3, 2, 1, 0" means :
  86  * - packet is sent using 4 different rates
  87  * - 1st rate is index 3 (ie 11 Mbits)
  88  * - 2nd rate is index 2 (ie 5.5 Mbits)
  89  * - 3rd rate is index 1 (ie 2 Mbits)
  90  * - 4th rate is index 0 (ie 1 Mbits)
  91  */
  92 
  93 static const struct tx_retry_rate zd_retry_rates[] = {
  94         { /*  1 Mbits */        1, { 0 }},
  95         { /*  2 Mbits */        2, { 1,  0 }},
  96         { /*  5.5 Mbits */      3, { 2,  1, 0 }},
  97         { /* 11 Mbits */        4, { 3,  2, 1, 0 }},
  98         { /*  6 Mbits */        5, { 4,  3, 2, 1, 0 }},
  99         { /*  9 Mbits */        6, { 5,  4, 3, 2, 1, 0}},
 100         { /* 12 Mbits */        5, { 6,  3, 2, 1, 0 }},
 101         { /* 18 Mbits */        6, { 7,  6, 3, 2, 1, 0 }},
 102         { /* 24 Mbits */        6, { 8,  6, 3, 2, 1, 0 }},
 103         { /* 36 Mbits */        7, { 9,  8, 6, 3, 2, 1, 0 }},
 104         { /* 48 Mbits */        8, {10,  9, 8, 6, 3, 2, 1, 0 }},
 105         { /* 54 Mbits */        9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
 106 };
 107 
 108 static const struct ieee80211_channel zd_channels[] = {
 109         { .center_freq = 2412, .hw_value = 1 },
 110         { .center_freq = 2417, .hw_value = 2 },
 111         { .center_freq = 2422, .hw_value = 3 },
 112         { .center_freq = 2427, .hw_value = 4 },
 113         { .center_freq = 2432, .hw_value = 5 },
 114         { .center_freq = 2437, .hw_value = 6 },
 115         { .center_freq = 2442, .hw_value = 7 },
 116         { .center_freq = 2447, .hw_value = 8 },
 117         { .center_freq = 2452, .hw_value = 9 },
 118         { .center_freq = 2457, .hw_value = 10 },
 119         { .center_freq = 2462, .hw_value = 11 },
 120         { .center_freq = 2467, .hw_value = 12 },
 121         { .center_freq = 2472, .hw_value = 13 },
 122         { .center_freq = 2484, .hw_value = 14 },
 123 };
 124 
 125 static void housekeeping_init(struct zd_mac *mac);
 126 static void housekeeping_enable(struct zd_mac *mac);
 127 static void housekeeping_disable(struct zd_mac *mac);
 128 static void beacon_init(struct zd_mac *mac);
 129 static void beacon_enable(struct zd_mac *mac);
 130 static void beacon_disable(struct zd_mac *mac);
 131 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
 132 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
 133                                 struct sk_buff *beacon, bool in_intr);
 134 
 135 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
 136 {
 137         unsigned int i;
 138         struct zd_reg_alpha2_map *reg_map;
 139         for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
 140                 reg_map = &reg_alpha2_map[i];
 141                 if (regdomain == reg_map->reg) {
 142                         alpha2[0] = reg_map->alpha2[0];
 143                         alpha2[1] = reg_map->alpha2[1];
 144                         return 0;
 145                 }
 146         }
 147         return 1;
 148 }
 149 
 150 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
 151 {
 152         struct zd_mac *mac = zd_hw_mac(hw);
 153 
 154         dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
 155                         "%s: signal value from device not in range 0..100, "
 156                         "but %d.\n", __func__, signal);
 157 
 158         if (signal < 0)
 159                 signal = 0;
 160         else if (signal > 100)
 161                 signal = 100;
 162 
 163         return signal;
 164 }
 165 
 166 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
 167 {
 168         int r;
 169         u8 addr[ETH_ALEN];
 170         struct zd_mac *mac = zd_hw_mac(hw);
 171 
 172         r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
 173         if (r)
 174                 return r;
 175 
 176         SET_IEEE80211_PERM_ADDR(hw, addr);
 177 
 178         return 0;
 179 }
 180 
 181 int zd_mac_init_hw(struct ieee80211_hw *hw)
 182 {
 183         int r;
 184         struct zd_mac *mac = zd_hw_mac(hw);
 185         struct zd_chip *chip = &mac->chip;
 186         char alpha2[2];
 187         u8 default_regdomain;
 188 
 189         r = zd_chip_enable_int(chip);
 190         if (r)
 191                 goto out;
 192         r = zd_chip_init_hw(chip);
 193         if (r)
 194                 goto disable_int;
 195 
 196         ZD_ASSERT(!irqs_disabled());
 197 
 198         r = zd_read_regdomain(chip, &default_regdomain);
 199         if (r)
 200                 goto disable_int;
 201         spin_lock_irq(&mac->lock);
 202         mac->regdomain = mac->default_regdomain = default_regdomain;
 203         spin_unlock_irq(&mac->lock);
 204 
 205         /* We must inform the device that we are doing encryption/decryption in
 206          * software at the moment. */
 207         r = zd_set_encryption_type(chip, ENC_SNIFFER);
 208         if (r)
 209                 goto disable_int;
 210 
 211         r = zd_reg2alpha2(mac->regdomain, alpha2);
 212         if (r)
 213                 goto disable_int;
 214 
 215         r = regulatory_hint(hw->wiphy, alpha2);
 216 disable_int:
 217         zd_chip_disable_int(chip);
 218 out:
 219         return r;
 220 }
 221 
 222 void zd_mac_clear(struct zd_mac *mac)
 223 {
 224         flush_workqueue(zd_workqueue);
 225         zd_chip_clear(&mac->chip);
 226         ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
 227 }
 228 
 229 static int set_rx_filter(struct zd_mac *mac)
 230 {
 231         unsigned long flags;
 232         u32 filter = STA_RX_FILTER;
 233 
 234         spin_lock_irqsave(&mac->lock, flags);
 235         if (mac->pass_ctrl)
 236                 filter |= RX_FILTER_CTRL;
 237         spin_unlock_irqrestore(&mac->lock, flags);
 238 
 239         return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
 240 }
 241 
 242 static int set_mac_and_bssid(struct zd_mac *mac)
 243 {
 244         int r;
 245 
 246         if (!mac->vif)
 247                 return -1;
 248 
 249         r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
 250         if (r)
 251                 return r;
 252 
 253         /* Vendor driver after setting MAC either sets BSSID for AP or
 254          * filter for other modes.
 255          */
 256         if (mac->type != NL80211_IFTYPE_AP)
 257                 return set_rx_filter(mac);
 258         else
 259                 return zd_write_bssid(&mac->chip, mac->vif->addr);
 260 }
 261 
 262 static int set_mc_hash(struct zd_mac *mac)
 263 {
 264         struct zd_mc_hash hash;
 265         zd_mc_clear(&hash);
 266         return zd_chip_set_multicast_hash(&mac->chip, &hash);
 267 }
 268 
 269 int zd_op_start(struct ieee80211_hw *hw)
 270 {
 271         struct zd_mac *mac = zd_hw_mac(hw);
 272         struct zd_chip *chip = &mac->chip;
 273         struct zd_usb *usb = &chip->usb;
 274         int r;
 275 
 276         if (!usb->initialized) {
 277                 r = zd_usb_init_hw(usb);
 278                 if (r)
 279                         goto out;
 280         }
 281 
 282         r = zd_chip_enable_int(chip);
 283         if (r < 0)
 284                 goto out;
 285 
 286         r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
 287         if (r < 0)
 288                 goto disable_int;
 289         r = set_rx_filter(mac);
 290         if (r)
 291                 goto disable_int;
 292         r = set_mc_hash(mac);
 293         if (r)
 294                 goto disable_int;
 295 
 296         /* Wait after setting the multicast hash table and powering on
 297          * the radio otherwise interface bring up will fail. This matches
 298          * what the vendor driver did.
 299          */
 300         msleep(10);
 301 
 302         r = zd_chip_switch_radio_on(chip);
 303         if (r < 0) {
 304                 dev_err(zd_chip_dev(chip),
 305                         "%s: failed to set radio on\n", __func__);
 306                 goto disable_int;
 307         }
 308         r = zd_chip_enable_rxtx(chip);
 309         if (r < 0)
 310                 goto disable_radio;
 311         r = zd_chip_enable_hwint(chip);
 312         if (r < 0)
 313                 goto disable_rxtx;
 314 
 315         housekeeping_enable(mac);
 316         beacon_enable(mac);
 317         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
 318         return 0;
 319 disable_rxtx:
 320         zd_chip_disable_rxtx(chip);
 321 disable_radio:
 322         zd_chip_switch_radio_off(chip);
 323 disable_int:
 324         zd_chip_disable_int(chip);
 325 out:
 326         return r;
 327 }
 328 
 329 void zd_op_stop(struct ieee80211_hw *hw)
 330 {
 331         struct zd_mac *mac = zd_hw_mac(hw);
 332         struct zd_chip *chip = &mac->chip;
 333         struct sk_buff *skb;
 334         struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
 335 
 336         clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
 337 
 338         /* The order here deliberately is a little different from the open()
 339          * method, since we need to make sure there is no opportunity for RX
 340          * frames to be processed by mac80211 after we have stopped it.
 341          */
 342 
 343         zd_chip_disable_rxtx(chip);
 344         beacon_disable(mac);
 345         housekeeping_disable(mac);
 346         flush_workqueue(zd_workqueue);
 347 
 348         zd_chip_disable_hwint(chip);
 349         zd_chip_switch_radio_off(chip);
 350         zd_chip_disable_int(chip);
 351 
 352 
 353         while ((skb = skb_dequeue(ack_wait_queue)))
 354                 dev_kfree_skb_any(skb);
 355 }
 356 
 357 int zd_restore_settings(struct zd_mac *mac)
 358 {
 359         struct sk_buff *beacon;
 360         struct zd_mc_hash multicast_hash;
 361         unsigned int short_preamble;
 362         int r, beacon_interval, beacon_period;
 363         u8 channel;
 364 
 365         dev_dbg_f(zd_mac_dev(mac), "\n");
 366 
 367         spin_lock_irq(&mac->lock);
 368         multicast_hash = mac->multicast_hash;
 369         short_preamble = mac->short_preamble;
 370         beacon_interval = mac->beacon.interval;
 371         beacon_period = mac->beacon.period;
 372         channel = mac->channel;
 373         spin_unlock_irq(&mac->lock);
 374 
 375         r = set_mac_and_bssid(mac);
 376         if (r < 0) {
 377                 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
 378                 return r;
 379         }
 380 
 381         r = zd_chip_set_channel(&mac->chip, channel);
 382         if (r < 0) {
 383                 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
 384                           r);
 385                 return r;
 386         }
 387 
 388         set_rts_cts(mac, short_preamble);
 389 
 390         r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
 391         if (r < 0) {
 392                 dev_dbg_f(zd_mac_dev(mac),
 393                           "zd_chip_set_multicast_hash failed, %d\n", r);
 394                 return r;
 395         }
 396 
 397         if (mac->type == NL80211_IFTYPE_MESH_POINT ||
 398             mac->type == NL80211_IFTYPE_ADHOC ||
 399             mac->type == NL80211_IFTYPE_AP) {
 400                 if (mac->vif != NULL) {
 401                         beacon = ieee80211_beacon_get(mac->hw, mac->vif);
 402                         if (beacon)
 403                                 zd_mac_config_beacon(mac->hw, beacon, false);
 404                 }
 405 
 406                 zd_set_beacon_interval(&mac->chip, beacon_interval,
 407                                         beacon_period, mac->type);
 408 
 409                 spin_lock_irq(&mac->lock);
 410                 mac->beacon.last_update = jiffies;
 411                 spin_unlock_irq(&mac->lock);
 412         }
 413 
 414         return 0;
 415 }
 416 
 417 /**
 418  * zd_mac_tx_status - reports tx status of a packet if required
 419  * @hw - a &struct ieee80211_hw pointer
 420  * @skb - a sk-buffer
 421  * @flags: extra flags to set in the TX status info
 422  * @ackssi: ACK signal strength
 423  * @success - True for successful transmission of the frame
 424  *
 425  * This information calls ieee80211_tx_status_irqsafe() if required by the
 426  * control information. It copies the control information into the status
 427  * information.
 428  *
 429  * If no status information has been requested, the skb is freed.
 430  */
 431 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
 432                       int ackssi, struct tx_status *tx_status)
 433 {
 434         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 435         int i;
 436         int success = 1, retry = 1;
 437         int first_idx;
 438         const struct tx_retry_rate *retries;
 439 
 440         ieee80211_tx_info_clear_status(info);
 441 
 442         if (tx_status) {
 443                 success = !tx_status->failure;
 444                 retry = tx_status->retry + success;
 445         }
 446 
 447         if (success) {
 448                 /* success */
 449                 info->flags |= IEEE80211_TX_STAT_ACK;
 450         } else {
 451                 /* failure */
 452                 info->flags &= ~IEEE80211_TX_STAT_ACK;
 453         }
 454 
 455         first_idx = info->status.rates[0].idx;
 456         ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 457         retries = &zd_retry_rates[first_idx];
 458         ZD_ASSERT(1 <= retry && retry <= retries->count);
 459 
 460         info->status.rates[0].idx = retries->rate[0];
 461         info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
 462 
 463         for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
 464                 info->status.rates[i].idx = retries->rate[i];
 465                 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
 466         }
 467         for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
 468                 info->status.rates[i].idx = retries->rate[retry - 1];
 469                 info->status.rates[i].count = 1; // (success ? 1:2);
 470         }
 471         if (i<IEEE80211_TX_MAX_RATES)
 472                 info->status.rates[i].idx = -1; /* terminate */
 473 
 474         info->status.ack_signal = zd_check_signal(hw, ackssi);
 475         ieee80211_tx_status_irqsafe(hw, skb);
 476 }
 477 
 478 /**
 479  * zd_mac_tx_failed - callback for failed frames
 480  * @dev: the mac80211 wireless device
 481  *
 482  * This function is called if a frame couldn't be successfully
 483  * transferred. The first frame from the tx queue, will be selected and
 484  * reported as error to the upper layers.
 485  */
 486 void zd_mac_tx_failed(struct urb *urb)
 487 {
 488         struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
 489         struct zd_mac *mac = zd_hw_mac(hw);
 490         struct sk_buff_head *q = &mac->ack_wait_queue;
 491         struct sk_buff *skb;
 492         struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
 493         unsigned long flags;
 494         int success = !tx_status->failure;
 495         int retry = tx_status->retry + success;
 496         int found = 0;
 497         int i, position = 0;
 498 
 499         spin_lock_irqsave(&q->lock, flags);
 500 
 501         skb_queue_walk(q, skb) {
 502                 struct ieee80211_hdr *tx_hdr;
 503                 struct ieee80211_tx_info *info;
 504                 int first_idx, final_idx;
 505                 const struct tx_retry_rate *retries;
 506                 u8 final_rate;
 507 
 508                 position ++;
 509 
 510                 /* if the hardware reports a failure and we had a 802.11 ACK
 511                  * pending, then we skip the first skb when searching for a
 512                  * matching frame */
 513                 if (tx_status->failure && mac->ack_pending &&
 514                     skb_queue_is_first(q, skb)) {
 515                         continue;
 516                 }
 517 
 518                 tx_hdr = (struct ieee80211_hdr *)skb->data;
 519 
 520                 /* we skip all frames not matching the reported destination */
 521                 if (unlikely(!ether_addr_equal(tx_hdr->addr1, tx_status->mac)))
 522                         continue;
 523 
 524                 /* we skip all frames not matching the reported final rate */
 525 
 526                 info = IEEE80211_SKB_CB(skb);
 527                 first_idx = info->status.rates[0].idx;
 528                 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
 529                 retries = &zd_retry_rates[first_idx];
 530                 if (retry <= 0 || retry > retries->count)
 531                         continue;
 532 
 533                 final_idx = retries->rate[retry - 1];
 534                 final_rate = zd_rates[final_idx].hw_value;
 535 
 536                 if (final_rate != tx_status->rate) {
 537                         continue;
 538                 }
 539 
 540                 found = 1;
 541                 break;
 542         }
 543 
 544         if (found) {
 545                 for (i=1; i<=position; i++) {
 546                         skb = __skb_dequeue(q);
 547                         zd_mac_tx_status(hw, skb,
 548                                          mac->ack_pending ? mac->ack_signal : 0,
 549                                          i == position ? tx_status : NULL);
 550                         mac->ack_pending = 0;
 551                 }
 552         }
 553 
 554         spin_unlock_irqrestore(&q->lock, flags);
 555 }
 556 
 557 /**
 558  * zd_mac_tx_to_dev - callback for USB layer
 559  * @skb: a &sk_buff pointer
 560  * @error: error value, 0 if transmission successful
 561  *
 562  * Informs the MAC layer that the frame has successfully transferred to the
 563  * device. If an ACK is required and the transfer to the device has been
 564  * successful, the packets are put on the @ack_wait_queue with
 565  * the control set removed.
 566  */
 567 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
 568 {
 569         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 570         struct ieee80211_hw *hw = info->rate_driver_data[0];
 571         struct zd_mac *mac = zd_hw_mac(hw);
 572 
 573         ieee80211_tx_info_clear_status(info);
 574 
 575         skb_pull(skb, sizeof(struct zd_ctrlset));
 576         if (unlikely(error ||
 577             (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
 578                 /*
 579                  * FIXME : do we need to fill in anything ?
 580                  */
 581                 ieee80211_tx_status_irqsafe(hw, skb);
 582         } else {
 583                 struct sk_buff_head *q = &mac->ack_wait_queue;
 584 
 585                 skb_queue_tail(q, skb);
 586                 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
 587                         zd_mac_tx_status(hw, skb_dequeue(q),
 588                                          mac->ack_pending ? mac->ack_signal : 0,
 589                                          NULL);
 590                         mac->ack_pending = 0;
 591                 }
 592         }
 593 }
 594 
 595 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
 596 {
 597         /* ZD_PURE_RATE() must be used to remove the modulation type flag of
 598          * the zd-rate values.
 599          */
 600         static const u8 rate_divisor[] = {
 601                 [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
 602                 [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
 603                 /* Bits must be doubled. */
 604                 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
 605                 [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
 606                 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
 607                 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
 608                 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
 609                 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
 610                 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
 611                 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
 612                 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
 613                 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
 614         };
 615 
 616         u32 bits = (u32)tx_length * 8;
 617         u32 divisor;
 618 
 619         divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
 620         if (divisor == 0)
 621                 return -EINVAL;
 622 
 623         switch (zd_rate) {
 624         case ZD_CCK_RATE_5_5M:
 625                 bits = (2*bits) + 10; /* round up to the next integer */
 626                 break;
 627         case ZD_CCK_RATE_11M:
 628                 if (service) {
 629                         u32 t = bits % 11;
 630                         *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 631                         if (0 < t && t <= 3) {
 632                                 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 633                         }
 634                 }
 635                 bits += 10; /* round up to the next integer */
 636                 break;
 637         }
 638 
 639         return bits/divisor;
 640 }
 641 
 642 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
 643                            struct ieee80211_hdr *header,
 644                            struct ieee80211_tx_info *info)
 645 {
 646         /*
 647          * CONTROL TODO:
 648          * - if backoff needed, enable bit 0
 649          * - if burst (backoff not needed) disable bit 0
 650          */
 651 
 652         cs->control = 0;
 653 
 654         /* First fragment */
 655         if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
 656                 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
 657 
 658         /* No ACK expected (multicast, etc.) */
 659         if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 660                 cs->control |= ZD_CS_NO_ACK;
 661 
 662         /* PS-POLL */
 663         if (ieee80211_is_pspoll(header->frame_control))
 664                 cs->control |= ZD_CS_PS_POLL_FRAME;
 665 
 666         if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
 667                 cs->control |= ZD_CS_RTS;
 668 
 669         if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
 670                 cs->control |= ZD_CS_SELF_CTS;
 671 
 672         /* FIXME: Management frame? */
 673 }
 674 
 675 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
 676 {
 677         if (!mac->beacon.cur_beacon)
 678                 return false;
 679 
 680         if (mac->beacon.cur_beacon->len != beacon->len)
 681                 return false;
 682 
 683         return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
 684 }
 685 
 686 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
 687 {
 688         ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
 689 
 690         kfree_skb(mac->beacon.cur_beacon);
 691         mac->beacon.cur_beacon = NULL;
 692 }
 693 
 694 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
 695 {
 696         mutex_lock(&mac->chip.mutex);
 697         zd_mac_free_cur_beacon_locked(mac);
 698         mutex_unlock(&mac->chip.mutex);
 699 }
 700 
 701 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
 702                                 bool in_intr)
 703 {
 704         struct zd_mac *mac = zd_hw_mac(hw);
 705         int r, ret, num_cmds, req_pos = 0;
 706         u32 tmp, j = 0;
 707         /* 4 more bytes for tail CRC */
 708         u32 full_len = beacon->len + 4;
 709         unsigned long end_jiffies, message_jiffies;
 710         struct zd_ioreq32 *ioreqs;
 711 
 712         mutex_lock(&mac->chip.mutex);
 713 
 714         /* Check if hw already has this beacon. */
 715         if (zd_mac_match_cur_beacon(mac, beacon)) {
 716                 r = 0;
 717                 goto out_nofree;
 718         }
 719 
 720         /* Alloc memory for full beacon write at once. */
 721         num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
 722         ioreqs = kmalloc_array(num_cmds, sizeof(struct zd_ioreq32),
 723                                GFP_KERNEL);
 724         if (!ioreqs) {
 725                 r = -ENOMEM;
 726                 goto out_nofree;
 727         }
 728 
 729         r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
 730         if (r < 0)
 731                 goto out;
 732         r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 733         if (r < 0)
 734                 goto release_sema;
 735         if (in_intr && tmp & 0x2) {
 736                 r = -EBUSY;
 737                 goto release_sema;
 738         }
 739 
 740         end_jiffies = jiffies + HZ / 2; /*~500ms*/
 741         message_jiffies = jiffies + HZ / 10; /*~100ms*/
 742         while (tmp & 0x2) {
 743                 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
 744                 if (r < 0)
 745                         goto release_sema;
 746                 if (time_is_before_eq_jiffies(message_jiffies)) {
 747                         message_jiffies = jiffies + HZ / 10;
 748                         dev_err(zd_mac_dev(mac),
 749                                         "CR_BCN_FIFO_SEMAPHORE not ready\n");
 750                         if (time_is_before_eq_jiffies(end_jiffies))  {
 751                                 dev_err(zd_mac_dev(mac),
 752                                                 "Giving up beacon config.\n");
 753                                 r = -ETIMEDOUT;
 754                                 goto reset_device;
 755                         }
 756                 }
 757                 msleep(20);
 758         }
 759 
 760         ioreqs[req_pos].addr = CR_BCN_FIFO;
 761         ioreqs[req_pos].value = full_len - 1;
 762         req_pos++;
 763         if (zd_chip_is_zd1211b(&mac->chip)) {
 764                 ioreqs[req_pos].addr = CR_BCN_LENGTH;
 765                 ioreqs[req_pos].value = full_len - 1;
 766                 req_pos++;
 767         }
 768 
 769         for (j = 0 ; j < beacon->len; j++) {
 770                 ioreqs[req_pos].addr = CR_BCN_FIFO;
 771                 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
 772                 req_pos++;
 773         }
 774 
 775         for (j = 0; j < 4; j++) {
 776                 ioreqs[req_pos].addr = CR_BCN_FIFO;
 777                 ioreqs[req_pos].value = 0x0;
 778                 req_pos++;
 779         }
 780 
 781         BUG_ON(req_pos != num_cmds);
 782 
 783         r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
 784 
 785 release_sema:
 786         /*
 787          * Try very hard to release device beacon semaphore, as otherwise
 788          * device/driver can be left in unusable state.
 789          */
 790         end_jiffies = jiffies + HZ / 2; /*~500ms*/
 791         ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 792         while (ret < 0) {
 793                 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
 794                         ret = -ETIMEDOUT;
 795                         break;
 796                 }
 797 
 798                 msleep(20);
 799                 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
 800         }
 801 
 802         if (ret < 0)
 803                 dev_err(zd_mac_dev(mac), "Could not release "
 804                                          "CR_BCN_FIFO_SEMAPHORE!\n");
 805         if (r < 0 || ret < 0) {
 806                 if (r >= 0)
 807                         r = ret;
 808 
 809                 /* We don't know if beacon was written successfully or not,
 810                  * so clear current. */
 811                 zd_mac_free_cur_beacon_locked(mac);
 812 
 813                 goto out;
 814         }
 815 
 816         /* Beacon has now been written successfully, update current. */
 817         zd_mac_free_cur_beacon_locked(mac);
 818         mac->beacon.cur_beacon = beacon;
 819         beacon = NULL;
 820 
 821         /* 802.11b/g 2.4G CCK 1Mb
 822          * 802.11a, not yet implemented, uses different values (see GPL vendor
 823          * driver)
 824          */
 825         r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
 826                                 CR_BCN_PLCP_CFG);
 827 out:
 828         kfree(ioreqs);
 829 out_nofree:
 830         kfree_skb(beacon);
 831         mutex_unlock(&mac->chip.mutex);
 832 
 833         return r;
 834 
 835 reset_device:
 836         zd_mac_free_cur_beacon_locked(mac);
 837         kfree_skb(beacon);
 838 
 839         mutex_unlock(&mac->chip.mutex);
 840         kfree(ioreqs);
 841 
 842         /* semaphore stuck, reset device to avoid fw freeze later */
 843         dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
 844                                   "resetting device...");
 845         usb_queue_reset_device(mac->chip.usb.intf);
 846 
 847         return r;
 848 }
 849 
 850 static int fill_ctrlset(struct zd_mac *mac,
 851                         struct sk_buff *skb)
 852 {
 853         int r;
 854         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 855         unsigned int frag_len = skb->len + FCS_LEN;
 856         unsigned int packet_length;
 857         struct ieee80211_rate *txrate;
 858         struct zd_ctrlset *cs = skb_push(skb, sizeof(struct zd_ctrlset));
 859         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 860 
 861         ZD_ASSERT(frag_len <= 0xffff);
 862 
 863         /*
 864          * Firmware computes the duration itself (for all frames except PSPoll)
 865          * and needs the field set to 0 at input, otherwise firmware messes up
 866          * duration_id and sets bits 14 and 15 on.
 867          */
 868         if (!ieee80211_is_pspoll(hdr->frame_control))
 869                 hdr->duration_id = 0;
 870 
 871         txrate = ieee80211_get_tx_rate(mac->hw, info);
 872 
 873         cs->modulation = txrate->hw_value;
 874         if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 875                 cs->modulation = txrate->hw_value_short;
 876 
 877         cs->tx_length = cpu_to_le16(frag_len);
 878 
 879         cs_set_control(mac, cs, hdr, info);
 880 
 881         packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
 882         ZD_ASSERT(packet_length <= 0xffff);
 883         /* ZD1211B: Computing the length difference this way, gives us
 884          * flexibility to compute the packet length.
 885          */
 886         cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
 887                         packet_length - frag_len : packet_length);
 888 
 889         /*
 890          * CURRENT LENGTH:
 891          * - transmit frame length in microseconds
 892          * - seems to be derived from frame length
 893          * - see Cal_Us_Service() in zdinlinef.h
 894          * - if macp->bTxBurstEnable is enabled, then multiply by 4
 895          *  - bTxBurstEnable is never set in the vendor driver
 896          *
 897          * SERVICE:
 898          * - "for PLCP configuration"
 899          * - always 0 except in some situations at 802.11b 11M
 900          * - see line 53 of zdinlinef.h
 901          */
 902         cs->service = 0;
 903         r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
 904                                  le16_to_cpu(cs->tx_length));
 905         if (r < 0)
 906                 return r;
 907         cs->current_length = cpu_to_le16(r);
 908         cs->next_frame_length = 0;
 909 
 910         return 0;
 911 }
 912 
 913 /**
 914  * zd_op_tx - transmits a network frame to the device
 915  *
 916  * @dev: mac80211 hardware device
 917  * @skb: socket buffer
 918  * @control: the control structure
 919  *
 920  * This function transmit an IEEE 802.11 network frame to the device. The
 921  * control block of the skbuff will be initialized. If necessary the incoming
 922  * mac80211 queues will be stopped.
 923  */
 924 static void zd_op_tx(struct ieee80211_hw *hw,
 925                      struct ieee80211_tx_control *control,
 926                      struct sk_buff *skb)
 927 {
 928         struct zd_mac *mac = zd_hw_mac(hw);
 929         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 930         int r;
 931 
 932         r = fill_ctrlset(mac, skb);
 933         if (r)
 934                 goto fail;
 935 
 936         info->rate_driver_data[0] = hw;
 937 
 938         r = zd_usb_tx(&mac->chip.usb, skb);
 939         if (r)
 940                 goto fail;
 941         return;
 942 
 943 fail:
 944         dev_kfree_skb(skb);
 945 }
 946 
 947 /**
 948  * filter_ack - filters incoming packets for acknowledgements
 949  * @dev: the mac80211 device
 950  * @rx_hdr: received header
 951  * @stats: the status for the received packet
 952  *
 953  * This functions looks for ACK packets and tries to match them with the
 954  * frames in the tx queue. If a match is found the frame will be dequeued and
 955  * the upper layers is informed about the successful transmission. If
 956  * mac80211 queues have been stopped and the number of frames still to be
 957  * transmitted is low the queues will be opened again.
 958  *
 959  * Returns 1 if the frame was an ACK, 0 if it was ignored.
 960  */
 961 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
 962                       struct ieee80211_rx_status *stats)
 963 {
 964         struct zd_mac *mac = zd_hw_mac(hw);
 965         struct sk_buff *skb;
 966         struct sk_buff_head *q;
 967         unsigned long flags;
 968         int found = 0;
 969         int i, position = 0;
 970 
 971         if (!ieee80211_is_ack(rx_hdr->frame_control))
 972                 return 0;
 973 
 974         q = &mac->ack_wait_queue;
 975         spin_lock_irqsave(&q->lock, flags);
 976         skb_queue_walk(q, skb) {
 977                 struct ieee80211_hdr *tx_hdr;
 978 
 979                 position ++;
 980 
 981                 if (mac->ack_pending && skb_queue_is_first(q, skb))
 982                     continue;
 983 
 984                 tx_hdr = (struct ieee80211_hdr *)skb->data;
 985                 if (likely(ether_addr_equal(tx_hdr->addr2, rx_hdr->addr1)))
 986                 {
 987                         found = 1;
 988                         break;
 989                 }
 990         }
 991 
 992         if (found) {
 993                 for (i=1; i<position; i++) {
 994                         skb = __skb_dequeue(q);
 995                         zd_mac_tx_status(hw, skb,
 996                                          mac->ack_pending ? mac->ack_signal : 0,
 997                                          NULL);
 998                         mac->ack_pending = 0;
 999                 }
1000 
1001                 mac->ack_pending = 1;
1002                 mac->ack_signal = stats->signal;
1003 
1004                 /* Prevent pending tx-packet on AP-mode */
1005                 if (mac->type == NL80211_IFTYPE_AP) {
1006                         skb = __skb_dequeue(q);
1007                         zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1008                         mac->ack_pending = 0;
1009                 }
1010         }
1011 
1012         spin_unlock_irqrestore(&q->lock, flags);
1013         return 1;
1014 }
1015 
1016 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1017 {
1018         struct zd_mac *mac = zd_hw_mac(hw);
1019         struct ieee80211_rx_status stats;
1020         const struct rx_status *status;
1021         struct sk_buff *skb;
1022         int bad_frame = 0;
1023         __le16 fc;
1024         int need_padding;
1025         int i;
1026         u8 rate;
1027 
1028         if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1029                      FCS_LEN + sizeof(struct rx_status))
1030                 return -EINVAL;
1031 
1032         memset(&stats, 0, sizeof(stats));
1033 
1034         /* Note about pass_failed_fcs and pass_ctrl access below:
1035          * mac locking intentionally omitted here, as this is the only unlocked
1036          * reader and the only writer is configure_filter. Plus, if there were
1037          * any races accessing these variables, it wouldn't really matter.
1038          * If mac80211 ever provides a way for us to access filter flags
1039          * from outside configure_filter, we could improve on this. Also, this
1040          * situation may change once we implement some kind of DMA-into-skb
1041          * RX path. */
1042 
1043         /* Caller has to ensure that length >= sizeof(struct rx_status). */
1044         status = (struct rx_status *)
1045                 (buffer + (length - sizeof(struct rx_status)));
1046         if (status->frame_status & ZD_RX_ERROR) {
1047                 if (mac->pass_failed_fcs &&
1048                                 (status->frame_status & ZD_RX_CRC32_ERROR)) {
1049                         stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1050                         bad_frame = 1;
1051                 } else {
1052                         return -EINVAL;
1053                 }
1054         }
1055 
1056         stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1057         stats.band = NL80211_BAND_2GHZ;
1058         stats.signal = zd_check_signal(hw, status->signal_strength);
1059 
1060         rate = zd_rx_rate(buffer, status);
1061 
1062         /* todo: return index in the big switches in zd_rx_rate instead */
1063         for (i = 0; i < mac->band.n_bitrates; i++)
1064                 if (rate == mac->band.bitrates[i].hw_value)
1065                         stats.rate_idx = i;
1066 
1067         length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1068         buffer += ZD_PLCP_HEADER_SIZE;
1069 
1070         /* Except for bad frames, filter each frame to see if it is an ACK, in
1071          * which case our internal TX tracking is updated. Normally we then
1072          * bail here as there's no need to pass ACKs on up to the stack, but
1073          * there is also the case where the stack has requested us to pass
1074          * control frames on up (pass_ctrl) which we must consider. */
1075         if (!bad_frame &&
1076                         filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1077                         && !mac->pass_ctrl)
1078                 return 0;
1079 
1080         fc = get_unaligned((__le16*)buffer);
1081         need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1082 
1083         skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1084         if (skb == NULL)
1085                 return -ENOMEM;
1086         if (need_padding) {
1087                 /* Make sure the payload data is 4 byte aligned. */
1088                 skb_reserve(skb, 2);
1089         }
1090 
1091         /* FIXME : could we avoid this big memcpy ? */
1092         skb_put_data(skb, buffer, length);
1093 
1094         memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1095         ieee80211_rx_irqsafe(hw, skb);
1096         return 0;
1097 }
1098 
1099 static int zd_op_add_interface(struct ieee80211_hw *hw,
1100                                 struct ieee80211_vif *vif)
1101 {
1102         struct zd_mac *mac = zd_hw_mac(hw);
1103 
1104         /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1105         if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1106                 return -EOPNOTSUPP;
1107 
1108         switch (vif->type) {
1109         case NL80211_IFTYPE_MONITOR:
1110         case NL80211_IFTYPE_MESH_POINT:
1111         case NL80211_IFTYPE_STATION:
1112         case NL80211_IFTYPE_ADHOC:
1113         case NL80211_IFTYPE_AP:
1114                 mac->type = vif->type;
1115                 break;
1116         default:
1117                 return -EOPNOTSUPP;
1118         }
1119 
1120         mac->vif = vif;
1121 
1122         return set_mac_and_bssid(mac);
1123 }
1124 
1125 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1126                                     struct ieee80211_vif *vif)
1127 {
1128         struct zd_mac *mac = zd_hw_mac(hw);
1129         mac->type = NL80211_IFTYPE_UNSPECIFIED;
1130         mac->vif = NULL;
1131         zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1132         zd_write_mac_addr(&mac->chip, NULL);
1133 
1134         zd_mac_free_cur_beacon(mac);
1135 }
1136 
1137 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1138 {
1139         struct zd_mac *mac = zd_hw_mac(hw);
1140         struct ieee80211_conf *conf = &hw->conf;
1141 
1142         spin_lock_irq(&mac->lock);
1143         mac->channel = conf->chandef.chan->hw_value;
1144         spin_unlock_irq(&mac->lock);
1145 
1146         return zd_chip_set_channel(&mac->chip, conf->chandef.chan->hw_value);
1147 }
1148 
1149 static void zd_beacon_done(struct zd_mac *mac)
1150 {
1151         struct sk_buff *skb, *beacon;
1152 
1153         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1154                 return;
1155         if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1156                 return;
1157 
1158         /*
1159          * Send out buffered broad- and multicast frames.
1160          */
1161         while (!ieee80211_queue_stopped(mac->hw, 0)) {
1162                 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1163                 if (!skb)
1164                         break;
1165                 zd_op_tx(mac->hw, NULL, skb);
1166         }
1167 
1168         /*
1169          * Fetch next beacon so that tim_count is updated.
1170          */
1171         beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1172         if (beacon)
1173                 zd_mac_config_beacon(mac->hw, beacon, true);
1174 
1175         spin_lock_irq(&mac->lock);
1176         mac->beacon.last_update = jiffies;
1177         spin_unlock_irq(&mac->lock);
1178 }
1179 
1180 static void zd_process_intr(struct work_struct *work)
1181 {
1182         u16 int_status;
1183         unsigned long flags;
1184         struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1185 
1186         spin_lock_irqsave(&mac->lock, flags);
1187         int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1188         spin_unlock_irqrestore(&mac->lock, flags);
1189 
1190         if (int_status & INT_CFG_NEXT_BCN) {
1191                 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1192                 zd_beacon_done(mac);
1193         } else {
1194                 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1195         }
1196 
1197         zd_chip_enable_hwint(&mac->chip);
1198 }
1199 
1200 
1201 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1202                                    struct netdev_hw_addr_list *mc_list)
1203 {
1204         struct zd_mac *mac = zd_hw_mac(hw);
1205         struct zd_mc_hash hash;
1206         struct netdev_hw_addr *ha;
1207 
1208         zd_mc_clear(&hash);
1209 
1210         netdev_hw_addr_list_for_each(ha, mc_list) {
1211                 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1212                 zd_mc_add_addr(&hash, ha->addr);
1213         }
1214 
1215         return hash.low | ((u64)hash.high << 32);
1216 }
1217 
1218 #define SUPPORTED_FIF_FLAGS \
1219         (FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1220         FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1221 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1222                         unsigned int changed_flags,
1223                         unsigned int *new_flags,
1224                         u64 multicast)
1225 {
1226         struct zd_mc_hash hash = {
1227                 .low = multicast,
1228                 .high = multicast >> 32,
1229         };
1230         struct zd_mac *mac = zd_hw_mac(hw);
1231         unsigned long flags;
1232         int r;
1233 
1234         /* Only deal with supported flags */
1235         changed_flags &= SUPPORTED_FIF_FLAGS;
1236         *new_flags &= SUPPORTED_FIF_FLAGS;
1237 
1238         /*
1239          * If multicast parameter (as returned by zd_op_prepare_multicast)
1240          * has changed, no bit in changed_flags is set. To handle this
1241          * situation, we do not return if changed_flags is 0. If we do so,
1242          * we will have some issue with IPv6 which uses multicast for link
1243          * layer address resolution.
1244          */
1245         if (*new_flags & FIF_ALLMULTI)
1246                 zd_mc_add_all(&hash);
1247 
1248         spin_lock_irqsave(&mac->lock, flags);
1249         mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1250         mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1251         mac->multicast_hash = hash;
1252         spin_unlock_irqrestore(&mac->lock, flags);
1253 
1254         zd_chip_set_multicast_hash(&mac->chip, &hash);
1255 
1256         if (changed_flags & FIF_CONTROL) {
1257                 r = set_rx_filter(mac);
1258                 if (r)
1259                         dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1260         }
1261 
1262         /* no handling required for FIF_OTHER_BSS as we don't currently
1263          * do BSSID filtering */
1264         /* FIXME: in future it would be nice to enable the probe response
1265          * filter (so that the driver doesn't see them) until
1266          * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1267          * have to schedule work to enable prbresp reception, which might
1268          * happen too late. For now we'll just listen and forward them all the
1269          * time. */
1270 }
1271 
1272 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1273 {
1274         mutex_lock(&mac->chip.mutex);
1275         zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1276         mutex_unlock(&mac->chip.mutex);
1277 }
1278 
1279 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1280                                    struct ieee80211_vif *vif,
1281                                    struct ieee80211_bss_conf *bss_conf,
1282                                    u32 changes)
1283 {
1284         struct zd_mac *mac = zd_hw_mac(hw);
1285         int associated;
1286 
1287         dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1288 
1289         if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1290             mac->type == NL80211_IFTYPE_ADHOC ||
1291             mac->type == NL80211_IFTYPE_AP) {
1292                 associated = true;
1293                 if (changes & BSS_CHANGED_BEACON) {
1294                         struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1295 
1296                         if (beacon) {
1297                                 zd_chip_disable_hwint(&mac->chip);
1298                                 zd_mac_config_beacon(hw, beacon, false);
1299                                 zd_chip_enable_hwint(&mac->chip);
1300                         }
1301                 }
1302 
1303                 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1304                         u16 interval = 0;
1305                         u8 period = 0;
1306 
1307                         if (bss_conf->enable_beacon) {
1308                                 period = bss_conf->dtim_period;
1309                                 interval = bss_conf->beacon_int;
1310                         }
1311 
1312                         spin_lock_irq(&mac->lock);
1313                         mac->beacon.period = period;
1314                         mac->beacon.interval = interval;
1315                         mac->beacon.last_update = jiffies;
1316                         spin_unlock_irq(&mac->lock);
1317 
1318                         zd_set_beacon_interval(&mac->chip, interval, period,
1319                                                mac->type);
1320                 }
1321         } else
1322                 associated = is_valid_ether_addr(bss_conf->bssid);
1323 
1324         spin_lock_irq(&mac->lock);
1325         mac->associated = associated;
1326         spin_unlock_irq(&mac->lock);
1327 
1328         /* TODO: do hardware bssid filtering */
1329 
1330         if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1331                 spin_lock_irq(&mac->lock);
1332                 mac->short_preamble = bss_conf->use_short_preamble;
1333                 spin_unlock_irq(&mac->lock);
1334 
1335                 set_rts_cts(mac, bss_conf->use_short_preamble);
1336         }
1337 }
1338 
1339 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1340 {
1341         struct zd_mac *mac = zd_hw_mac(hw);
1342         return zd_chip_get_tsf(&mac->chip);
1343 }
1344 
1345 static const struct ieee80211_ops zd_ops = {
1346         .tx                     = zd_op_tx,
1347         .start                  = zd_op_start,
1348         .stop                   = zd_op_stop,
1349         .add_interface          = zd_op_add_interface,
1350         .remove_interface       = zd_op_remove_interface,
1351         .config                 = zd_op_config,
1352         .prepare_multicast      = zd_op_prepare_multicast,
1353         .configure_filter       = zd_op_configure_filter,
1354         .bss_info_changed       = zd_op_bss_info_changed,
1355         .get_tsf                = zd_op_get_tsf,
1356 };
1357 
1358 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1359 {
1360         struct zd_mac *mac;
1361         struct ieee80211_hw *hw;
1362 
1363         hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1364         if (!hw) {
1365                 dev_dbg_f(&intf->dev, "out of memory\n");
1366                 return NULL;
1367         }
1368 
1369         mac = zd_hw_mac(hw);
1370 
1371         memset(mac, 0, sizeof(*mac));
1372         spin_lock_init(&mac->lock);
1373         mac->hw = hw;
1374 
1375         mac->type = NL80211_IFTYPE_UNSPECIFIED;
1376 
1377         memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1378         memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1379         mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1380         mac->band.bitrates = mac->rates;
1381         mac->band.n_channels = ARRAY_SIZE(zd_channels);
1382         mac->band.channels = mac->channels;
1383 
1384         hw->wiphy->bands[NL80211_BAND_2GHZ] = &mac->band;
1385 
1386         ieee80211_hw_set(hw, MFP_CAPABLE);
1387         ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
1388         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1389         ieee80211_hw_set(hw, SIGNAL_UNSPEC);
1390 
1391         hw->wiphy->interface_modes =
1392                 BIT(NL80211_IFTYPE_MESH_POINT) |
1393                 BIT(NL80211_IFTYPE_STATION) |
1394                 BIT(NL80211_IFTYPE_ADHOC) |
1395                 BIT(NL80211_IFTYPE_AP);
1396 
1397         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1398 
1399         hw->max_signal = 100;
1400         hw->queues = 1;
1401         hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1402 
1403         /*
1404          * Tell mac80211 that we support multi rate retries
1405          */
1406         hw->max_rates = IEEE80211_TX_MAX_RATES;
1407         hw->max_rate_tries = 18;        /* 9 rates * 2 retries/rate */
1408 
1409         skb_queue_head_init(&mac->ack_wait_queue);
1410         mac->ack_pending = 0;
1411 
1412         zd_chip_init(&mac->chip, hw, intf);
1413         housekeeping_init(mac);
1414         beacon_init(mac);
1415         INIT_WORK(&mac->process_intr, zd_process_intr);
1416 
1417         SET_IEEE80211_DEV(hw, &intf->dev);
1418         return hw;
1419 }
1420 
1421 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1422 
1423 static void beacon_watchdog_handler(struct work_struct *work)
1424 {
1425         struct zd_mac *mac =
1426                 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1427         struct sk_buff *beacon;
1428         unsigned long timeout;
1429         int interval, period;
1430 
1431         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1432                 goto rearm;
1433         if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1434                 goto rearm;
1435 
1436         spin_lock_irq(&mac->lock);
1437         interval = mac->beacon.interval;
1438         period = mac->beacon.period;
1439         timeout = mac->beacon.last_update +
1440                         msecs_to_jiffies(interval * 1024 / 1000) * 3;
1441         spin_unlock_irq(&mac->lock);
1442 
1443         if (interval > 0 && time_is_before_jiffies(timeout)) {
1444                 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1445                                            "restarting. "
1446                                            "(interval: %d, dtim: %d)\n",
1447                                            interval, period);
1448 
1449                 zd_chip_disable_hwint(&mac->chip);
1450 
1451                 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1452                 if (beacon) {
1453                         zd_mac_free_cur_beacon(mac);
1454 
1455                         zd_mac_config_beacon(mac->hw, beacon, false);
1456                 }
1457 
1458                 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1459 
1460                 zd_chip_enable_hwint(&mac->chip);
1461 
1462                 spin_lock_irq(&mac->lock);
1463                 mac->beacon.last_update = jiffies;
1464                 spin_unlock_irq(&mac->lock);
1465         }
1466 
1467 rearm:
1468         queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1469                            BEACON_WATCHDOG_DELAY);
1470 }
1471 
1472 static void beacon_init(struct zd_mac *mac)
1473 {
1474         INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1475 }
1476 
1477 static void beacon_enable(struct zd_mac *mac)
1478 {
1479         dev_dbg_f(zd_mac_dev(mac), "\n");
1480 
1481         mac->beacon.last_update = jiffies;
1482         queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1483                            BEACON_WATCHDOG_DELAY);
1484 }
1485 
1486 static void beacon_disable(struct zd_mac *mac)
1487 {
1488         dev_dbg_f(zd_mac_dev(mac), "\n");
1489         cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1490 
1491         zd_mac_free_cur_beacon(mac);
1492 }
1493 
1494 #define LINK_LED_WORK_DELAY HZ
1495 
1496 static void link_led_handler(struct work_struct *work)
1497 {
1498         struct zd_mac *mac =
1499                 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1500         struct zd_chip *chip = &mac->chip;
1501         int is_associated;
1502         int r;
1503 
1504         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1505                 goto requeue;
1506 
1507         spin_lock_irq(&mac->lock);
1508         is_associated = mac->associated;
1509         spin_unlock_irq(&mac->lock);
1510 
1511         r = zd_chip_control_leds(chip,
1512                                  is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1513         if (r)
1514                 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1515 
1516 requeue:
1517         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1518                            LINK_LED_WORK_DELAY);
1519 }
1520 
1521 static void housekeeping_init(struct zd_mac *mac)
1522 {
1523         INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1524 }
1525 
1526 static void housekeeping_enable(struct zd_mac *mac)
1527 {
1528         dev_dbg_f(zd_mac_dev(mac), "\n");
1529         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1530                            0);
1531 }
1532 
1533 static void housekeeping_disable(struct zd_mac *mac)
1534 {
1535         dev_dbg_f(zd_mac_dev(mac), "\n");
1536         cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1537         zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1538 }

/* [<][>][^][v][top][bottom][index][help] */