root/drivers/net/wireless/zydas/zd1211rw/zd_usb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. request_fw_file
  2. get_bcdDevice
  3. upload_code
  4. get_word
  5. get_fw_name
  6. handle_version_mismatch
  7. upload_firmware
  8. zd_usb_read_fw
  9. handle_regs_int_override
  10. handle_regs_int
  11. int_urb_complete
  12. int_urb_interval
  13. usb_int_enabled
  14. zd_usb_enable_int
  15. zd_usb_disable_int
  16. handle_rx_packet
  17. rx_urb_complete
  18. alloc_rx_urb
  19. free_rx_urb
  20. __zd_usb_enable_rx
  21. zd_usb_enable_rx
  22. __zd_usb_disable_rx
  23. zd_usb_disable_rx
  24. zd_usb_reset_rx
  25. zd_usb_disable_tx
  26. zd_usb_enable_tx
  27. tx_dec_submitted_urbs
  28. tx_inc_submitted_urbs
  29. tx_urb_complete
  30. zd_usb_tx
  31. zd_tx_timeout
  32. zd_tx_watchdog_handler
  33. zd_tx_watchdog_enable
  34. zd_tx_watchdog_disable
  35. zd_rx_idle_timer_handler
  36. zd_usb_reset_rx_idle_timer_tasklet
  37. zd_usb_reset_rx_idle_timer
  38. init_usb_interrupt
  39. init_usb_rx
  40. init_usb_tx
  41. zd_usb_init
  42. zd_usb_clear
  43. speed
  44. scnprint_id
  45. zd_usb_scnprint_id
  46. print_id
  47. eject_installer
  48. zd_usb_init_hw
  49. probe
  50. disconnect
  51. zd_usb_resume
  52. zd_usb_stop
  53. pre_reset
  54. post_reset
  55. usb_init
  56. usb_exit
  57. zd_ep_regs_out_msg
  58. prepare_read_regs_int
  59. disable_read_regs_int
  60. check_read_regs
  61. get_results
  62. zd_usb_ioread16v
  63. iowrite16v_urb_complete
  64. zd_submit_waiting_urb
  65. zd_usb_iowrite16v_async_start
  66. zd_usb_iowrite16v_async_end
  67. zd_usb_iowrite16v_async
  68. zd_usb_iowrite16v
  69. zd_usb_rfwrite

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* ZD1211 USB-WLAN driver for Linux
   3  *
   4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   6  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
   7  */
   8 
   9 #include <linux/kernel.h>
  10 #include <linux/init.h>
  11 #include <linux/firmware.h>
  12 #include <linux/device.h>
  13 #include <linux/errno.h>
  14 #include <linux/slab.h>
  15 #include <linux/skbuff.h>
  16 #include <linux/usb.h>
  17 #include <linux/workqueue.h>
  18 #include <linux/module.h>
  19 #include <net/mac80211.h>
  20 #include <asm/unaligned.h>
  21 
  22 #include "zd_def.h"
  23 #include "zd_mac.h"
  24 #include "zd_usb.h"
  25 
  26 static const struct usb_device_id usb_ids[] = {
  27         /* ZD1211 */
  28         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
  29         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
  30         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
  31         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
  32         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
  33         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
  34         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
  35         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
  36         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
  37         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
  38         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
  39         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
  40         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
  41         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
  42         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
  43         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
  44         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
  45         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
  46         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
  47         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
  48         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
  49         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
  50         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
  51         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
  52         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
  53         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
  54         /* ZD1211B */
  55         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
  56         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
  57         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
  58         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
  59         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
  60         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
  61         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
  62         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
  63         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
  64         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
  65         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
  66         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
  67         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
  68         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
  69         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
  70         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
  71         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
  72         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
  73         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
  74         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
  75         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
  76         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
  77         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
  78         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
  79         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
  80         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
  81         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
  82         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
  83         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
  84         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
  85         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
  86         /* "Driverless" devices that need ejecting */
  87         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
  88         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
  89         {}
  90 };
  91 
  92 MODULE_LICENSE("GPL");
  93 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
  94 MODULE_AUTHOR("Ulrich Kunitz");
  95 MODULE_AUTHOR("Daniel Drake");
  96 MODULE_VERSION("1.0");
  97 MODULE_DEVICE_TABLE(usb, usb_ids);
  98 
  99 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
 100 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
 101 
 102 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
 103                             unsigned int count);
 104 
 105 /* USB device initialization */
 106 static void int_urb_complete(struct urb *urb);
 107 
 108 static int request_fw_file(
 109         const struct firmware **fw, const char *name, struct device *device)
 110 {
 111         int r;
 112 
 113         dev_dbg_f(device, "fw name %s\n", name);
 114 
 115         r = request_firmware(fw, name, device);
 116         if (r)
 117                 dev_err(device,
 118                        "Could not load firmware file %s. Error number %d\n",
 119                        name, r);
 120         return r;
 121 }
 122 
 123 static inline u16 get_bcdDevice(const struct usb_device *udev)
 124 {
 125         return le16_to_cpu(udev->descriptor.bcdDevice);
 126 }
 127 
 128 enum upload_code_flags {
 129         REBOOT = 1,
 130 };
 131 
 132 /* Ensures that MAX_TRANSFER_SIZE is even. */
 133 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
 134 
 135 static int upload_code(struct usb_device *udev,
 136         const u8 *data, size_t size, u16 code_offset, int flags)
 137 {
 138         u8 *p;
 139         int r;
 140 
 141         /* USB request blocks need "kmalloced" buffers.
 142          */
 143         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
 144         if (!p) {
 145                 r = -ENOMEM;
 146                 goto error;
 147         }
 148 
 149         size &= ~1;
 150         while (size > 0) {
 151                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
 152                         size : MAX_TRANSFER_SIZE;
 153 
 154                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
 155 
 156                 memcpy(p, data, transfer_size);
 157                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
 158                         USB_REQ_FIRMWARE_DOWNLOAD,
 159                         USB_DIR_OUT | USB_TYPE_VENDOR,
 160                         code_offset, 0, p, transfer_size, 1000 /* ms */);
 161                 if (r < 0) {
 162                         dev_err(&udev->dev,
 163                                "USB control request for firmware upload"
 164                                " failed. Error number %d\n", r);
 165                         goto error;
 166                 }
 167                 transfer_size = r & ~1;
 168 
 169                 size -= transfer_size;
 170                 data += transfer_size;
 171                 code_offset += transfer_size/sizeof(u16);
 172         }
 173 
 174         if (flags & REBOOT) {
 175                 u8 ret;
 176 
 177                 /* Use "DMA-aware" buffer. */
 178                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
 179                         USB_REQ_FIRMWARE_CONFIRM,
 180                         USB_DIR_IN | USB_TYPE_VENDOR,
 181                         0, 0, p, sizeof(ret), 5000 /* ms */);
 182                 if (r != sizeof(ret)) {
 183                         dev_err(&udev->dev,
 184                                 "control request firmware confirmation failed."
 185                                 " Return value %d\n", r);
 186                         if (r >= 0)
 187                                 r = -ENODEV;
 188                         goto error;
 189                 }
 190                 ret = p[0];
 191                 if (ret & 0x80) {
 192                         dev_err(&udev->dev,
 193                                 "Internal error while downloading."
 194                                 " Firmware confirm return value %#04x\n",
 195                                 (unsigned int)ret);
 196                         r = -ENODEV;
 197                         goto error;
 198                 }
 199                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
 200                         (unsigned int)ret);
 201         }
 202 
 203         r = 0;
 204 error:
 205         kfree(p);
 206         return r;
 207 }
 208 
 209 static u16 get_word(const void *data, u16 offset)
 210 {
 211         const __le16 *p = data;
 212         return le16_to_cpu(p[offset]);
 213 }
 214 
 215 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
 216                        const char* postfix)
 217 {
 218         scnprintf(buffer, size, "%s%s",
 219                 usb->is_zd1211b ?
 220                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
 221                 postfix);
 222         return buffer;
 223 }
 224 
 225 static int handle_version_mismatch(struct zd_usb *usb,
 226         const struct firmware *ub_fw)
 227 {
 228         struct usb_device *udev = zd_usb_to_usbdev(usb);
 229         const struct firmware *ur_fw = NULL;
 230         int offset;
 231         int r = 0;
 232         char fw_name[128];
 233 
 234         r = request_fw_file(&ur_fw,
 235                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
 236                 &udev->dev);
 237         if (r)
 238                 goto error;
 239 
 240         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
 241         if (r)
 242                 goto error;
 243 
 244         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
 245         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
 246                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
 247 
 248         /* At this point, the vendor driver downloads the whole firmware
 249          * image, hacks around with version IDs, and uploads it again,
 250          * completely overwriting the boot code. We do not do this here as
 251          * it is not required on any tested devices, and it is suspected to
 252          * cause problems. */
 253 error:
 254         release_firmware(ur_fw);
 255         return r;
 256 }
 257 
 258 static int upload_firmware(struct zd_usb *usb)
 259 {
 260         int r;
 261         u16 fw_bcdDevice;
 262         u16 bcdDevice;
 263         struct usb_device *udev = zd_usb_to_usbdev(usb);
 264         const struct firmware *ub_fw = NULL;
 265         const struct firmware *uph_fw = NULL;
 266         char fw_name[128];
 267 
 268         bcdDevice = get_bcdDevice(udev);
 269 
 270         r = request_fw_file(&ub_fw,
 271                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
 272                 &udev->dev);
 273         if (r)
 274                 goto error;
 275 
 276         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
 277 
 278         if (fw_bcdDevice != bcdDevice) {
 279                 dev_info(&udev->dev,
 280                         "firmware version %#06x and device bootcode version "
 281                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
 282                 if (bcdDevice <= 0x4313)
 283                         dev_warn(&udev->dev, "device has old bootcode, please "
 284                                 "report success or failure\n");
 285 
 286                 r = handle_version_mismatch(usb, ub_fw);
 287                 if (r)
 288                         goto error;
 289         } else {
 290                 dev_dbg_f(&udev->dev,
 291                         "firmware device id %#06x is equal to the "
 292                         "actual device id\n", fw_bcdDevice);
 293         }
 294 
 295 
 296         r = request_fw_file(&uph_fw,
 297                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
 298                 &udev->dev);
 299         if (r)
 300                 goto error;
 301 
 302         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
 303         if (r) {
 304                 dev_err(&udev->dev,
 305                         "Could not upload firmware code uph. Error number %d\n",
 306                         r);
 307         }
 308 
 309         /* FALL-THROUGH */
 310 error:
 311         release_firmware(ub_fw);
 312         release_firmware(uph_fw);
 313         return r;
 314 }
 315 
 316 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
 317 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
 318 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
 319 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
 320 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
 321 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
 322 
 323 /* Read data from device address space using "firmware interface" which does
 324  * not require firmware to be loaded. */
 325 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
 326 {
 327         int r;
 328         struct usb_device *udev = zd_usb_to_usbdev(usb);
 329         u8 *buf;
 330 
 331         /* Use "DMA-aware" buffer. */
 332         buf = kmalloc(len, GFP_KERNEL);
 333         if (!buf)
 334                 return -ENOMEM;
 335         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
 336                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
 337                 buf, len, 5000);
 338         if (r < 0) {
 339                 dev_err(&udev->dev,
 340                         "read over firmware interface failed: %d\n", r);
 341                 goto exit;
 342         } else if (r != len) {
 343                 dev_err(&udev->dev,
 344                         "incomplete read over firmware interface: %d/%d\n",
 345                         r, len);
 346                 r = -EIO;
 347                 goto exit;
 348         }
 349         r = 0;
 350         memcpy(data, buf, len);
 351 exit:
 352         kfree(buf);
 353         return r;
 354 }
 355 
 356 #define urb_dev(urb) (&(urb)->dev->dev)
 357 
 358 static inline void handle_regs_int_override(struct urb *urb)
 359 {
 360         struct zd_usb *usb = urb->context;
 361         struct zd_usb_interrupt *intr = &usb->intr;
 362         unsigned long flags;
 363 
 364         spin_lock_irqsave(&intr->lock, flags);
 365         if (atomic_read(&intr->read_regs_enabled)) {
 366                 atomic_set(&intr->read_regs_enabled, 0);
 367                 intr->read_regs_int_overridden = 1;
 368                 complete(&intr->read_regs.completion);
 369         }
 370         spin_unlock_irqrestore(&intr->lock, flags);
 371 }
 372 
 373 static inline void handle_regs_int(struct urb *urb)
 374 {
 375         struct zd_usb *usb = urb->context;
 376         struct zd_usb_interrupt *intr = &usb->intr;
 377         unsigned long flags;
 378         int len;
 379         u16 int_num;
 380 
 381         ZD_ASSERT(in_interrupt());
 382         spin_lock_irqsave(&intr->lock, flags);
 383 
 384         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
 385         if (int_num == CR_INTERRUPT) {
 386                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
 387                 spin_lock(&mac->lock);
 388                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
 389                                 USB_MAX_EP_INT_BUFFER);
 390                 spin_unlock(&mac->lock);
 391                 schedule_work(&mac->process_intr);
 392         } else if (atomic_read(&intr->read_regs_enabled)) {
 393                 len = urb->actual_length;
 394                 intr->read_regs.length = urb->actual_length;
 395                 if (len > sizeof(intr->read_regs.buffer))
 396                         len = sizeof(intr->read_regs.buffer);
 397 
 398                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
 399 
 400                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
 401                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
 402                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
 403                  * retry unhandled. Next read-reg command then might catch
 404                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
 405                  */
 406                 if (!check_read_regs(usb, intr->read_regs.req,
 407                                                 intr->read_regs.req_count))
 408                         goto out;
 409 
 410                 atomic_set(&intr->read_regs_enabled, 0);
 411                 intr->read_regs_int_overridden = 0;
 412                 complete(&intr->read_regs.completion);
 413 
 414                 goto out;
 415         }
 416 
 417 out:
 418         spin_unlock_irqrestore(&intr->lock, flags);
 419 
 420         /* CR_INTERRUPT might override read_reg too. */
 421         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
 422                 handle_regs_int_override(urb);
 423 }
 424 
 425 static void int_urb_complete(struct urb *urb)
 426 {
 427         int r;
 428         struct usb_int_header *hdr;
 429         struct zd_usb *usb;
 430         struct zd_usb_interrupt *intr;
 431 
 432         switch (urb->status) {
 433         case 0:
 434                 break;
 435         case -ESHUTDOWN:
 436         case -EINVAL:
 437         case -ENODEV:
 438         case -ENOENT:
 439         case -ECONNRESET:
 440         case -EPIPE:
 441                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
 442                 return;
 443         default:
 444                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
 445                 goto resubmit;
 446         }
 447 
 448         if (urb->actual_length < sizeof(hdr)) {
 449                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
 450                 goto resubmit;
 451         }
 452 
 453         hdr = urb->transfer_buffer;
 454         if (hdr->type != USB_INT_TYPE) {
 455                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
 456                 goto resubmit;
 457         }
 458 
 459         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
 460          * pending USB_INT_ID_REGS causing read command timeout.
 461          */
 462         usb = urb->context;
 463         intr = &usb->intr;
 464         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
 465                 handle_regs_int_override(urb);
 466 
 467         switch (hdr->id) {
 468         case USB_INT_ID_REGS:
 469                 handle_regs_int(urb);
 470                 break;
 471         case USB_INT_ID_RETRY_FAILED:
 472                 zd_mac_tx_failed(urb);
 473                 break;
 474         default:
 475                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
 476                         (unsigned int)hdr->id);
 477                 goto resubmit;
 478         }
 479 
 480 resubmit:
 481         r = usb_submit_urb(urb, GFP_ATOMIC);
 482         if (r) {
 483                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
 484                           urb, r);
 485                 /* TODO: add worker to reset intr->urb */
 486         }
 487         return;
 488 }
 489 
 490 static inline int int_urb_interval(struct usb_device *udev)
 491 {
 492         switch (udev->speed) {
 493         case USB_SPEED_HIGH:
 494                 return 4;
 495         case USB_SPEED_LOW:
 496                 return 10;
 497         case USB_SPEED_FULL:
 498         default:
 499                 return 1;
 500         }
 501 }
 502 
 503 static inline int usb_int_enabled(struct zd_usb *usb)
 504 {
 505         unsigned long flags;
 506         struct zd_usb_interrupt *intr = &usb->intr;
 507         struct urb *urb;
 508 
 509         spin_lock_irqsave(&intr->lock, flags);
 510         urb = intr->urb;
 511         spin_unlock_irqrestore(&intr->lock, flags);
 512         return urb != NULL;
 513 }
 514 
 515 int zd_usb_enable_int(struct zd_usb *usb)
 516 {
 517         int r;
 518         struct usb_device *udev = zd_usb_to_usbdev(usb);
 519         struct zd_usb_interrupt *intr = &usb->intr;
 520         struct urb *urb;
 521 
 522         dev_dbg_f(zd_usb_dev(usb), "\n");
 523 
 524         urb = usb_alloc_urb(0, GFP_KERNEL);
 525         if (!urb) {
 526                 r = -ENOMEM;
 527                 goto out;
 528         }
 529 
 530         ZD_ASSERT(!irqs_disabled());
 531         spin_lock_irq(&intr->lock);
 532         if (intr->urb) {
 533                 spin_unlock_irq(&intr->lock);
 534                 r = 0;
 535                 goto error_free_urb;
 536         }
 537         intr->urb = urb;
 538         spin_unlock_irq(&intr->lock);
 539 
 540         r = -ENOMEM;
 541         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
 542                                           GFP_KERNEL, &intr->buffer_dma);
 543         if (!intr->buffer) {
 544                 dev_dbg_f(zd_usb_dev(usb),
 545                         "couldn't allocate transfer_buffer\n");
 546                 goto error_set_urb_null;
 547         }
 548 
 549         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
 550                          intr->buffer, USB_MAX_EP_INT_BUFFER,
 551                          int_urb_complete, usb,
 552                          intr->interval);
 553         urb->transfer_dma = intr->buffer_dma;
 554         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 555 
 556         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
 557         r = usb_submit_urb(urb, GFP_KERNEL);
 558         if (r) {
 559                 dev_dbg_f(zd_usb_dev(usb),
 560                          "Couldn't submit urb. Error number %d\n", r);
 561                 goto error;
 562         }
 563 
 564         return 0;
 565 error:
 566         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
 567                           intr->buffer, intr->buffer_dma);
 568 error_set_urb_null:
 569         spin_lock_irq(&intr->lock);
 570         intr->urb = NULL;
 571         spin_unlock_irq(&intr->lock);
 572 error_free_urb:
 573         usb_free_urb(urb);
 574 out:
 575         return r;
 576 }
 577 
 578 void zd_usb_disable_int(struct zd_usb *usb)
 579 {
 580         unsigned long flags;
 581         struct usb_device *udev = zd_usb_to_usbdev(usb);
 582         struct zd_usb_interrupt *intr = &usb->intr;
 583         struct urb *urb;
 584         void *buffer;
 585         dma_addr_t buffer_dma;
 586 
 587         spin_lock_irqsave(&intr->lock, flags);
 588         urb = intr->urb;
 589         if (!urb) {
 590                 spin_unlock_irqrestore(&intr->lock, flags);
 591                 return;
 592         }
 593         intr->urb = NULL;
 594         buffer = intr->buffer;
 595         buffer_dma = intr->buffer_dma;
 596         intr->buffer = NULL;
 597         spin_unlock_irqrestore(&intr->lock, flags);
 598 
 599         usb_kill_urb(urb);
 600         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
 601         usb_free_urb(urb);
 602 
 603         if (buffer)
 604                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
 605                                   buffer, buffer_dma);
 606 }
 607 
 608 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
 609                              unsigned int length)
 610 {
 611         int i;
 612         const struct rx_length_info *length_info;
 613 
 614         if (length < sizeof(struct rx_length_info)) {
 615                 /* It's not a complete packet anyhow. */
 616                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
 617                                            length);
 618                 return;
 619         }
 620         length_info = (struct rx_length_info *)
 621                 (buffer + length - sizeof(struct rx_length_info));
 622 
 623         /* It might be that three frames are merged into a single URB
 624          * transaction. We have to check for the length info tag.
 625          *
 626          * While testing we discovered that length_info might be unaligned,
 627          * because if USB transactions are merged, the last packet will not
 628          * be padded. Unaligned access might also happen if the length_info
 629          * structure is not present.
 630          */
 631         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
 632         {
 633                 unsigned int l, k, n;
 634                 for (i = 0, l = 0;; i++) {
 635                         k = get_unaligned_le16(&length_info->length[i]);
 636                         if (k == 0)
 637                                 return;
 638                         n = l+k;
 639                         if (n > length)
 640                                 return;
 641                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
 642                         if (i >= 2)
 643                                 return;
 644                         l = (n+3) & ~3;
 645                 }
 646         } else {
 647                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
 648         }
 649 }
 650 
 651 static void rx_urb_complete(struct urb *urb)
 652 {
 653         int r;
 654         struct zd_usb *usb;
 655         struct zd_usb_rx *rx;
 656         const u8 *buffer;
 657         unsigned int length;
 658         unsigned long flags;
 659 
 660         switch (urb->status) {
 661         case 0:
 662                 break;
 663         case -ESHUTDOWN:
 664         case -EINVAL:
 665         case -ENODEV:
 666         case -ENOENT:
 667         case -ECONNRESET:
 668         case -EPIPE:
 669                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
 670                 return;
 671         default:
 672                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
 673                 goto resubmit;
 674         }
 675 
 676         buffer = urb->transfer_buffer;
 677         length = urb->actual_length;
 678         usb = urb->context;
 679         rx = &usb->rx;
 680 
 681         tasklet_schedule(&rx->reset_timer_tasklet);
 682 
 683         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
 684                 /* If there is an old first fragment, we don't care. */
 685                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
 686                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
 687                 spin_lock_irqsave(&rx->lock, flags);
 688                 memcpy(rx->fragment, buffer, length);
 689                 rx->fragment_length = length;
 690                 spin_unlock_irqrestore(&rx->lock, flags);
 691                 goto resubmit;
 692         }
 693 
 694         spin_lock_irqsave(&rx->lock, flags);
 695         if (rx->fragment_length > 0) {
 696                 /* We are on a second fragment, we believe */
 697                 ZD_ASSERT(length + rx->fragment_length <=
 698                           ARRAY_SIZE(rx->fragment));
 699                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
 700                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
 701                 handle_rx_packet(usb, rx->fragment,
 702                                  rx->fragment_length + length);
 703                 rx->fragment_length = 0;
 704                 spin_unlock_irqrestore(&rx->lock, flags);
 705         } else {
 706                 spin_unlock_irqrestore(&rx->lock, flags);
 707                 handle_rx_packet(usb, buffer, length);
 708         }
 709 
 710 resubmit:
 711         r = usb_submit_urb(urb, GFP_ATOMIC);
 712         if (r)
 713                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
 714 }
 715 
 716 static struct urb *alloc_rx_urb(struct zd_usb *usb)
 717 {
 718         struct usb_device *udev = zd_usb_to_usbdev(usb);
 719         struct urb *urb;
 720         void *buffer;
 721 
 722         urb = usb_alloc_urb(0, GFP_KERNEL);
 723         if (!urb)
 724                 return NULL;
 725         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
 726                                     &urb->transfer_dma);
 727         if (!buffer) {
 728                 usb_free_urb(urb);
 729                 return NULL;
 730         }
 731 
 732         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
 733                           buffer, USB_MAX_RX_SIZE,
 734                           rx_urb_complete, usb);
 735         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 736 
 737         return urb;
 738 }
 739 
 740 static void free_rx_urb(struct urb *urb)
 741 {
 742         if (!urb)
 743                 return;
 744         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
 745                           urb->transfer_buffer, urb->transfer_dma);
 746         usb_free_urb(urb);
 747 }
 748 
 749 static int __zd_usb_enable_rx(struct zd_usb *usb)
 750 {
 751         int i, r;
 752         struct zd_usb_rx *rx = &usb->rx;
 753         struct urb **urbs;
 754 
 755         dev_dbg_f(zd_usb_dev(usb), "\n");
 756 
 757         r = -ENOMEM;
 758         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
 759         if (!urbs)
 760                 goto error;
 761         for (i = 0; i < RX_URBS_COUNT; i++) {
 762                 urbs[i] = alloc_rx_urb(usb);
 763                 if (!urbs[i])
 764                         goto error;
 765         }
 766 
 767         ZD_ASSERT(!irqs_disabled());
 768         spin_lock_irq(&rx->lock);
 769         if (rx->urbs) {
 770                 spin_unlock_irq(&rx->lock);
 771                 r = 0;
 772                 goto error;
 773         }
 774         rx->urbs = urbs;
 775         rx->urbs_count = RX_URBS_COUNT;
 776         spin_unlock_irq(&rx->lock);
 777 
 778         for (i = 0; i < RX_URBS_COUNT; i++) {
 779                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
 780                 if (r)
 781                         goto error_submit;
 782         }
 783 
 784         return 0;
 785 error_submit:
 786         for (i = 0; i < RX_URBS_COUNT; i++) {
 787                 usb_kill_urb(urbs[i]);
 788         }
 789         spin_lock_irq(&rx->lock);
 790         rx->urbs = NULL;
 791         rx->urbs_count = 0;
 792         spin_unlock_irq(&rx->lock);
 793 error:
 794         if (urbs) {
 795                 for (i = 0; i < RX_URBS_COUNT; i++)
 796                         free_rx_urb(urbs[i]);
 797         }
 798         return r;
 799 }
 800 
 801 int zd_usb_enable_rx(struct zd_usb *usb)
 802 {
 803         int r;
 804         struct zd_usb_rx *rx = &usb->rx;
 805 
 806         mutex_lock(&rx->setup_mutex);
 807         r = __zd_usb_enable_rx(usb);
 808         mutex_unlock(&rx->setup_mutex);
 809 
 810         zd_usb_reset_rx_idle_timer(usb);
 811 
 812         return r;
 813 }
 814 
 815 static void __zd_usb_disable_rx(struct zd_usb *usb)
 816 {
 817         int i;
 818         unsigned long flags;
 819         struct urb **urbs;
 820         unsigned int count;
 821         struct zd_usb_rx *rx = &usb->rx;
 822 
 823         spin_lock_irqsave(&rx->lock, flags);
 824         urbs = rx->urbs;
 825         count = rx->urbs_count;
 826         spin_unlock_irqrestore(&rx->lock, flags);
 827         if (!urbs)
 828                 return;
 829 
 830         for (i = 0; i < count; i++) {
 831                 usb_kill_urb(urbs[i]);
 832                 free_rx_urb(urbs[i]);
 833         }
 834         kfree(urbs);
 835 
 836         spin_lock_irqsave(&rx->lock, flags);
 837         rx->urbs = NULL;
 838         rx->urbs_count = 0;
 839         spin_unlock_irqrestore(&rx->lock, flags);
 840 }
 841 
 842 void zd_usb_disable_rx(struct zd_usb *usb)
 843 {
 844         struct zd_usb_rx *rx = &usb->rx;
 845 
 846         mutex_lock(&rx->setup_mutex);
 847         __zd_usb_disable_rx(usb);
 848         mutex_unlock(&rx->setup_mutex);
 849 
 850         tasklet_kill(&rx->reset_timer_tasklet);
 851         cancel_delayed_work_sync(&rx->idle_work);
 852 }
 853 
 854 static void zd_usb_reset_rx(struct zd_usb *usb)
 855 {
 856         bool do_reset;
 857         struct zd_usb_rx *rx = &usb->rx;
 858         unsigned long flags;
 859 
 860         mutex_lock(&rx->setup_mutex);
 861 
 862         spin_lock_irqsave(&rx->lock, flags);
 863         do_reset = rx->urbs != NULL;
 864         spin_unlock_irqrestore(&rx->lock, flags);
 865 
 866         if (do_reset) {
 867                 __zd_usb_disable_rx(usb);
 868                 __zd_usb_enable_rx(usb);
 869         }
 870 
 871         mutex_unlock(&rx->setup_mutex);
 872 
 873         if (do_reset)
 874                 zd_usb_reset_rx_idle_timer(usb);
 875 }
 876 
 877 /**
 878  * zd_usb_disable_tx - disable transmission
 879  * @usb: the zd1211rw-private USB structure
 880  *
 881  * Frees all URBs in the free list and marks the transmission as disabled.
 882  */
 883 void zd_usb_disable_tx(struct zd_usb *usb)
 884 {
 885         struct zd_usb_tx *tx = &usb->tx;
 886         unsigned long flags;
 887 
 888         atomic_set(&tx->enabled, 0);
 889 
 890         /* kill all submitted tx-urbs */
 891         usb_kill_anchored_urbs(&tx->submitted);
 892 
 893         spin_lock_irqsave(&tx->lock, flags);
 894         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
 895         WARN_ON(tx->submitted_urbs != 0);
 896         tx->submitted_urbs = 0;
 897         spin_unlock_irqrestore(&tx->lock, flags);
 898 
 899         /* The stopped state is ignored, relying on ieee80211_wake_queues()
 900          * in a potentionally following zd_usb_enable_tx().
 901          */
 902 }
 903 
 904 /**
 905  * zd_usb_enable_tx - enables transmission
 906  * @usb: a &struct zd_usb pointer
 907  *
 908  * This function enables transmission and prepares the &zd_usb_tx data
 909  * structure.
 910  */
 911 void zd_usb_enable_tx(struct zd_usb *usb)
 912 {
 913         unsigned long flags;
 914         struct zd_usb_tx *tx = &usb->tx;
 915 
 916         spin_lock_irqsave(&tx->lock, flags);
 917         atomic_set(&tx->enabled, 1);
 918         tx->submitted_urbs = 0;
 919         ieee80211_wake_queues(zd_usb_to_hw(usb));
 920         tx->stopped = 0;
 921         spin_unlock_irqrestore(&tx->lock, flags);
 922 }
 923 
 924 static void tx_dec_submitted_urbs(struct zd_usb *usb)
 925 {
 926         struct zd_usb_tx *tx = &usb->tx;
 927         unsigned long flags;
 928 
 929         spin_lock_irqsave(&tx->lock, flags);
 930         --tx->submitted_urbs;
 931         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
 932                 ieee80211_wake_queues(zd_usb_to_hw(usb));
 933                 tx->stopped = 0;
 934         }
 935         spin_unlock_irqrestore(&tx->lock, flags);
 936 }
 937 
 938 static void tx_inc_submitted_urbs(struct zd_usb *usb)
 939 {
 940         struct zd_usb_tx *tx = &usb->tx;
 941         unsigned long flags;
 942 
 943         spin_lock_irqsave(&tx->lock, flags);
 944         ++tx->submitted_urbs;
 945         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
 946                 ieee80211_stop_queues(zd_usb_to_hw(usb));
 947                 tx->stopped = 1;
 948         }
 949         spin_unlock_irqrestore(&tx->lock, flags);
 950 }
 951 
 952 /**
 953  * tx_urb_complete - completes the execution of an URB
 954  * @urb: a URB
 955  *
 956  * This function is called if the URB has been transferred to a device or an
 957  * error has happened.
 958  */
 959 static void tx_urb_complete(struct urb *urb)
 960 {
 961         int r;
 962         struct sk_buff *skb;
 963         struct ieee80211_tx_info *info;
 964         struct zd_usb *usb;
 965         struct zd_usb_tx *tx;
 966 
 967         skb = (struct sk_buff *)urb->context;
 968         info = IEEE80211_SKB_CB(skb);
 969         /*
 970          * grab 'usb' pointer before handing off the skb (since
 971          * it might be freed by zd_mac_tx_to_dev or mac80211)
 972          */
 973         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
 974         tx = &usb->tx;
 975 
 976         switch (urb->status) {
 977         case 0:
 978                 break;
 979         case -ESHUTDOWN:
 980         case -EINVAL:
 981         case -ENODEV:
 982         case -ENOENT:
 983         case -ECONNRESET:
 984         case -EPIPE:
 985                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
 986                 break;
 987         default:
 988                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
 989                 goto resubmit;
 990         }
 991 free_urb:
 992         skb_unlink(skb, &usb->tx.submitted_skbs);
 993         zd_mac_tx_to_dev(skb, urb->status);
 994         usb_free_urb(urb);
 995         tx_dec_submitted_urbs(usb);
 996         return;
 997 resubmit:
 998         usb_anchor_urb(urb, &tx->submitted);
 999         r = usb_submit_urb(urb, GFP_ATOMIC);
1000         if (r) {
1001                 usb_unanchor_urb(urb);
1002                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1003                 goto free_urb;
1004         }
1005 }
1006 
1007 /**
1008  * zd_usb_tx: initiates transfer of a frame of the device
1009  *
1010  * @usb: the zd1211rw-private USB structure
1011  * @skb: a &struct sk_buff pointer
1012  *
1013  * This function tranmits a frame to the device. It doesn't wait for
1014  * completion. The frame must contain the control set and have all the
1015  * control set information available.
1016  *
1017  * The function returns 0 if the transfer has been successfully initiated.
1018  */
1019 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1020 {
1021         int r;
1022         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1023         struct usb_device *udev = zd_usb_to_usbdev(usb);
1024         struct urb *urb;
1025         struct zd_usb_tx *tx = &usb->tx;
1026 
1027         if (!atomic_read(&tx->enabled)) {
1028                 r = -ENOENT;
1029                 goto out;
1030         }
1031 
1032         urb = usb_alloc_urb(0, GFP_ATOMIC);
1033         if (!urb) {
1034                 r = -ENOMEM;
1035                 goto out;
1036         }
1037 
1038         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1039                           skb->data, skb->len, tx_urb_complete, skb);
1040 
1041         info->rate_driver_data[1] = (void *)jiffies;
1042         skb_queue_tail(&tx->submitted_skbs, skb);
1043         usb_anchor_urb(urb, &tx->submitted);
1044 
1045         r = usb_submit_urb(urb, GFP_ATOMIC);
1046         if (r) {
1047                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1048                 usb_unanchor_urb(urb);
1049                 skb_unlink(skb, &tx->submitted_skbs);
1050                 goto error;
1051         }
1052         tx_inc_submitted_urbs(usb);
1053         return 0;
1054 error:
1055         usb_free_urb(urb);
1056 out:
1057         return r;
1058 }
1059 
1060 static bool zd_tx_timeout(struct zd_usb *usb)
1061 {
1062         struct zd_usb_tx *tx = &usb->tx;
1063         struct sk_buff_head *q = &tx->submitted_skbs;
1064         struct sk_buff *skb, *skbnext;
1065         struct ieee80211_tx_info *info;
1066         unsigned long flags, trans_start;
1067         bool have_timedout = false;
1068 
1069         spin_lock_irqsave(&q->lock, flags);
1070         skb_queue_walk_safe(q, skb, skbnext) {
1071                 info = IEEE80211_SKB_CB(skb);
1072                 trans_start = (unsigned long)info->rate_driver_data[1];
1073 
1074                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1075                         have_timedout = true;
1076                         break;
1077                 }
1078         }
1079         spin_unlock_irqrestore(&q->lock, flags);
1080 
1081         return have_timedout;
1082 }
1083 
1084 static void zd_tx_watchdog_handler(struct work_struct *work)
1085 {
1086         struct zd_usb *usb =
1087                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1088         struct zd_usb_tx *tx = &usb->tx;
1089 
1090         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1091                 goto out;
1092         if (!zd_tx_timeout(usb))
1093                 goto out;
1094 
1095         /* TX halted, try reset */
1096         dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1097 
1098         usb_queue_reset_device(usb->intf);
1099 
1100         /* reset will stop this worker, don't rearm */
1101         return;
1102 out:
1103         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1104                            ZD_TX_WATCHDOG_INTERVAL);
1105 }
1106 
1107 void zd_tx_watchdog_enable(struct zd_usb *usb)
1108 {
1109         struct zd_usb_tx *tx = &usb->tx;
1110 
1111         if (!tx->watchdog_enabled) {
1112                 dev_dbg_f(zd_usb_dev(usb), "\n");
1113                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1114                                    ZD_TX_WATCHDOG_INTERVAL);
1115                 tx->watchdog_enabled = 1;
1116         }
1117 }
1118 
1119 void zd_tx_watchdog_disable(struct zd_usb *usb)
1120 {
1121         struct zd_usb_tx *tx = &usb->tx;
1122 
1123         if (tx->watchdog_enabled) {
1124                 dev_dbg_f(zd_usb_dev(usb), "\n");
1125                 tx->watchdog_enabled = 0;
1126                 cancel_delayed_work_sync(&tx->watchdog_work);
1127         }
1128 }
1129 
1130 static void zd_rx_idle_timer_handler(struct work_struct *work)
1131 {
1132         struct zd_usb *usb =
1133                 container_of(work, struct zd_usb, rx.idle_work.work);
1134         struct zd_mac *mac = zd_usb_to_mac(usb);
1135 
1136         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1137                 return;
1138 
1139         dev_dbg_f(zd_usb_dev(usb), "\n");
1140 
1141         /* 30 seconds since last rx, reset rx */
1142         zd_usb_reset_rx(usb);
1143 }
1144 
1145 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1146 {
1147         struct zd_usb *usb = (struct zd_usb *)param;
1148 
1149         zd_usb_reset_rx_idle_timer(usb);
1150 }
1151 
1152 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1153 {
1154         struct zd_usb_rx *rx = &usb->rx;
1155 
1156         mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1157 }
1158 
1159 static inline void init_usb_interrupt(struct zd_usb *usb)
1160 {
1161         struct zd_usb_interrupt *intr = &usb->intr;
1162 
1163         spin_lock_init(&intr->lock);
1164         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1165         init_completion(&intr->read_regs.completion);
1166         atomic_set(&intr->read_regs_enabled, 0);
1167         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1168 }
1169 
1170 static inline void init_usb_rx(struct zd_usb *usb)
1171 {
1172         struct zd_usb_rx *rx = &usb->rx;
1173 
1174         spin_lock_init(&rx->lock);
1175         mutex_init(&rx->setup_mutex);
1176         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1177                 rx->usb_packet_size = 512;
1178         } else {
1179                 rx->usb_packet_size = 64;
1180         }
1181         ZD_ASSERT(rx->fragment_length == 0);
1182         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1183         rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1184         rx->reset_timer_tasklet.data = (unsigned long)usb;
1185 }
1186 
1187 static inline void init_usb_tx(struct zd_usb *usb)
1188 {
1189         struct zd_usb_tx *tx = &usb->tx;
1190 
1191         spin_lock_init(&tx->lock);
1192         atomic_set(&tx->enabled, 0);
1193         tx->stopped = 0;
1194         skb_queue_head_init(&tx->submitted_skbs);
1195         init_usb_anchor(&tx->submitted);
1196         tx->submitted_urbs = 0;
1197         tx->watchdog_enabled = 0;
1198         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1199 }
1200 
1201 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1202                  struct usb_interface *intf)
1203 {
1204         memset(usb, 0, sizeof(*usb));
1205         usb->intf = usb_get_intf(intf);
1206         usb_set_intfdata(usb->intf, hw);
1207         init_usb_anchor(&usb->submitted_cmds);
1208         init_usb_interrupt(usb);
1209         init_usb_tx(usb);
1210         init_usb_rx(usb);
1211 }
1212 
1213 void zd_usb_clear(struct zd_usb *usb)
1214 {
1215         usb_set_intfdata(usb->intf, NULL);
1216         usb_put_intf(usb->intf);
1217         ZD_MEMCLEAR(usb, sizeof(*usb));
1218         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1219 }
1220 
1221 static const char *speed(enum usb_device_speed speed)
1222 {
1223         switch (speed) {
1224         case USB_SPEED_LOW:
1225                 return "low";
1226         case USB_SPEED_FULL:
1227                 return "full";
1228         case USB_SPEED_HIGH:
1229                 return "high";
1230         default:
1231                 return "unknown speed";
1232         }
1233 }
1234 
1235 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1236 {
1237         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1238                 le16_to_cpu(udev->descriptor.idVendor),
1239                 le16_to_cpu(udev->descriptor.idProduct),
1240                 get_bcdDevice(udev),
1241                 speed(udev->speed));
1242 }
1243 
1244 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1245 {
1246         struct usb_device *udev = interface_to_usbdev(usb->intf);
1247         return scnprint_id(udev, buffer, size);
1248 }
1249 
1250 #ifdef DEBUG
1251 static void print_id(struct usb_device *udev)
1252 {
1253         char buffer[40];
1254 
1255         scnprint_id(udev, buffer, sizeof(buffer));
1256         buffer[sizeof(buffer)-1] = 0;
1257         dev_dbg_f(&udev->dev, "%s\n", buffer);
1258 }
1259 #else
1260 #define print_id(udev) do { } while (0)
1261 #endif
1262 
1263 static int eject_installer(struct usb_interface *intf)
1264 {
1265         struct usb_device *udev = interface_to_usbdev(intf);
1266         struct usb_host_interface *iface_desc = intf->cur_altsetting;
1267         struct usb_endpoint_descriptor *endpoint;
1268         unsigned char *cmd;
1269         u8 bulk_out_ep;
1270         int r;
1271 
1272         if (iface_desc->desc.bNumEndpoints < 2)
1273                 return -ENODEV;
1274 
1275         /* Find bulk out endpoint */
1276         for (r = 1; r >= 0; r--) {
1277                 endpoint = &iface_desc->endpoint[r].desc;
1278                 if (usb_endpoint_dir_out(endpoint) &&
1279                     usb_endpoint_xfer_bulk(endpoint)) {
1280                         bulk_out_ep = endpoint->bEndpointAddress;
1281                         break;
1282                 }
1283         }
1284         if (r == -1) {
1285                 dev_err(&udev->dev,
1286                         "zd1211rw: Could not find bulk out endpoint\n");
1287                 return -ENODEV;
1288         }
1289 
1290         cmd = kzalloc(31, GFP_KERNEL);
1291         if (cmd == NULL)
1292                 return -ENODEV;
1293 
1294         /* USB bulk command block */
1295         cmd[0] = 0x55;  /* bulk command signature */
1296         cmd[1] = 0x53;  /* bulk command signature */
1297         cmd[2] = 0x42;  /* bulk command signature */
1298         cmd[3] = 0x43;  /* bulk command signature */
1299         cmd[14] = 6;    /* command length */
1300 
1301         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1302         cmd[19] = 0x2;  /* eject disc */
1303 
1304         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1305         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1306                 cmd, 31, NULL, 2000);
1307         kfree(cmd);
1308         if (r)
1309                 return r;
1310 
1311         /* At this point, the device disconnects and reconnects with the real
1312          * ID numbers. */
1313 
1314         usb_set_intfdata(intf, NULL);
1315         return 0;
1316 }
1317 
1318 int zd_usb_init_hw(struct zd_usb *usb)
1319 {
1320         int r;
1321         struct zd_mac *mac = zd_usb_to_mac(usb);
1322 
1323         dev_dbg_f(zd_usb_dev(usb), "\n");
1324 
1325         r = upload_firmware(usb);
1326         if (r) {
1327                 dev_err(zd_usb_dev(usb),
1328                        "couldn't load firmware. Error number %d\n", r);
1329                 return r;
1330         }
1331 
1332         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1333         if (r) {
1334                 dev_dbg_f(zd_usb_dev(usb),
1335                         "couldn't reset configuration. Error number %d\n", r);
1336                 return r;
1337         }
1338 
1339         r = zd_mac_init_hw(mac->hw);
1340         if (r) {
1341                 dev_dbg_f(zd_usb_dev(usb),
1342                          "couldn't initialize mac. Error number %d\n", r);
1343                 return r;
1344         }
1345 
1346         usb->initialized = 1;
1347         return 0;
1348 }
1349 
1350 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1351 {
1352         int r;
1353         struct usb_device *udev = interface_to_usbdev(intf);
1354         struct zd_usb *usb;
1355         struct ieee80211_hw *hw = NULL;
1356 
1357         print_id(udev);
1358 
1359         if (id->driver_info & DEVICE_INSTALLER)
1360                 return eject_installer(intf);
1361 
1362         switch (udev->speed) {
1363         case USB_SPEED_LOW:
1364         case USB_SPEED_FULL:
1365         case USB_SPEED_HIGH:
1366                 break;
1367         default:
1368                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1369                 r = -ENODEV;
1370                 goto error;
1371         }
1372 
1373         r = usb_reset_device(udev);
1374         if (r) {
1375                 dev_err(&intf->dev,
1376                         "couldn't reset usb device. Error number %d\n", r);
1377                 goto error;
1378         }
1379 
1380         hw = zd_mac_alloc_hw(intf);
1381         if (hw == NULL) {
1382                 r = -ENOMEM;
1383                 goto error;
1384         }
1385 
1386         usb = &zd_hw_mac(hw)->chip.usb;
1387         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1388 
1389         r = zd_mac_preinit_hw(hw);
1390         if (r) {
1391                 dev_dbg_f(&intf->dev,
1392                          "couldn't initialize mac. Error number %d\n", r);
1393                 goto error;
1394         }
1395 
1396         r = ieee80211_register_hw(hw);
1397         if (r) {
1398                 dev_dbg_f(&intf->dev,
1399                          "couldn't register device. Error number %d\n", r);
1400                 goto error;
1401         }
1402 
1403         dev_dbg_f(&intf->dev, "successful\n");
1404         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1405         return 0;
1406 error:
1407         usb_reset_device(interface_to_usbdev(intf));
1408         if (hw) {
1409                 zd_mac_clear(zd_hw_mac(hw));
1410                 ieee80211_free_hw(hw);
1411         }
1412         return r;
1413 }
1414 
1415 static void disconnect(struct usb_interface *intf)
1416 {
1417         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1418         struct zd_mac *mac;
1419         struct zd_usb *usb;
1420 
1421         /* Either something really bad happened, or we're just dealing with
1422          * a DEVICE_INSTALLER. */
1423         if (hw == NULL)
1424                 return;
1425 
1426         mac = zd_hw_mac(hw);
1427         usb = &mac->chip.usb;
1428 
1429         dev_dbg_f(zd_usb_dev(usb), "\n");
1430 
1431         ieee80211_unregister_hw(hw);
1432 
1433         /* Just in case something has gone wrong! */
1434         zd_usb_disable_tx(usb);
1435         zd_usb_disable_rx(usb);
1436         zd_usb_disable_int(usb);
1437 
1438         /* If the disconnect has been caused by a removal of the
1439          * driver module, the reset allows reloading of the driver. If the
1440          * reset will not be executed here, the upload of the firmware in the
1441          * probe function caused by the reloading of the driver will fail.
1442          */
1443         usb_reset_device(interface_to_usbdev(intf));
1444 
1445         zd_mac_clear(mac);
1446         ieee80211_free_hw(hw);
1447         dev_dbg(&intf->dev, "disconnected\n");
1448 }
1449 
1450 static void zd_usb_resume(struct zd_usb *usb)
1451 {
1452         struct zd_mac *mac = zd_usb_to_mac(usb);
1453         int r;
1454 
1455         dev_dbg_f(zd_usb_dev(usb), "\n");
1456 
1457         r = zd_op_start(zd_usb_to_hw(usb));
1458         if (r < 0) {
1459                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1460                          "with error code %d. Retrying...\n", r);
1461                 if (usb->was_running)
1462                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1463                 usb_queue_reset_device(usb->intf);
1464                 return;
1465         }
1466 
1467         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1468                 r = zd_restore_settings(mac);
1469                 if (r < 0) {
1470                         dev_dbg(zd_usb_dev(usb),
1471                                 "failed to restore settings, %d\n", r);
1472                         return;
1473                 }
1474         }
1475 }
1476 
1477 static void zd_usb_stop(struct zd_usb *usb)
1478 {
1479         dev_dbg_f(zd_usb_dev(usb), "\n");
1480 
1481         zd_op_stop(zd_usb_to_hw(usb));
1482 
1483         zd_usb_disable_tx(usb);
1484         zd_usb_disable_rx(usb);
1485         zd_usb_disable_int(usb);
1486 
1487         usb->initialized = 0;
1488 }
1489 
1490 static int pre_reset(struct usb_interface *intf)
1491 {
1492         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1493         struct zd_mac *mac;
1494         struct zd_usb *usb;
1495 
1496         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1497                 return 0;
1498 
1499         mac = zd_hw_mac(hw);
1500         usb = &mac->chip.usb;
1501 
1502         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1503 
1504         zd_usb_stop(usb);
1505 
1506         mutex_lock(&mac->chip.mutex);
1507         return 0;
1508 }
1509 
1510 static int post_reset(struct usb_interface *intf)
1511 {
1512         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1513         struct zd_mac *mac;
1514         struct zd_usb *usb;
1515 
1516         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1517                 return 0;
1518 
1519         mac = zd_hw_mac(hw);
1520         usb = &mac->chip.usb;
1521 
1522         mutex_unlock(&mac->chip.mutex);
1523 
1524         if (usb->was_running)
1525                 zd_usb_resume(usb);
1526         return 0;
1527 }
1528 
1529 static struct usb_driver driver = {
1530         .name           = KBUILD_MODNAME,
1531         .id_table       = usb_ids,
1532         .probe          = probe,
1533         .disconnect     = disconnect,
1534         .pre_reset      = pre_reset,
1535         .post_reset     = post_reset,
1536         .disable_hub_initiated_lpm = 1,
1537 };
1538 
1539 struct workqueue_struct *zd_workqueue;
1540 
1541 static int __init usb_init(void)
1542 {
1543         int r;
1544 
1545         pr_debug("%s usb_init()\n", driver.name);
1546 
1547         zd_workqueue = create_singlethread_workqueue(driver.name);
1548         if (zd_workqueue == NULL) {
1549                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1550                 return -ENOMEM;
1551         }
1552 
1553         r = usb_register(&driver);
1554         if (r) {
1555                 destroy_workqueue(zd_workqueue);
1556                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1557                        driver.name, r);
1558                 return r;
1559         }
1560 
1561         pr_debug("%s initialized\n", driver.name);
1562         return 0;
1563 }
1564 
1565 static void __exit usb_exit(void)
1566 {
1567         pr_debug("%s usb_exit()\n", driver.name);
1568         usb_deregister(&driver);
1569         destroy_workqueue(zd_workqueue);
1570 }
1571 
1572 module_init(usb_init);
1573 module_exit(usb_exit);
1574 
1575 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1576                               int *actual_length, int timeout)
1577 {
1578         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1579          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1580          * descriptor.
1581          */
1582         struct usb_host_endpoint *ep;
1583         unsigned int pipe;
1584 
1585         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1586         ep = usb_pipe_endpoint(udev, pipe);
1587         if (!ep)
1588                 return -EINVAL;
1589 
1590         if (usb_endpoint_xfer_int(&ep->desc)) {
1591                 return usb_interrupt_msg(udev, pipe, data, len,
1592                                          actual_length, timeout);
1593         } else {
1594                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1595                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1596                                     timeout);
1597         }
1598 }
1599 
1600 static void prepare_read_regs_int(struct zd_usb *usb,
1601                                   struct usb_req_read_regs *req,
1602                                   unsigned int count)
1603 {
1604         struct zd_usb_interrupt *intr = &usb->intr;
1605 
1606         spin_lock_irq(&intr->lock);
1607         atomic_set(&intr->read_regs_enabled, 1);
1608         intr->read_regs.req = req;
1609         intr->read_regs.req_count = count;
1610         reinit_completion(&intr->read_regs.completion);
1611         spin_unlock_irq(&intr->lock);
1612 }
1613 
1614 static void disable_read_regs_int(struct zd_usb *usb)
1615 {
1616         struct zd_usb_interrupt *intr = &usb->intr;
1617 
1618         spin_lock_irq(&intr->lock);
1619         atomic_set(&intr->read_regs_enabled, 0);
1620         spin_unlock_irq(&intr->lock);
1621 }
1622 
1623 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1624                             unsigned int count)
1625 {
1626         int i;
1627         struct zd_usb_interrupt *intr = &usb->intr;
1628         struct read_regs_int *rr = &intr->read_regs;
1629         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1630 
1631         /* The created block size seems to be larger than expected.
1632          * However results appear to be correct.
1633          */
1634         if (rr->length < struct_size(regs, regs, count)) {
1635                 dev_dbg_f(zd_usb_dev(usb),
1636                          "error: actual length %d less than expected %zu\n",
1637                          rr->length, struct_size(regs, regs, count));
1638                 return false;
1639         }
1640 
1641         if (rr->length > sizeof(rr->buffer)) {
1642                 dev_dbg_f(zd_usb_dev(usb),
1643                          "error: actual length %d exceeds buffer size %zu\n",
1644                          rr->length, sizeof(rr->buffer));
1645                 return false;
1646         }
1647 
1648         for (i = 0; i < count; i++) {
1649                 struct reg_data *rd = &regs->regs[i];
1650                 if (rd->addr != req->addr[i]) {
1651                         dev_dbg_f(zd_usb_dev(usb),
1652                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1653                                  le16_to_cpu(rd->addr),
1654                                  le16_to_cpu(req->addr[i]));
1655                         return false;
1656                 }
1657         }
1658 
1659         return true;
1660 }
1661 
1662 static int get_results(struct zd_usb *usb, u16 *values,
1663                        struct usb_req_read_regs *req, unsigned int count,
1664                        bool *retry)
1665 {
1666         int r;
1667         int i;
1668         struct zd_usb_interrupt *intr = &usb->intr;
1669         struct read_regs_int *rr = &intr->read_regs;
1670         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1671 
1672         spin_lock_irq(&intr->lock);
1673 
1674         r = -EIO;
1675 
1676         /* Read failed because firmware bug? */
1677         *retry = !!intr->read_regs_int_overridden;
1678         if (*retry)
1679                 goto error_unlock;
1680 
1681         if (!check_read_regs(usb, req, count)) {
1682                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1683                 goto error_unlock;
1684         }
1685 
1686         for (i = 0; i < count; i++) {
1687                 struct reg_data *rd = &regs->regs[i];
1688                 values[i] = le16_to_cpu(rd->value);
1689         }
1690 
1691         r = 0;
1692 error_unlock:
1693         spin_unlock_irq(&intr->lock);
1694         return r;
1695 }
1696 
1697 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1698                      const zd_addr_t *addresses, unsigned int count)
1699 {
1700         int r, i, req_len, actual_req_len, try_count = 0;
1701         struct usb_device *udev;
1702         struct usb_req_read_regs *req = NULL;
1703         unsigned long timeout;
1704         bool retry = false;
1705 
1706         if (count < 1) {
1707                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1708                 return -EINVAL;
1709         }
1710         if (count > USB_MAX_IOREAD16_COUNT) {
1711                 dev_dbg_f(zd_usb_dev(usb),
1712                          "error: count %u exceeds possible max %u\n",
1713                          count, USB_MAX_IOREAD16_COUNT);
1714                 return -EINVAL;
1715         }
1716         if (in_atomic()) {
1717                 dev_dbg_f(zd_usb_dev(usb),
1718                          "error: io in atomic context not supported\n");
1719                 return -EWOULDBLOCK;
1720         }
1721         if (!usb_int_enabled(usb)) {
1722                 dev_dbg_f(zd_usb_dev(usb),
1723                           "error: usb interrupt not enabled\n");
1724                 return -EWOULDBLOCK;
1725         }
1726 
1727         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1728         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1729                      sizeof(__le16) > sizeof(usb->req_buf));
1730         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1731                sizeof(usb->req_buf));
1732 
1733         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1734         req = (void *)usb->req_buf;
1735 
1736         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1737         for (i = 0; i < count; i++)
1738                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1739 
1740 retry_read:
1741         try_count++;
1742         udev = zd_usb_to_usbdev(usb);
1743         prepare_read_regs_int(usb, req, count);
1744         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1745         if (r) {
1746                 dev_dbg_f(zd_usb_dev(usb),
1747                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1748                 goto error;
1749         }
1750         if (req_len != actual_req_len) {
1751                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1752                         " req_len %d != actual_req_len %d\n",
1753                         req_len, actual_req_len);
1754                 r = -EIO;
1755                 goto error;
1756         }
1757 
1758         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1759                                               msecs_to_jiffies(50));
1760         if (!timeout) {
1761                 disable_read_regs_int(usb);
1762                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1763                 r = -ETIMEDOUT;
1764                 goto error;
1765         }
1766 
1767         r = get_results(usb, values, req, count, &retry);
1768         if (retry && try_count < 20) {
1769                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1770                                 try_count);
1771                 goto retry_read;
1772         }
1773 error:
1774         return r;
1775 }
1776 
1777 static void iowrite16v_urb_complete(struct urb *urb)
1778 {
1779         struct zd_usb *usb = urb->context;
1780 
1781         if (urb->status && !usb->cmd_error)
1782                 usb->cmd_error = urb->status;
1783 
1784         if (!usb->cmd_error &&
1785                         urb->actual_length != urb->transfer_buffer_length)
1786                 usb->cmd_error = -EIO;
1787 }
1788 
1789 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1790 {
1791         int r = 0;
1792         struct urb *urb = usb->urb_async_waiting;
1793 
1794         if (!urb)
1795                 return 0;
1796 
1797         usb->urb_async_waiting = NULL;
1798 
1799         if (!last)
1800                 urb->transfer_flags |= URB_NO_INTERRUPT;
1801 
1802         usb_anchor_urb(urb, &usb->submitted_cmds);
1803         r = usb_submit_urb(urb, GFP_KERNEL);
1804         if (r) {
1805                 usb_unanchor_urb(urb);
1806                 dev_dbg_f(zd_usb_dev(usb),
1807                         "error in usb_submit_urb(). Error number %d\n", r);
1808                 goto error;
1809         }
1810 
1811         /* fall-through with r == 0 */
1812 error:
1813         usb_free_urb(urb);
1814         return r;
1815 }
1816 
1817 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1818 {
1819         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1820         ZD_ASSERT(usb->urb_async_waiting == NULL);
1821         ZD_ASSERT(!usb->in_async);
1822 
1823         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1824 
1825         usb->in_async = 1;
1826         usb->cmd_error = 0;
1827         usb->urb_async_waiting = NULL;
1828 }
1829 
1830 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1831 {
1832         int r;
1833 
1834         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1835         ZD_ASSERT(usb->in_async);
1836 
1837         /* Submit last iowrite16v URB */
1838         r = zd_submit_waiting_urb(usb, true);
1839         if (r) {
1840                 dev_dbg_f(zd_usb_dev(usb),
1841                         "error in zd_submit_waiting_usb(). "
1842                         "Error number %d\n", r);
1843 
1844                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1845                 goto error;
1846         }
1847 
1848         if (timeout)
1849                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1850                                                         timeout);
1851         if (!timeout) {
1852                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1853                 if (usb->cmd_error == -ENOENT) {
1854                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1855                         r = -ETIMEDOUT;
1856                         goto error;
1857                 }
1858         }
1859 
1860         r = usb->cmd_error;
1861 error:
1862         usb->in_async = 0;
1863         return r;
1864 }
1865 
1866 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1867                             unsigned int count)
1868 {
1869         int r;
1870         struct usb_device *udev;
1871         struct usb_req_write_regs *req = NULL;
1872         int i, req_len;
1873         struct urb *urb;
1874         struct usb_host_endpoint *ep;
1875 
1876         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1877         ZD_ASSERT(usb->in_async);
1878 
1879         if (count == 0)
1880                 return 0;
1881         if (count > USB_MAX_IOWRITE16_COUNT) {
1882                 dev_dbg_f(zd_usb_dev(usb),
1883                         "error: count %u exceeds possible max %u\n",
1884                         count, USB_MAX_IOWRITE16_COUNT);
1885                 return -EINVAL;
1886         }
1887         if (in_atomic()) {
1888                 dev_dbg_f(zd_usb_dev(usb),
1889                         "error: io in atomic context not supported\n");
1890                 return -EWOULDBLOCK;
1891         }
1892 
1893         udev = zd_usb_to_usbdev(usb);
1894 
1895         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1896         if (!ep)
1897                 return -ENOENT;
1898 
1899         urb = usb_alloc_urb(0, GFP_KERNEL);
1900         if (!urb)
1901                 return -ENOMEM;
1902 
1903         req_len = struct_size(req, reg_writes, count);
1904         req = kmalloc(req_len, GFP_KERNEL);
1905         if (!req) {
1906                 r = -ENOMEM;
1907                 goto error;
1908         }
1909 
1910         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1911         for (i = 0; i < count; i++) {
1912                 struct reg_data *rw  = &req->reg_writes[i];
1913                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1914                 rw->value = cpu_to_le16(ioreqs[i].value);
1915         }
1916 
1917         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1918          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1919          */
1920         if (usb_endpoint_xfer_int(&ep->desc))
1921                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1922                                  req, req_len, iowrite16v_urb_complete, usb,
1923                                  ep->desc.bInterval);
1924         else
1925                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1926                                   req, req_len, iowrite16v_urb_complete, usb);
1927 
1928         urb->transfer_flags |= URB_FREE_BUFFER;
1929 
1930         /* Submit previous URB */
1931         r = zd_submit_waiting_urb(usb, false);
1932         if (r) {
1933                 dev_dbg_f(zd_usb_dev(usb),
1934                         "error in zd_submit_waiting_usb(). "
1935                         "Error number %d\n", r);
1936                 goto error;
1937         }
1938 
1939         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1940          * of currect batch except for very last.
1941          */
1942         usb->urb_async_waiting = urb;
1943         return 0;
1944 error:
1945         usb_free_urb(urb);
1946         return r;
1947 }
1948 
1949 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1950                         unsigned int count)
1951 {
1952         int r;
1953 
1954         zd_usb_iowrite16v_async_start(usb);
1955         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1956         if (r) {
1957                 zd_usb_iowrite16v_async_end(usb, 0);
1958                 return r;
1959         }
1960         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1961 }
1962 
1963 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1964 {
1965         int r;
1966         struct usb_device *udev;
1967         struct usb_req_rfwrite *req = NULL;
1968         int i, req_len, actual_req_len;
1969         u16 bit_value_template;
1970 
1971         if (in_atomic()) {
1972                 dev_dbg_f(zd_usb_dev(usb),
1973                         "error: io in atomic context not supported\n");
1974                 return -EWOULDBLOCK;
1975         }
1976         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1977                 dev_dbg_f(zd_usb_dev(usb),
1978                         "error: bits %d are smaller than"
1979                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1980                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1981                 return -EINVAL;
1982         }
1983         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1984                 dev_dbg_f(zd_usb_dev(usb),
1985                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1986                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1987                 return -EINVAL;
1988         }
1989 #ifdef DEBUG
1990         if (value & (~0UL << bits)) {
1991                 dev_dbg_f(zd_usb_dev(usb),
1992                         "error: value %#09x has bits >= %d set\n",
1993                         value, bits);
1994                 return -EINVAL;
1995         }
1996 #endif /* DEBUG */
1997 
1998         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1999 
2000         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2001         if (r) {
2002                 dev_dbg_f(zd_usb_dev(usb),
2003                         "error %d: Couldn't read ZD_CR203\n", r);
2004                 return r;
2005         }
2006         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2007 
2008         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2009         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2010                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2011                      sizeof(usb->req_buf));
2012         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2013                sizeof(usb->req_buf));
2014 
2015         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2016         req = (void *)usb->req_buf;
2017 
2018         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2019         /* 1: 3683a, but not used in ZYDAS driver */
2020         req->value = cpu_to_le16(2);
2021         req->bits = cpu_to_le16(bits);
2022 
2023         for (i = 0; i < bits; i++) {
2024                 u16 bv = bit_value_template;
2025                 if (value & (1 << (bits-1-i)))
2026                         bv |= RF_DATA;
2027                 req->bit_values[i] = cpu_to_le16(bv);
2028         }
2029 
2030         udev = zd_usb_to_usbdev(usb);
2031         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2032         if (r) {
2033                 dev_dbg_f(zd_usb_dev(usb),
2034                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2035                 goto out;
2036         }
2037         if (req_len != actual_req_len) {
2038                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2039                         " req_len %d != actual_req_len %d\n",
2040                         req_len, actual_req_len);
2041                 r = -EIO;
2042                 goto out;
2043         }
2044 
2045         /* FALL-THROUGH with r == 0 */
2046 out:
2047         return r;
2048 }

/* [<][>][^][v][top][bottom][index][help] */