root/drivers/net/wireless/realtek/rtw88/main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rtw_vif_watch_dog_iter
  2. rtw_watch_dog_work
  3. rtw_c2h_work
  4. rtw_get_channel_params
  5. rtw_set_channel
  6. rtw_vif_write_addr
  7. rtw_vif_port_config
  8. hw_bw_cap_to_bitamp
  9. rtw_hw_config_rf_ant_num
  10. get_vht_ra_mask
  11. get_rate_id
  12. rtw_update_sta_info
  13. rtw_power_on
  14. rtw_core_start
  15. rtw_power_off
  16. rtw_core_stop
  17. rtw_init_ht_cap
  18. rtw_init_vht_cap
  19. rtw_set_supported_band
  20. rtw_unset_supported_band
  21. rtw_load_firmware_cb
  22. rtw_load_firmware
  23. rtw_chip_parameter_setup
  24. rtw_chip_efuse_enable
  25. rtw_dump_hw_feature
  26. rtw_chip_efuse_disable
  27. rtw_chip_efuse_info_setup
  28. rtw_chip_board_info_setup
  29. rtw_chip_info_setup
  30. rtw_core_init
  31. rtw_core_deinit
  32. rtw_register_hw
  33. rtw_unregister_hw

   1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2 /* Copyright(c) 2018-2019  Realtek Corporation
   3  */
   4 
   5 #include "main.h"
   6 #include "regd.h"
   7 #include "fw.h"
   8 #include "ps.h"
   9 #include "sec.h"
  10 #include "mac.h"
  11 #include "coex.h"
  12 #include "phy.h"
  13 #include "reg.h"
  14 #include "efuse.h"
  15 #include "debug.h"
  16 
  17 static bool rtw_fw_support_lps;
  18 unsigned int rtw_debug_mask;
  19 EXPORT_SYMBOL(rtw_debug_mask);
  20 
  21 module_param_named(support_lps, rtw_fw_support_lps, bool, 0644);
  22 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
  23 
  24 MODULE_PARM_DESC(support_lps, "Set Y to enable Leisure Power Save support, to turn radio off between beacons");
  25 MODULE_PARM_DESC(debug_mask, "Debugging mask");
  26 
  27 static struct ieee80211_channel rtw_channeltable_2g[] = {
  28         {.center_freq = 2412, .hw_value = 1,},
  29         {.center_freq = 2417, .hw_value = 2,},
  30         {.center_freq = 2422, .hw_value = 3,},
  31         {.center_freq = 2427, .hw_value = 4,},
  32         {.center_freq = 2432, .hw_value = 5,},
  33         {.center_freq = 2437, .hw_value = 6,},
  34         {.center_freq = 2442, .hw_value = 7,},
  35         {.center_freq = 2447, .hw_value = 8,},
  36         {.center_freq = 2452, .hw_value = 9,},
  37         {.center_freq = 2457, .hw_value = 10,},
  38         {.center_freq = 2462, .hw_value = 11,},
  39         {.center_freq = 2467, .hw_value = 12,},
  40         {.center_freq = 2472, .hw_value = 13,},
  41         {.center_freq = 2484, .hw_value = 14,},
  42 };
  43 
  44 static struct ieee80211_channel rtw_channeltable_5g[] = {
  45         {.center_freq = 5180, .hw_value = 36,},
  46         {.center_freq = 5200, .hw_value = 40,},
  47         {.center_freq = 5220, .hw_value = 44,},
  48         {.center_freq = 5240, .hw_value = 48,},
  49         {.center_freq = 5260, .hw_value = 52,},
  50         {.center_freq = 5280, .hw_value = 56,},
  51         {.center_freq = 5300, .hw_value = 60,},
  52         {.center_freq = 5320, .hw_value = 64,},
  53         {.center_freq = 5500, .hw_value = 100,},
  54         {.center_freq = 5520, .hw_value = 104,},
  55         {.center_freq = 5540, .hw_value = 108,},
  56         {.center_freq = 5560, .hw_value = 112,},
  57         {.center_freq = 5580, .hw_value = 116,},
  58         {.center_freq = 5600, .hw_value = 120,},
  59         {.center_freq = 5620, .hw_value = 124,},
  60         {.center_freq = 5640, .hw_value = 128,},
  61         {.center_freq = 5660, .hw_value = 132,},
  62         {.center_freq = 5680, .hw_value = 136,},
  63         {.center_freq = 5700, .hw_value = 140,},
  64         {.center_freq = 5745, .hw_value = 149,},
  65         {.center_freq = 5765, .hw_value = 153,},
  66         {.center_freq = 5785, .hw_value = 157,},
  67         {.center_freq = 5805, .hw_value = 161,},
  68         {.center_freq = 5825, .hw_value = 165,
  69          .flags = IEEE80211_CHAN_NO_HT40MINUS},
  70 };
  71 
  72 static struct ieee80211_rate rtw_ratetable[] = {
  73         {.bitrate = 10, .hw_value = 0x00,},
  74         {.bitrate = 20, .hw_value = 0x01,},
  75         {.bitrate = 55, .hw_value = 0x02,},
  76         {.bitrate = 110, .hw_value = 0x03,},
  77         {.bitrate = 60, .hw_value = 0x04,},
  78         {.bitrate = 90, .hw_value = 0x05,},
  79         {.bitrate = 120, .hw_value = 0x06,},
  80         {.bitrate = 180, .hw_value = 0x07,},
  81         {.bitrate = 240, .hw_value = 0x08,},
  82         {.bitrate = 360, .hw_value = 0x09,},
  83         {.bitrate = 480, .hw_value = 0x0a,},
  84         {.bitrate = 540, .hw_value = 0x0b,},
  85 };
  86 
  87 static struct ieee80211_supported_band rtw_band_2ghz = {
  88         .band = NL80211_BAND_2GHZ,
  89 
  90         .channels = rtw_channeltable_2g,
  91         .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
  92 
  93         .bitrates = rtw_ratetable,
  94         .n_bitrates = ARRAY_SIZE(rtw_ratetable),
  95 
  96         .ht_cap = {0},
  97         .vht_cap = {0},
  98 };
  99 
 100 static struct ieee80211_supported_band rtw_band_5ghz = {
 101         .band = NL80211_BAND_5GHZ,
 102 
 103         .channels = rtw_channeltable_5g,
 104         .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
 105 
 106         /* 5G has no CCK rates */
 107         .bitrates = rtw_ratetable + 4,
 108         .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
 109 
 110         .ht_cap = {0},
 111         .vht_cap = {0},
 112 };
 113 
 114 struct rtw_watch_dog_iter_data {
 115         struct rtw_vif *rtwvif;
 116         bool active;
 117         u8 assoc_cnt;
 118 };
 119 
 120 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
 121                                    struct ieee80211_vif *vif)
 122 {
 123         struct rtw_watch_dog_iter_data *iter_data = data;
 124         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
 125 
 126         if (vif->type == NL80211_IFTYPE_STATION) {
 127                 if (vif->bss_conf.assoc) {
 128                         iter_data->assoc_cnt++;
 129                         iter_data->rtwvif = rtwvif;
 130                 }
 131                 if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD ||
 132                     rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD)
 133                         iter_data->active = true;
 134         } else {
 135                 /* only STATION mode can enter lps */
 136                 iter_data->active = true;
 137         }
 138 
 139         rtwvif->stats.tx_unicast = 0;
 140         rtwvif->stats.rx_unicast = 0;
 141         rtwvif->stats.tx_cnt = 0;
 142         rtwvif->stats.rx_cnt = 0;
 143 }
 144 
 145 /* process TX/RX statistics periodically for hardware,
 146  * the information helps hardware to enhance performance
 147  */
 148 static void rtw_watch_dog_work(struct work_struct *work)
 149 {
 150         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
 151                                               watch_dog_work.work);
 152         struct rtw_watch_dog_iter_data data = {};
 153         bool busy_traffic = rtw_flag_check(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
 154 
 155         if (!rtw_flag_check(rtwdev, RTW_FLAG_RUNNING))
 156                 return;
 157 
 158         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
 159                                      RTW_WATCH_DOG_DELAY_TIME);
 160 
 161         if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
 162                 rtw_flag_set(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
 163         else
 164                 rtw_flag_clear(rtwdev, RTW_FLAG_BUSY_TRAFFIC);
 165 
 166         if (busy_traffic != rtw_flag_check(rtwdev, RTW_FLAG_BUSY_TRAFFIC))
 167                 rtw_coex_wl_status_change_notify(rtwdev);
 168 
 169         /* reset tx/rx statictics */
 170         rtwdev->stats.tx_unicast = 0;
 171         rtwdev->stats.rx_unicast = 0;
 172         rtwdev->stats.tx_cnt = 0;
 173         rtwdev->stats.rx_cnt = 0;
 174 
 175         /* use atomic version to avoid taking local->iflist_mtx mutex */
 176         rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
 177 
 178         /* fw supports only one station associated to enter lps, if there are
 179          * more than two stations associated to the AP, then we can not enter
 180          * lps, because fw does not handle the overlapped beacon interval
 181          */
 182         if (rtw_fw_support_lps &&
 183             data.rtwvif && !data.active && data.assoc_cnt == 1)
 184                 rtw_enter_lps(rtwdev, data.rtwvif);
 185 
 186         if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
 187                 return;
 188 
 189         rtw_phy_dynamic_mechanism(rtwdev);
 190 
 191         rtwdev->watch_dog_cnt++;
 192 }
 193 
 194 static void rtw_c2h_work(struct work_struct *work)
 195 {
 196         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
 197         struct sk_buff *skb, *tmp;
 198 
 199         skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
 200                 skb_unlink(skb, &rtwdev->c2h_queue);
 201                 rtw_fw_c2h_cmd_handle(rtwdev, skb);
 202                 dev_kfree_skb_any(skb);
 203         }
 204 }
 205 
 206 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
 207                             struct rtw_channel_params *chan_params)
 208 {
 209         struct ieee80211_channel *channel = chandef->chan;
 210         enum nl80211_chan_width width = chandef->width;
 211         u8 *cch_by_bw = chan_params->cch_by_bw;
 212         u32 primary_freq, center_freq;
 213         u8 center_chan;
 214         u8 bandwidth = RTW_CHANNEL_WIDTH_20;
 215         u8 primary_chan_idx = 0;
 216         u8 i;
 217 
 218         center_chan = channel->hw_value;
 219         primary_freq = channel->center_freq;
 220         center_freq = chandef->center_freq1;
 221 
 222         /* assign the center channel used while 20M bw is selected */
 223         cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
 224 
 225         switch (width) {
 226         case NL80211_CHAN_WIDTH_20_NOHT:
 227         case NL80211_CHAN_WIDTH_20:
 228                 bandwidth = RTW_CHANNEL_WIDTH_20;
 229                 primary_chan_idx = 0;
 230                 break;
 231         case NL80211_CHAN_WIDTH_40:
 232                 bandwidth = RTW_CHANNEL_WIDTH_40;
 233                 if (primary_freq > center_freq) {
 234                         primary_chan_idx = 1;
 235                         center_chan -= 2;
 236                 } else {
 237                         primary_chan_idx = 2;
 238                         center_chan += 2;
 239                 }
 240                 break;
 241         case NL80211_CHAN_WIDTH_80:
 242                 bandwidth = RTW_CHANNEL_WIDTH_80;
 243                 if (primary_freq > center_freq) {
 244                         if (primary_freq - center_freq == 10) {
 245                                 primary_chan_idx = 1;
 246                                 center_chan -= 2;
 247                         } else {
 248                                 primary_chan_idx = 3;
 249                                 center_chan -= 6;
 250                         }
 251                         /* assign the center channel used
 252                          * while 40M bw is selected
 253                          */
 254                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
 255                 } else {
 256                         if (center_freq - primary_freq == 10) {
 257                                 primary_chan_idx = 2;
 258                                 center_chan += 2;
 259                         } else {
 260                                 primary_chan_idx = 4;
 261                                 center_chan += 6;
 262                         }
 263                         /* assign the center channel used
 264                          * while 40M bw is selected
 265                          */
 266                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
 267                 }
 268                 break;
 269         default:
 270                 center_chan = 0;
 271                 break;
 272         }
 273 
 274         chan_params->center_chan = center_chan;
 275         chan_params->bandwidth = bandwidth;
 276         chan_params->primary_chan_idx = primary_chan_idx;
 277 
 278         /* assign the center channel used while current bw is selected */
 279         cch_by_bw[bandwidth] = center_chan;
 280 
 281         for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
 282                 cch_by_bw[i] = 0;
 283 }
 284 
 285 void rtw_set_channel(struct rtw_dev *rtwdev)
 286 {
 287         struct ieee80211_hw *hw = rtwdev->hw;
 288         struct rtw_hal *hal = &rtwdev->hal;
 289         struct rtw_chip_info *chip = rtwdev->chip;
 290         struct rtw_channel_params ch_param;
 291         u8 center_chan, bandwidth, primary_chan_idx;
 292         u8 i;
 293 
 294         rtw_get_channel_params(&hw->conf.chandef, &ch_param);
 295         if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
 296                 return;
 297 
 298         center_chan = ch_param.center_chan;
 299         bandwidth = ch_param.bandwidth;
 300         primary_chan_idx = ch_param.primary_chan_idx;
 301 
 302         hal->current_band_width = bandwidth;
 303         hal->current_channel = center_chan;
 304         hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
 305 
 306         for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
 307                 hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
 308 
 309         chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
 310 
 311         if (hal->current_band_type == RTW_BAND_5G) {
 312                 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
 313         } else {
 314                 if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING))
 315                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
 316                 else
 317                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
 318         }
 319 
 320         rtw_phy_set_tx_power_level(rtwdev, center_chan);
 321 }
 322 
 323 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
 324 {
 325         int i;
 326 
 327         for (i = 0; i < ETH_ALEN; i++)
 328                 rtw_write8(rtwdev, start + i, addr[i]);
 329 }
 330 
 331 void rtw_vif_port_config(struct rtw_dev *rtwdev,
 332                          struct rtw_vif *rtwvif,
 333                          u32 config)
 334 {
 335         u32 addr, mask;
 336 
 337         if (config & PORT_SET_MAC_ADDR) {
 338                 addr = rtwvif->conf->mac_addr.addr;
 339                 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
 340         }
 341         if (config & PORT_SET_BSSID) {
 342                 addr = rtwvif->conf->bssid.addr;
 343                 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
 344         }
 345         if (config & PORT_SET_NET_TYPE) {
 346                 addr = rtwvif->conf->net_type.addr;
 347                 mask = rtwvif->conf->net_type.mask;
 348                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
 349         }
 350         if (config & PORT_SET_AID) {
 351                 addr = rtwvif->conf->aid.addr;
 352                 mask = rtwvif->conf->aid.mask;
 353                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
 354         }
 355         if (config & PORT_SET_BCN_CTRL) {
 356                 addr = rtwvif->conf->bcn_ctrl.addr;
 357                 mask = rtwvif->conf->bcn_ctrl.mask;
 358                 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
 359         }
 360 }
 361 
 362 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
 363 {
 364         u8 bw = 0;
 365 
 366         switch (bw_cap) {
 367         case EFUSE_HW_CAP_IGNORE:
 368         case EFUSE_HW_CAP_SUPP_BW80:
 369                 bw |= BIT(RTW_CHANNEL_WIDTH_80);
 370                 /* fall through */
 371         case EFUSE_HW_CAP_SUPP_BW40:
 372                 bw |= BIT(RTW_CHANNEL_WIDTH_40);
 373                 /* fall through */
 374         default:
 375                 bw |= BIT(RTW_CHANNEL_WIDTH_20);
 376                 break;
 377         }
 378 
 379         return bw;
 380 }
 381 
 382 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
 383 {
 384         struct rtw_hal *hal = &rtwdev->hal;
 385 
 386         if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
 387             hw_ant_num >= hal->rf_path_num)
 388                 return;
 389 
 390         switch (hw_ant_num) {
 391         case 1:
 392                 hal->rf_type = RF_1T1R;
 393                 hal->rf_path_num = 1;
 394                 hal->antenna_tx = BB_PATH_A;
 395                 hal->antenna_rx = BB_PATH_A;
 396                 break;
 397         default:
 398                 WARN(1, "invalid hw configuration from efuse\n");
 399                 break;
 400         }
 401 }
 402 
 403 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
 404 {
 405         u64 ra_mask = 0;
 406         u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
 407         u8 vht_mcs_cap;
 408         int i, nss;
 409 
 410         /* 4SS, every two bits for MCS7/8/9 */
 411         for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
 412                 vht_mcs_cap = mcs_map & 0x3;
 413                 switch (vht_mcs_cap) {
 414                 case 2: /* MCS9 */
 415                         ra_mask |= 0x3ffULL << nss;
 416                         break;
 417                 case 1: /* MCS8 */
 418                         ra_mask |= 0x1ffULL << nss;
 419                         break;
 420                 case 0: /* MCS7 */
 421                         ra_mask |= 0x0ffULL << nss;
 422                         break;
 423                 default:
 424                         break;
 425                 }
 426         }
 427 
 428         return ra_mask;
 429 }
 430 
 431 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
 432 {
 433         u8 rate_id = 0;
 434 
 435         switch (wireless_set) {
 436         case WIRELESS_CCK:
 437                 rate_id = RTW_RATEID_B_20M;
 438                 break;
 439         case WIRELESS_OFDM:
 440                 rate_id = RTW_RATEID_G;
 441                 break;
 442         case WIRELESS_CCK | WIRELESS_OFDM:
 443                 rate_id = RTW_RATEID_BG;
 444                 break;
 445         case WIRELESS_OFDM | WIRELESS_HT:
 446                 if (tx_num == 1)
 447                         rate_id = RTW_RATEID_GN_N1SS;
 448                 else if (tx_num == 2)
 449                         rate_id = RTW_RATEID_GN_N2SS;
 450                 else if (tx_num == 3)
 451                         rate_id = RTW_RATEID_ARFR5_N_3SS;
 452                 break;
 453         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
 454                 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
 455                         if (tx_num == 1)
 456                                 rate_id = RTW_RATEID_BGN_40M_1SS;
 457                         else if (tx_num == 2)
 458                                 rate_id = RTW_RATEID_BGN_40M_2SS;
 459                         else if (tx_num == 3)
 460                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
 461                         else if (tx_num == 4)
 462                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
 463                 } else {
 464                         if (tx_num == 1)
 465                                 rate_id = RTW_RATEID_BGN_20M_1SS;
 466                         else if (tx_num == 2)
 467                                 rate_id = RTW_RATEID_BGN_20M_2SS;
 468                         else if (tx_num == 3)
 469                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
 470                         else if (tx_num == 4)
 471                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
 472                 }
 473                 break;
 474         case WIRELESS_OFDM | WIRELESS_VHT:
 475                 if (tx_num == 1)
 476                         rate_id = RTW_RATEID_ARFR1_AC_1SS;
 477                 else if (tx_num == 2)
 478                         rate_id = RTW_RATEID_ARFR0_AC_2SS;
 479                 else if (tx_num == 3)
 480                         rate_id = RTW_RATEID_ARFR4_AC_3SS;
 481                 else if (tx_num == 4)
 482                         rate_id = RTW_RATEID_ARFR6_AC_4SS;
 483                 break;
 484         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
 485                 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
 486                         if (tx_num == 1)
 487                                 rate_id = RTW_RATEID_ARFR1_AC_1SS;
 488                         else if (tx_num == 2)
 489                                 rate_id = RTW_RATEID_ARFR0_AC_2SS;
 490                         else if (tx_num == 3)
 491                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
 492                         else if (tx_num == 4)
 493                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
 494                 } else {
 495                         if (tx_num == 1)
 496                                 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
 497                         else if (tx_num == 2)
 498                                 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
 499                         else if (tx_num == 3)
 500                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
 501                         else if (tx_num == 4)
 502                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
 503                 }
 504                 break;
 505         default:
 506                 break;
 507         }
 508 
 509         return rate_id;
 510 }
 511 
 512 #define RA_MASK_CCK_RATES       0x0000f
 513 #define RA_MASK_OFDM_RATES      0x00ff0
 514 #define RA_MASK_HT_RATES_1SS    (0xff000ULL << 0)
 515 #define RA_MASK_HT_RATES_2SS    (0xff000ULL << 8)
 516 #define RA_MASK_HT_RATES_3SS    (0xff000ULL << 16)
 517 #define RA_MASK_HT_RATES        (RA_MASK_HT_RATES_1SS | \
 518                                  RA_MASK_HT_RATES_2SS | \
 519                                  RA_MASK_HT_RATES_3SS)
 520 #define RA_MASK_VHT_RATES_1SS   (0x3ff000ULL << 0)
 521 #define RA_MASK_VHT_RATES_2SS   (0x3ff000ULL << 10)
 522 #define RA_MASK_VHT_RATES_3SS   (0x3ff000ULL << 20)
 523 #define RA_MASK_VHT_RATES       (RA_MASK_VHT_RATES_1SS | \
 524                                  RA_MASK_VHT_RATES_2SS | \
 525                                  RA_MASK_VHT_RATES_3SS)
 526 #define RA_MASK_CCK_IN_HT       0x00005
 527 #define RA_MASK_CCK_IN_VHT      0x00005
 528 #define RA_MASK_OFDM_IN_VHT     0x00010
 529 #define RA_MASK_OFDM_IN_HT_2G   0x00010
 530 #define RA_MASK_OFDM_IN_HT_5G   0x00030
 531 
 532 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
 533 {
 534         struct ieee80211_sta *sta = si->sta;
 535         struct rtw_efuse *efuse = &rtwdev->efuse;
 536         struct rtw_hal *hal = &rtwdev->hal;
 537         u8 rssi_level;
 538         u8 wireless_set;
 539         u8 bw_mode;
 540         u8 rate_id;
 541         u8 rf_type = RF_1T1R;
 542         u8 stbc_en = 0;
 543         u8 ldpc_en = 0;
 544         u8 tx_num = 1;
 545         u64 ra_mask = 0;
 546         bool is_vht_enable = false;
 547         bool is_support_sgi = false;
 548 
 549         if (sta->vht_cap.vht_supported) {
 550                 is_vht_enable = true;
 551                 ra_mask |= get_vht_ra_mask(sta);
 552                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
 553                         stbc_en = VHT_STBC_EN;
 554                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
 555                         ldpc_en = VHT_LDPC_EN;
 556                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
 557                         is_support_sgi = true;
 558         } else if (sta->ht_cap.ht_supported) {
 559                 ra_mask |= (sta->ht_cap.mcs.rx_mask[1] << 20) |
 560                            (sta->ht_cap.mcs.rx_mask[0] << 12);
 561                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
 562                         stbc_en = HT_STBC_EN;
 563                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
 564                         ldpc_en = HT_LDPC_EN;
 565                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
 566                     sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
 567                         is_support_sgi = true;
 568         }
 569 
 570         if (efuse->hw_cap.nss == 1)
 571                 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
 572 
 573         if (hal->current_band_type == RTW_BAND_5G) {
 574                 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
 575                 if (sta->vht_cap.vht_supported) {
 576                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
 577                         wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
 578                 } else if (sta->ht_cap.ht_supported) {
 579                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
 580                         wireless_set = WIRELESS_OFDM | WIRELESS_HT;
 581                 } else {
 582                         wireless_set = WIRELESS_OFDM;
 583                 }
 584         } else if (hal->current_band_type == RTW_BAND_2G) {
 585                 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
 586                 if (sta->vht_cap.vht_supported) {
 587                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
 588                                    RA_MASK_OFDM_IN_VHT;
 589                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
 590                                        WIRELESS_HT | WIRELESS_VHT;
 591                 } else if (sta->ht_cap.ht_supported) {
 592                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
 593                                    RA_MASK_OFDM_IN_HT_2G;
 594                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
 595                                        WIRELESS_HT;
 596                 } else if (sta->supp_rates[0] <= 0xf) {
 597                         wireless_set = WIRELESS_CCK;
 598                 } else {
 599                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
 600                 }
 601         } else {
 602                 rtw_err(rtwdev, "Unknown band type\n");
 603                 wireless_set = 0;
 604         }
 605 
 606         switch (sta->bandwidth) {
 607         case IEEE80211_STA_RX_BW_80:
 608                 bw_mode = RTW_CHANNEL_WIDTH_80;
 609                 break;
 610         case IEEE80211_STA_RX_BW_40:
 611                 bw_mode = RTW_CHANNEL_WIDTH_40;
 612                 break;
 613         default:
 614                 bw_mode = RTW_CHANNEL_WIDTH_20;
 615                 break;
 616         }
 617 
 618         if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
 619                 tx_num = 2;
 620                 rf_type = RF_2T2R;
 621         } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
 622                 tx_num = 2;
 623                 rf_type = RF_2T2R;
 624         }
 625 
 626         rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
 627 
 628         if (wireless_set != WIRELESS_CCK) {
 629                 rssi_level = si->rssi_level;
 630                 if (rssi_level == 0)
 631                         ra_mask &= 0xffffffffffffffffULL;
 632                 else if (rssi_level == 1)
 633                         ra_mask &= 0xfffffffffffffff0ULL;
 634                 else if (rssi_level == 2)
 635                         ra_mask &= 0xffffffffffffefe0ULL;
 636                 else if (rssi_level == 3)
 637                         ra_mask &= 0xffffffffffffcfc0ULL;
 638                 else if (rssi_level == 4)
 639                         ra_mask &= 0xffffffffffff8f80ULL;
 640                 else if (rssi_level >= 5)
 641                         ra_mask &= 0xffffffffffff0f00ULL;
 642         }
 643 
 644         si->bw_mode = bw_mode;
 645         si->stbc_en = stbc_en;
 646         si->ldpc_en = ldpc_en;
 647         si->rf_type = rf_type;
 648         si->wireless_set = wireless_set;
 649         si->sgi_enable = is_support_sgi;
 650         si->vht_enable = is_vht_enable;
 651         si->ra_mask = ra_mask;
 652         si->rate_id = rate_id;
 653 
 654         rtw_fw_send_ra_info(rtwdev, si);
 655 }
 656 
 657 static int rtw_power_on(struct rtw_dev *rtwdev)
 658 {
 659         struct rtw_chip_info *chip = rtwdev->chip;
 660         struct rtw_fw_state *fw = &rtwdev->fw;
 661         bool wifi_only;
 662         int ret;
 663 
 664         ret = rtw_hci_setup(rtwdev);
 665         if (ret) {
 666                 rtw_err(rtwdev, "failed to setup hci\n");
 667                 goto err;
 668         }
 669 
 670         /* power on MAC before firmware downloaded */
 671         ret = rtw_mac_power_on(rtwdev);
 672         if (ret) {
 673                 rtw_err(rtwdev, "failed to power on mac\n");
 674                 goto err;
 675         }
 676 
 677         wait_for_completion(&fw->completion);
 678         if (!fw->firmware) {
 679                 ret = -EINVAL;
 680                 rtw_err(rtwdev, "failed to load firmware\n");
 681                 goto err;
 682         }
 683 
 684         ret = rtw_download_firmware(rtwdev, fw);
 685         if (ret) {
 686                 rtw_err(rtwdev, "failed to download firmware\n");
 687                 goto err_off;
 688         }
 689 
 690         /* config mac after firmware downloaded */
 691         ret = rtw_mac_init(rtwdev);
 692         if (ret) {
 693                 rtw_err(rtwdev, "failed to configure mac\n");
 694                 goto err_off;
 695         }
 696 
 697         chip->ops->phy_set_param(rtwdev);
 698 
 699         ret = rtw_hci_start(rtwdev);
 700         if (ret) {
 701                 rtw_err(rtwdev, "failed to start hci\n");
 702                 goto err_off;
 703         }
 704 
 705         /* send H2C after HCI has started */
 706         rtw_fw_send_general_info(rtwdev);
 707         rtw_fw_send_phydm_info(rtwdev);
 708 
 709         wifi_only = !rtwdev->efuse.btcoex;
 710         rtw_coex_power_on_setting(rtwdev);
 711         rtw_coex_init_hw_config(rtwdev, wifi_only);
 712 
 713         return 0;
 714 
 715 err_off:
 716         rtw_mac_power_off(rtwdev);
 717 
 718 err:
 719         return ret;
 720 }
 721 
 722 int rtw_core_start(struct rtw_dev *rtwdev)
 723 {
 724         int ret;
 725 
 726         ret = rtw_power_on(rtwdev);
 727         if (ret)
 728                 return ret;
 729 
 730         rtw_sec_enable_sec_engine(rtwdev);
 731 
 732         /* rcr reset after powered on */
 733         rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
 734 
 735         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
 736                                      RTW_WATCH_DOG_DELAY_TIME);
 737 
 738         rtw_flag_set(rtwdev, RTW_FLAG_RUNNING);
 739 
 740         return 0;
 741 }
 742 
 743 static void rtw_power_off(struct rtw_dev *rtwdev)
 744 {
 745         rtwdev->hci.ops->stop(rtwdev);
 746         rtw_mac_power_off(rtwdev);
 747 }
 748 
 749 void rtw_core_stop(struct rtw_dev *rtwdev)
 750 {
 751         struct rtw_coex *coex = &rtwdev->coex;
 752 
 753         rtw_flag_clear(rtwdev, RTW_FLAG_RUNNING);
 754         rtw_flag_clear(rtwdev, RTW_FLAG_FW_RUNNING);
 755 
 756         cancel_delayed_work_sync(&rtwdev->watch_dog_work);
 757         cancel_delayed_work_sync(&coex->bt_relink_work);
 758         cancel_delayed_work_sync(&coex->bt_reenable_work);
 759         cancel_delayed_work_sync(&coex->defreeze_work);
 760 
 761         rtw_power_off(rtwdev);
 762 }
 763 
 764 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
 765                             struct ieee80211_sta_ht_cap *ht_cap)
 766 {
 767         struct rtw_efuse *efuse = &rtwdev->efuse;
 768 
 769         ht_cap->ht_supported = true;
 770         ht_cap->cap = 0;
 771         ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
 772                         IEEE80211_HT_CAP_MAX_AMSDU |
 773                         IEEE80211_HT_CAP_LDPC_CODING |
 774                         (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
 775         if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
 776                 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
 777                                 IEEE80211_HT_CAP_DSSSCCK40 |
 778                                 IEEE80211_HT_CAP_SGI_40;
 779         ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
 780         ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
 781         ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
 782         if (efuse->hw_cap.nss > 1) {
 783                 ht_cap->mcs.rx_mask[0] = 0xFF;
 784                 ht_cap->mcs.rx_mask[1] = 0xFF;
 785                 ht_cap->mcs.rx_mask[4] = 0x01;
 786                 ht_cap->mcs.rx_highest = cpu_to_le16(300);
 787         } else {
 788                 ht_cap->mcs.rx_mask[0] = 0xFF;
 789                 ht_cap->mcs.rx_mask[1] = 0x00;
 790                 ht_cap->mcs.rx_mask[4] = 0x01;
 791                 ht_cap->mcs.rx_highest = cpu_to_le16(150);
 792         }
 793 }
 794 
 795 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
 796                              struct ieee80211_sta_vht_cap *vht_cap)
 797 {
 798         struct rtw_efuse *efuse = &rtwdev->efuse;
 799         u16 mcs_map;
 800         __le16 highest;
 801 
 802         if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
 803             efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
 804                 return;
 805 
 806         vht_cap->vht_supported = true;
 807         vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
 808                        IEEE80211_VHT_CAP_RXLDPC |
 809                        IEEE80211_VHT_CAP_SHORT_GI_80 |
 810                        IEEE80211_VHT_CAP_TXSTBC |
 811                        IEEE80211_VHT_CAP_RXSTBC_1 |
 812                        IEEE80211_VHT_CAP_HTC_VHT |
 813                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
 814                        0;
 815         mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
 816                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
 817                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
 818                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
 819                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
 820                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
 821                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
 822         if (efuse->hw_cap.nss > 1) {
 823                 highest = cpu_to_le16(780);
 824                 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
 825         } else {
 826                 highest = cpu_to_le16(390);
 827                 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
 828         }
 829 
 830         vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
 831         vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
 832         vht_cap->vht_mcs.rx_highest = highest;
 833         vht_cap->vht_mcs.tx_highest = highest;
 834 }
 835 
 836 static void rtw_set_supported_band(struct ieee80211_hw *hw,
 837                                    struct rtw_chip_info *chip)
 838 {
 839         struct rtw_dev *rtwdev = hw->priv;
 840         struct ieee80211_supported_band *sband;
 841 
 842         if (chip->band & RTW_BAND_2G) {
 843                 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
 844                 if (!sband)
 845                         goto err_out;
 846                 if (chip->ht_supported)
 847                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
 848                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
 849         }
 850 
 851         if (chip->band & RTW_BAND_5G) {
 852                 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
 853                 if (!sband)
 854                         goto err_out;
 855                 if (chip->ht_supported)
 856                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
 857                 if (chip->vht_supported)
 858                         rtw_init_vht_cap(rtwdev, &sband->vht_cap);
 859                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
 860         }
 861 
 862         return;
 863 
 864 err_out:
 865         rtw_err(rtwdev, "failed to set supported band\n");
 866         kfree(sband);
 867 }
 868 
 869 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
 870                                      struct rtw_chip_info *chip)
 871 {
 872         kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
 873         kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
 874 }
 875 
 876 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
 877 {
 878         struct rtw_dev *rtwdev = context;
 879         struct rtw_fw_state *fw = &rtwdev->fw;
 880 
 881         if (!firmware)
 882                 rtw_err(rtwdev, "failed to request firmware\n");
 883 
 884         fw->firmware = firmware;
 885         complete_all(&fw->completion);
 886 }
 887 
 888 static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
 889 {
 890         struct rtw_fw_state *fw = &rtwdev->fw;
 891         int ret;
 892 
 893         init_completion(&fw->completion);
 894 
 895         ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
 896                                       GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
 897         if (ret) {
 898                 rtw_err(rtwdev, "async firmware request failed\n");
 899                 return ret;
 900         }
 901 
 902         return 0;
 903 }
 904 
 905 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
 906 {
 907         struct rtw_chip_info *chip = rtwdev->chip;
 908         struct rtw_hal *hal = &rtwdev->hal;
 909         struct rtw_efuse *efuse = &rtwdev->efuse;
 910         int ret = 0;
 911 
 912         switch (rtw_hci_type(rtwdev)) {
 913         case RTW_HCI_TYPE_PCIE:
 914                 rtwdev->hci.rpwm_addr = 0x03d9;
 915                 break;
 916         default:
 917                 rtw_err(rtwdev, "unsupported hci type\n");
 918                 return -EINVAL;
 919         }
 920 
 921         hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
 922         hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
 923         hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
 924         hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
 925         if (hal->chip_version & BIT_RF_TYPE_ID) {
 926                 hal->rf_type = RF_2T2R;
 927                 hal->rf_path_num = 2;
 928                 hal->antenna_tx = BB_PATH_AB;
 929                 hal->antenna_rx = BB_PATH_AB;
 930         } else {
 931                 hal->rf_type = RF_1T1R;
 932                 hal->rf_path_num = 1;
 933                 hal->antenna_tx = BB_PATH_A;
 934                 hal->antenna_rx = BB_PATH_A;
 935         }
 936 
 937         if (hal->fab_version == 2)
 938                 hal->fab_version = 1;
 939         else if (hal->fab_version == 1)
 940                 hal->fab_version = 2;
 941 
 942         efuse->physical_size = chip->phy_efuse_size;
 943         efuse->logical_size = chip->log_efuse_size;
 944         efuse->protect_size = chip->ptct_efuse_size;
 945 
 946         /* default use ack */
 947         rtwdev->hal.rcr |= BIT_VHT_DACK;
 948 
 949         return ret;
 950 }
 951 
 952 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
 953 {
 954         struct rtw_fw_state *fw = &rtwdev->fw;
 955         int ret;
 956 
 957         ret = rtw_hci_setup(rtwdev);
 958         if (ret) {
 959                 rtw_err(rtwdev, "failed to setup hci\n");
 960                 goto err;
 961         }
 962 
 963         ret = rtw_mac_power_on(rtwdev);
 964         if (ret) {
 965                 rtw_err(rtwdev, "failed to power on mac\n");
 966                 goto err;
 967         }
 968 
 969         rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
 970 
 971         wait_for_completion(&fw->completion);
 972         if (!fw->firmware) {
 973                 ret = -EINVAL;
 974                 rtw_err(rtwdev, "failed to load firmware\n");
 975                 goto err;
 976         }
 977 
 978         ret = rtw_download_firmware(rtwdev, fw);
 979         if (ret) {
 980                 rtw_err(rtwdev, "failed to download firmware\n");
 981                 goto err_off;
 982         }
 983 
 984         return 0;
 985 
 986 err_off:
 987         rtw_mac_power_off(rtwdev);
 988 
 989 err:
 990         return ret;
 991 }
 992 
 993 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
 994 {
 995         struct rtw_efuse *efuse = &rtwdev->efuse;
 996         u8 hw_feature[HW_FEATURE_LEN];
 997         u8 id;
 998         u8 bw;
 999         int i;
1000 
1001         id = rtw_read8(rtwdev, REG_C2HEVT);
1002         if (id != C2H_HW_FEATURE_REPORT) {
1003                 rtw_err(rtwdev, "failed to read hw feature report\n");
1004                 return -EBUSY;
1005         }
1006 
1007         for (i = 0; i < HW_FEATURE_LEN; i++)
1008                 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1009 
1010         rtw_write8(rtwdev, REG_C2HEVT, 0);
1011 
1012         bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1013         efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1014         efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1015         efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1016         efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1017         efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1018 
1019         rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1020 
1021         if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1022             efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1023                 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1024 
1025         rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1026                 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1027                 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1028                 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1029 
1030         return 0;
1031 }
1032 
1033 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1034 {
1035         rtw_hci_stop(rtwdev);
1036         rtw_mac_power_off(rtwdev);
1037 }
1038 
1039 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1040 {
1041         struct rtw_efuse *efuse = &rtwdev->efuse;
1042         int ret;
1043 
1044         mutex_lock(&rtwdev->mutex);
1045 
1046         /* power on mac to read efuse */
1047         ret = rtw_chip_efuse_enable(rtwdev);
1048         if (ret)
1049                 goto out_unlock;
1050 
1051         ret = rtw_parse_efuse_map(rtwdev);
1052         if (ret)
1053                 goto out_disable;
1054 
1055         ret = rtw_dump_hw_feature(rtwdev);
1056         if (ret)
1057                 goto out_disable;
1058 
1059         ret = rtw_check_supported_rfe(rtwdev);
1060         if (ret)
1061                 goto out_disable;
1062 
1063         if (efuse->crystal_cap == 0xff)
1064                 efuse->crystal_cap = 0;
1065         if (efuse->pa_type_2g == 0xff)
1066                 efuse->pa_type_2g = 0;
1067         if (efuse->pa_type_5g == 0xff)
1068                 efuse->pa_type_5g = 0;
1069         if (efuse->lna_type_2g == 0xff)
1070                 efuse->lna_type_2g = 0;
1071         if (efuse->lna_type_5g == 0xff)
1072                 efuse->lna_type_5g = 0;
1073         if (efuse->channel_plan == 0xff)
1074                 efuse->channel_plan = 0x7f;
1075         if (efuse->rf_board_option == 0xff)
1076                 efuse->rf_board_option = 0;
1077         if (efuse->bt_setting & BIT(0))
1078                 efuse->share_ant = true;
1079         if (efuse->regd == 0xff)
1080                 efuse->regd = 0;
1081 
1082         efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1083         efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1084         efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1085         efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1086         efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1087 
1088 out_disable:
1089         rtw_chip_efuse_disable(rtwdev);
1090 
1091 out_unlock:
1092         mutex_unlock(&rtwdev->mutex);
1093         return ret;
1094 }
1095 
1096 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1097 {
1098         struct rtw_hal *hal = &rtwdev->hal;
1099         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1100 
1101         if (!rfe_def)
1102                 return -ENODEV;
1103 
1104         rtw_phy_setup_phy_cond(rtwdev, 0);
1105 
1106         rtw_phy_init_tx_power(rtwdev);
1107         rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1108         rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1109         rtw_phy_tx_power_by_rate_config(hal);
1110         rtw_phy_tx_power_limit_config(hal);
1111 
1112         return 0;
1113 }
1114 
1115 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1116 {
1117         int ret;
1118 
1119         ret = rtw_chip_parameter_setup(rtwdev);
1120         if (ret) {
1121                 rtw_err(rtwdev, "failed to setup chip parameters\n");
1122                 goto err_out;
1123         }
1124 
1125         ret = rtw_chip_efuse_info_setup(rtwdev);
1126         if (ret) {
1127                 rtw_err(rtwdev, "failed to setup chip efuse info\n");
1128                 goto err_out;
1129         }
1130 
1131         ret = rtw_chip_board_info_setup(rtwdev);
1132         if (ret) {
1133                 rtw_err(rtwdev, "failed to setup chip board info\n");
1134                 goto err_out;
1135         }
1136 
1137         return 0;
1138 
1139 err_out:
1140         return ret;
1141 }
1142 EXPORT_SYMBOL(rtw_chip_info_setup);
1143 
1144 int rtw_core_init(struct rtw_dev *rtwdev)
1145 {
1146         struct rtw_coex *coex = &rtwdev->coex;
1147         int ret;
1148 
1149         INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1150 
1151         timer_setup(&rtwdev->tx_report.purge_timer,
1152                     rtw_tx_report_purge_timer, 0);
1153 
1154         INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1155         INIT_DELAYED_WORK(&rtwdev->lps_work, rtw_lps_work);
1156         INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1157         INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1158         INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1159         INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1160         skb_queue_head_init(&rtwdev->c2h_queue);
1161         skb_queue_head_init(&rtwdev->coex.queue);
1162         skb_queue_head_init(&rtwdev->tx_report.queue);
1163 
1164         spin_lock_init(&rtwdev->dm_lock);
1165         spin_lock_init(&rtwdev->rf_lock);
1166         spin_lock_init(&rtwdev->h2c.lock);
1167         spin_lock_init(&rtwdev->tx_report.q_lock);
1168 
1169         mutex_init(&rtwdev->mutex);
1170         mutex_init(&rtwdev->coex.mutex);
1171         mutex_init(&rtwdev->hal.tx_power_mutex);
1172 
1173         init_waitqueue_head(&rtwdev->coex.wait);
1174 
1175         rtwdev->sec.total_cam_num = 32;
1176         rtwdev->hal.current_channel = 1;
1177         set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1178 
1179         mutex_lock(&rtwdev->mutex);
1180         rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
1181         mutex_unlock(&rtwdev->mutex);
1182 
1183         /* default rx filter setting */
1184         rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1185                           BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1186                           BIT_AB | BIT_AM | BIT_APM;
1187 
1188         ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
1189         if (ret) {
1190                 rtw_warn(rtwdev, "no firmware loaded\n");
1191                 return ret;
1192         }
1193 
1194         return 0;
1195 }
1196 EXPORT_SYMBOL(rtw_core_init);
1197 
1198 void rtw_core_deinit(struct rtw_dev *rtwdev)
1199 {
1200         struct rtw_fw_state *fw = &rtwdev->fw;
1201         struct rtw_rsvd_page *rsvd_pkt, *tmp;
1202         unsigned long flags;
1203 
1204         if (fw->firmware)
1205                 release_firmware(fw->firmware);
1206 
1207         spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1208         skb_queue_purge(&rtwdev->tx_report.queue);
1209         spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1210 
1211         list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
1212                 list_del(&rsvd_pkt->list);
1213                 kfree(rsvd_pkt);
1214         }
1215 
1216         mutex_destroy(&rtwdev->mutex);
1217         mutex_destroy(&rtwdev->coex.mutex);
1218         mutex_destroy(&rtwdev->hal.tx_power_mutex);
1219 }
1220 EXPORT_SYMBOL(rtw_core_deinit);
1221 
1222 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1223 {
1224         int max_tx_headroom = 0;
1225         int ret;
1226 
1227         /* TODO: USB & SDIO may need extra room? */
1228         max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1229 
1230         hw->extra_tx_headroom = max_tx_headroom;
1231         hw->queues = IEEE80211_NUM_ACS;
1232         hw->sta_data_size = sizeof(struct rtw_sta_info);
1233         hw->vif_data_size = sizeof(struct rtw_vif);
1234 
1235         ieee80211_hw_set(hw, SIGNAL_DBM);
1236         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1237         ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1238         ieee80211_hw_set(hw, MFP_CAPABLE);
1239         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1240         ieee80211_hw_set(hw, SUPPORTS_PS);
1241         ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1242         ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1243         ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1244 
1245         hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1246                                      BIT(NL80211_IFTYPE_AP) |
1247                                      BIT(NL80211_IFTYPE_ADHOC) |
1248                                      BIT(NL80211_IFTYPE_MESH_POINT);
1249 
1250         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1251                             WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1252 
1253         hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1254 
1255         rtw_set_supported_band(hw, rtwdev->chip);
1256         SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1257 
1258         rtw_regd_init(rtwdev, rtw_regd_notifier);
1259 
1260         ret = ieee80211_register_hw(hw);
1261         if (ret) {
1262                 rtw_err(rtwdev, "failed to register hw\n");
1263                 return ret;
1264         }
1265 
1266         if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1267                 rtw_err(rtwdev, "regulatory_hint fail\n");
1268 
1269         rtw_debugfs_init(rtwdev);
1270 
1271         return 0;
1272 }
1273 EXPORT_SYMBOL(rtw_register_hw);
1274 
1275 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1276 {
1277         struct rtw_chip_info *chip = rtwdev->chip;
1278 
1279         ieee80211_unregister_hw(hw);
1280         rtw_unset_supported_band(hw, chip);
1281 }
1282 EXPORT_SYMBOL(rtw_unregister_hw);
1283 
1284 MODULE_AUTHOR("Realtek Corporation");
1285 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1286 MODULE_LICENSE("Dual BSD/GPL");

/* [<][>][^][v][top][bottom][index][help] */