root/drivers/thermal/tegra/soctherm.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ccroc_writel
  2. ccroc_readl
  3. enable_tsensor
  4. translate_temp
  5. tegra_thermctl_get_temp
  6. enforce_temp_range
  7. thermtrip_program
  8. throttrip_program
  9. find_throttle_cfg_by_name
  10. tsensor_group_thermtrip_get
  11. tegra_thermctl_set_trip_temp
  12. tegra_thermctl_get_trend
  13. thermal_irq_enable
  14. thermal_irq_disable
  15. tegra_thermctl_set_trips
  16. get_hot_temp
  17. tegra_soctherm_set_hwtrips
  18. soctherm_thermal_isr
  19. soctherm_thermal_isr_thread
  20. soctherm_oc_intr_enable
  21. soctherm_handle_alarm
  22. soctherm_edp_isr_thread
  23. soctherm_edp_isr
  24. soctherm_oc_irq_lock
  25. soctherm_oc_irq_sync_unlock
  26. soctherm_oc_irq_enable
  27. soctherm_oc_irq_disable
  28. soctherm_oc_irq_set_type
  29. soctherm_oc_irq_map
  30. soctherm_irq_domain_xlate_twocell
  31. soctherm_oc_int_init
  32. regs_show
  33. soctherm_debug_init
  34. soctherm_debug_init
  35. soctherm_clk_enable
  36. throt_get_cdev_max_state
  37. throt_get_cdev_cur_state
  38. throt_set_cdev_state
  39. soctherm_thermtrips_parse
  40. soctherm_oc_cfg_parse
  41. soctherm_throt_cfg_parse
  42. soctherm_init_hw_throt_cdev
  43. throttlectl_cpu_level_cfg
  44. throttlectl_cpu_level_select
  45. throttlectl_cpu_mn
  46. throttlectl_gpu_level_select
  47. soctherm_oc_cfg_program
  48. soctherm_throttle_program
  49. tegra_soctherm_throttle
  50. soctherm_interrupts_init
  51. soctherm_init
  52. tegra_soctherm_probe
  53. tegra_soctherm_remove
  54. soctherm_suspend
  55. soctherm_resume

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
   4  *
   5  * Author:
   6  *      Mikko Perttunen <mperttunen@nvidia.com>
   7  *
   8  * This software is licensed under the terms of the GNU General Public
   9  * License version 2, as published by the Free Software Foundation, and
  10  * may be copied, distributed, and modified under those terms.
  11  *
  12  * This program is distributed in the hope that it will be useful,
  13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15  * GNU General Public License for more details.
  16  *
  17  */
  18 
  19 #include <linux/debugfs.h>
  20 #include <linux/bitops.h>
  21 #include <linux/clk.h>
  22 #include <linux/delay.h>
  23 #include <linux/err.h>
  24 #include <linux/interrupt.h>
  25 #include <linux/io.h>
  26 #include <linux/irq.h>
  27 #include <linux/irqdomain.h>
  28 #include <linux/module.h>
  29 #include <linux/of.h>
  30 #include <linux/platform_device.h>
  31 #include <linux/reset.h>
  32 #include <linux/thermal.h>
  33 
  34 #include <dt-bindings/thermal/tegra124-soctherm.h>
  35 
  36 #include "../thermal_core.h"
  37 #include "soctherm.h"
  38 
  39 #define SENSOR_CONFIG0                          0
  40 #define SENSOR_CONFIG0_STOP                     BIT(0)
  41 #define SENSOR_CONFIG0_CPTR_OVER                BIT(2)
  42 #define SENSOR_CONFIG0_OVER                     BIT(3)
  43 #define SENSOR_CONFIG0_TCALC_OVER               BIT(4)
  44 #define SENSOR_CONFIG0_TALL_MASK                (0xfffff << 8)
  45 #define SENSOR_CONFIG0_TALL_SHIFT               8
  46 
  47 #define SENSOR_CONFIG1                          4
  48 #define SENSOR_CONFIG1_TSAMPLE_MASK             0x3ff
  49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT            0
  50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK            (0x3f << 15)
  51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT           15
  52 #define SENSOR_CONFIG1_TEN_COUNT_MASK           (0x3f << 24)
  53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT          24
  54 #define SENSOR_CONFIG1_TEMP_ENABLE              BIT(31)
  55 
  56 /*
  57  * SENSOR_CONFIG2 is defined in soctherm.h
  58  * because, it will be used by tegra_soctherm_fuse.c
  59  */
  60 
  61 #define SENSOR_STATUS0                          0xc
  62 #define SENSOR_STATUS0_VALID_MASK               BIT(31)
  63 #define SENSOR_STATUS0_CAPTURE_MASK             0xffff
  64 
  65 #define SENSOR_STATUS1                          0x10
  66 #define SENSOR_STATUS1_TEMP_VALID_MASK          BIT(31)
  67 #define SENSOR_STATUS1_TEMP_MASK                0xffff
  68 
  69 #define READBACK_VALUE_MASK                     0xff00
  70 #define READBACK_VALUE_SHIFT                    8
  71 #define READBACK_ADD_HALF                       BIT(7)
  72 #define READBACK_NEGATE                         BIT(0)
  73 
  74 /*
  75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
  76  * because it will be used by tegraxxx_soctherm.c
  77  */
  78 #define THERMCTL_LVL0_CPU0_EN_MASK              BIT(8)
  79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK       (0x3 << 5)
  80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT      0x1
  81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY      0x2
  82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK       (0x3 << 3)
  83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT      0x1
  84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY      0x2
  85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK       BIT(2)
  86 #define THERMCTL_LVL0_CPU0_STATUS_MASK          0x3
  87 
  88 #define THERMCTL_LVL0_UP_STATS                  0x10
  89 #define THERMCTL_LVL0_DN_STATS                  0x14
  90 
  91 #define THERMCTL_INTR_STATUS                    0x84
  92 
  93 #define TH_INTR_MD0_MASK                        BIT(25)
  94 #define TH_INTR_MU0_MASK                        BIT(24)
  95 #define TH_INTR_GD0_MASK                        BIT(17)
  96 #define TH_INTR_GU0_MASK                        BIT(16)
  97 #define TH_INTR_CD0_MASK                        BIT(9)
  98 #define TH_INTR_CU0_MASK                        BIT(8)
  99 #define TH_INTR_PD0_MASK                        BIT(1)
 100 #define TH_INTR_PU0_MASK                        BIT(0)
 101 #define TH_INTR_IGNORE_MASK                     0xFCFCFCFC
 102 
 103 #define THERMCTL_STATS_CTL                      0x94
 104 #define STATS_CTL_CLR_DN                        0x8
 105 #define STATS_CTL_EN_DN                         0x4
 106 #define STATS_CTL_CLR_UP                        0x2
 107 #define STATS_CTL_EN_UP                         0x1
 108 
 109 #define OC1_CFG                                 0x310
 110 #define OC1_CFG_LONG_LATENCY_MASK               BIT(6)
 111 #define OC1_CFG_HW_RESTORE_MASK                 BIT(5)
 112 #define OC1_CFG_PWR_GOOD_MASK_MASK              BIT(4)
 113 #define OC1_CFG_THROTTLE_MODE_MASK              (0x3 << 2)
 114 #define OC1_CFG_ALARM_POLARITY_MASK             BIT(1)
 115 #define OC1_CFG_EN_THROTTLE_MASK                BIT(0)
 116 
 117 #define OC1_CNT_THRESHOLD                       0x314
 118 #define OC1_THROTTLE_PERIOD                     0x318
 119 #define OC1_ALARM_COUNT                         0x31c
 120 #define OC1_FILTER                              0x320
 121 #define OC1_STATS                               0x3a8
 122 
 123 #define OC_INTR_STATUS                          0x39c
 124 #define OC_INTR_ENABLE                          0x3a0
 125 #define OC_INTR_DISABLE                         0x3a4
 126 #define OC_STATS_CTL                            0x3c4
 127 #define OC_STATS_CTL_CLR_ALL                    0x2
 128 #define OC_STATS_CTL_EN_ALL                     0x1
 129 
 130 #define OC_INTR_OC1_MASK                        BIT(0)
 131 #define OC_INTR_OC2_MASK                        BIT(1)
 132 #define OC_INTR_OC3_MASK                        BIT(2)
 133 #define OC_INTR_OC4_MASK                        BIT(3)
 134 #define OC_INTR_OC5_MASK                        BIT(4)
 135 
 136 #define THROT_GLOBAL_CFG                        0x400
 137 #define THROT_GLOBAL_ENB_MASK                   BIT(0)
 138 
 139 #define CPU_PSKIP_STATUS                        0x418
 140 #define XPU_PSKIP_STATUS_M_MASK                 (0xff << 12)
 141 #define XPU_PSKIP_STATUS_N_MASK                 (0xff << 4)
 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK       BIT(1)
 143 #define XPU_PSKIP_STATUS_ENABLED_MASK           BIT(0)
 144 
 145 #define THROT_PRIORITY_LOCK                     0x424
 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK       0xff
 147 
 148 #define THROT_STATUS                            0x428
 149 #define THROT_STATUS_BREACH_MASK                BIT(12)
 150 #define THROT_STATUS_STATE_MASK                 (0xff << 4)
 151 #define THROT_STATUS_ENABLED_MASK               BIT(0)
 152 
 153 #define THROT_PSKIP_CTRL_LITE_CPU               0x430
 154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
 160 
 161 #define THROT_VECT_NONE                         0x0 /* 3'b000 */
 162 #define THROT_VECT_LOW                          0x1 /* 3'b001 */
 163 #define THROT_VECT_MED                          0x3 /* 3'b011 */
 164 #define THROT_VECT_HIGH                         0x7 /* 3'b111 */
 165 
 166 #define THROT_PSKIP_RAMP_LITE_CPU               0x434
 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK   BIT(31)
 168 #define THROT_PSKIP_RAMP_DURATION_MASK          (0xffff << 8)
 169 #define THROT_PSKIP_RAMP_STEP_MASK              0xff
 170 
 171 #define THROT_PRIORITY_LITE                     0x444
 172 #define THROT_PRIORITY_LITE_PRIO_MASK           0xff
 173 
 174 #define THROT_DELAY_LITE                        0x448
 175 #define THROT_DELAY_LITE_DELAY_MASK             0xff
 176 
 177 /* car register offsets needed for enabling HW throttling */
 178 #define CAR_SUPER_CCLKG_DIVIDER                 0x36c
 179 #define CDIVG_USE_THERM_CONTROLS_MASK           BIT(30)
 180 
 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
 182 #define CCROC_SUPER_CCLKG_DIVIDER               0x024
 183 
 184 #define CCROC_GLOBAL_CFG                        0x148
 185 
 186 #define CCROC_THROT_PSKIP_RAMP_CPU              0x150
 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK     BIT(31)
 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK    (0xffff << 8)
 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK        0xff
 190 
 191 #define CCROC_THROT_PSKIP_CTRL_CPU              0x154
 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK         BIT(31)
 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK    (0xff << 8)
 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK     0xff
 195 
 196 /* get val from register(r) mask bits(m) */
 197 #define REG_GET_MASK(r, m)      (((r) & (m)) >> (ffs(m) - 1))
 198 /* set val(v) to mask bits(m) of register(r) */
 199 #define REG_SET_MASK(r, m, v)   (((r) & ~(m)) | \
 200                                  (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
 201 
 202 /* get dividend from the depth */
 203 #define THROT_DEPTH_DIVIDEND(depth)     ((256 * (100 - (depth)) / 100) - 1)
 204 
 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
 206  * level        vector
 207  * NONE         3'b000
 208  * LOW          3'b001
 209  * MED          3'b011
 210  * HIGH         3'b111
 211  */
 212 #define THROT_LEVEL_TO_DEPTH(level)     ((0x1 << (level)) - 1)
 213 
 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
 215 #define THROT_OFFSET                    0x30
 216 #define THROT_PSKIP_CTRL(throt, dev)    (THROT_PSKIP_CTRL_LITE_CPU + \
 217                                         (THROT_OFFSET * throt) + (8 * dev))
 218 #define THROT_PSKIP_RAMP(throt, dev)    (THROT_PSKIP_RAMP_LITE_CPU + \
 219                                         (THROT_OFFSET * throt) + (8 * dev))
 220 
 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
 222 #define THROT_PRIORITY_CTRL(throt)      (THROT_PRIORITY_LITE + \
 223                                         (THROT_OFFSET * throt))
 224 #define THROT_DELAY_CTRL(throt)         (THROT_DELAY_LITE + \
 225                                         (THROT_OFFSET * throt))
 226 
 227 #define ALARM_OFFSET                    0x14
 228 #define ALARM_CFG(throt)                (OC1_CFG + \
 229                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 230 
 231 #define ALARM_CNT_THRESHOLD(throt)      (OC1_CNT_THRESHOLD + \
 232                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 233 
 234 #define ALARM_THROTTLE_PERIOD(throt)    (OC1_THROTTLE_PERIOD + \
 235                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 236 
 237 #define ALARM_ALARM_COUNT(throt)        (OC1_ALARM_COUNT + \
 238                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 239 
 240 #define ALARM_FILTER(throt)             (OC1_FILTER + \
 241                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
 242 
 243 #define ALARM_STATS(throt)              (OC1_STATS + \
 244                                         (4 * (throt - THROTTLE_OC1)))
 245 
 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
 247 #define CCROC_THROT_OFFSET                      0x0c
 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
 249                                                 (CCROC_THROT_OFFSET * vect))
 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
 251                                                 (CCROC_THROT_OFFSET * vect))
 252 
 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
 254 #define THERMCTL_LVL_REGS_SIZE          0x20
 255 #define THERMCTL_LVL_REG(rg, lv)        ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
 256 
 257 #define OC_THROTTLE_MODE_DISABLED       0
 258 #define OC_THROTTLE_MODE_BRIEF          2
 259 
 260 static const int min_low_temp = -127000;
 261 static const int max_high_temp = 127000;
 262 
 263 enum soctherm_throttle_id {
 264         THROTTLE_LIGHT = 0,
 265         THROTTLE_HEAVY,
 266         THROTTLE_OC1,
 267         THROTTLE_OC2,
 268         THROTTLE_OC3,
 269         THROTTLE_OC4,
 270         THROTTLE_OC5, /* OC5 is reserved */
 271         THROTTLE_SIZE,
 272 };
 273 
 274 enum soctherm_oc_irq_id {
 275         TEGRA_SOC_OC_IRQ_1,
 276         TEGRA_SOC_OC_IRQ_2,
 277         TEGRA_SOC_OC_IRQ_3,
 278         TEGRA_SOC_OC_IRQ_4,
 279         TEGRA_SOC_OC_IRQ_5,
 280         TEGRA_SOC_OC_IRQ_MAX,
 281 };
 282 
 283 enum soctherm_throttle_dev_id {
 284         THROTTLE_DEV_CPU = 0,
 285         THROTTLE_DEV_GPU,
 286         THROTTLE_DEV_SIZE,
 287 };
 288 
 289 static const char *const throt_names[] = {
 290         [THROTTLE_LIGHT] = "light",
 291         [THROTTLE_HEAVY] = "heavy",
 292         [THROTTLE_OC1]   = "oc1",
 293         [THROTTLE_OC2]   = "oc2",
 294         [THROTTLE_OC3]   = "oc3",
 295         [THROTTLE_OC4]   = "oc4",
 296         [THROTTLE_OC5]   = "oc5",
 297 };
 298 
 299 struct tegra_soctherm;
 300 struct tegra_thermctl_zone {
 301         void __iomem *reg;
 302         struct device *dev;
 303         struct tegra_soctherm *ts;
 304         struct thermal_zone_device *tz;
 305         const struct tegra_tsensor_group *sg;
 306 };
 307 
 308 struct soctherm_oc_cfg {
 309         u32 active_low;
 310         u32 throt_period;
 311         u32 alarm_cnt_thresh;
 312         u32 alarm_filter;
 313         u32 mode;
 314         bool intr_en;
 315 };
 316 
 317 struct soctherm_throt_cfg {
 318         const char *name;
 319         unsigned int id;
 320         u8 priority;
 321         u8 cpu_throt_level;
 322         u32 cpu_throt_depth;
 323         u32 gpu_throt_level;
 324         struct soctherm_oc_cfg oc_cfg;
 325         struct thermal_cooling_device *cdev;
 326         bool init;
 327 };
 328 
 329 struct tegra_soctherm {
 330         struct reset_control *reset;
 331         struct clk *clock_tsensor;
 332         struct clk *clock_soctherm;
 333         void __iomem *regs;
 334         void __iomem *clk_regs;
 335         void __iomem *ccroc_regs;
 336 
 337         int thermal_irq;
 338         int edp_irq;
 339 
 340         u32 *calib;
 341         struct thermal_zone_device **thermctl_tzs;
 342         struct tegra_soctherm_soc *soc;
 343 
 344         struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
 345 
 346         struct dentry *debugfs_dir;
 347 
 348         struct mutex thermctl_lock;
 349 };
 350 
 351 struct soctherm_oc_irq_chip_data {
 352         struct mutex            irq_lock; /* serialize OC IRQs */
 353         struct irq_chip         irq_chip;
 354         struct irq_domain       *domain;
 355         int                     irq_enable;
 356 };
 357 
 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
 359 
 360 /**
 361  * ccroc_writel() - writes a value to a CCROC register
 362  * @ts: pointer to a struct tegra_soctherm
 363  * @v: the value to write
 364  * @reg: the register offset
 365  *
 366  * Writes @v to @reg.  No return value.
 367  */
 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
 369 {
 370         writel(value, (ts->ccroc_regs + reg));
 371 }
 372 
 373 /**
 374  * ccroc_readl() - reads specified register from CCROC IP block
 375  * @ts: pointer to a struct tegra_soctherm
 376  * @reg: register address to be read
 377  *
 378  * Return: the value of the register
 379  */
 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
 381 {
 382         return readl(ts->ccroc_regs + reg);
 383 }
 384 
 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
 386 {
 387         const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
 388         void __iomem *base = tegra->regs + sensor->base;
 389         unsigned int val;
 390 
 391         val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
 392         writel(val, base + SENSOR_CONFIG0);
 393 
 394         val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
 395         val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
 396         val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
 397         val |= SENSOR_CONFIG1_TEMP_ENABLE;
 398         writel(val, base + SENSOR_CONFIG1);
 399 
 400         writel(tegra->calib[i], base + SENSOR_CONFIG2);
 401 }
 402 
 403 /*
 404  * Translate from soctherm readback format to millicelsius.
 405  * The soctherm readback format in bits is as follows:
 406  *   TTTTTTTT H______N
 407  * where T's contain the temperature in Celsius,
 408  * H denotes an addition of 0.5 Celsius and N denotes negation
 409  * of the final value.
 410  */
 411 static int translate_temp(u16 val)
 412 {
 413         int t;
 414 
 415         t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
 416         if (val & READBACK_ADD_HALF)
 417                 t += 500;
 418         if (val & READBACK_NEGATE)
 419                 t *= -1;
 420 
 421         return t;
 422 }
 423 
 424 static int tegra_thermctl_get_temp(void *data, int *out_temp)
 425 {
 426         struct tegra_thermctl_zone *zone = data;
 427         u32 val;
 428 
 429         val = readl(zone->reg);
 430         val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
 431         *out_temp = translate_temp(val);
 432 
 433         return 0;
 434 }
 435 
 436 /**
 437  * enforce_temp_range() - check and enforce temperature range [min, max]
 438  * @trip_temp: the trip temperature to check
 439  *
 440  * Checks and enforces the permitted temperature range that SOC_THERM
 441  * HW can support This is
 442  * done while taking care of precision.
 443  *
 444  * Return: The precision adjusted capped temperature in millicelsius.
 445  */
 446 static int enforce_temp_range(struct device *dev, int trip_temp)
 447 {
 448         int temp;
 449 
 450         temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
 451         if (temp != trip_temp)
 452                 dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
 453                          trip_temp, temp);
 454         return temp;
 455 }
 456 
 457 /**
 458  * thermtrip_program() - Configures the hardware to shut down the
 459  * system if a given sensor group reaches a given temperature
 460  * @dev: ptr to the struct device for the SOC_THERM IP block
 461  * @sg: pointer to the sensor group to set the thermtrip temperature for
 462  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
 463  *
 464  * Sets the thermal trip threshold of the given sensor group to be the
 465  * @trip_temp.  If this threshold is crossed, the hardware will shut
 466  * down.
 467  *
 468  * Note that, although @trip_temp is specified in millicelsius, the
 469  * hardware is programmed in degrees Celsius.
 470  *
 471  * Return: 0 upon success, or %-EINVAL upon failure.
 472  */
 473 static int thermtrip_program(struct device *dev,
 474                              const struct tegra_tsensor_group *sg,
 475                              int trip_temp)
 476 {
 477         struct tegra_soctherm *ts = dev_get_drvdata(dev);
 478         int temp;
 479         u32 r;
 480 
 481         if (!sg || !sg->thermtrip_threshold_mask)
 482                 return -EINVAL;
 483 
 484         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
 485 
 486         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
 487         r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
 488         r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
 489         r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
 490         writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
 491 
 492         return 0;
 493 }
 494 
 495 /**
 496  * throttrip_program() - Configures the hardware to throttle the
 497  * pulse if a given sensor group reaches a given temperature
 498  * @dev: ptr to the struct device for the SOC_THERM IP block
 499  * @sg: pointer to the sensor group to set the thermtrip temperature for
 500  * @stc: pointer to the throttle need to be triggered
 501  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
 502  *
 503  * Sets the thermal trip threshold and throttle event of the given sensor
 504  * group. If this threshold is crossed, the hardware will trigger the
 505  * throttle.
 506  *
 507  * Note that, although @trip_temp is specified in millicelsius, the
 508  * hardware is programmed in degrees Celsius.
 509  *
 510  * Return: 0 upon success, or %-EINVAL upon failure.
 511  */
 512 static int throttrip_program(struct device *dev,
 513                              const struct tegra_tsensor_group *sg,
 514                              struct soctherm_throt_cfg *stc,
 515                              int trip_temp)
 516 {
 517         struct tegra_soctherm *ts = dev_get_drvdata(dev);
 518         int temp, cpu_throt, gpu_throt;
 519         unsigned int throt;
 520         u32 r, reg_off;
 521 
 522         if (!sg || !stc || !stc->init)
 523                 return -EINVAL;
 524 
 525         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
 526 
 527         /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
 528         throt = stc->id;
 529         reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
 530 
 531         if (throt == THROTTLE_LIGHT) {
 532                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
 533                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
 534         } else {
 535                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
 536                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
 537                 if (throt != THROTTLE_HEAVY)
 538                         dev_warn(dev,
 539                                  "invalid throt id %d - assuming HEAVY",
 540                                  throt);
 541         }
 542 
 543         r = readl(ts->regs + reg_off);
 544         r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
 545         r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
 546         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
 547         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
 548         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
 549         writel(r, ts->regs + reg_off);
 550 
 551         return 0;
 552 }
 553 
 554 static struct soctherm_throt_cfg *
 555 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
 556 {
 557         unsigned int i;
 558 
 559         for (i = 0; ts->throt_cfgs[i].name; i++)
 560                 if (!strcmp(ts->throt_cfgs[i].name, name))
 561                         return &ts->throt_cfgs[i];
 562 
 563         return NULL;
 564 }
 565 
 566 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
 567 {
 568         int i, temp = min_low_temp;
 569         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
 570 
 571         if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
 572                 return temp;
 573 
 574         if (tt) {
 575                 for (i = 0; i < ts->soc->num_ttgs; i++) {
 576                         if (tt[i].id == id)
 577                                 return tt[i].temp;
 578                 }
 579         }
 580 
 581         return temp;
 582 }
 583 
 584 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
 585 {
 586         struct tegra_thermctl_zone *zone = data;
 587         struct thermal_zone_device *tz = zone->tz;
 588         struct tegra_soctherm *ts = zone->ts;
 589         const struct tegra_tsensor_group *sg = zone->sg;
 590         struct device *dev = zone->dev;
 591         enum thermal_trip_type type;
 592         int ret;
 593 
 594         if (!tz)
 595                 return -EINVAL;
 596 
 597         ret = tz->ops->get_trip_type(tz, trip, &type);
 598         if (ret)
 599                 return ret;
 600 
 601         if (type == THERMAL_TRIP_CRITICAL) {
 602                 /*
 603                  * If thermtrips property is set in DT,
 604                  * doesn't need to program critical type trip to HW,
 605                  * if not, program critical trip to HW.
 606                  */
 607                 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
 608                         return thermtrip_program(dev, sg, temp);
 609                 else
 610                         return 0;
 611 
 612         } else if (type == THERMAL_TRIP_HOT) {
 613                 int i;
 614 
 615                 for (i = 0; i < THROTTLE_SIZE; i++) {
 616                         struct thermal_cooling_device *cdev;
 617                         struct soctherm_throt_cfg *stc;
 618 
 619                         if (!ts->throt_cfgs[i].init)
 620                                 continue;
 621 
 622                         cdev = ts->throt_cfgs[i].cdev;
 623                         if (get_thermal_instance(tz, cdev, trip))
 624                                 stc = find_throttle_cfg_by_name(ts, cdev->type);
 625                         else
 626                                 continue;
 627 
 628                         return throttrip_program(dev, sg, stc, temp);
 629                 }
 630         }
 631 
 632         return 0;
 633 }
 634 
 635 static int tegra_thermctl_get_trend(void *data, int trip,
 636                                     enum thermal_trend *trend)
 637 {
 638         struct tegra_thermctl_zone *zone = data;
 639         struct thermal_zone_device *tz = zone->tz;
 640         int trip_temp, temp, last_temp, ret;
 641 
 642         if (!tz)
 643                 return -EINVAL;
 644 
 645         ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
 646         if (ret)
 647                 return ret;
 648 
 649         temp = READ_ONCE(tz->temperature);
 650         last_temp = READ_ONCE(tz->last_temperature);
 651 
 652         if (temp > trip_temp) {
 653                 if (temp >= last_temp)
 654                         *trend = THERMAL_TREND_RAISING;
 655                 else
 656                         *trend = THERMAL_TREND_STABLE;
 657         } else if (temp < trip_temp) {
 658                 *trend = THERMAL_TREND_DROPPING;
 659         } else {
 660                 *trend = THERMAL_TREND_STABLE;
 661         }
 662 
 663         return 0;
 664 }
 665 
 666 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
 667 {
 668         u32 r;
 669 
 670         /* multiple zones could be handling and setting trips at once */
 671         mutex_lock(&zn->ts->thermctl_lock);
 672         r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
 673         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
 674         writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
 675         mutex_unlock(&zn->ts->thermctl_lock);
 676 }
 677 
 678 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
 679 {
 680         u32 r;
 681 
 682         /* multiple zones could be handling and setting trips at once */
 683         mutex_lock(&zn->ts->thermctl_lock);
 684         r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
 685         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
 686         writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
 687         mutex_unlock(&zn->ts->thermctl_lock);
 688 }
 689 
 690 static int tegra_thermctl_set_trips(void *data, int lo, int hi)
 691 {
 692         struct tegra_thermctl_zone *zone = data;
 693         u32 r;
 694 
 695         thermal_irq_disable(zone);
 696 
 697         r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
 698         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
 699         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
 700 
 701         lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
 702         hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
 703         dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
 704 
 705         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
 706         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
 707         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
 708         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
 709 
 710         thermal_irq_enable(zone);
 711 
 712         return 0;
 713 }
 714 
 715 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
 716         .get_temp = tegra_thermctl_get_temp,
 717         .set_trip_temp = tegra_thermctl_set_trip_temp,
 718         .get_trend = tegra_thermctl_get_trend,
 719         .set_trips = tegra_thermctl_set_trips,
 720 };
 721 
 722 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
 723 {
 724         int ntrips, i, ret;
 725         enum thermal_trip_type type;
 726 
 727         ntrips = of_thermal_get_ntrips(tz);
 728         if (ntrips <= 0)
 729                 return -EINVAL;
 730 
 731         for (i = 0; i < ntrips; i++) {
 732                 ret = tz->ops->get_trip_type(tz, i, &type);
 733                 if (ret)
 734                         return -EINVAL;
 735                 if (type == THERMAL_TRIP_HOT) {
 736                         ret = tz->ops->get_trip_temp(tz, i, temp);
 737                         if (!ret)
 738                                 *trip = i;
 739 
 740                         return ret;
 741                 }
 742         }
 743 
 744         return -EINVAL;
 745 }
 746 
 747 /**
 748  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
 749  * @dev: struct device * of the SOC_THERM instance
 750  *
 751  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
 752  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
 753  * type trip_temp
 754  * from thermal zone.
 755  * After they have been configured, THERMTRIP or THROTTLE will take
 756  * action when the configured SoC thermal sensor group reaches a
 757  * certain temperature.
 758  *
 759  * Return: 0 upon success, or a negative error code on failure.
 760  * "Success" does not mean that trips was enabled; it could also
 761  * mean that no node was found in DT.
 762  * THERMTRIP has been enabled successfully when a message similar to
 763  * this one appears on the serial console:
 764  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
 765  * THROTTLE has been enabled successfully when a message similar to
 766  * this one appears on the serial console:
 767  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
 768  */
 769 static int tegra_soctherm_set_hwtrips(struct device *dev,
 770                                       const struct tegra_tsensor_group *sg,
 771                                       struct thermal_zone_device *tz)
 772 {
 773         struct tegra_soctherm *ts = dev_get_drvdata(dev);
 774         struct soctherm_throt_cfg *stc;
 775         int i, trip, temperature, ret;
 776 
 777         /* Get thermtrips. If missing, try to get critical trips. */
 778         temperature = tsensor_group_thermtrip_get(ts, sg->id);
 779         if (min_low_temp == temperature)
 780                 if (tz->ops->get_crit_temp(tz, &temperature))
 781                         temperature = max_high_temp;
 782 
 783         ret = thermtrip_program(dev, sg, temperature);
 784         if (ret) {
 785                 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
 786                 return ret;
 787         }
 788 
 789         dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
 790                  sg->name, temperature);
 791 
 792         ret = get_hot_temp(tz, &trip, &temperature);
 793         if (ret) {
 794                 dev_info(dev, "throttrip: %s: missing hot temperature\n",
 795                          sg->name);
 796                 return 0;
 797         }
 798 
 799         for (i = 0; i < THROTTLE_OC1; i++) {
 800                 struct thermal_cooling_device *cdev;
 801 
 802                 if (!ts->throt_cfgs[i].init)
 803                         continue;
 804 
 805                 cdev = ts->throt_cfgs[i].cdev;
 806                 if (get_thermal_instance(tz, cdev, trip))
 807                         stc = find_throttle_cfg_by_name(ts, cdev->type);
 808                 else
 809                         continue;
 810 
 811                 ret = throttrip_program(dev, sg, stc, temperature);
 812                 if (ret) {
 813                         dev_err(dev, "throttrip: %s: error during enable\n",
 814                                 sg->name);
 815                         return ret;
 816                 }
 817 
 818                 dev_info(dev,
 819                          "throttrip: will throttle when %s reaches %d mC\n",
 820                          sg->name, temperature);
 821                 break;
 822         }
 823 
 824         if (i == THROTTLE_SIZE)
 825                 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
 826                          sg->name);
 827 
 828         return 0;
 829 }
 830 
 831 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
 832 {
 833         struct tegra_soctherm *ts = dev_id;
 834         u32 r;
 835 
 836         /* Case for no lock:
 837          * Although interrupts are enabled in set_trips, there is still no need
 838          * to lock here because the interrupts are disabled before programming
 839          * new trip points. Hence there cant be a interrupt on the same sensor.
 840          * An interrupt can however occur on a sensor while trips are being
 841          * programmed on a different one. This beign a LEVEL interrupt won't
 842          * cause a new interrupt but this is taken care of by the re-reading of
 843          * the STATUS register in the thread function.
 844          */
 845         r = readl(ts->regs + THERMCTL_INTR_STATUS);
 846         writel(r, ts->regs + THERMCTL_INTR_DISABLE);
 847 
 848         return IRQ_WAKE_THREAD;
 849 }
 850 
 851 /**
 852  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
 853  * @irq:       The interrupt number being requested; not used
 854  * @dev_id:    Opaque pointer to tegra_soctherm;
 855  *
 856  * Clears the interrupt status register if there are expected
 857  * interrupt bits set.
 858  * The interrupt(s) are then handled by updating the corresponding
 859  * thermal zones.
 860  *
 861  * An error is logged if any unexpected interrupt bits are set.
 862  *
 863  * Disabled interrupts are re-enabled.
 864  *
 865  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
 866  * is needed.
 867  */
 868 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
 869 {
 870         struct tegra_soctherm *ts = dev_id;
 871         struct thermal_zone_device *tz;
 872         u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
 873 
 874         st = readl(ts->regs + THERMCTL_INTR_STATUS);
 875 
 876         /* deliberately clear expected interrupts handled in SW */
 877         cp |= st & TH_INTR_CD0_MASK;
 878         cp |= st & TH_INTR_CU0_MASK;
 879 
 880         gp |= st & TH_INTR_GD0_MASK;
 881         gp |= st & TH_INTR_GU0_MASK;
 882 
 883         pl |= st & TH_INTR_PD0_MASK;
 884         pl |= st & TH_INTR_PU0_MASK;
 885 
 886         me |= st & TH_INTR_MD0_MASK;
 887         me |= st & TH_INTR_MU0_MASK;
 888 
 889         ex |= cp | gp | pl | me;
 890         if (ex) {
 891                 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
 892                 st &= ~ex;
 893 
 894                 if (cp) {
 895                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
 896                         thermal_zone_device_update(tz,
 897                                                    THERMAL_EVENT_UNSPECIFIED);
 898                 }
 899 
 900                 if (gp) {
 901                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
 902                         thermal_zone_device_update(tz,
 903                                                    THERMAL_EVENT_UNSPECIFIED);
 904                 }
 905 
 906                 if (pl) {
 907                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
 908                         thermal_zone_device_update(tz,
 909                                                    THERMAL_EVENT_UNSPECIFIED);
 910                 }
 911 
 912                 if (me) {
 913                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
 914                         thermal_zone_device_update(tz,
 915                                                    THERMAL_EVENT_UNSPECIFIED);
 916                 }
 917         }
 918 
 919         /* deliberately ignore expected interrupts NOT handled in SW */
 920         ex |= TH_INTR_IGNORE_MASK;
 921         st &= ~ex;
 922 
 923         if (st) {
 924                 /* Whine about any other unexpected INTR bits still set */
 925                 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
 926                 writel(st, ts->regs + THERMCTL_INTR_STATUS);
 927         }
 928 
 929         return IRQ_HANDLED;
 930 }
 931 
 932 /**
 933  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
 934  * @alarm:              The soctherm throttle id
 935  * @enable:             Flag indicating enable the soctherm over-current
 936  *                      interrupt or disable it
 937  *
 938  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
 939  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
 940  */
 941 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
 942                                     enum soctherm_throttle_id alarm,
 943                                     bool enable)
 944 {
 945         u32 r;
 946 
 947         if (!enable)
 948                 return;
 949 
 950         r = readl(ts->regs + OC_INTR_ENABLE);
 951         switch (alarm) {
 952         case THROTTLE_OC1:
 953                 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
 954                 break;
 955         case THROTTLE_OC2:
 956                 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
 957                 break;
 958         case THROTTLE_OC3:
 959                 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
 960                 break;
 961         case THROTTLE_OC4:
 962                 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
 963                 break;
 964         default:
 965                 r = 0;
 966                 break;
 967         }
 968         writel(r, ts->regs + OC_INTR_ENABLE);
 969 }
 970 
 971 /**
 972  * soctherm_handle_alarm() - Handles soctherm alarms
 973  * @alarm:              The soctherm throttle id
 974  *
 975  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
 976  * a warning or informative message.
 977  *
 978  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
 979  */
 980 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
 981 {
 982         int rv = -EINVAL;
 983 
 984         switch (alarm) {
 985         case THROTTLE_OC1:
 986                 pr_debug("soctherm: Successfully handled OC1 alarm\n");
 987                 rv = 0;
 988                 break;
 989 
 990         case THROTTLE_OC2:
 991                 pr_debug("soctherm: Successfully handled OC2 alarm\n");
 992                 rv = 0;
 993                 break;
 994 
 995         case THROTTLE_OC3:
 996                 pr_debug("soctherm: Successfully handled OC3 alarm\n");
 997                 rv = 0;
 998                 break;
 999 
1000         case THROTTLE_OC4:
1001                 pr_debug("soctherm: Successfully handled OC4 alarm\n");
1002                 rv = 0;
1003                 break;
1004 
1005         default:
1006                 break;
1007         }
1008 
1009         if (rv)
1010                 pr_err("soctherm: ERROR in handling %s alarm\n",
1011                        throt_names[alarm]);
1012 
1013         return rv;
1014 }
1015 
1016 /**
1017  * soctherm_edp_isr_thread() - log an over-current interrupt request
1018  * @irq:        OC irq number. Currently not being used. See description
1019  * @arg:        a void pointer for callback, currently not being used
1020  *
1021  * Over-current events are handled in hardware. This function is called to log
1022  * and handle any OC events that happened. Additionally, it checks every
1023  * over-current interrupt registers for registers are set but
1024  * was not expected (i.e. any discrepancy in interrupt status) by the function,
1025  * the discrepancy will logged.
1026  *
1027  * Return: %IRQ_HANDLED
1028  */
1029 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1030 {
1031         struct tegra_soctherm *ts = arg;
1032         u32 st, ex, oc1, oc2, oc3, oc4;
1033 
1034         st = readl(ts->regs + OC_INTR_STATUS);
1035 
1036         /* deliberately clear expected interrupts handled in SW */
1037         oc1 = st & OC_INTR_OC1_MASK;
1038         oc2 = st & OC_INTR_OC2_MASK;
1039         oc3 = st & OC_INTR_OC3_MASK;
1040         oc4 = st & OC_INTR_OC4_MASK;
1041         ex = oc1 | oc2 | oc3 | oc4;
1042 
1043         pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1044         if (ex) {
1045                 writel(st, ts->regs + OC_INTR_STATUS);
1046                 st &= ~ex;
1047 
1048                 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1049                         soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1050 
1051                 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1052                         soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1053 
1054                 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1055                         soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1056 
1057                 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1058                         soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1059 
1060                 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1061                         handle_nested_irq(
1062                                 irq_find_mapping(soc_irq_cdata.domain, 0));
1063 
1064                 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1065                         handle_nested_irq(
1066                                 irq_find_mapping(soc_irq_cdata.domain, 1));
1067 
1068                 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1069                         handle_nested_irq(
1070                                 irq_find_mapping(soc_irq_cdata.domain, 2));
1071 
1072                 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1073                         handle_nested_irq(
1074                                 irq_find_mapping(soc_irq_cdata.domain, 3));
1075         }
1076 
1077         if (st) {
1078                 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1079                 writel(st, ts->regs + OC_INTR_STATUS);
1080         }
1081 
1082         return IRQ_HANDLED;
1083 }
1084 
1085 /**
1086  * soctherm_edp_isr() - Disables any active interrupts
1087  * @irq:        The interrupt request number
1088  * @arg:        Opaque pointer to an argument
1089  *
1090  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1091  * masking any asserted interrupts. Doing this prevents the same interrupts
1092  * from triggering this isr repeatedly. The thread woken by this isr will
1093  * handle asserted interrupts and subsequently unmask/re-enable them.
1094  *
1095  * The OC_INTR_DISABLE register indicates which OC interrupts
1096  * have been disabled.
1097  *
1098  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1099  */
1100 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1101 {
1102         struct tegra_soctherm *ts = arg;
1103         u32 r;
1104 
1105         if (!ts)
1106                 return IRQ_NONE;
1107 
1108         r = readl(ts->regs + OC_INTR_STATUS);
1109         writel(r, ts->regs + OC_INTR_DISABLE);
1110 
1111         return IRQ_WAKE_THREAD;
1112 }
1113 
1114 /**
1115  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1116  * @data:       Interrupt request data
1117  *
1118  * Looks up the chip data from @data and locks the mutex associated with
1119  * a particular over-current interrupt request.
1120  */
1121 static void soctherm_oc_irq_lock(struct irq_data *data)
1122 {
1123         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1124 
1125         mutex_lock(&d->irq_lock);
1126 }
1127 
1128 /**
1129  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1130  * @data:               Interrupt request data
1131  *
1132  * Looks up the interrupt request data @data and unlocks the mutex associated
1133  * with a particular over-current interrupt request.
1134  */
1135 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1136 {
1137         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1138 
1139         mutex_unlock(&d->irq_lock);
1140 }
1141 
1142 /**
1143  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1144  * @data:       irq_data structure of the chip
1145  *
1146  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1147  * to respond to over-current interrupts.
1148  *
1149  */
1150 static void soctherm_oc_irq_enable(struct irq_data *data)
1151 {
1152         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1153 
1154         d->irq_enable |= BIT(data->hwirq);
1155 }
1156 
1157 /**
1158  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1159  * @irq_data:   The interrupt request information
1160  *
1161  * Clears the interrupt request enable bit of the overcurrent
1162  * interrupt request chip data.
1163  *
1164  * Return: Nothing is returned (void)
1165  */
1166 static void soctherm_oc_irq_disable(struct irq_data *data)
1167 {
1168         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1169 
1170         d->irq_enable &= ~BIT(data->hwirq);
1171 }
1172 
1173 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1174 {
1175         return 0;
1176 }
1177 
1178 /**
1179  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1180  * @h:          Interrupt request domain
1181  * @virq:       Virtual interrupt request number
1182  * @hw:         Hardware interrupt request number
1183  *
1184  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1185  * interrupt request is called, the irq_domain takes the request's virtual
1186  * request number (much like a virtual memory address) and maps it to a
1187  * physical hardware request number.
1188  *
1189  * When a mapping doesn't already exist for a virtual request number, the
1190  * irq_domain calls this function to associate the virtual request number with
1191  * a hardware request number.
1192  *
1193  * Return: 0
1194  */
1195 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1196                 irq_hw_number_t hw)
1197 {
1198         struct soctherm_oc_irq_chip_data *data = h->host_data;
1199 
1200         irq_set_chip_data(virq, data);
1201         irq_set_chip(virq, &data->irq_chip);
1202         irq_set_nested_thread(virq, 1);
1203         return 0;
1204 }
1205 
1206 /**
1207  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1208  * @d:      Interrupt request domain
1209  * @intspec:    Array of u32s from DTs "interrupt" property
1210  * @intsize:    Number of values inside the intspec array
1211  * @out_hwirq:  HW IRQ value associated with this interrupt
1212  * @out_type:   The IRQ SENSE type for this interrupt.
1213  *
1214  * This Device Tree IRQ specifier translation function will translate a
1215  * specific "interrupt" as defined by 2 DT values where the cell values map
1216  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1217  * number, this function will subtract 1 from the value listed in DT.
1218  *
1219  * Return: 0
1220  */
1221 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1222         struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1223         irq_hw_number_t *out_hwirq, unsigned int *out_type)
1224 {
1225         if (WARN_ON(intsize < 2))
1226                 return -EINVAL;
1227 
1228         /*
1229          * The HW value is 1 index less than the DT IRQ values.
1230          * i.e. OC4 goes to HW index 3.
1231          */
1232         *out_hwirq = intspec[0] - 1;
1233         *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1234         return 0;
1235 }
1236 
1237 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1238         .map    = soctherm_oc_irq_map,
1239         .xlate  = soctherm_irq_domain_xlate_twocell,
1240 };
1241 
1242 /**
1243  * soctherm_oc_int_init() - Initial enabling of the over
1244  * current interrupts
1245  * @np: The devicetree node for soctherm
1246  * @num_irqs:   The number of new interrupt requests
1247  *
1248  * Sets the over current interrupt request chip data
1249  *
1250  * Return: 0 on success or if overcurrent interrupts are not enabled,
1251  * -ENOMEM (out of memory), or irq_base if the function failed to
1252  * allocate the irqs
1253  */
1254 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1255 {
1256         if (!num_irqs) {
1257                 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1258                 return 0;
1259         }
1260 
1261         mutex_init(&soc_irq_cdata.irq_lock);
1262         soc_irq_cdata.irq_enable = 0;
1263 
1264         soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1265         soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1266         soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1267                 soctherm_oc_irq_sync_unlock;
1268         soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1269         soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1270         soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1271         soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1272 
1273         soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1274                                                      &soctherm_oc_domain_ops,
1275                                                      &soc_irq_cdata);
1276 
1277         if (!soc_irq_cdata.domain) {
1278                 pr_err("%s: Failed to create IRQ domain\n", __func__);
1279                 return -ENOMEM;
1280         }
1281 
1282         pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1283         return 0;
1284 }
1285 
1286 #ifdef CONFIG_DEBUG_FS
1287 static int regs_show(struct seq_file *s, void *data)
1288 {
1289         struct platform_device *pdev = s->private;
1290         struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1291         const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1292         const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1293         u32 r, state;
1294         int i, level;
1295 
1296         seq_puts(s, "-----TSENSE (convert HW)-----\n");
1297 
1298         for (i = 0; i < ts->soc->num_tsensors; i++) {
1299                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1300                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1301 
1302                 seq_printf(s, "%s: ", tsensors[i].name);
1303                 seq_printf(s, "En(%d) ", state);
1304 
1305                 if (!state) {
1306                         seq_puts(s, "\n");
1307                         continue;
1308                 }
1309 
1310                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1311                 seq_printf(s, "tiddq(%d) ", state);
1312                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1313                 seq_printf(s, "ten_count(%d) ", state);
1314                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1315                 seq_printf(s, "tsample(%d) ", state + 1);
1316 
1317                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1318                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1319                 seq_printf(s, "Temp(%d/", state);
1320                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1321                 seq_printf(s, "%d) ", translate_temp(state));
1322 
1323                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1324                 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1325                 seq_printf(s, "Capture(%d/", state);
1326                 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1327                 seq_printf(s, "%d) ", state);
1328 
1329                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1330                 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1331                 seq_printf(s, "Stop(%d) ", state);
1332                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1333                 seq_printf(s, "Tall(%d) ", state);
1334                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1335                 seq_printf(s, "Over(%d/", state);
1336                 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1337                 seq_printf(s, "%d/", state);
1338                 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1339                 seq_printf(s, "%d) ", state);
1340 
1341                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1342                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1343                 seq_printf(s, "Therm_A/B(%d/", state);
1344                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1345                 seq_printf(s, "%d)\n", (s16)state);
1346         }
1347 
1348         r = readl(ts->regs + SENSOR_PDIV);
1349         seq_printf(s, "PDIV: 0x%x\n", r);
1350 
1351         r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1352         seq_printf(s, "HOTSPOT: 0x%x\n", r);
1353 
1354         seq_puts(s, "\n");
1355         seq_puts(s, "-----SOC_THERM-----\n");
1356 
1357         r = readl(ts->regs + SENSOR_TEMP1);
1358         state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1359         seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1360         state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1361         seq_printf(s, " GPU(%d) ", translate_temp(state));
1362         r = readl(ts->regs + SENSOR_TEMP2);
1363         state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1364         seq_printf(s, " PLLX(%d) ", translate_temp(state));
1365         state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1366         seq_printf(s, " MEM(%d)\n", translate_temp(state));
1367 
1368         for (i = 0; i < ts->soc->num_ttgs; i++) {
1369                 seq_printf(s, "%s:\n", ttgs[i]->name);
1370                 for (level = 0; level < 4; level++) {
1371                         s32 v;
1372                         u32 mask;
1373                         u16 off = ttgs[i]->thermctl_lvl0_offset;
1374 
1375                         r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1376 
1377                         mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1378                         state = REG_GET_MASK(r, mask);
1379                         v = sign_extend32(state, ts->soc->bptt - 1);
1380                         v *= ts->soc->thresh_grain;
1381                         seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1382 
1383                         mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1384                         state = REG_GET_MASK(r, mask);
1385                         v = sign_extend32(state, ts->soc->bptt - 1);
1386                         v *= ts->soc->thresh_grain;
1387                         seq_printf(s, "%d ) ", v);
1388 
1389                         mask = THERMCTL_LVL0_CPU0_EN_MASK;
1390                         state = REG_GET_MASK(r, mask);
1391                         seq_printf(s, "En(%d) ", state);
1392 
1393                         mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1394                         state = REG_GET_MASK(r, mask);
1395                         seq_puts(s, "CPU Throt");
1396                         if (!state)
1397                                 seq_printf(s, "(%s) ", "none");
1398                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1399                                 seq_printf(s, "(%s) ", "L");
1400                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1401                                 seq_printf(s, "(%s) ", "H");
1402                         else
1403                                 seq_printf(s, "(%s) ", "H+L");
1404 
1405                         mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1406                         state = REG_GET_MASK(r, mask);
1407                         seq_puts(s, "GPU Throt");
1408                         if (!state)
1409                                 seq_printf(s, "(%s) ", "none");
1410                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1411                                 seq_printf(s, "(%s) ", "L");
1412                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1413                                 seq_printf(s, "(%s) ", "H");
1414                         else
1415                                 seq_printf(s, "(%s) ", "H+L");
1416 
1417                         mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1418                         state = REG_GET_MASK(r, mask);
1419                         seq_printf(s, "Status(%s)\n",
1420                                    state == 0 ? "LO" :
1421                                    state == 1 ? "In" :
1422                                    state == 2 ? "Res" : "HI");
1423                 }
1424         }
1425 
1426         r = readl(ts->regs + THERMCTL_STATS_CTL);
1427         seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1428                    r & STATS_CTL_EN_UP ? "En" : "--",
1429                    r & STATS_CTL_EN_DN ? "En" : "--");
1430 
1431         for (level = 0; level < 4; level++) {
1432                 u16 off;
1433 
1434                 off = THERMCTL_LVL0_UP_STATS;
1435                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1436                 seq_printf(s, "  Level_%d Up(%d) ", level, r);
1437 
1438                 off = THERMCTL_LVL0_DN_STATS;
1439                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1440                 seq_printf(s, "Dn(%d)\n", r);
1441         }
1442 
1443         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1444         state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1445         seq_printf(s, "Thermtrip Any En(%d)\n", state);
1446         for (i = 0; i < ts->soc->num_ttgs; i++) {
1447                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1448                 seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1449                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1450                 state *= ts->soc->thresh_grain;
1451                 seq_printf(s, "Thresh(%d)\n", state);
1452         }
1453 
1454         r = readl(ts->regs + THROT_GLOBAL_CFG);
1455         seq_puts(s, "\n");
1456         seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1457 
1458         seq_puts(s, "---------------------------------------------------\n");
1459         r = readl(ts->regs + THROT_STATUS);
1460         state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1461         seq_printf(s, "THROT STATUS: breach(%d) ", state);
1462         state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1463         seq_printf(s, "state(%d) ", state);
1464         state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1465         seq_printf(s, "enabled(%d)\n", state);
1466 
1467         r = readl(ts->regs + CPU_PSKIP_STATUS);
1468         if (ts->soc->use_ccroc) {
1469                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1470                 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1471         } else {
1472                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1473                 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1474                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1475                 seq_printf(s, "N(%d) ", state);
1476                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1477                 seq_printf(s, "enabled(%d)\n", state);
1478         }
1479 
1480         return 0;
1481 }
1482 
1483 DEFINE_SHOW_ATTRIBUTE(regs);
1484 
1485 static void soctherm_debug_init(struct platform_device *pdev)
1486 {
1487         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1488         struct dentry *root;
1489 
1490         root = debugfs_create_dir("soctherm", NULL);
1491 
1492         tegra->debugfs_dir = root;
1493 
1494         debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1495 }
1496 #else
1497 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1498 #endif
1499 
1500 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1501 {
1502         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1503         int err;
1504 
1505         if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1506                 return -EINVAL;
1507 
1508         reset_control_assert(tegra->reset);
1509 
1510         if (enable) {
1511                 err = clk_prepare_enable(tegra->clock_soctherm);
1512                 if (err) {
1513                         reset_control_deassert(tegra->reset);
1514                         return err;
1515                 }
1516 
1517                 err = clk_prepare_enable(tegra->clock_tsensor);
1518                 if (err) {
1519                         clk_disable_unprepare(tegra->clock_soctherm);
1520                         reset_control_deassert(tegra->reset);
1521                         return err;
1522                 }
1523         } else {
1524                 clk_disable_unprepare(tegra->clock_tsensor);
1525                 clk_disable_unprepare(tegra->clock_soctherm);
1526         }
1527 
1528         reset_control_deassert(tegra->reset);
1529 
1530         return 0;
1531 }
1532 
1533 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1534                                     unsigned long *max_state)
1535 {
1536         *max_state = 1;
1537         return 0;
1538 }
1539 
1540 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1541                                     unsigned long *cur_state)
1542 {
1543         struct tegra_soctherm *ts = cdev->devdata;
1544         u32 r;
1545 
1546         r = readl(ts->regs + THROT_STATUS);
1547         if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1548                 *cur_state = 1;
1549         else
1550                 *cur_state = 0;
1551 
1552         return 0;
1553 }
1554 
1555 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1556                                 unsigned long cur_state)
1557 {
1558         return 0;
1559 }
1560 
1561 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1562         .get_max_state = throt_get_cdev_max_state,
1563         .get_cur_state = throt_get_cdev_cur_state,
1564         .set_cur_state = throt_set_cdev_state,
1565 };
1566 
1567 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1568 {
1569         struct device *dev = &pdev->dev;
1570         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1571         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1572         const int max_num_prop = ts->soc->num_ttgs * 2;
1573         u32 *tlb;
1574         int i, j, n, ret;
1575 
1576         if (!tt)
1577                 return -ENOMEM;
1578 
1579         n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1580         if (n <= 0) {
1581                 dev_info(dev,
1582                          "missing thermtrips, will use critical trips as shut down temp\n");
1583                 return n;
1584         }
1585 
1586         n = min(max_num_prop, n);
1587 
1588         tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1589         if (!tlb)
1590                 return -ENOMEM;
1591         ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1592                                          tlb, n);
1593         if (ret) {
1594                 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1595                 return ret;
1596         }
1597 
1598         i = 0;
1599         for (j = 0; j < n; j = j + 2) {
1600                 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1601                         continue;
1602 
1603                 tt[i].id = tlb[j];
1604                 tt[i].temp = tlb[j + 1];
1605                 i++;
1606         }
1607 
1608         return 0;
1609 }
1610 
1611 static void soctherm_oc_cfg_parse(struct device *dev,
1612                                 struct device_node *np_oc,
1613                                 struct soctherm_throt_cfg *stc)
1614 {
1615         u32 val;
1616 
1617         if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1618                 stc->oc_cfg.active_low = 1;
1619         else
1620                 stc->oc_cfg.active_low = 0;
1621 
1622         if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1623                 stc->oc_cfg.intr_en = 1;
1624                 stc->oc_cfg.alarm_cnt_thresh = val;
1625         }
1626 
1627         if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1628                 stc->oc_cfg.throt_period = val;
1629 
1630         if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1631                 stc->oc_cfg.alarm_filter = val;
1632 
1633         /* BRIEF throttling by default, do not support STICKY */
1634         stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1635 }
1636 
1637 static int soctherm_throt_cfg_parse(struct device *dev,
1638                                     struct device_node *np,
1639                                     struct soctherm_throt_cfg *stc)
1640 {
1641         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1642         int ret;
1643         u32 val;
1644 
1645         ret = of_property_read_u32(np, "nvidia,priority", &val);
1646         if (ret) {
1647                 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1648                 return -EINVAL;
1649         }
1650         stc->priority = val;
1651 
1652         ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1653                                    "nvidia,cpu-throt-level" :
1654                                    "nvidia,cpu-throt-percent", &val);
1655         if (!ret) {
1656                 if (ts->soc->use_ccroc &&
1657                     val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1658                         stc->cpu_throt_level = val;
1659                 else if (!ts->soc->use_ccroc && val <= 100)
1660                         stc->cpu_throt_depth = val;
1661                 else
1662                         goto err;
1663         } else {
1664                 goto err;
1665         }
1666 
1667         ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1668         if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1669                 stc->gpu_throt_level = val;
1670         else
1671                 goto err;
1672 
1673         return 0;
1674 
1675 err:
1676         dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1677                 stc->name);
1678         return -EINVAL;
1679 }
1680 
1681 /**
1682  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1683  * and register them as cooling devices.
1684  */
1685 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1686 {
1687         struct device *dev = &pdev->dev;
1688         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1689         struct device_node *np_stc, *np_stcc;
1690         const char *name;
1691         int i;
1692 
1693         for (i = 0; i < THROTTLE_SIZE; i++) {
1694                 ts->throt_cfgs[i].name = throt_names[i];
1695                 ts->throt_cfgs[i].id = i;
1696                 ts->throt_cfgs[i].init = false;
1697         }
1698 
1699         np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1700         if (!np_stc) {
1701                 dev_info(dev,
1702                          "throttle-cfg: no throttle-cfgs - not enabling\n");
1703                 return;
1704         }
1705 
1706         for_each_child_of_node(np_stc, np_stcc) {
1707                 struct soctherm_throt_cfg *stc;
1708                 struct thermal_cooling_device *tcd;
1709                 int err;
1710 
1711                 name = np_stcc->name;
1712                 stc = find_throttle_cfg_by_name(ts, name);
1713                 if (!stc) {
1714                         dev_err(dev,
1715                                 "throttle-cfg: could not find %s\n", name);
1716                         continue;
1717                 }
1718 
1719                 if (stc->init) {
1720                         dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1721                         of_node_put(np_stcc);
1722                         break;
1723                 }
1724 
1725                 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1726                 if (err)
1727                         continue;
1728 
1729                 if (stc->id >= THROTTLE_OC1) {
1730                         soctherm_oc_cfg_parse(dev, np_stcc, stc);
1731                         stc->init = true;
1732                 } else {
1733 
1734                         tcd = thermal_of_cooling_device_register(np_stcc,
1735                                                          (char *)name, ts,
1736                                                          &throt_cooling_ops);
1737                         if (IS_ERR_OR_NULL(tcd)) {
1738                                 dev_err(dev,
1739                                         "throttle-cfg: %s: failed to register cooling device\n",
1740                                         name);
1741                                 continue;
1742                         }
1743                         stc->cdev = tcd;
1744                         stc->init = true;
1745                 }
1746 
1747         }
1748 
1749         of_node_put(np_stc);
1750 }
1751 
1752 /**
1753  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1754  * @level: describing the level LOW/MED/HIGH of throttling
1755  *
1756  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1757  * the M/N values desired for each level. This function does this.
1758  *
1759  * This function pre-programs the CCROC NV_THERM levels in terms of
1760  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1761  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1762  */
1763 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1764 {
1765         u8 depth, dividend;
1766         u32 r;
1767 
1768         switch (level) {
1769         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1770                 depth = 50;
1771                 break;
1772         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1773                 depth = 75;
1774                 break;
1775         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1776                 depth = 80;
1777                 break;
1778         case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1779                 return;
1780         default:
1781                 return;
1782         }
1783 
1784         dividend = THROT_DEPTH_DIVIDEND(depth);
1785 
1786         /* setup PSKIP in ccroc nv_therm registers */
1787         r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1788         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1789         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1790         ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1791 
1792         r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1793         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1794         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1795         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1796         ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1797 }
1798 
1799 /**
1800  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1801  * @throt: the LIGHT/HEAVY of throttle event id
1802  *
1803  * Pulse skippers are used to throttle clock frequencies.  This
1804  * function programs the pulse skippers based on @throt and platform
1805  * data.  This function is used on SoCs which have CPU-local pulse
1806  * skipper control, such as T13x. It programs soctherm's interface to
1807  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1808  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1809  */
1810 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1811                                          enum soctherm_throttle_id throt)
1812 {
1813         u32 r, throt_vect;
1814 
1815         /* Denver:CCROC NV_THERM interface N:3 Mapping */
1816         switch (ts->throt_cfgs[throt].cpu_throt_level) {
1817         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1818                 throt_vect = THROT_VECT_LOW;
1819                 break;
1820         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1821                 throt_vect = THROT_VECT_MED;
1822                 break;
1823         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1824                 throt_vect = THROT_VECT_HIGH;
1825                 break;
1826         default:
1827                 throt_vect = THROT_VECT_NONE;
1828                 break;
1829         }
1830 
1831         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1832         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1833         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1834         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1835         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1836 
1837         /* bypass sequencer in soc_therm as it is programmed in ccroc */
1838         r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1839         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1840 }
1841 
1842 /**
1843  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1844  * @throt: the LIGHT/HEAVY of throttle event id
1845  *
1846  * Pulse skippers are used to throttle clock frequencies.  This
1847  * function programs the pulse skippers based on @throt and platform
1848  * data.  This function is used for CPUs that have "remote" pulse
1849  * skipper control, e.g., the CPU pulse skipper is controlled by the
1850  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1851  * complex.)
1852  */
1853 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1854                                enum soctherm_throttle_id throt)
1855 {
1856         u32 r;
1857         int depth;
1858         u8 dividend;
1859 
1860         depth = ts->throt_cfgs[throt].cpu_throt_depth;
1861         dividend = THROT_DEPTH_DIVIDEND(depth);
1862 
1863         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1864         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1865         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1866         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1867         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1868 
1869         r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1870         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1871         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1872         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1873 }
1874 
1875 /**
1876  * throttlectl_gpu_level_select() - selects throttling level for GPU
1877  * @throt: the LIGHT/HEAVY of throttle event id
1878  *
1879  * This function programs soctherm's interface to GK20a NV_THERM to select
1880  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1881  *
1882  * Return: boolean true if HW was programmed
1883  */
1884 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1885                                          enum soctherm_throttle_id throt)
1886 {
1887         u32 r, level, throt_vect;
1888 
1889         level = ts->throt_cfgs[throt].gpu_throt_level;
1890         throt_vect = THROT_LEVEL_TO_DEPTH(level);
1891         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1892         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1893         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1894         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1895 }
1896 
1897 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1898                                       enum soctherm_throttle_id throt)
1899 {
1900         u32 r;
1901         struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1902 
1903         if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1904                 return -EINVAL;
1905 
1906         r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1907         r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1908         r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1909         r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1910         writel(r, ts->regs + ALARM_CFG(throt));
1911         writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1912         writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1913         writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1914         soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1915 
1916         return 0;
1917 }
1918 
1919 /**
1920  * soctherm_throttle_program() - programs pulse skippers' configuration
1921  * @throt: the LIGHT/HEAVY of the throttle event id.
1922  *
1923  * Pulse skippers are used to throttle clock frequencies.
1924  * This function programs the pulse skippers.
1925  */
1926 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1927                                       enum soctherm_throttle_id throt)
1928 {
1929         u32 r;
1930         struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1931 
1932         if (!stc.init)
1933                 return;
1934 
1935         if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1936                 return;
1937 
1938         /* Setup PSKIP parameters */
1939         if (ts->soc->use_ccroc)
1940                 throttlectl_cpu_level_select(ts, throt);
1941         else
1942                 throttlectl_cpu_mn(ts, throt);
1943 
1944         throttlectl_gpu_level_select(ts, throt);
1945 
1946         r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1947         writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1948 
1949         r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1950         writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1951 
1952         r = readl(ts->regs + THROT_PRIORITY_LOCK);
1953         r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1954         if (r >= stc.priority)
1955                 return;
1956         r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1957                          stc.priority);
1958         writel(r, ts->regs + THROT_PRIORITY_LOCK);
1959 }
1960 
1961 static void tegra_soctherm_throttle(struct device *dev)
1962 {
1963         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1964         u32 v;
1965         int i;
1966 
1967         /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1968         if (ts->soc->use_ccroc) {
1969                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1970                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1971                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1972         }
1973 
1974         /* Thermal HW throttle programming */
1975         for (i = 0; i < THROTTLE_SIZE; i++)
1976                 soctherm_throttle_program(ts, i);
1977 
1978         v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1979         if (ts->soc->use_ccroc) {
1980                 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1981 
1982                 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1983                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1984                 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1985         } else {
1986                 writel(v, ts->regs + THROT_GLOBAL_CFG);
1987 
1988                 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1989                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1990                 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1991         }
1992 
1993         /* initialize stats collection */
1994         v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1995             STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1996         writel(v, ts->regs + THERMCTL_STATS_CTL);
1997 }
1998 
1999 static int soctherm_interrupts_init(struct platform_device *pdev,
2000                                     struct tegra_soctherm *tegra)
2001 {
2002         struct device_node *np = pdev->dev.of_node;
2003         int ret;
2004 
2005         ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
2006         if (ret < 0) {
2007                 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
2008                 return ret;
2009         }
2010 
2011         tegra->thermal_irq = platform_get_irq(pdev, 0);
2012         if (tegra->thermal_irq < 0) {
2013                 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
2014                 return 0;
2015         }
2016 
2017         tegra->edp_irq = platform_get_irq(pdev, 1);
2018         if (tegra->edp_irq < 0) {
2019                 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
2020                 return 0;
2021         }
2022 
2023         ret = devm_request_threaded_irq(&pdev->dev,
2024                                         tegra->thermal_irq,
2025                                         soctherm_thermal_isr,
2026                                         soctherm_thermal_isr_thread,
2027                                         IRQF_ONESHOT,
2028                                         dev_name(&pdev->dev),
2029                                         tegra);
2030         if (ret < 0) {
2031                 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2032                 return ret;
2033         }
2034 
2035         ret = devm_request_threaded_irq(&pdev->dev,
2036                                         tegra->edp_irq,
2037                                         soctherm_edp_isr,
2038                                         soctherm_edp_isr_thread,
2039                                         IRQF_ONESHOT,
2040                                         "soctherm_edp",
2041                                         tegra);
2042         if (ret < 0) {
2043                 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2044                 return ret;
2045         }
2046 
2047         return 0;
2048 }
2049 
2050 static void soctherm_init(struct platform_device *pdev)
2051 {
2052         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2053         const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2054         int i;
2055         u32 pdiv, hotspot;
2056 
2057         /* Initialize raw sensors */
2058         for (i = 0; i < tegra->soc->num_tsensors; ++i)
2059                 enable_tsensor(tegra, i);
2060 
2061         /* program pdiv and hotspot offsets per THERM */
2062         pdiv = readl(tegra->regs + SENSOR_PDIV);
2063         hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2064         for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2065                 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2066                                     ttgs[i]->pdiv);
2067                 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2068                 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2069                         continue;
2070                 hotspot =  REG_SET_MASK(hotspot,
2071                                         ttgs[i]->pllx_hotspot_mask,
2072                                         ttgs[i]->pllx_hotspot_diff);
2073         }
2074         writel(pdiv, tegra->regs + SENSOR_PDIV);
2075         writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2076 
2077         /* Configure hw throttle */
2078         tegra_soctherm_throttle(&pdev->dev);
2079 }
2080 
2081 static const struct of_device_id tegra_soctherm_of_match[] = {
2082 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2083         {
2084                 .compatible = "nvidia,tegra124-soctherm",
2085                 .data = &tegra124_soctherm,
2086         },
2087 #endif
2088 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2089         {
2090                 .compatible = "nvidia,tegra132-soctherm",
2091                 .data = &tegra132_soctherm,
2092         },
2093 #endif
2094 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2095         {
2096                 .compatible = "nvidia,tegra210-soctherm",
2097                 .data = &tegra210_soctherm,
2098         },
2099 #endif
2100         { },
2101 };
2102 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2103 
2104 static int tegra_soctherm_probe(struct platform_device *pdev)
2105 {
2106         const struct of_device_id *match;
2107         struct tegra_soctherm *tegra;
2108         struct thermal_zone_device *z;
2109         struct tsensor_shared_calib shared_calib;
2110         struct resource *res;
2111         struct tegra_soctherm_soc *soc;
2112         unsigned int i;
2113         int err;
2114 
2115         match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2116         if (!match)
2117                 return -ENODEV;
2118 
2119         soc = (struct tegra_soctherm_soc *)match->data;
2120         if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2121                 return -EINVAL;
2122 
2123         tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2124         if (!tegra)
2125                 return -ENOMEM;
2126 
2127         mutex_init(&tegra->thermctl_lock);
2128         dev_set_drvdata(&pdev->dev, tegra);
2129 
2130         tegra->soc = soc;
2131 
2132         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2133                                            "soctherm-reg");
2134         tegra->regs = devm_ioremap_resource(&pdev->dev, res);
2135         if (IS_ERR(tegra->regs)) {
2136                 dev_err(&pdev->dev, "can't get soctherm registers");
2137                 return PTR_ERR(tegra->regs);
2138         }
2139 
2140         if (!tegra->soc->use_ccroc) {
2141                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2142                                                    "car-reg");
2143                 tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
2144                 if (IS_ERR(tegra->clk_regs)) {
2145                         dev_err(&pdev->dev, "can't get car clk registers");
2146                         return PTR_ERR(tegra->clk_regs);
2147                 }
2148         } else {
2149                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2150                                                    "ccroc-reg");
2151                 tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
2152                 if (IS_ERR(tegra->ccroc_regs)) {
2153                         dev_err(&pdev->dev, "can't get ccroc registers");
2154                         return PTR_ERR(tegra->ccroc_regs);
2155                 }
2156         }
2157 
2158         tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2159         if (IS_ERR(tegra->reset)) {
2160                 dev_err(&pdev->dev, "can't get soctherm reset\n");
2161                 return PTR_ERR(tegra->reset);
2162         }
2163 
2164         tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2165         if (IS_ERR(tegra->clock_tsensor)) {
2166                 dev_err(&pdev->dev, "can't get tsensor clock\n");
2167                 return PTR_ERR(tegra->clock_tsensor);
2168         }
2169 
2170         tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2171         if (IS_ERR(tegra->clock_soctherm)) {
2172                 dev_err(&pdev->dev, "can't get soctherm clock\n");
2173                 return PTR_ERR(tegra->clock_soctherm);
2174         }
2175 
2176         tegra->calib = devm_kcalloc(&pdev->dev,
2177                                     soc->num_tsensors, sizeof(u32),
2178                                     GFP_KERNEL);
2179         if (!tegra->calib)
2180                 return -ENOMEM;
2181 
2182         /* calculate shared calibration data */
2183         err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2184         if (err)
2185                 return err;
2186 
2187         /* calculate tsensor calibaration data */
2188         for (i = 0; i < soc->num_tsensors; ++i) {
2189                 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2190                                                &shared_calib,
2191                                                &tegra->calib[i]);
2192                 if (err)
2193                         return err;
2194         }
2195 
2196         tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2197                                            soc->num_ttgs, sizeof(z),
2198                                            GFP_KERNEL);
2199         if (!tegra->thermctl_tzs)
2200                 return -ENOMEM;
2201 
2202         err = soctherm_clk_enable(pdev, true);
2203         if (err)
2204                 return err;
2205 
2206         soctherm_thermtrips_parse(pdev);
2207 
2208         soctherm_init_hw_throt_cdev(pdev);
2209 
2210         soctherm_init(pdev);
2211 
2212         for (i = 0; i < soc->num_ttgs; ++i) {
2213                 struct tegra_thermctl_zone *zone =
2214                         devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2215                 if (!zone) {
2216                         err = -ENOMEM;
2217                         goto disable_clocks;
2218                 }
2219 
2220                 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2221                 zone->dev = &pdev->dev;
2222                 zone->sg = soc->ttgs[i];
2223                 zone->ts = tegra;
2224 
2225                 z = devm_thermal_zone_of_sensor_register(&pdev->dev,
2226                                                          soc->ttgs[i]->id, zone,
2227                                                          &tegra_of_thermal_ops);
2228                 if (IS_ERR(z)) {
2229                         err = PTR_ERR(z);
2230                         dev_err(&pdev->dev, "failed to register sensor: %d\n",
2231                                 err);
2232                         goto disable_clocks;
2233                 }
2234 
2235                 zone->tz = z;
2236                 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2237 
2238                 /* Configure hw trip points */
2239                 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2240                 if (err)
2241                         goto disable_clocks;
2242         }
2243 
2244         err = soctherm_interrupts_init(pdev, tegra);
2245 
2246         soctherm_debug_init(pdev);
2247 
2248         return 0;
2249 
2250 disable_clocks:
2251         soctherm_clk_enable(pdev, false);
2252 
2253         return err;
2254 }
2255 
2256 static int tegra_soctherm_remove(struct platform_device *pdev)
2257 {
2258         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2259 
2260         debugfs_remove_recursive(tegra->debugfs_dir);
2261 
2262         soctherm_clk_enable(pdev, false);
2263 
2264         return 0;
2265 }
2266 
2267 static int __maybe_unused soctherm_suspend(struct device *dev)
2268 {
2269         struct platform_device *pdev = to_platform_device(dev);
2270 
2271         soctherm_clk_enable(pdev, false);
2272 
2273         return 0;
2274 }
2275 
2276 static int __maybe_unused soctherm_resume(struct device *dev)
2277 {
2278         struct platform_device *pdev = to_platform_device(dev);
2279         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2280         struct tegra_soctherm_soc *soc = tegra->soc;
2281         int err, i;
2282 
2283         err = soctherm_clk_enable(pdev, true);
2284         if (err) {
2285                 dev_err(&pdev->dev,
2286                         "Resume failed: enable clocks failed\n");
2287                 return err;
2288         }
2289 
2290         soctherm_init(pdev);
2291 
2292         for (i = 0; i < soc->num_ttgs; ++i) {
2293                 struct thermal_zone_device *tz;
2294 
2295                 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2296                 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2297                 if (err) {
2298                         dev_err(&pdev->dev,
2299                                 "Resume failed: set hwtrips failed\n");
2300                         return err;
2301                 }
2302         }
2303 
2304         return 0;
2305 }
2306 
2307 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2308 
2309 static struct platform_driver tegra_soctherm_driver = {
2310         .probe = tegra_soctherm_probe,
2311         .remove = tegra_soctherm_remove,
2312         .driver = {
2313                 .name = "tegra_soctherm",
2314                 .pm = &tegra_soctherm_pm,
2315                 .of_match_table = tegra_soctherm_of_match,
2316         },
2317 };
2318 module_platform_driver(tegra_soctherm_driver);
2319 
2320 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2321 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2322 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */