root/drivers/thermal/cpu_cooling.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_level
  2. update_freq_table
  3. cpu_freq_to_power
  4. cpu_power_to_freq
  5. get_load
  6. get_dynamic_power
  7. cpufreq_get_max_state
  8. cpufreq_get_cur_state
  9. cpufreq_set_cur_state
  10. cpufreq_get_requested_power
  11. cpufreq_state2power
  12. cpufreq_power2state
  13. find_next_max
  14. __cpufreq_cooling_register
  15. cpufreq_cooling_register
  16. of_cpufreq_cooling_register
  17. cpufreq_cooling_unregister

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *  linux/drivers/thermal/cpu_cooling.c
   4  *
   5  *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
   6  *
   7  *  Copyright (C) 2012-2018 Linaro Limited.
   8  *
   9  *  Authors:    Amit Daniel <amit.kachhap@linaro.org>
  10  *              Viresh Kumar <viresh.kumar@linaro.org>
  11  *
  12  */
  13 #include <linux/module.h>
  14 #include <linux/thermal.h>
  15 #include <linux/cpufreq.h>
  16 #include <linux/err.h>
  17 #include <linux/idr.h>
  18 #include <linux/pm_opp.h>
  19 #include <linux/pm_qos.h>
  20 #include <linux/slab.h>
  21 #include <linux/cpu.h>
  22 #include <linux/cpu_cooling.h>
  23 
  24 #include <trace/events/thermal.h>
  25 
  26 /*
  27  * Cooling state <-> CPUFreq frequency
  28  *
  29  * Cooling states are translated to frequencies throughout this driver and this
  30  * is the relation between them.
  31  *
  32  * Highest cooling state corresponds to lowest possible frequency.
  33  *
  34  * i.e.
  35  *      level 0 --> 1st Max Freq
  36  *      level 1 --> 2nd Max Freq
  37  *      ...
  38  */
  39 
  40 /**
  41  * struct freq_table - frequency table along with power entries
  42  * @frequency:  frequency in KHz
  43  * @power:      power in mW
  44  *
  45  * This structure is built when the cooling device registers and helps
  46  * in translating frequency to power and vice versa.
  47  */
  48 struct freq_table {
  49         u32 frequency;
  50         u32 power;
  51 };
  52 
  53 /**
  54  * struct time_in_idle - Idle time stats
  55  * @time: previous reading of the absolute time that this cpu was idle
  56  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
  57  */
  58 struct time_in_idle {
  59         u64 time;
  60         u64 timestamp;
  61 };
  62 
  63 /**
  64  * struct cpufreq_cooling_device - data for cooling device with cpufreq
  65  * @id: unique integer value corresponding to each cpufreq_cooling_device
  66  *      registered.
  67  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
  68  * @cpufreq_state: integer value representing the current state of cpufreq
  69  *      cooling devices.
  70  * @max_level: maximum cooling level. One less than total number of valid
  71  *      cpufreq frequencies.
  72  * @freq_table: Freq table in descending order of frequencies
  73  * @cdev: thermal_cooling_device pointer to keep track of the
  74  *      registered cooling device.
  75  * @policy: cpufreq policy.
  76  * @node: list_head to link all cpufreq_cooling_device together.
  77  * @idle_time: idle time stats
  78  *
  79  * This structure is required for keeping information of each registered
  80  * cpufreq_cooling_device.
  81  */
  82 struct cpufreq_cooling_device {
  83         int id;
  84         u32 last_load;
  85         unsigned int cpufreq_state;
  86         unsigned int max_level;
  87         struct freq_table *freq_table;  /* In descending order */
  88         struct cpufreq_policy *policy;
  89         struct list_head node;
  90         struct time_in_idle *idle_time;
  91         struct freq_qos_request qos_req;
  92 };
  93 
  94 static DEFINE_IDA(cpufreq_ida);
  95 static DEFINE_MUTEX(cooling_list_lock);
  96 static LIST_HEAD(cpufreq_cdev_list);
  97 
  98 /* Below code defines functions to be used for cpufreq as cooling device */
  99 
 100 /**
 101  * get_level: Find the level for a particular frequency
 102  * @cpufreq_cdev: cpufreq_cdev for which the property is required
 103  * @freq: Frequency
 104  *
 105  * Return: level corresponding to the frequency.
 106  */
 107 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
 108                                unsigned int freq)
 109 {
 110         struct freq_table *freq_table = cpufreq_cdev->freq_table;
 111         unsigned long level;
 112 
 113         for (level = 1; level <= cpufreq_cdev->max_level; level++)
 114                 if (freq > freq_table[level].frequency)
 115                         break;
 116 
 117         return level - 1;
 118 }
 119 
 120 /**
 121  * update_freq_table() - Update the freq table with power numbers
 122  * @cpufreq_cdev:       the cpufreq cooling device in which to update the table
 123  * @capacitance: dynamic power coefficient for these cpus
 124  *
 125  * Update the freq table with power numbers.  This table will be used in
 126  * cpu_power_to_freq() and cpu_freq_to_power() to convert between power and
 127  * frequency efficiently.  Power is stored in mW, frequency in KHz.  The
 128  * resulting table is in descending order.
 129  *
 130  * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
 131  * or -ENOMEM if we run out of memory.
 132  */
 133 static int update_freq_table(struct cpufreq_cooling_device *cpufreq_cdev,
 134                              u32 capacitance)
 135 {
 136         struct freq_table *freq_table = cpufreq_cdev->freq_table;
 137         struct dev_pm_opp *opp;
 138         struct device *dev = NULL;
 139         int num_opps = 0, cpu = cpufreq_cdev->policy->cpu, i;
 140 
 141         dev = get_cpu_device(cpu);
 142         if (unlikely(!dev)) {
 143                 pr_warn("No cpu device for cpu %d\n", cpu);
 144                 return -ENODEV;
 145         }
 146 
 147         num_opps = dev_pm_opp_get_opp_count(dev);
 148         if (num_opps < 0)
 149                 return num_opps;
 150 
 151         /*
 152          * The cpufreq table is also built from the OPP table and so the count
 153          * should match.
 154          */
 155         if (num_opps != cpufreq_cdev->max_level + 1) {
 156                 dev_warn(dev, "Number of OPPs not matching with max_levels\n");
 157                 return -EINVAL;
 158         }
 159 
 160         for (i = 0; i <= cpufreq_cdev->max_level; i++) {
 161                 unsigned long freq = freq_table[i].frequency * 1000;
 162                 u32 freq_mhz = freq_table[i].frequency / 1000;
 163                 u64 power;
 164                 u32 voltage_mv;
 165 
 166                 /*
 167                  * Find ceil frequency as 'freq' may be slightly lower than OPP
 168                  * freq due to truncation while converting to kHz.
 169                  */
 170                 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
 171                 if (IS_ERR(opp)) {
 172                         dev_err(dev, "failed to get opp for %lu frequency\n",
 173                                 freq);
 174                         return -EINVAL;
 175                 }
 176 
 177                 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
 178                 dev_pm_opp_put(opp);
 179 
 180                 /*
 181                  * Do the multiplication with MHz and millivolt so as
 182                  * to not overflow.
 183                  */
 184                 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
 185                 do_div(power, 1000000000);
 186 
 187                 /* power is stored in mW */
 188                 freq_table[i].power = power;
 189         }
 190 
 191         return 0;
 192 }
 193 
 194 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
 195                              u32 freq)
 196 {
 197         int i;
 198         struct freq_table *freq_table = cpufreq_cdev->freq_table;
 199 
 200         for (i = 1; i <= cpufreq_cdev->max_level; i++)
 201                 if (freq > freq_table[i].frequency)
 202                         break;
 203 
 204         return freq_table[i - 1].power;
 205 }
 206 
 207 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
 208                              u32 power)
 209 {
 210         int i;
 211         struct freq_table *freq_table = cpufreq_cdev->freq_table;
 212 
 213         for (i = 1; i <= cpufreq_cdev->max_level; i++)
 214                 if (power > freq_table[i].power)
 215                         break;
 216 
 217         return freq_table[i - 1].frequency;
 218 }
 219 
 220 /**
 221  * get_load() - get load for a cpu since last updated
 222  * @cpufreq_cdev:       &struct cpufreq_cooling_device for this cpu
 223  * @cpu:        cpu number
 224  * @cpu_idx:    index of the cpu in time_in_idle*
 225  *
 226  * Return: The average load of cpu @cpu in percentage since this
 227  * function was last called.
 228  */
 229 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
 230                     int cpu_idx)
 231 {
 232         u32 load;
 233         u64 now, now_idle, delta_time, delta_idle;
 234         struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
 235 
 236         now_idle = get_cpu_idle_time(cpu, &now, 0);
 237         delta_idle = now_idle - idle_time->time;
 238         delta_time = now - idle_time->timestamp;
 239 
 240         if (delta_time <= delta_idle)
 241                 load = 0;
 242         else
 243                 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
 244 
 245         idle_time->time = now_idle;
 246         idle_time->timestamp = now;
 247 
 248         return load;
 249 }
 250 
 251 /**
 252  * get_dynamic_power() - calculate the dynamic power
 253  * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
 254  * @freq:       current frequency
 255  *
 256  * Return: the dynamic power consumed by the cpus described by
 257  * @cpufreq_cdev.
 258  */
 259 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
 260                              unsigned long freq)
 261 {
 262         u32 raw_cpu_power;
 263 
 264         raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
 265         return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
 266 }
 267 
 268 /* cpufreq cooling device callback functions are defined below */
 269 
 270 /**
 271  * cpufreq_get_max_state - callback function to get the max cooling state.
 272  * @cdev: thermal cooling device pointer.
 273  * @state: fill this variable with the max cooling state.
 274  *
 275  * Callback for the thermal cooling device to return the cpufreq
 276  * max cooling state.
 277  *
 278  * Return: 0 on success, an error code otherwise.
 279  */
 280 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
 281                                  unsigned long *state)
 282 {
 283         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 284 
 285         *state = cpufreq_cdev->max_level;
 286         return 0;
 287 }
 288 
 289 /**
 290  * cpufreq_get_cur_state - callback function to get the current cooling state.
 291  * @cdev: thermal cooling device pointer.
 292  * @state: fill this variable with the current cooling state.
 293  *
 294  * Callback for the thermal cooling device to return the cpufreq
 295  * current cooling state.
 296  *
 297  * Return: 0 on success, an error code otherwise.
 298  */
 299 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
 300                                  unsigned long *state)
 301 {
 302         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 303 
 304         *state = cpufreq_cdev->cpufreq_state;
 305 
 306         return 0;
 307 }
 308 
 309 /**
 310  * cpufreq_set_cur_state - callback function to set the current cooling state.
 311  * @cdev: thermal cooling device pointer.
 312  * @state: set this variable to the current cooling state.
 313  *
 314  * Callback for the thermal cooling device to change the cpufreq
 315  * current cooling state.
 316  *
 317  * Return: 0 on success, an error code otherwise.
 318  */
 319 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
 320                                  unsigned long state)
 321 {
 322         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 323 
 324         /* Request state should be less than max_level */
 325         if (WARN_ON(state > cpufreq_cdev->max_level))
 326                 return -EINVAL;
 327 
 328         /* Check if the old cooling action is same as new cooling action */
 329         if (cpufreq_cdev->cpufreq_state == state)
 330                 return 0;
 331 
 332         cpufreq_cdev->cpufreq_state = state;
 333 
 334         return freq_qos_update_request(&cpufreq_cdev->qos_req,
 335                                 cpufreq_cdev->freq_table[state].frequency);
 336 }
 337 
 338 /**
 339  * cpufreq_get_requested_power() - get the current power
 340  * @cdev:       &thermal_cooling_device pointer
 341  * @tz:         a valid thermal zone device pointer
 342  * @power:      pointer in which to store the resulting power
 343  *
 344  * Calculate the current power consumption of the cpus in milliwatts
 345  * and store it in @power.  This function should actually calculate
 346  * the requested power, but it's hard to get the frequency that
 347  * cpufreq would have assigned if there were no thermal limits.
 348  * Instead, we calculate the current power on the assumption that the
 349  * immediate future will look like the immediate past.
 350  *
 351  * We use the current frequency and the average load since this
 352  * function was last called.  In reality, there could have been
 353  * multiple opps since this function was last called and that affects
 354  * the load calculation.  While it's not perfectly accurate, this
 355  * simplification is good enough and works.  REVISIT this, as more
 356  * complex code may be needed if experiments show that it's not
 357  * accurate enough.
 358  *
 359  * Return: 0 on success, -E* if getting the static power failed.
 360  */
 361 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
 362                                        struct thermal_zone_device *tz,
 363                                        u32 *power)
 364 {
 365         unsigned long freq;
 366         int i = 0, cpu;
 367         u32 total_load = 0;
 368         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 369         struct cpufreq_policy *policy = cpufreq_cdev->policy;
 370         u32 *load_cpu = NULL;
 371 
 372         freq = cpufreq_quick_get(policy->cpu);
 373 
 374         if (trace_thermal_power_cpu_get_power_enabled()) {
 375                 u32 ncpus = cpumask_weight(policy->related_cpus);
 376 
 377                 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
 378         }
 379 
 380         for_each_cpu(cpu, policy->related_cpus) {
 381                 u32 load;
 382 
 383                 if (cpu_online(cpu))
 384                         load = get_load(cpufreq_cdev, cpu, i);
 385                 else
 386                         load = 0;
 387 
 388                 total_load += load;
 389                 if (load_cpu)
 390                         load_cpu[i] = load;
 391 
 392                 i++;
 393         }
 394 
 395         cpufreq_cdev->last_load = total_load;
 396 
 397         *power = get_dynamic_power(cpufreq_cdev, freq);
 398 
 399         if (load_cpu) {
 400                 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
 401                                                   load_cpu, i, *power);
 402 
 403                 kfree(load_cpu);
 404         }
 405 
 406         return 0;
 407 }
 408 
 409 /**
 410  * cpufreq_state2power() - convert a cpu cdev state to power consumed
 411  * @cdev:       &thermal_cooling_device pointer
 412  * @tz:         a valid thermal zone device pointer
 413  * @state:      cooling device state to be converted
 414  * @power:      pointer in which to store the resulting power
 415  *
 416  * Convert cooling device state @state into power consumption in
 417  * milliwatts assuming 100% load.  Store the calculated power in
 418  * @power.
 419  *
 420  * Return: 0 on success, -EINVAL if the cooling device state could not
 421  * be converted into a frequency or other -E* if there was an error
 422  * when calculating the static power.
 423  */
 424 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
 425                                struct thermal_zone_device *tz,
 426                                unsigned long state, u32 *power)
 427 {
 428         unsigned int freq, num_cpus;
 429         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 430 
 431         /* Request state should be less than max_level */
 432         if (WARN_ON(state > cpufreq_cdev->max_level))
 433                 return -EINVAL;
 434 
 435         num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
 436 
 437         freq = cpufreq_cdev->freq_table[state].frequency;
 438         *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
 439 
 440         return 0;
 441 }
 442 
 443 /**
 444  * cpufreq_power2state() - convert power to a cooling device state
 445  * @cdev:       &thermal_cooling_device pointer
 446  * @tz:         a valid thermal zone device pointer
 447  * @power:      power in milliwatts to be converted
 448  * @state:      pointer in which to store the resulting state
 449  *
 450  * Calculate a cooling device state for the cpus described by @cdev
 451  * that would allow them to consume at most @power mW and store it in
 452  * @state.  Note that this calculation depends on external factors
 453  * such as the cpu load or the current static power.  Calling this
 454  * function with the same power as input can yield different cooling
 455  * device states depending on those external factors.
 456  *
 457  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
 458  * the calculated frequency could not be converted to a valid state.
 459  * The latter should not happen unless the frequencies available to
 460  * cpufreq have changed since the initialization of the cpu cooling
 461  * device.
 462  */
 463 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
 464                                struct thermal_zone_device *tz, u32 power,
 465                                unsigned long *state)
 466 {
 467         unsigned int target_freq;
 468         u32 last_load, normalised_power;
 469         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
 470         struct cpufreq_policy *policy = cpufreq_cdev->policy;
 471 
 472         last_load = cpufreq_cdev->last_load ?: 1;
 473         normalised_power = (power * 100) / last_load;
 474         target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
 475 
 476         *state = get_level(cpufreq_cdev, target_freq);
 477         trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
 478                                       power);
 479         return 0;
 480 }
 481 
 482 /* Bind cpufreq callbacks to thermal cooling device ops */
 483 
 484 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
 485         .get_max_state = cpufreq_get_max_state,
 486         .get_cur_state = cpufreq_get_cur_state,
 487         .set_cur_state = cpufreq_set_cur_state,
 488 };
 489 
 490 static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
 491         .get_max_state          = cpufreq_get_max_state,
 492         .get_cur_state          = cpufreq_get_cur_state,
 493         .set_cur_state          = cpufreq_set_cur_state,
 494         .get_requested_power    = cpufreq_get_requested_power,
 495         .state2power            = cpufreq_state2power,
 496         .power2state            = cpufreq_power2state,
 497 };
 498 
 499 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
 500                                   unsigned int prev_max)
 501 {
 502         struct cpufreq_frequency_table *pos;
 503         unsigned int max = 0;
 504 
 505         cpufreq_for_each_valid_entry(pos, table) {
 506                 if (pos->frequency > max && pos->frequency < prev_max)
 507                         max = pos->frequency;
 508         }
 509 
 510         return max;
 511 }
 512 
 513 /**
 514  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
 515  * @np: a valid struct device_node to the cooling device device tree node
 516  * @policy: cpufreq policy
 517  * Normally this should be same as cpufreq policy->related_cpus.
 518  * @capacitance: dynamic power coefficient for these cpus
 519  *
 520  * This interface function registers the cpufreq cooling device with the name
 521  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 522  * cooling devices. It also gives the opportunity to link the cooling device
 523  * with a device tree node, in order to bind it via the thermal DT code.
 524  *
 525  * Return: a valid struct thermal_cooling_device pointer on success,
 526  * on failure, it returns a corresponding ERR_PTR().
 527  */
 528 static struct thermal_cooling_device *
 529 __cpufreq_cooling_register(struct device_node *np,
 530                         struct cpufreq_policy *policy, u32 capacitance)
 531 {
 532         struct thermal_cooling_device *cdev;
 533         struct cpufreq_cooling_device *cpufreq_cdev;
 534         char dev_name[THERMAL_NAME_LENGTH];
 535         unsigned int freq, i, num_cpus;
 536         struct device *dev;
 537         int ret;
 538         struct thermal_cooling_device_ops *cooling_ops;
 539 
 540         dev = get_cpu_device(policy->cpu);
 541         if (unlikely(!dev)) {
 542                 pr_warn("No cpu device for cpu %d\n", policy->cpu);
 543                 return ERR_PTR(-ENODEV);
 544         }
 545 
 546 
 547         if (IS_ERR_OR_NULL(policy)) {
 548                 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
 549                 return ERR_PTR(-EINVAL);
 550         }
 551 
 552         i = cpufreq_table_count_valid_entries(policy);
 553         if (!i) {
 554                 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
 555                          __func__);
 556                 return ERR_PTR(-ENODEV);
 557         }
 558 
 559         cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
 560         if (!cpufreq_cdev)
 561                 return ERR_PTR(-ENOMEM);
 562 
 563         cpufreq_cdev->policy = policy;
 564         num_cpus = cpumask_weight(policy->related_cpus);
 565         cpufreq_cdev->idle_time = kcalloc(num_cpus,
 566                                          sizeof(*cpufreq_cdev->idle_time),
 567                                          GFP_KERNEL);
 568         if (!cpufreq_cdev->idle_time) {
 569                 cdev = ERR_PTR(-ENOMEM);
 570                 goto free_cdev;
 571         }
 572 
 573         /* max_level is an index, not a counter */
 574         cpufreq_cdev->max_level = i - 1;
 575 
 576         cpufreq_cdev->freq_table = kmalloc_array(i,
 577                                         sizeof(*cpufreq_cdev->freq_table),
 578                                         GFP_KERNEL);
 579         if (!cpufreq_cdev->freq_table) {
 580                 cdev = ERR_PTR(-ENOMEM);
 581                 goto free_idle_time;
 582         }
 583 
 584         ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
 585         if (ret < 0) {
 586                 cdev = ERR_PTR(ret);
 587                 goto free_table;
 588         }
 589         cpufreq_cdev->id = ret;
 590 
 591         snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
 592                  cpufreq_cdev->id);
 593 
 594         /* Fill freq-table in descending order of frequencies */
 595         for (i = 0, freq = -1; i <= cpufreq_cdev->max_level; i++) {
 596                 freq = find_next_max(policy->freq_table, freq);
 597                 cpufreq_cdev->freq_table[i].frequency = freq;
 598 
 599                 /* Warn for duplicate entries */
 600                 if (!freq)
 601                         pr_warn("%s: table has duplicate entries\n", __func__);
 602                 else
 603                         pr_debug("%s: freq:%u KHz\n", __func__, freq);
 604         }
 605 
 606         if (capacitance) {
 607                 ret = update_freq_table(cpufreq_cdev, capacitance);
 608                 if (ret) {
 609                         cdev = ERR_PTR(ret);
 610                         goto remove_ida;
 611                 }
 612 
 613                 cooling_ops = &cpufreq_power_cooling_ops;
 614         } else {
 615                 cooling_ops = &cpufreq_cooling_ops;
 616         }
 617 
 618         ret = freq_qos_add_request(&policy->constraints,
 619                                    &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
 620                                    cpufreq_cdev->freq_table[0].frequency);
 621         if (ret < 0) {
 622                 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
 623                        ret);
 624                 cdev = ERR_PTR(ret);
 625                 goto remove_ida;
 626         }
 627 
 628         cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
 629                                                   cooling_ops);
 630         if (IS_ERR(cdev))
 631                 goto remove_qos_req;
 632 
 633         mutex_lock(&cooling_list_lock);
 634         list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
 635         mutex_unlock(&cooling_list_lock);
 636 
 637         return cdev;
 638 
 639 remove_qos_req:
 640         freq_qos_remove_request(&cpufreq_cdev->qos_req);
 641 remove_ida:
 642         ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
 643 free_table:
 644         kfree(cpufreq_cdev->freq_table);
 645 free_idle_time:
 646         kfree(cpufreq_cdev->idle_time);
 647 free_cdev:
 648         kfree(cpufreq_cdev);
 649         return cdev;
 650 }
 651 
 652 /**
 653  * cpufreq_cooling_register - function to create cpufreq cooling device.
 654  * @policy: cpufreq policy
 655  *
 656  * This interface function registers the cpufreq cooling device with the name
 657  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 658  * cooling devices.
 659  *
 660  * Return: a valid struct thermal_cooling_device pointer on success,
 661  * on failure, it returns a corresponding ERR_PTR().
 662  */
 663 struct thermal_cooling_device *
 664 cpufreq_cooling_register(struct cpufreq_policy *policy)
 665 {
 666         return __cpufreq_cooling_register(NULL, policy, 0);
 667 }
 668 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
 669 
 670 /**
 671  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
 672  * @policy: cpufreq policy
 673  *
 674  * This interface function registers the cpufreq cooling device with the name
 675  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
 676  * cooling devices. Using this API, the cpufreq cooling device will be
 677  * linked to the device tree node provided.
 678  *
 679  * Using this function, the cooling device will implement the power
 680  * extensions by using a simple cpu power model.  The cpus must have
 681  * registered their OPPs using the OPP library.
 682  *
 683  * It also takes into account, if property present in policy CPU node, the
 684  * static power consumed by the cpu.
 685  *
 686  * Return: a valid struct thermal_cooling_device pointer on success,
 687  * and NULL on failure.
 688  */
 689 struct thermal_cooling_device *
 690 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
 691 {
 692         struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
 693         struct thermal_cooling_device *cdev = NULL;
 694         u32 capacitance = 0;
 695 
 696         if (!np) {
 697                 pr_err("cpu_cooling: OF node not available for cpu%d\n",
 698                        policy->cpu);
 699                 return NULL;
 700         }
 701 
 702         if (of_find_property(np, "#cooling-cells", NULL)) {
 703                 of_property_read_u32(np, "dynamic-power-coefficient",
 704                                      &capacitance);
 705 
 706                 cdev = __cpufreq_cooling_register(np, policy, capacitance);
 707                 if (IS_ERR(cdev)) {
 708                         pr_err("cpu_cooling: cpu%d failed to register as cooling device: %ld\n",
 709                                policy->cpu, PTR_ERR(cdev));
 710                         cdev = NULL;
 711                 }
 712         }
 713 
 714         of_node_put(np);
 715         return cdev;
 716 }
 717 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
 718 
 719 /**
 720  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
 721  * @cdev: thermal cooling device pointer.
 722  *
 723  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
 724  */
 725 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
 726 {
 727         struct cpufreq_cooling_device *cpufreq_cdev;
 728 
 729         if (!cdev)
 730                 return;
 731 
 732         cpufreq_cdev = cdev->devdata;
 733 
 734         mutex_lock(&cooling_list_lock);
 735         list_del(&cpufreq_cdev->node);
 736         mutex_unlock(&cooling_list_lock);
 737 
 738         thermal_cooling_device_unregister(cdev);
 739         freq_qos_remove_request(&cpufreq_cdev->qos_req);
 740         ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
 741         kfree(cpufreq_cdev->idle_time);
 742         kfree(cpufreq_cdev->freq_table);
 743         kfree(cpufreq_cdev);
 744 }
 745 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);

/* [<][>][^][v][top][bottom][index][help] */