This source file includes following definitions.
- scmi_clock_protocol_attributes_get
- scmi_clock_attributes_get
- scmi_clock_describe_rates_get
- scmi_clock_rate_get
- scmi_clock_rate_set
- scmi_clock_config_set
- scmi_clock_enable
- scmi_clock_disable
- scmi_clock_count_get
- scmi_clock_info_get
- scmi_clock_protocol_init
- scmi_clock_init
1
2
3
4
5
6
7
8 #include "common.h"
9
10 enum scmi_clock_protocol_cmd {
11 CLOCK_ATTRIBUTES = 0x3,
12 CLOCK_DESCRIBE_RATES = 0x4,
13 CLOCK_RATE_SET = 0x5,
14 CLOCK_RATE_GET = 0x6,
15 CLOCK_CONFIG_SET = 0x7,
16 };
17
18 struct scmi_msg_resp_clock_protocol_attributes {
19 __le16 num_clocks;
20 u8 max_async_req;
21 u8 reserved;
22 };
23
24 struct scmi_msg_resp_clock_attributes {
25 __le32 attributes;
26 #define CLOCK_ENABLE BIT(0)
27 u8 name[SCMI_MAX_STR_SIZE];
28 };
29
30 struct scmi_clock_set_config {
31 __le32 id;
32 __le32 attributes;
33 };
34
35 struct scmi_msg_clock_describe_rates {
36 __le32 id;
37 __le32 rate_index;
38 };
39
40 struct scmi_msg_resp_clock_describe_rates {
41 __le32 num_rates_flags;
42 #define NUM_RETURNED(x) ((x) & 0xfff)
43 #define RATE_DISCRETE(x) !((x) & BIT(12))
44 #define NUM_REMAINING(x) ((x) >> 16)
45 struct {
46 __le32 value_low;
47 __le32 value_high;
48 } rate[0];
49 #define RATE_TO_U64(X) \
50 ({ \
51 typeof(X) x = (X); \
52 le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
53 })
54 };
55
56 struct scmi_clock_set_rate {
57 __le32 flags;
58 #define CLOCK_SET_ASYNC BIT(0)
59 #define CLOCK_SET_IGNORE_RESP BIT(1)
60 #define CLOCK_SET_ROUND_UP BIT(2)
61 #define CLOCK_SET_ROUND_AUTO BIT(3)
62 __le32 id;
63 __le32 value_low;
64 __le32 value_high;
65 };
66
67 struct clock_info {
68 int num_clocks;
69 int max_async_req;
70 atomic_t cur_async_req;
71 struct scmi_clock_info *clk;
72 };
73
74 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
75 struct clock_info *ci)
76 {
77 int ret;
78 struct scmi_xfer *t;
79 struct scmi_msg_resp_clock_protocol_attributes *attr;
80
81 ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
82 SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
83 if (ret)
84 return ret;
85
86 attr = t->rx.buf;
87
88 ret = scmi_do_xfer(handle, t);
89 if (!ret) {
90 ci->num_clocks = le16_to_cpu(attr->num_clocks);
91 ci->max_async_req = attr->max_async_req;
92 }
93
94 scmi_xfer_put(handle, t);
95 return ret;
96 }
97
98 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
99 u32 clk_id, struct scmi_clock_info *clk)
100 {
101 int ret;
102 struct scmi_xfer *t;
103 struct scmi_msg_resp_clock_attributes *attr;
104
105 ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
106 sizeof(clk_id), sizeof(*attr), &t);
107 if (ret)
108 return ret;
109
110 put_unaligned_le32(clk_id, t->tx.buf);
111 attr = t->rx.buf;
112
113 ret = scmi_do_xfer(handle, t);
114 if (!ret)
115 strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
116 else
117 clk->name[0] = '\0';
118
119 scmi_xfer_put(handle, t);
120 return ret;
121 }
122
123 static int
124 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
125 struct scmi_clock_info *clk)
126 {
127 u64 *rate;
128 int ret, cnt;
129 bool rate_discrete = false;
130 u32 tot_rate_cnt = 0, rates_flag;
131 u16 num_returned, num_remaining;
132 struct scmi_xfer *t;
133 struct scmi_msg_clock_describe_rates *clk_desc;
134 struct scmi_msg_resp_clock_describe_rates *rlist;
135
136 ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
137 SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
138 if (ret)
139 return ret;
140
141 clk_desc = t->tx.buf;
142 rlist = t->rx.buf;
143
144 do {
145 clk_desc->id = cpu_to_le32(clk_id);
146
147 clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
148
149 ret = scmi_do_xfer(handle, t);
150 if (ret)
151 goto err;
152
153 rates_flag = le32_to_cpu(rlist->num_rates_flags);
154 num_remaining = NUM_REMAINING(rates_flag);
155 rate_discrete = RATE_DISCRETE(rates_flag);
156 num_returned = NUM_RETURNED(rates_flag);
157
158 if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
159 dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
160 break;
161 }
162
163 if (!rate_discrete) {
164 clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
165 clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
166 clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
167 dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
168 clk->range.min_rate, clk->range.max_rate,
169 clk->range.step_size);
170 break;
171 }
172
173 rate = &clk->list.rates[tot_rate_cnt];
174 for (cnt = 0; cnt < num_returned; cnt++, rate++) {
175 *rate = RATE_TO_U64(rlist->rate[cnt]);
176 dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
177 }
178
179 tot_rate_cnt += num_returned;
180
181
182
183
184 } while (num_returned && num_remaining);
185
186 if (rate_discrete)
187 clk->list.num_rates = tot_rate_cnt;
188
189 clk->rate_discrete = rate_discrete;
190
191 err:
192 scmi_xfer_put(handle, t);
193 return ret;
194 }
195
196 static int
197 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
198 {
199 int ret;
200 struct scmi_xfer *t;
201
202 ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
203 sizeof(__le32), sizeof(u64), &t);
204 if (ret)
205 return ret;
206
207 put_unaligned_le32(clk_id, t->tx.buf);
208
209 ret = scmi_do_xfer(handle, t);
210 if (!ret)
211 *value = get_unaligned_le64(t->rx.buf);
212
213 scmi_xfer_put(handle, t);
214 return ret;
215 }
216
217 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
218 u64 rate)
219 {
220 int ret;
221 u32 flags = 0;
222 struct scmi_xfer *t;
223 struct scmi_clock_set_rate *cfg;
224 struct clock_info *ci = handle->clk_priv;
225
226 ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
227 sizeof(*cfg), 0, &t);
228 if (ret)
229 return ret;
230
231 if (ci->max_async_req &&
232 atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
233 flags |= CLOCK_SET_ASYNC;
234
235 cfg = t->tx.buf;
236 cfg->flags = cpu_to_le32(flags);
237 cfg->id = cpu_to_le32(clk_id);
238 cfg->value_low = cpu_to_le32(rate & 0xffffffff);
239 cfg->value_high = cpu_to_le32(rate >> 32);
240
241 if (flags & CLOCK_SET_ASYNC)
242 ret = scmi_do_xfer_with_response(handle, t);
243 else
244 ret = scmi_do_xfer(handle, t);
245
246 if (ci->max_async_req)
247 atomic_dec(&ci->cur_async_req);
248
249 scmi_xfer_put(handle, t);
250 return ret;
251 }
252
253 static int
254 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
255 {
256 int ret;
257 struct scmi_xfer *t;
258 struct scmi_clock_set_config *cfg;
259
260 ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
261 sizeof(*cfg), 0, &t);
262 if (ret)
263 return ret;
264
265 cfg = t->tx.buf;
266 cfg->id = cpu_to_le32(clk_id);
267 cfg->attributes = cpu_to_le32(config);
268
269 ret = scmi_do_xfer(handle, t);
270
271 scmi_xfer_put(handle, t);
272 return ret;
273 }
274
275 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
276 {
277 return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
278 }
279
280 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
281 {
282 return scmi_clock_config_set(handle, clk_id, 0);
283 }
284
285 static int scmi_clock_count_get(const struct scmi_handle *handle)
286 {
287 struct clock_info *ci = handle->clk_priv;
288
289 return ci->num_clocks;
290 }
291
292 static const struct scmi_clock_info *
293 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
294 {
295 struct clock_info *ci = handle->clk_priv;
296 struct scmi_clock_info *clk = ci->clk + clk_id;
297
298 if (!clk->name[0])
299 return NULL;
300
301 return clk;
302 }
303
304 static struct scmi_clk_ops clk_ops = {
305 .count_get = scmi_clock_count_get,
306 .info_get = scmi_clock_info_get,
307 .rate_get = scmi_clock_rate_get,
308 .rate_set = scmi_clock_rate_set,
309 .enable = scmi_clock_enable,
310 .disable = scmi_clock_disable,
311 };
312
313 static int scmi_clock_protocol_init(struct scmi_handle *handle)
314 {
315 u32 version;
316 int clkid, ret;
317 struct clock_info *cinfo;
318
319 scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
320
321 dev_dbg(handle->dev, "Clock Version %d.%d\n",
322 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
323
324 cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
325 if (!cinfo)
326 return -ENOMEM;
327
328 scmi_clock_protocol_attributes_get(handle, cinfo);
329
330 cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
331 sizeof(*cinfo->clk), GFP_KERNEL);
332 if (!cinfo->clk)
333 return -ENOMEM;
334
335 for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
336 struct scmi_clock_info *clk = cinfo->clk + clkid;
337
338 ret = scmi_clock_attributes_get(handle, clkid, clk);
339 if (!ret)
340 scmi_clock_describe_rates_get(handle, clkid, clk);
341 }
342
343 handle->clk_ops = &clk_ops;
344 handle->clk_priv = cinfo;
345
346 return 0;
347 }
348
349 static int __init scmi_clock_init(void)
350 {
351 return scmi_protocol_register(SCMI_PROTOCOL_CLOCK,
352 &scmi_clock_protocol_init);
353 }
354 subsys_initcall(scmi_clock_init);