root/drivers/firmware/efi/memmap.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __efi_memmap_alloc_early
  2. __efi_memmap_alloc_late
  3. efi_memmap_alloc
  4. __efi_memmap_init
  5. efi_memmap_init_early
  6. efi_memmap_unmap
  7. efi_memmap_init_late
  8. efi_memmap_install
  9. efi_memmap_split_count
  10. efi_memmap_insert

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Common EFI memory map functions.
   4  */
   5 
   6 #define pr_fmt(fmt) "efi: " fmt
   7 
   8 #include <linux/init.h>
   9 #include <linux/kernel.h>
  10 #include <linux/efi.h>
  11 #include <linux/io.h>
  12 #include <asm/early_ioremap.h>
  13 #include <linux/memblock.h>
  14 #include <linux/slab.h>
  15 
  16 static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
  17 {
  18         return memblock_phys_alloc(size, SMP_CACHE_BYTES);
  19 }
  20 
  21 static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
  22 {
  23         unsigned int order = get_order(size);
  24         struct page *p = alloc_pages(GFP_KERNEL, order);
  25 
  26         if (!p)
  27                 return 0;
  28 
  29         return PFN_PHYS(page_to_pfn(p));
  30 }
  31 
  32 /**
  33  * efi_memmap_alloc - Allocate memory for the EFI memory map
  34  * @num_entries: Number of entries in the allocated map.
  35  *
  36  * Depending on whether mm_init() has already been invoked or not,
  37  * either memblock or "normal" page allocation is used.
  38  *
  39  * Returns the physical address of the allocated memory map on
  40  * success, zero on failure.
  41  */
  42 phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
  43 {
  44         unsigned long size = num_entries * efi.memmap.desc_size;
  45 
  46         if (slab_is_available())
  47                 return __efi_memmap_alloc_late(size);
  48 
  49         return __efi_memmap_alloc_early(size);
  50 }
  51 
  52 /**
  53  * __efi_memmap_init - Common code for mapping the EFI memory map
  54  * @data: EFI memory map data
  55  * @late: Use early or late mapping function?
  56  *
  57  * This function takes care of figuring out which function to use to
  58  * map the EFI memory map in efi.memmap based on how far into the boot
  59  * we are.
  60  *
  61  * During bootup @late should be %false since we only have access to
  62  * the early_memremap*() functions as the vmalloc space isn't setup.
  63  * Once the kernel is fully booted we can fallback to the more robust
  64  * memremap*() API.
  65  *
  66  * Returns zero on success, a negative error code on failure.
  67  */
  68 static int __init
  69 __efi_memmap_init(struct efi_memory_map_data *data, bool late)
  70 {
  71         struct efi_memory_map map;
  72         phys_addr_t phys_map;
  73 
  74         if (efi_enabled(EFI_PARAVIRT))
  75                 return 0;
  76 
  77         phys_map = data->phys_map;
  78 
  79         if (late)
  80                 map.map = memremap(phys_map, data->size, MEMREMAP_WB);
  81         else
  82                 map.map = early_memremap(phys_map, data->size);
  83 
  84         if (!map.map) {
  85                 pr_err("Could not map the memory map!\n");
  86                 return -ENOMEM;
  87         }
  88 
  89         map.phys_map = data->phys_map;
  90         map.nr_map = data->size / data->desc_size;
  91         map.map_end = map.map + data->size;
  92 
  93         map.desc_version = data->desc_version;
  94         map.desc_size = data->desc_size;
  95         map.late = late;
  96 
  97         set_bit(EFI_MEMMAP, &efi.flags);
  98 
  99         efi.memmap = map;
 100 
 101         return 0;
 102 }
 103 
 104 /**
 105  * efi_memmap_init_early - Map the EFI memory map data structure
 106  * @data: EFI memory map data
 107  *
 108  * Use early_memremap() to map the passed in EFI memory map and assign
 109  * it to efi.memmap.
 110  */
 111 int __init efi_memmap_init_early(struct efi_memory_map_data *data)
 112 {
 113         /* Cannot go backwards */
 114         WARN_ON(efi.memmap.late);
 115 
 116         return __efi_memmap_init(data, false);
 117 }
 118 
 119 void __init efi_memmap_unmap(void)
 120 {
 121         if (!efi_enabled(EFI_MEMMAP))
 122                 return;
 123 
 124         if (!efi.memmap.late) {
 125                 unsigned long size;
 126 
 127                 size = efi.memmap.desc_size * efi.memmap.nr_map;
 128                 early_memunmap(efi.memmap.map, size);
 129         } else {
 130                 memunmap(efi.memmap.map);
 131         }
 132 
 133         efi.memmap.map = NULL;
 134         clear_bit(EFI_MEMMAP, &efi.flags);
 135 }
 136 
 137 /**
 138  * efi_memmap_init_late - Map efi.memmap with memremap()
 139  * @phys_addr: Physical address of the new EFI memory map
 140  * @size: Size in bytes of the new EFI memory map
 141  *
 142  * Setup a mapping of the EFI memory map using ioremap_cache(). This
 143  * function should only be called once the vmalloc space has been
 144  * setup and is therefore not suitable for calling during early EFI
 145  * initialise, e.g. in efi_init(). Additionally, it expects
 146  * efi_memmap_init_early() to have already been called.
 147  *
 148  * The reason there are two EFI memmap initialisation
 149  * (efi_memmap_init_early() and this late version) is because the
 150  * early EFI memmap should be explicitly unmapped once EFI
 151  * initialisation is complete as the fixmap space used to map the EFI
 152  * memmap (via early_memremap()) is a scarce resource.
 153  *
 154  * This late mapping is intended to persist for the duration of
 155  * runtime so that things like efi_mem_desc_lookup() and
 156  * efi_mem_attributes() always work.
 157  *
 158  * Returns zero on success, a negative error code on failure.
 159  */
 160 int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
 161 {
 162         struct efi_memory_map_data data = {
 163                 .phys_map = addr,
 164                 .size = size,
 165         };
 166 
 167         /* Did we forget to unmap the early EFI memmap? */
 168         WARN_ON(efi.memmap.map);
 169 
 170         /* Were we already called? */
 171         WARN_ON(efi.memmap.late);
 172 
 173         /*
 174          * It makes no sense to allow callers to register different
 175          * values for the following fields. Copy them out of the
 176          * existing early EFI memmap.
 177          */
 178         data.desc_version = efi.memmap.desc_version;
 179         data.desc_size = efi.memmap.desc_size;
 180 
 181         return __efi_memmap_init(&data, true);
 182 }
 183 
 184 /**
 185  * efi_memmap_install - Install a new EFI memory map in efi.memmap
 186  * @addr: Physical address of the memory map
 187  * @nr_map: Number of entries in the memory map
 188  *
 189  * Unlike efi_memmap_init_*(), this function does not allow the caller
 190  * to switch from early to late mappings. It simply uses the existing
 191  * mapping function and installs the new memmap.
 192  *
 193  * Returns zero on success, a negative error code on failure.
 194  */
 195 int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
 196 {
 197         struct efi_memory_map_data data;
 198 
 199         efi_memmap_unmap();
 200 
 201         data.phys_map = addr;
 202         data.size = efi.memmap.desc_size * nr_map;
 203         data.desc_version = efi.memmap.desc_version;
 204         data.desc_size = efi.memmap.desc_size;
 205 
 206         return __efi_memmap_init(&data, efi.memmap.late);
 207 }
 208 
 209 /**
 210  * efi_memmap_split_count - Count number of additional EFI memmap entries
 211  * @md: EFI memory descriptor to split
 212  * @range: Address range (start, end) to split around
 213  *
 214  * Returns the number of additional EFI memmap entries required to
 215  * accomodate @range.
 216  */
 217 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
 218 {
 219         u64 m_start, m_end;
 220         u64 start, end;
 221         int count = 0;
 222 
 223         start = md->phys_addr;
 224         end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
 225 
 226         /* modifying range */
 227         m_start = range->start;
 228         m_end = range->end;
 229 
 230         if (m_start <= start) {
 231                 /* split into 2 parts */
 232                 if (start < m_end && m_end < end)
 233                         count++;
 234         }
 235 
 236         if (start < m_start && m_start < end) {
 237                 /* split into 3 parts */
 238                 if (m_end < end)
 239                         count += 2;
 240                 /* split into 2 parts */
 241                 if (end <= m_end)
 242                         count++;
 243         }
 244 
 245         return count;
 246 }
 247 
 248 /**
 249  * efi_memmap_insert - Insert a memory region in an EFI memmap
 250  * @old_memmap: The existing EFI memory map structure
 251  * @buf: Address of buffer to store new map
 252  * @mem: Memory map entry to insert
 253  *
 254  * It is suggested that you call efi_memmap_split_count() first
 255  * to see how large @buf needs to be.
 256  */
 257 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
 258                               struct efi_mem_range *mem)
 259 {
 260         u64 m_start, m_end, m_attr;
 261         efi_memory_desc_t *md;
 262         u64 start, end;
 263         void *old, *new;
 264 
 265         /* modifying range */
 266         m_start = mem->range.start;
 267         m_end = mem->range.end;
 268         m_attr = mem->attribute;
 269 
 270         /*
 271          * The EFI memory map deals with regions in EFI_PAGE_SIZE
 272          * units. Ensure that the region described by 'mem' is aligned
 273          * correctly.
 274          */
 275         if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
 276             !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
 277                 WARN_ON(1);
 278                 return;
 279         }
 280 
 281         for (old = old_memmap->map, new = buf;
 282              old < old_memmap->map_end;
 283              old += old_memmap->desc_size, new += old_memmap->desc_size) {
 284 
 285                 /* copy original EFI memory descriptor */
 286                 memcpy(new, old, old_memmap->desc_size);
 287                 md = new;
 288                 start = md->phys_addr;
 289                 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
 290 
 291                 if (m_start <= start && end <= m_end)
 292                         md->attribute |= m_attr;
 293 
 294                 if (m_start <= start &&
 295                     (start < m_end && m_end < end)) {
 296                         /* first part */
 297                         md->attribute |= m_attr;
 298                         md->num_pages = (m_end - md->phys_addr + 1) >>
 299                                 EFI_PAGE_SHIFT;
 300                         /* latter part */
 301                         new += old_memmap->desc_size;
 302                         memcpy(new, old, old_memmap->desc_size);
 303                         md = new;
 304                         md->phys_addr = m_end + 1;
 305                         md->num_pages = (end - md->phys_addr + 1) >>
 306                                 EFI_PAGE_SHIFT;
 307                 }
 308 
 309                 if ((start < m_start && m_start < end) && m_end < end) {
 310                         /* first part */
 311                         md->num_pages = (m_start - md->phys_addr) >>
 312                                 EFI_PAGE_SHIFT;
 313                         /* middle part */
 314                         new += old_memmap->desc_size;
 315                         memcpy(new, old, old_memmap->desc_size);
 316                         md = new;
 317                         md->attribute |= m_attr;
 318                         md->phys_addr = m_start;
 319                         md->num_pages = (m_end - m_start + 1) >>
 320                                 EFI_PAGE_SHIFT;
 321                         /* last part */
 322                         new += old_memmap->desc_size;
 323                         memcpy(new, old, old_memmap->desc_size);
 324                         md = new;
 325                         md->phys_addr = m_end + 1;
 326                         md->num_pages = (end - m_end) >>
 327                                 EFI_PAGE_SHIFT;
 328                 }
 329 
 330                 if ((start < m_start && m_start < end) &&
 331                     (end <= m_end)) {
 332                         /* first part */
 333                         md->num_pages = (m_start - md->phys_addr) >>
 334                                 EFI_PAGE_SHIFT;
 335                         /* latter part */
 336                         new += old_memmap->desc_size;
 337                         memcpy(new, old, old_memmap->desc_size);
 338                         md = new;
 339                         md->phys_addr = m_start;
 340                         md->num_pages = (end - md->phys_addr + 1) >>
 341                                 EFI_PAGE_SHIFT;
 342                         md->attribute |= m_attr;
 343                 }
 344         }
 345 }

/* [<][>][^][v][top][bottom][index][help] */