root/drivers/edac/fsl_ddr_edac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ddr_in32
  2. ddr_out32
  3. fsl_mc_inject_data_hi_show
  4. fsl_mc_inject_data_lo_show
  5. fsl_mc_inject_ctrl_show
  6. fsl_mc_inject_data_hi_store
  7. fsl_mc_inject_data_lo_store
  8. fsl_mc_inject_ctrl_store
  9. calculate_ecc
  10. syndrome_from_bit
  11. sbe_ecc_decode
  12. fsl_mc_check
  13. fsl_mc_isr
  14. fsl_ddr_init_csrows
  15. fsl_mc_err_probe
  16. fsl_mc_err_remove

   1 /*
   2  * Freescale Memory Controller kernel module
   3  *
   4  * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
   5  * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
   6  * split out from mpc85xx_edac EDAC driver.
   7  *
   8  * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
   9  *
  10  * Author: Dave Jiang <djiang@mvista.com>
  11  *
  12  * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
  13  * the terms of the GNU General Public License version 2. This program
  14  * is licensed "as is" without any warranty of any kind, whether express
  15  * or implied.
  16  */
  17 #include <linux/module.h>
  18 #include <linux/init.h>
  19 #include <linux/interrupt.h>
  20 #include <linux/ctype.h>
  21 #include <linux/io.h>
  22 #include <linux/mod_devicetable.h>
  23 #include <linux/edac.h>
  24 #include <linux/smp.h>
  25 #include <linux/gfp.h>
  26 
  27 #include <linux/of_platform.h>
  28 #include <linux/of_device.h>
  29 #include <linux/of_address.h>
  30 #include "edac_module.h"
  31 #include "fsl_ddr_edac.h"
  32 
  33 #define EDAC_MOD_STR    "fsl_ddr_edac"
  34 
  35 static int edac_mc_idx;
  36 
  37 static u32 orig_ddr_err_disable;
  38 static u32 orig_ddr_err_sbe;
  39 static bool little_endian;
  40 
  41 static inline u32 ddr_in32(void __iomem *addr)
  42 {
  43         return little_endian ? ioread32(addr) : ioread32be(addr);
  44 }
  45 
  46 static inline void ddr_out32(void __iomem *addr, u32 value)
  47 {
  48         if (little_endian)
  49                 iowrite32(value, addr);
  50         else
  51                 iowrite32be(value, addr);
  52 }
  53 
  54 #ifdef CONFIG_EDAC_DEBUG
  55 /************************ MC SYSFS parts ***********************************/
  56 
  57 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
  58 
  59 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
  60                                           struct device_attribute *mattr,
  61                                           char *data)
  62 {
  63         struct mem_ctl_info *mci = to_mci(dev);
  64         struct fsl_mc_pdata *pdata = mci->pvt_info;
  65         return sprintf(data, "0x%08x",
  66                        ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
  67 }
  68 
  69 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
  70                                           struct device_attribute *mattr,
  71                                               char *data)
  72 {
  73         struct mem_ctl_info *mci = to_mci(dev);
  74         struct fsl_mc_pdata *pdata = mci->pvt_info;
  75         return sprintf(data, "0x%08x",
  76                        ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
  77 }
  78 
  79 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
  80                                        struct device_attribute *mattr,
  81                                            char *data)
  82 {
  83         struct mem_ctl_info *mci = to_mci(dev);
  84         struct fsl_mc_pdata *pdata = mci->pvt_info;
  85         return sprintf(data, "0x%08x",
  86                        ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
  87 }
  88 
  89 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
  90                                            struct device_attribute *mattr,
  91                                                const char *data, size_t count)
  92 {
  93         struct mem_ctl_info *mci = to_mci(dev);
  94         struct fsl_mc_pdata *pdata = mci->pvt_info;
  95         unsigned long val;
  96         int rc;
  97 
  98         if (isdigit(*data)) {
  99                 rc = kstrtoul(data, 0, &val);
 100                 if (rc)
 101                         return rc;
 102 
 103                 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
 104                 return count;
 105         }
 106         return 0;
 107 }
 108 
 109 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
 110                                            struct device_attribute *mattr,
 111                                                const char *data, size_t count)
 112 {
 113         struct mem_ctl_info *mci = to_mci(dev);
 114         struct fsl_mc_pdata *pdata = mci->pvt_info;
 115         unsigned long val;
 116         int rc;
 117 
 118         if (isdigit(*data)) {
 119                 rc = kstrtoul(data, 0, &val);
 120                 if (rc)
 121                         return rc;
 122 
 123                 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
 124                 return count;
 125         }
 126         return 0;
 127 }
 128 
 129 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
 130                                         struct device_attribute *mattr,
 131                                                const char *data, size_t count)
 132 {
 133         struct mem_ctl_info *mci = to_mci(dev);
 134         struct fsl_mc_pdata *pdata = mci->pvt_info;
 135         unsigned long val;
 136         int rc;
 137 
 138         if (isdigit(*data)) {
 139                 rc = kstrtoul(data, 0, &val);
 140                 if (rc)
 141                         return rc;
 142 
 143                 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
 144                 return count;
 145         }
 146         return 0;
 147 }
 148 
 149 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
 150                    fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
 151 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
 152                    fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
 153 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
 154                    fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
 155 #endif /* CONFIG_EDAC_DEBUG */
 156 
 157 static struct attribute *fsl_ddr_dev_attrs[] = {
 158 #ifdef CONFIG_EDAC_DEBUG
 159         &dev_attr_inject_data_hi.attr,
 160         &dev_attr_inject_data_lo.attr,
 161         &dev_attr_inject_ctrl.attr,
 162 #endif
 163         NULL
 164 };
 165 
 166 ATTRIBUTE_GROUPS(fsl_ddr_dev);
 167 
 168 /**************************** MC Err device ***************************/
 169 
 170 /*
 171  * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
 172  * MPC8572 User's Manual.  Each line represents a syndrome bit column as a
 173  * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels
 174  * below correspond to Freescale's manuals.
 175  */
 176 static unsigned int ecc_table[16] = {
 177         /* MSB           LSB */
 178         /* [0:31]    [32:63] */
 179         0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
 180         0x00ff00ff, 0x00fff0ff,
 181         0x0f0f0f0f, 0x0f0fff00,
 182         0x11113333, 0x7777000f,
 183         0x22224444, 0x8888222f,
 184         0x44448888, 0xffff4441,
 185         0x8888ffff, 0x11118882,
 186         0xffff1111, 0x22221114, /* Syndrome bit 0 */
 187 };
 188 
 189 /*
 190  * Calculate the correct ECC value for a 64-bit value specified by high:low
 191  */
 192 static u8 calculate_ecc(u32 high, u32 low)
 193 {
 194         u32 mask_low;
 195         u32 mask_high;
 196         int bit_cnt;
 197         u8 ecc = 0;
 198         int i;
 199         int j;
 200 
 201         for (i = 0; i < 8; i++) {
 202                 mask_high = ecc_table[i * 2];
 203                 mask_low = ecc_table[i * 2 + 1];
 204                 bit_cnt = 0;
 205 
 206                 for (j = 0; j < 32; j++) {
 207                         if ((mask_high >> j) & 1)
 208                                 bit_cnt ^= (high >> j) & 1;
 209                         if ((mask_low >> j) & 1)
 210                                 bit_cnt ^= (low >> j) & 1;
 211                 }
 212 
 213                 ecc |= bit_cnt << i;
 214         }
 215 
 216         return ecc;
 217 }
 218 
 219 /*
 220  * Create the syndrome code which is generated if the data line specified by
 221  * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
 222  * User's Manual and 9-61 in the MPC8572 User's Manual.
 223  */
 224 static u8 syndrome_from_bit(unsigned int bit) {
 225         int i;
 226         u8 syndrome = 0;
 227 
 228         /*
 229          * Cycle through the upper or lower 32-bit portion of each value in
 230          * ecc_table depending on if 'bit' is in the upper or lower half of
 231          * 64-bit data.
 232          */
 233         for (i = bit < 32; i < 16; i += 2)
 234                 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
 235 
 236         return syndrome;
 237 }
 238 
 239 /*
 240  * Decode data and ecc syndrome to determine what went wrong
 241  * Note: This can only decode single-bit errors
 242  */
 243 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
 244                        int *bad_data_bit, int *bad_ecc_bit)
 245 {
 246         int i;
 247         u8 syndrome;
 248 
 249         *bad_data_bit = -1;
 250         *bad_ecc_bit = -1;
 251 
 252         /*
 253          * Calculate the ECC of the captured data and XOR it with the captured
 254          * ECC to find an ECC syndrome value we can search for
 255          */
 256         syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
 257 
 258         /* Check if a data line is stuck... */
 259         for (i = 0; i < 64; i++) {
 260                 if (syndrome == syndrome_from_bit(i)) {
 261                         *bad_data_bit = i;
 262                         return;
 263                 }
 264         }
 265 
 266         /* If data is correct, check ECC bits for errors... */
 267         for (i = 0; i < 8; i++) {
 268                 if ((syndrome >> i) & 0x1) {
 269                         *bad_ecc_bit = i;
 270                         return;
 271                 }
 272         }
 273 }
 274 
 275 #define make64(high, low) (((u64)(high) << 32) | (low))
 276 
 277 static void fsl_mc_check(struct mem_ctl_info *mci)
 278 {
 279         struct fsl_mc_pdata *pdata = mci->pvt_info;
 280         struct csrow_info *csrow;
 281         u32 bus_width;
 282         u32 err_detect;
 283         u32 syndrome;
 284         u64 err_addr;
 285         u32 pfn;
 286         int row_index;
 287         u32 cap_high;
 288         u32 cap_low;
 289         int bad_data_bit;
 290         int bad_ecc_bit;
 291 
 292         err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
 293         if (!err_detect)
 294                 return;
 295 
 296         fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
 297                       err_detect);
 298 
 299         /* no more processing if not ECC bit errors */
 300         if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
 301                 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
 302                 return;
 303         }
 304 
 305         syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
 306 
 307         /* Mask off appropriate bits of syndrome based on bus width */
 308         bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
 309                      DSC_DBW_MASK) ? 32 : 64;
 310         if (bus_width == 64)
 311                 syndrome &= 0xff;
 312         else
 313                 syndrome &= 0xffff;
 314 
 315         err_addr = make64(
 316                 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
 317                 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
 318         pfn = err_addr >> PAGE_SHIFT;
 319 
 320         for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
 321                 csrow = mci->csrows[row_index];
 322                 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
 323                         break;
 324         }
 325 
 326         cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
 327         cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
 328 
 329         /*
 330          * Analyze single-bit errors on 64-bit wide buses
 331          * TODO: Add support for 32-bit wide buses
 332          */
 333         if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
 334                 sbe_ecc_decode(cap_high, cap_low, syndrome,
 335                                 &bad_data_bit, &bad_ecc_bit);
 336 
 337                 if (bad_data_bit != -1)
 338                         fsl_mc_printk(mci, KERN_ERR,
 339                                 "Faulty Data bit: %d\n", bad_data_bit);
 340                 if (bad_ecc_bit != -1)
 341                         fsl_mc_printk(mci, KERN_ERR,
 342                                 "Faulty ECC bit: %d\n", bad_ecc_bit);
 343 
 344                 fsl_mc_printk(mci, KERN_ERR,
 345                         "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
 346                         cap_high ^ (1 << (bad_data_bit - 32)),
 347                         cap_low ^ (1 << bad_data_bit),
 348                         syndrome ^ (1 << bad_ecc_bit));
 349         }
 350 
 351         fsl_mc_printk(mci, KERN_ERR,
 352                         "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
 353                         cap_high, cap_low, syndrome);
 354         fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
 355         fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
 356 
 357         /* we are out of range */
 358         if (row_index == mci->nr_csrows)
 359                 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
 360 
 361         if (err_detect & DDR_EDE_SBE)
 362                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
 363                                      pfn, err_addr & ~PAGE_MASK, syndrome,
 364                                      row_index, 0, -1,
 365                                      mci->ctl_name, "");
 366 
 367         if (err_detect & DDR_EDE_MBE)
 368                 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
 369                                      pfn, err_addr & ~PAGE_MASK, syndrome,
 370                                      row_index, 0, -1,
 371                                      mci->ctl_name, "");
 372 
 373         ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
 374 }
 375 
 376 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
 377 {
 378         struct mem_ctl_info *mci = dev_id;
 379         struct fsl_mc_pdata *pdata = mci->pvt_info;
 380         u32 err_detect;
 381 
 382         err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
 383         if (!err_detect)
 384                 return IRQ_NONE;
 385 
 386         fsl_mc_check(mci);
 387 
 388         return IRQ_HANDLED;
 389 }
 390 
 391 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
 392 {
 393         struct fsl_mc_pdata *pdata = mci->pvt_info;
 394         struct csrow_info *csrow;
 395         struct dimm_info *dimm;
 396         u32 sdram_ctl;
 397         u32 sdtype;
 398         enum mem_type mtype;
 399         u32 cs_bnds;
 400         int index;
 401 
 402         sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
 403 
 404         sdtype = sdram_ctl & DSC_SDTYPE_MASK;
 405         if (sdram_ctl & DSC_RD_EN) {
 406                 switch (sdtype) {
 407                 case 0x02000000:
 408                         mtype = MEM_RDDR;
 409                         break;
 410                 case 0x03000000:
 411                         mtype = MEM_RDDR2;
 412                         break;
 413                 case 0x07000000:
 414                         mtype = MEM_RDDR3;
 415                         break;
 416                 case 0x05000000:
 417                         mtype = MEM_RDDR4;
 418                         break;
 419                 default:
 420                         mtype = MEM_UNKNOWN;
 421                         break;
 422                 }
 423         } else {
 424                 switch (sdtype) {
 425                 case 0x02000000:
 426                         mtype = MEM_DDR;
 427                         break;
 428                 case 0x03000000:
 429                         mtype = MEM_DDR2;
 430                         break;
 431                 case 0x07000000:
 432                         mtype = MEM_DDR3;
 433                         break;
 434                 case 0x05000000:
 435                         mtype = MEM_DDR4;
 436                         break;
 437                 default:
 438                         mtype = MEM_UNKNOWN;
 439                         break;
 440                 }
 441         }
 442 
 443         for (index = 0; index < mci->nr_csrows; index++) {
 444                 u32 start;
 445                 u32 end;
 446 
 447                 csrow = mci->csrows[index];
 448                 dimm = csrow->channels[0]->dimm;
 449 
 450                 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
 451                                    (index * FSL_MC_CS_BNDS_OFS));
 452 
 453                 start = (cs_bnds & 0xffff0000) >> 16;
 454                 end   = (cs_bnds & 0x0000ffff);
 455 
 456                 if (start == end)
 457                         continue;       /* not populated */
 458 
 459                 start <<= (24 - PAGE_SHIFT);
 460                 end   <<= (24 - PAGE_SHIFT);
 461                 end    |= (1 << (24 - PAGE_SHIFT)) - 1;
 462 
 463                 csrow->first_page = start;
 464                 csrow->last_page = end;
 465 
 466                 dimm->nr_pages = end + 1 - start;
 467                 dimm->grain = 8;
 468                 dimm->mtype = mtype;
 469                 dimm->dtype = DEV_UNKNOWN;
 470                 if (sdram_ctl & DSC_X32_EN)
 471                         dimm->dtype = DEV_X32;
 472                 dimm->edac_mode = EDAC_SECDED;
 473         }
 474 }
 475 
 476 int fsl_mc_err_probe(struct platform_device *op)
 477 {
 478         struct mem_ctl_info *mci;
 479         struct edac_mc_layer layers[2];
 480         struct fsl_mc_pdata *pdata;
 481         struct resource r;
 482         u32 sdram_ctl;
 483         int res;
 484 
 485         if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
 486                 return -ENOMEM;
 487 
 488         layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
 489         layers[0].size = 4;
 490         layers[0].is_virt_csrow = true;
 491         layers[1].type = EDAC_MC_LAYER_CHANNEL;
 492         layers[1].size = 1;
 493         layers[1].is_virt_csrow = false;
 494         mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
 495                             sizeof(*pdata));
 496         if (!mci) {
 497                 devres_release_group(&op->dev, fsl_mc_err_probe);
 498                 return -ENOMEM;
 499         }
 500 
 501         pdata = mci->pvt_info;
 502         pdata->name = "fsl_mc_err";
 503         mci->pdev = &op->dev;
 504         pdata->edac_idx = edac_mc_idx++;
 505         dev_set_drvdata(mci->pdev, mci);
 506         mci->ctl_name = pdata->name;
 507         mci->dev_name = pdata->name;
 508 
 509         /*
 510          * Get the endianness of DDR controller registers.
 511          * Default is big endian.
 512          */
 513         little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
 514 
 515         res = of_address_to_resource(op->dev.of_node, 0, &r);
 516         if (res) {
 517                 pr_err("%s: Unable to get resource for MC err regs\n",
 518                        __func__);
 519                 goto err;
 520         }
 521 
 522         if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
 523                                      pdata->name)) {
 524                 pr_err("%s: Error while requesting mem region\n",
 525                        __func__);
 526                 res = -EBUSY;
 527                 goto err;
 528         }
 529 
 530         pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
 531         if (!pdata->mc_vbase) {
 532                 pr_err("%s: Unable to setup MC err regs\n", __func__);
 533                 res = -ENOMEM;
 534                 goto err;
 535         }
 536 
 537         sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
 538         if (!(sdram_ctl & DSC_ECC_EN)) {
 539                 /* no ECC */
 540                 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
 541                 res = -ENODEV;
 542                 goto err;
 543         }
 544 
 545         edac_dbg(3, "init mci\n");
 546         mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
 547                          MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
 548                          MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
 549                          MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
 550         mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
 551         mci->edac_cap = EDAC_FLAG_SECDED;
 552         mci->mod_name = EDAC_MOD_STR;
 553 
 554         if (edac_op_state == EDAC_OPSTATE_POLL)
 555                 mci->edac_check = fsl_mc_check;
 556 
 557         mci->ctl_page_to_phys = NULL;
 558 
 559         mci->scrub_mode = SCRUB_SW_SRC;
 560 
 561         fsl_ddr_init_csrows(mci);
 562 
 563         /* store the original error disable bits */
 564         orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
 565         ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
 566 
 567         /* clear all error bits */
 568         ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
 569 
 570         res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
 571         if (res) {
 572                 edac_dbg(3, "failed edac_mc_add_mc()\n");
 573                 goto err;
 574         }
 575 
 576         if (edac_op_state == EDAC_OPSTATE_INT) {
 577                 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
 578                           DDR_EIE_MBEE | DDR_EIE_SBEE);
 579 
 580                 /* store the original error management threshold */
 581                 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
 582                                             FSL_MC_ERR_SBE) & 0xff0000;
 583 
 584                 /* set threshold to 1 error per interrupt */
 585                 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
 586 
 587                 /* register interrupts */
 588                 pdata->irq = platform_get_irq(op, 0);
 589                 res = devm_request_irq(&op->dev, pdata->irq,
 590                                        fsl_mc_isr,
 591                                        IRQF_SHARED,
 592                                        "[EDAC] MC err", mci);
 593                 if (res < 0) {
 594                         pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
 595                                __func__, pdata->irq);
 596                         res = -ENODEV;
 597                         goto err2;
 598                 }
 599 
 600                 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
 601                        pdata->irq);
 602         }
 603 
 604         devres_remove_group(&op->dev, fsl_mc_err_probe);
 605         edac_dbg(3, "success\n");
 606         pr_info(EDAC_MOD_STR " MC err registered\n");
 607 
 608         return 0;
 609 
 610 err2:
 611         edac_mc_del_mc(&op->dev);
 612 err:
 613         devres_release_group(&op->dev, fsl_mc_err_probe);
 614         edac_mc_free(mci);
 615         return res;
 616 }
 617 
 618 int fsl_mc_err_remove(struct platform_device *op)
 619 {
 620         struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
 621         struct fsl_mc_pdata *pdata = mci->pvt_info;
 622 
 623         edac_dbg(0, "\n");
 624 
 625         if (edac_op_state == EDAC_OPSTATE_INT) {
 626                 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
 627         }
 628 
 629         ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
 630                   orig_ddr_err_disable);
 631         ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
 632 
 633         edac_mc_del_mc(&op->dev);
 634         edac_mc_free(mci);
 635         return 0;
 636 }

/* [<][>][^][v][top][bottom][index][help] */