root/drivers/edac/i5400_edac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_nf_mask
  2. from_nf_ferr
  3. extract_fbdchan_indx
  4. nrec_bank
  5. nrec_rank
  6. nrec_buf_id
  7. nrec_rdwr
  8. rdwr_str
  9. nrec_cas
  10. nrec_ras
  11. rec_bank
  12. rec_rank
  13. rec_rdwr
  14. rec_cas
  15. rec_ras
  16. i5400_get_error_info
  17. i5400_proccess_non_recoverable_info
  18. i5400_process_nonfatal_error_info
  19. i5400_process_error_info
  20. i5400_clear_error
  21. i5400_check_error
  22. i5400_put_devices
  23. i5400_get_devices
  24. determine_amb_present_reg
  25. determine_mtr
  26. decode_mtr
  27. handle_channel
  28. calculate_dimm_size
  29. i5400_get_mc_regs
  30. i5400_init_dimms
  31. i5400_enable_error_reporting
  32. i5400_probe1
  33. i5400_init_one
  34. i5400_remove_one
  35. i5400_init
  36. i5400_exit

   1 /*
   2  * Intel 5400 class Memory Controllers kernel module (Seaburg)
   3  *
   4  * This file may be distributed under the terms of the
   5  * GNU General Public License.
   6  *
   7  * Copyright (c) 2008 by:
   8  *       Ben Woodard <woodard@redhat.com>
   9  *       Mauro Carvalho Chehab
  10  *
  11  * Red Hat Inc. http://www.redhat.com
  12  *
  13  * Forked and adapted from the i5000_edac driver which was
  14  * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
  15  *
  16  * This module is based on the following document:
  17  *
  18  * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
  19  *      http://developer.intel.com/design/chipsets/datashts/313070.htm
  20  *
  21  * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
  22  * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
  23  * 4 dimm's, each with up to 8GB.
  24  *
  25  */
  26 
  27 #include <linux/module.h>
  28 #include <linux/init.h>
  29 #include <linux/pci.h>
  30 #include <linux/pci_ids.h>
  31 #include <linux/slab.h>
  32 #include <linux/edac.h>
  33 #include <linux/mmzone.h>
  34 
  35 #include "edac_module.h"
  36 
  37 /*
  38  * Alter this version for the I5400 module when modifications are made
  39  */
  40 #define I5400_REVISION    " Ver: 1.0.0"
  41 
  42 #define EDAC_MOD_STR      "i5400_edac"
  43 
  44 #define i5400_printk(level, fmt, arg...) \
  45         edac_printk(level, "i5400", fmt, ##arg)
  46 
  47 #define i5400_mc_printk(mci, level, fmt, arg...) \
  48         edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
  49 
  50 /* Limits for i5400 */
  51 #define MAX_BRANCHES            2
  52 #define CHANNELS_PER_BRANCH     2
  53 #define DIMMS_PER_CHANNEL       4
  54 #define MAX_CHANNELS            (MAX_BRANCHES * CHANNELS_PER_BRANCH)
  55 
  56 /* Device 16,
  57  * Function 0: System Address
  58  * Function 1: Memory Branch Map, Control, Errors Register
  59  * Function 2: FSB Error Registers
  60  *
  61  * All 3 functions of Device 16 (0,1,2) share the SAME DID and
  62  * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
  63  * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
  64  * for device 21 (0,1).
  65  */
  66 
  67         /* OFFSETS for Function 0 */
  68 #define         AMBASE                  0x48 /* AMB Mem Mapped Reg Region Base */
  69 #define         MAXCH                   0x56 /* Max Channel Number */
  70 #define         MAXDIMMPERCH            0x57 /* Max DIMM PER Channel Number */
  71 
  72         /* OFFSETS for Function 1 */
  73 #define         TOLM                    0x6C
  74 #define         REDMEMB                 0x7C
  75 #define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
  76 #define         MIR0                    0x80
  77 #define         MIR1                    0x84
  78 #define         AMIR0                   0x8c
  79 #define         AMIR1                   0x90
  80 
  81         /* Fatal error registers */
  82 #define         FERR_FAT_FBD            0x98    /* also called as FERR_FAT_FB_DIMM at datasheet */
  83 #define                 FERR_FAT_FBDCHAN (3<<28)        /* channel index where the highest-order error occurred */
  84 
  85 #define         NERR_FAT_FBD            0x9c
  86 #define         FERR_NF_FBD             0xa0    /* also called as FERR_NFAT_FB_DIMM at datasheet */
  87 
  88         /* Non-fatal error register */
  89 #define         NERR_NF_FBD             0xa4
  90 
  91         /* Enable error mask */
  92 #define         EMASK_FBD               0xa8
  93 
  94 #define         ERR0_FBD                0xac
  95 #define         ERR1_FBD                0xb0
  96 #define         ERR2_FBD                0xb4
  97 #define         MCERR_FBD               0xb8
  98 
  99         /* No OFFSETS for Device 16 Function 2 */
 100 
 101 /*
 102  * Device 21,
 103  * Function 0: Memory Map Branch 0
 104  *
 105  * Device 22,
 106  * Function 0: Memory Map Branch 1
 107  */
 108 
 109         /* OFFSETS for Function 0 */
 110 #define AMBPRESENT_0    0x64
 111 #define AMBPRESENT_1    0x66
 112 #define MTR0            0x80
 113 #define MTR1            0x82
 114 #define MTR2            0x84
 115 #define MTR3            0x86
 116 
 117         /* OFFSETS for Function 1 */
 118 #define NRECFGLOG               0x74
 119 #define RECFGLOG                0x78
 120 #define NRECMEMA                0xbe
 121 #define NRECMEMB                0xc0
 122 #define NRECFB_DIMMA            0xc4
 123 #define NRECFB_DIMMB            0xc8
 124 #define NRECFB_DIMMC            0xcc
 125 #define NRECFB_DIMMD            0xd0
 126 #define NRECFB_DIMME            0xd4
 127 #define NRECFB_DIMMF            0xd8
 128 #define REDMEMA                 0xdC
 129 #define RECMEMA                 0xf0
 130 #define RECMEMB                 0xf4
 131 #define RECFB_DIMMA             0xf8
 132 #define RECFB_DIMMB             0xec
 133 #define RECFB_DIMMC             0xf0
 134 #define RECFB_DIMMD             0xf4
 135 #define RECFB_DIMME             0xf8
 136 #define RECFB_DIMMF             0xfC
 137 
 138 /*
 139  * Error indicator bits and masks
 140  * Error masks are according with Table 5-17 of i5400 datasheet
 141  */
 142 
 143 enum error_mask {
 144         EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
 145         EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
 146         EMASK_M3  = 1<<2,  /* Reserved */
 147         EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
 148         EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 149         EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
 150         EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
 151         EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
 152         EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
 153         EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
 154         EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
 155         EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
 156         EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
 157         EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
 158         EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
 159         EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
 160         EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
 161         EMASK_M18 = 1<<17, /* Unsupported on i5400 */
 162         EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
 163         EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
 164         EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
 165         EMASK_M22 = 1<<21, /* SPD protocol Error */
 166         EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
 167         EMASK_M24 = 1<<23, /* Refresh error */
 168         EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
 169         EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
 170         EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
 171         EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
 172         EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
 173 };
 174 
 175 /*
 176  * Names to translate bit error into something useful
 177  */
 178 static const char *error_name[] = {
 179         [0]  = "Memory Write error on non-redundant retry",
 180         [1]  = "Memory or FB-DIMM configuration CRC read error",
 181         /* Reserved */
 182         [3]  = "Uncorrectable Data ECC on Replay",
 183         [4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 184         /* M6 Unsupported on i5400 */
 185         [6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 186         [7]  = "Aliased Uncorrectable Patrol Data ECC",
 187         [8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
 188         /* M10 Unsupported on i5400 */
 189         [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
 190         [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
 191         [12] = "Memory Write error on first attempt",
 192         [13] = "FB-DIMM Configuration Write error on first attempt",
 193         [14] = "Memory or FB-DIMM configuration CRC read error",
 194         [15] = "Channel Failed-Over Occurred",
 195         [16] = "Correctable Non-Mirrored Demand Data ECC",
 196         /* M18 Unsupported on i5400 */
 197         [18] = "Correctable Resilver- or Spare-Copy Data ECC",
 198         [19] = "Correctable Patrol Data ECC",
 199         [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
 200         [21] = "SPD protocol Error",
 201         [22] = "Non-Redundant Fast Reset Timeout",
 202         [23] = "Refresh error",
 203         [24] = "Memory Write error on redundant retry",
 204         [25] = "Redundant Fast Reset Timeout",
 205         [26] = "Correctable Counter Threshold Exceeded",
 206         [27] = "DIMM-Spare Copy Completed",
 207         [28] = "DIMM-Isolation Completed",
 208 };
 209 
 210 /* Fatal errors */
 211 #define ERROR_FAT_MASK          (EMASK_M1 | \
 212                                  EMASK_M2 | \
 213                                  EMASK_M23)
 214 
 215 /* Correctable errors */
 216 #define ERROR_NF_CORRECTABLE    (EMASK_M27 | \
 217                                  EMASK_M20 | \
 218                                  EMASK_M19 | \
 219                                  EMASK_M18 | \
 220                                  EMASK_M17 | \
 221                                  EMASK_M16)
 222 #define ERROR_NF_DIMM_SPARE     (EMASK_M29 | \
 223                                  EMASK_M28)
 224 #define ERROR_NF_SPD_PROTOCOL   (EMASK_M22)
 225 #define ERROR_NF_NORTH_CRC      (EMASK_M21)
 226 
 227 /* Recoverable errors */
 228 #define ERROR_NF_RECOVERABLE    (EMASK_M26 | \
 229                                  EMASK_M25 | \
 230                                  EMASK_M24 | \
 231                                  EMASK_M15 | \
 232                                  EMASK_M14 | \
 233                                  EMASK_M13 | \
 234                                  EMASK_M12 | \
 235                                  EMASK_M11 | \
 236                                  EMASK_M9  | \
 237                                  EMASK_M8  | \
 238                                  EMASK_M7  | \
 239                                  EMASK_M5)
 240 
 241 /* uncorrectable errors */
 242 #define ERROR_NF_UNCORRECTABLE  (EMASK_M4)
 243 
 244 /* mask to all non-fatal errors */
 245 #define ERROR_NF_MASK           (ERROR_NF_CORRECTABLE   | \
 246                                  ERROR_NF_UNCORRECTABLE | \
 247                                  ERROR_NF_RECOVERABLE   | \
 248                                  ERROR_NF_DIMM_SPARE    | \
 249                                  ERROR_NF_SPD_PROTOCOL  | \
 250                                  ERROR_NF_NORTH_CRC)
 251 
 252 /*
 253  * Define error masks for the several registers
 254  */
 255 
 256 /* Enable all fatal and non fatal errors */
 257 #define ENABLE_EMASK_ALL        (ERROR_FAT_MASK | ERROR_NF_MASK)
 258 
 259 /* mask for fatal error registers */
 260 #define FERR_FAT_MASK ERROR_FAT_MASK
 261 
 262 /* masks for non-fatal error register */
 263 static inline int to_nf_mask(unsigned int mask)
 264 {
 265         return (mask & EMASK_M29) | (mask >> 3);
 266 };
 267 
 268 static inline int from_nf_ferr(unsigned int mask)
 269 {
 270         return (mask & EMASK_M29) |             /* Bit 28 */
 271                (mask & ((1 << 28) - 1) << 3);   /* Bits 0 to 27 */
 272 };
 273 
 274 #define FERR_NF_MASK            to_nf_mask(ERROR_NF_MASK)
 275 #define FERR_NF_CORRECTABLE     to_nf_mask(ERROR_NF_CORRECTABLE)
 276 #define FERR_NF_DIMM_SPARE      to_nf_mask(ERROR_NF_DIMM_SPARE)
 277 #define FERR_NF_SPD_PROTOCOL    to_nf_mask(ERROR_NF_SPD_PROTOCOL)
 278 #define FERR_NF_NORTH_CRC       to_nf_mask(ERROR_NF_NORTH_CRC)
 279 #define FERR_NF_RECOVERABLE     to_nf_mask(ERROR_NF_RECOVERABLE)
 280 #define FERR_NF_UNCORRECTABLE   to_nf_mask(ERROR_NF_UNCORRECTABLE)
 281 
 282 /* Defines to extract the vaious fields from the
 283  *      MTRx - Memory Technology Registers
 284  */
 285 #define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (1 << 10))
 286 #define MTR_DIMMS_ETHROTTLE(mtr)        ((mtr) & (1 << 9))
 287 #define MTR_DRAM_WIDTH(mtr)             (((mtr) & (1 << 8)) ? 8 : 4)
 288 #define MTR_DRAM_BANKS(mtr)             (((mtr) & (1 << 6)) ? 8 : 4)
 289 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 290 #define MTR_DIMM_RANK(mtr)              (((mtr) >> 5) & 0x1)
 291 #define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
 292 #define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
 293 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
 294 #define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
 295 #define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
 296 
 297 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
 298 static inline int extract_fbdchan_indx(u32 x)
 299 {
 300         return (x>>28) & 0x3;
 301 }
 302 
 303 /* Device name and register DID (Device ID) */
 304 struct i5400_dev_info {
 305         const char *ctl_name;   /* name for this device */
 306         u16 fsb_mapping_errors; /* DID for the branchmap,control */
 307 };
 308 
 309 /* Table of devices attributes supported by this driver */
 310 static const struct i5400_dev_info i5400_devs[] = {
 311         {
 312                 .ctl_name = "I5400",
 313                 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
 314         },
 315 };
 316 
 317 struct i5400_dimm_info {
 318         int megabytes;          /* size, 0 means not present  */
 319 };
 320 
 321 /* driver private data structure */
 322 struct i5400_pvt {
 323         struct pci_dev *system_address;         /* 16.0 */
 324         struct pci_dev *branchmap_werrors;      /* 16.1 */
 325         struct pci_dev *fsb_error_regs;         /* 16.2 */
 326         struct pci_dev *branch_0;               /* 21.0 */
 327         struct pci_dev *branch_1;               /* 22.0 */
 328 
 329         u16 tolm;                               /* top of low memory */
 330         union {
 331                 u64 ambase;                             /* AMB BAR */
 332                 struct {
 333                         u32 ambase_bottom;
 334                         u32 ambase_top;
 335                 } u __packed;
 336         };
 337 
 338         u16 mir0, mir1;
 339 
 340         u16 b0_mtr[DIMMS_PER_CHANNEL];  /* Memory Technlogy Reg */
 341         u16 b0_ambpresent0;                     /* Branch 0, Channel 0 */
 342         u16 b0_ambpresent1;                     /* Brnach 0, Channel 1 */
 343 
 344         u16 b1_mtr[DIMMS_PER_CHANNEL];  /* Memory Technlogy Reg */
 345         u16 b1_ambpresent0;                     /* Branch 1, Channel 8 */
 346         u16 b1_ambpresent1;                     /* Branch 1, Channel 1 */
 347 
 348         /* DIMM information matrix, allocating architecture maximums */
 349         struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
 350 
 351         /* Actual values for this controller */
 352         int maxch;                              /* Max channels */
 353         int maxdimmperch;                       /* Max DIMMs per channel */
 354 };
 355 
 356 /* I5400 MCH error information retrieved from Hardware */
 357 struct i5400_error_info {
 358         /* These registers are always read from the MC */
 359         u32 ferr_fat_fbd;       /* First Errors Fatal */
 360         u32 nerr_fat_fbd;       /* Next Errors Fatal */
 361         u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
 362         u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
 363 
 364         /* These registers are input ONLY if there was a Recoverable Error */
 365         u32 redmemb;            /* Recoverable Mem Data Error log B */
 366         u16 recmema;            /* Recoverable Mem Error log A */
 367         u32 recmemb;            /* Recoverable Mem Error log B */
 368 
 369         /* These registers are input ONLY if there was a Non-Rec Error */
 370         u16 nrecmema;           /* Non-Recoverable Mem log A */
 371         u32 nrecmemb;           /* Non-Recoverable Mem log B */
 372 
 373 };
 374 
 375 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
 376    5400 better to use an inline function than a macro in this case */
 377 static inline int nrec_bank(struct i5400_error_info *info)
 378 {
 379         return ((info->nrecmema) >> 12) & 0x7;
 380 }
 381 static inline int nrec_rank(struct i5400_error_info *info)
 382 {
 383         return ((info->nrecmema) >> 8) & 0xf;
 384 }
 385 static inline int nrec_buf_id(struct i5400_error_info *info)
 386 {
 387         return ((info->nrecmema)) & 0xff;
 388 }
 389 static inline int nrec_rdwr(struct i5400_error_info *info)
 390 {
 391         return (info->nrecmemb) >> 31;
 392 }
 393 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
 394    and rec_rdwr */
 395 static inline const char *rdwr_str(int rdwr)
 396 {
 397         return rdwr ? "Write" : "Read";
 398 }
 399 static inline int nrec_cas(struct i5400_error_info *info)
 400 {
 401         return ((info->nrecmemb) >> 16) & 0x1fff;
 402 }
 403 static inline int nrec_ras(struct i5400_error_info *info)
 404 {
 405         return (info->nrecmemb) & 0xffff;
 406 }
 407 static inline int rec_bank(struct i5400_error_info *info)
 408 {
 409         return ((info->recmema) >> 12) & 0x7;
 410 }
 411 static inline int rec_rank(struct i5400_error_info *info)
 412 {
 413         return ((info->recmema) >> 8) & 0xf;
 414 }
 415 static inline int rec_rdwr(struct i5400_error_info *info)
 416 {
 417         return (info->recmemb) >> 31;
 418 }
 419 static inline int rec_cas(struct i5400_error_info *info)
 420 {
 421         return ((info->recmemb) >> 16) & 0x1fff;
 422 }
 423 static inline int rec_ras(struct i5400_error_info *info)
 424 {
 425         return (info->recmemb) & 0xffff;
 426 }
 427 
 428 static struct edac_pci_ctl_info *i5400_pci;
 429 
 430 /*
 431  *      i5400_get_error_info    Retrieve the hardware error information from
 432  *                              the hardware and cache it in the 'info'
 433  *                              structure
 434  */
 435 static void i5400_get_error_info(struct mem_ctl_info *mci,
 436                                  struct i5400_error_info *info)
 437 {
 438         struct i5400_pvt *pvt;
 439         u32 value;
 440 
 441         pvt = mci->pvt_info;
 442 
 443         /* read in the 1st FATAL error register */
 444         pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 445 
 446         /* Mask only the bits that the doc says are valid
 447          */
 448         value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 449 
 450         /* If there is an error, then read in the
 451            NEXT FATAL error register and the Memory Error Log Register A
 452          */
 453         if (value & FERR_FAT_MASK) {
 454                 info->ferr_fat_fbd = value;
 455 
 456                 /* harvest the various error data we need */
 457                 pci_read_config_dword(pvt->branchmap_werrors,
 458                                 NERR_FAT_FBD, &info->nerr_fat_fbd);
 459                 pci_read_config_word(pvt->branchmap_werrors,
 460                                 NRECMEMA, &info->nrecmema);
 461                 pci_read_config_dword(pvt->branchmap_werrors,
 462                                 NRECMEMB, &info->nrecmemb);
 463 
 464                 /* Clear the error bits, by writing them back */
 465                 pci_write_config_dword(pvt->branchmap_werrors,
 466                                 FERR_FAT_FBD, value);
 467         } else {
 468                 info->ferr_fat_fbd = 0;
 469                 info->nerr_fat_fbd = 0;
 470                 info->nrecmema = 0;
 471                 info->nrecmemb = 0;
 472         }
 473 
 474         /* read in the 1st NON-FATAL error register */
 475         pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 476 
 477         /* If there is an error, then read in the 1st NON-FATAL error
 478          * register as well */
 479         if (value & FERR_NF_MASK) {
 480                 info->ferr_nf_fbd = value;
 481 
 482                 /* harvest the various error data we need */
 483                 pci_read_config_dword(pvt->branchmap_werrors,
 484                                 NERR_NF_FBD, &info->nerr_nf_fbd);
 485                 pci_read_config_word(pvt->branchmap_werrors,
 486                                 RECMEMA, &info->recmema);
 487                 pci_read_config_dword(pvt->branchmap_werrors,
 488                                 RECMEMB, &info->recmemb);
 489                 pci_read_config_dword(pvt->branchmap_werrors,
 490                                 REDMEMB, &info->redmemb);
 491 
 492                 /* Clear the error bits, by writing them back */
 493                 pci_write_config_dword(pvt->branchmap_werrors,
 494                                 FERR_NF_FBD, value);
 495         } else {
 496                 info->ferr_nf_fbd = 0;
 497                 info->nerr_nf_fbd = 0;
 498                 info->recmema = 0;
 499                 info->recmemb = 0;
 500                 info->redmemb = 0;
 501         }
 502 }
 503 
 504 /*
 505  * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 506  *                                      struct i5400_error_info *info,
 507  *                                      int handle_errors);
 508  *
 509  *      handle the Intel FATAL and unrecoverable errors, if any
 510  */
 511 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
 512                                     struct i5400_error_info *info,
 513                                     unsigned long allErrors)
 514 {
 515         char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 516         int branch;
 517         int channel;
 518         int bank;
 519         int buf_id;
 520         int rank;
 521         int rdwr;
 522         int ras, cas;
 523         int errnum;
 524         char *type = NULL;
 525         enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
 526 
 527         if (!allErrors)
 528                 return;         /* if no error, return now */
 529 
 530         if (allErrors &  ERROR_FAT_MASK) {
 531                 type = "FATAL";
 532                 tp_event = HW_EVENT_ERR_FATAL;
 533         } else if (allErrors & FERR_NF_UNCORRECTABLE)
 534                 type = "NON-FATAL uncorrected";
 535         else
 536                 type = "NON-FATAL recoverable";
 537 
 538         /* ONLY ONE of the possible error bits will be set, as per the docs */
 539 
 540         branch = extract_fbdchan_indx(info->ferr_fat_fbd);
 541         channel = branch;
 542 
 543         /* Use the NON-Recoverable macros to extract data */
 544         bank = nrec_bank(info);
 545         rank = nrec_rank(info);
 546         buf_id = nrec_buf_id(info);
 547         rdwr = nrec_rdwr(info);
 548         ras = nrec_ras(info);
 549         cas = nrec_cas(info);
 550 
 551         edac_dbg(0, "\t\tDIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
 552                  rank, channel, channel + 1, branch >> 1, bank,
 553                  buf_id, rdwr_str(rdwr), ras, cas);
 554 
 555         /* Only 1 bit will be on */
 556         errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 557 
 558         /* Form out message */
 559         snprintf(msg, sizeof(msg),
 560                  "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
 561                  bank, buf_id, ras, cas, allErrors, error_name[errnum]);
 562 
 563         edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
 564                              branch >> 1, -1, rank,
 565                              rdwr ? "Write error" : "Read error",
 566                              msg);
 567 }
 568 
 569 /*
 570  * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
 571  *                              struct i5400_error_info *info,
 572  *                              int handle_errors);
 573  *
 574  *      handle the Intel NON-FATAL errors, if any
 575  */
 576 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
 577                                         struct i5400_error_info *info)
 578 {
 579         char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
 580         unsigned long allErrors;
 581         int branch;
 582         int channel;
 583         int bank;
 584         int rank;
 585         int rdwr;
 586         int ras, cas;
 587         int errnum;
 588 
 589         /* mask off the Error bits that are possible */
 590         allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
 591         if (!allErrors)
 592                 return;         /* if no error, return now */
 593 
 594         /* ONLY ONE of the possible error bits will be set, as per the docs */
 595 
 596         if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
 597                 i5400_proccess_non_recoverable_info(mci, info, allErrors);
 598                 return;
 599         }
 600 
 601         /* Correctable errors */
 602         if (allErrors & ERROR_NF_CORRECTABLE) {
 603                 edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
 604 
 605                 branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 606 
 607                 channel = 0;
 608                 if (REC_ECC_LOCATOR_ODD(info->redmemb))
 609                         channel = 1;
 610 
 611                 /* Convert channel to be based from zero, instead of
 612                  * from branch base of 0 */
 613                 channel += branch;
 614 
 615                 bank = rec_bank(info);
 616                 rank = rec_rank(info);
 617                 rdwr = rec_rdwr(info);
 618                 ras = rec_ras(info);
 619                 cas = rec_cas(info);
 620 
 621                 /* Only 1 bit will be on */
 622                 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 623 
 624                 edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 625                          rank, channel, branch >> 1, bank,
 626                          rdwr_str(rdwr), ras, cas);
 627 
 628                 /* Form out message */
 629                 snprintf(msg, sizeof(msg),
 630                          "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
 631                          "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
 632                          branch >> 1, bank, rdwr_str(rdwr), ras, cas,
 633                          allErrors, error_name[errnum]);
 634 
 635                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 636                                      branch >> 1, channel % 2, rank,
 637                                      rdwr ? "Write error" : "Read error",
 638                                      msg);
 639 
 640                 return;
 641         }
 642 
 643         /* Miscellaneous errors */
 644         errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
 645 
 646         branch = extract_fbdchan_indx(info->ferr_nf_fbd);
 647 
 648         i5400_mc_printk(mci, KERN_EMERG,
 649                         "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
 650                         branch >> 1, allErrors, error_name[errnum]);
 651 }
 652 
 653 /*
 654  *      i5400_process_error_info        Process the error info that is
 655  *      in the 'info' structure, previously retrieved from hardware
 656  */
 657 static void i5400_process_error_info(struct mem_ctl_info *mci,
 658                                 struct i5400_error_info *info)
 659 {       u32 allErrors;
 660 
 661         /* First handle any fatal errors that occurred */
 662         allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 663         i5400_proccess_non_recoverable_info(mci, info, allErrors);
 664 
 665         /* now handle any non-fatal errors that occurred */
 666         i5400_process_nonfatal_error_info(mci, info);
 667 }
 668 
 669 /*
 670  *      i5400_clear_error       Retrieve any error from the hardware
 671  *                              but do NOT process that error.
 672  *                              Used for 'clearing' out of previous errors
 673  *                              Called by the Core module.
 674  */
 675 static void i5400_clear_error(struct mem_ctl_info *mci)
 676 {
 677         struct i5400_error_info info;
 678 
 679         i5400_get_error_info(mci, &info);
 680 }
 681 
 682 /*
 683  *      i5400_check_error       Retrieve and process errors reported by the
 684  *                              hardware. Called by the Core module.
 685  */
 686 static void i5400_check_error(struct mem_ctl_info *mci)
 687 {
 688         struct i5400_error_info info;
 689         edac_dbg(4, "MC%d\n", mci->mc_idx);
 690         i5400_get_error_info(mci, &info);
 691         i5400_process_error_info(mci, &info);
 692 }
 693 
 694 /*
 695  *      i5400_put_devices       'put' all the devices that we have
 696  *                              reserved via 'get'
 697  */
 698 static void i5400_put_devices(struct mem_ctl_info *mci)
 699 {
 700         struct i5400_pvt *pvt;
 701 
 702         pvt = mci->pvt_info;
 703 
 704         /* Decrement usage count for devices */
 705         pci_dev_put(pvt->branch_1);
 706         pci_dev_put(pvt->branch_0);
 707         pci_dev_put(pvt->fsb_error_regs);
 708         pci_dev_put(pvt->branchmap_werrors);
 709 }
 710 
 711 /*
 712  *      i5400_get_devices       Find and perform 'get' operation on the MCH's
 713  *                      device/functions we want to reference for this driver
 714  *
 715  *                      Need to 'get' device 16 func 1 and func 2
 716  */
 717 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
 718 {
 719         struct i5400_pvt *pvt;
 720         struct pci_dev *pdev;
 721 
 722         pvt = mci->pvt_info;
 723         pvt->branchmap_werrors = NULL;
 724         pvt->fsb_error_regs = NULL;
 725         pvt->branch_0 = NULL;
 726         pvt->branch_1 = NULL;
 727 
 728         /* Attempt to 'get' the MCH register we want */
 729         pdev = NULL;
 730         while (1) {
 731                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 732                                       PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 733                 if (!pdev) {
 734                         /* End of list, leave */
 735                         i5400_printk(KERN_ERR,
 736                                 "'system address,Process Bus' "
 737                                 "device not found:"
 738                                 "vendor 0x%x device 0x%x ERR func 1 "
 739                                 "(broken BIOS?)\n",
 740                                 PCI_VENDOR_ID_INTEL,
 741                                 PCI_DEVICE_ID_INTEL_5400_ERR);
 742                         return -ENODEV;
 743                 }
 744 
 745                 /* Store device 16 func 1 */
 746                 if (PCI_FUNC(pdev->devfn) == 1)
 747                         break;
 748         }
 749         pvt->branchmap_werrors = pdev;
 750 
 751         pdev = NULL;
 752         while (1) {
 753                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 754                                       PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
 755                 if (!pdev) {
 756                         /* End of list, leave */
 757                         i5400_printk(KERN_ERR,
 758                                 "'system address,Process Bus' "
 759                                 "device not found:"
 760                                 "vendor 0x%x device 0x%x ERR func 2 "
 761                                 "(broken BIOS?)\n",
 762                                 PCI_VENDOR_ID_INTEL,
 763                                 PCI_DEVICE_ID_INTEL_5400_ERR);
 764 
 765                         pci_dev_put(pvt->branchmap_werrors);
 766                         return -ENODEV;
 767                 }
 768 
 769                 /* Store device 16 func 2 */
 770                 if (PCI_FUNC(pdev->devfn) == 2)
 771                         break;
 772         }
 773         pvt->fsb_error_regs = pdev;
 774 
 775         edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 776                  pci_name(pvt->system_address),
 777                  pvt->system_address->vendor, pvt->system_address->device);
 778         edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 779                  pci_name(pvt->branchmap_werrors),
 780                  pvt->branchmap_werrors->vendor,
 781                  pvt->branchmap_werrors->device);
 782         edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 783                  pci_name(pvt->fsb_error_regs),
 784                  pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 785 
 786         pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
 787                                        PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
 788         if (!pvt->branch_0) {
 789                 i5400_printk(KERN_ERR,
 790                         "MC: 'BRANCH 0' device not found:"
 791                         "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 792                         PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
 793 
 794                 pci_dev_put(pvt->fsb_error_regs);
 795                 pci_dev_put(pvt->branchmap_werrors);
 796                 return -ENODEV;
 797         }
 798 
 799         /* If this device claims to have more than 2 channels then
 800          * fetch Branch 1's information
 801          */
 802         if (pvt->maxch < CHANNELS_PER_BRANCH)
 803                 return 0;
 804 
 805         pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
 806                                        PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
 807         if (!pvt->branch_1) {
 808                 i5400_printk(KERN_ERR,
 809                         "MC: 'BRANCH 1' device not found:"
 810                         "vendor 0x%x device 0x%x Func 0 "
 811                         "(broken BIOS?)\n",
 812                         PCI_VENDOR_ID_INTEL,
 813                         PCI_DEVICE_ID_INTEL_5400_FBD1);
 814 
 815                 pci_dev_put(pvt->branch_0);
 816                 pci_dev_put(pvt->fsb_error_regs);
 817                 pci_dev_put(pvt->branchmap_werrors);
 818                 return -ENODEV;
 819         }
 820 
 821         return 0;
 822 }
 823 
 824 /*
 825  *      determine_amb_present
 826  *
 827  *              the information is contained in DIMMS_PER_CHANNEL different
 828  *              registers determining which of the DIMMS_PER_CHANNEL requires
 829  *              knowing which channel is in question
 830  *
 831  *      2 branches, each with 2 channels
 832  *              b0_ambpresent0 for channel '0'
 833  *              b0_ambpresent1 for channel '1'
 834  *              b1_ambpresent0 for channel '2'
 835  *              b1_ambpresent1 for channel '3'
 836  */
 837 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
 838 {
 839         int amb_present;
 840 
 841         if (channel < CHANNELS_PER_BRANCH) {
 842                 if (channel & 0x1)
 843                         amb_present = pvt->b0_ambpresent1;
 844                 else
 845                         amb_present = pvt->b0_ambpresent0;
 846         } else {
 847                 if (channel & 0x1)
 848                         amb_present = pvt->b1_ambpresent1;
 849                 else
 850                         amb_present = pvt->b1_ambpresent0;
 851         }
 852 
 853         return amb_present;
 854 }
 855 
 856 /*
 857  * determine_mtr(pvt, dimm, channel)
 858  *
 859  * return the proper MTR register as determine by the dimm and desired channel
 860  */
 861 static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
 862 {
 863         int mtr;
 864         int n;
 865 
 866         /* There is one MTR for each slot pair of FB-DIMMs,
 867            Each slot pair may be at branch 0 or branch 1.
 868          */
 869         n = dimm;
 870 
 871         if (n >= DIMMS_PER_CHANNEL) {
 872                 edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
 873                          dimm);
 874                 return 0;
 875         }
 876 
 877         if (channel < CHANNELS_PER_BRANCH)
 878                 mtr = pvt->b0_mtr[n];
 879         else
 880                 mtr = pvt->b1_mtr[n];
 881 
 882         return mtr;
 883 }
 884 
 885 /*
 886  */
 887 static void decode_mtr(int slot_row, u16 mtr)
 888 {
 889         int ans;
 890 
 891         ans = MTR_DIMMS_PRESENT(mtr);
 892 
 893         edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 894                  slot_row, mtr, ans ? "" : "NOT ");
 895         if (!ans)
 896                 return;
 897 
 898         edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 899 
 900         edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
 901                  MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
 902 
 903         edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 904         edac_dbg(2, "\t\tNUMRANK: %s\n",
 905                  MTR_DIMM_RANK(mtr) ? "double" : "single");
 906         edac_dbg(2, "\t\tNUMROW: %s\n",
 907                  MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 908                  MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 909                  MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 910                  "65,536 - 16 rows");
 911         edac_dbg(2, "\t\tNUMCOL: %s\n",
 912                  MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 913                  MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 914                  MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 915                  "reserved");
 916 }
 917 
 918 static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
 919                         struct i5400_dimm_info *dinfo)
 920 {
 921         int mtr;
 922         int amb_present_reg;
 923         int addrBits;
 924 
 925         mtr = determine_mtr(pvt, dimm, channel);
 926         if (MTR_DIMMS_PRESENT(mtr)) {
 927                 amb_present_reg = determine_amb_present_reg(pvt, channel);
 928 
 929                 /* Determine if there is a DIMM present in this DIMM slot */
 930                 if (amb_present_reg & (1 << dimm)) {
 931                         /* Start with the number of bits for a Bank
 932                          * on the DRAM */
 933                         addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
 934                         /* Add thenumber of ROW bits */
 935                         addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
 936                         /* add the number of COLUMN bits */
 937                         addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
 938                         /* add the number of RANK bits */
 939                         addrBits += MTR_DIMM_RANK(mtr);
 940 
 941                         addrBits += 6;  /* add 64 bits per DIMM */
 942                         addrBits -= 20; /* divide by 2^^20 */
 943                         addrBits -= 3;  /* 8 bits per bytes */
 944 
 945                         dinfo->megabytes = 1 << addrBits;
 946                 }
 947         }
 948 }
 949 
 950 /*
 951  *      calculate_dimm_size
 952  *
 953  *      also will output a DIMM matrix map, if debug is enabled, for viewing
 954  *      how the DIMMs are populated
 955  */
 956 static void calculate_dimm_size(struct i5400_pvt *pvt)
 957 {
 958         struct i5400_dimm_info *dinfo;
 959         int dimm, max_dimms;
 960         char *p, *mem_buffer;
 961         int space, n;
 962         int channel, branch;
 963 
 964         /* ================= Generate some debug output ================= */
 965         space = PAGE_SIZE;
 966         mem_buffer = p = kmalloc(space, GFP_KERNEL);
 967         if (p == NULL) {
 968                 i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
 969                         __FILE__, __func__);
 970                 return;
 971         }
 972 
 973         /* Scan all the actual DIMMS
 974          * and calculate the information for each DIMM
 975          * Start with the highest dimm first, to display it first
 976          * and work toward the 0th dimm
 977          */
 978         max_dimms = pvt->maxdimmperch;
 979         for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
 980 
 981                 /* on an odd dimm, first output a 'boundary' marker,
 982                  * then reset the message buffer  */
 983                 if (dimm & 0x1) {
 984                         n = snprintf(p, space, "---------------------------"
 985                                         "-------------------------------");
 986                         p += n;
 987                         space -= n;
 988                         edac_dbg(2, "%s\n", mem_buffer);
 989                         p = mem_buffer;
 990                         space = PAGE_SIZE;
 991                 }
 992                 n = snprintf(p, space, "dimm %2d    ", dimm);
 993                 p += n;
 994                 space -= n;
 995 
 996                 for (channel = 0; channel < pvt->maxch; channel++) {
 997                         dinfo = &pvt->dimm_info[dimm][channel];
 998                         handle_channel(pvt, dimm, channel, dinfo);
 999                         n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1000                         p += n;
1001                         space -= n;
1002                 }
1003                 edac_dbg(2, "%s\n", mem_buffer);
1004                 p = mem_buffer;
1005                 space = PAGE_SIZE;
1006         }
1007 
1008         /* Output the last bottom 'boundary' marker */
1009         n = snprintf(p, space, "---------------------------"
1010                         "-------------------------------");
1011         p += n;
1012         space -= n;
1013         edac_dbg(2, "%s\n", mem_buffer);
1014         p = mem_buffer;
1015         space = PAGE_SIZE;
1016 
1017         /* now output the 'channel' labels */
1018         n = snprintf(p, space, "           ");
1019         p += n;
1020         space -= n;
1021         for (channel = 0; channel < pvt->maxch; channel++) {
1022                 n = snprintf(p, space, "channel %d | ", channel);
1023                 p += n;
1024                 space -= n;
1025         }
1026 
1027         space -= n;
1028         edac_dbg(2, "%s\n", mem_buffer);
1029         p = mem_buffer;
1030         space = PAGE_SIZE;
1031 
1032         n = snprintf(p, space, "           ");
1033         p += n;
1034         for (branch = 0; branch < MAX_BRANCHES; branch++) {
1035                 n = snprintf(p, space, "       branch %d       | ", branch);
1036                 p += n;
1037                 space -= n;
1038         }
1039 
1040         /* output the last message and free buffer */
1041         edac_dbg(2, "%s\n", mem_buffer);
1042         kfree(mem_buffer);
1043 }
1044 
1045 /*
1046  *      i5400_get_mc_regs       read in the necessary registers and
1047  *                              cache locally
1048  *
1049  *                      Fills in the private data members
1050  */
1051 static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1052 {
1053         struct i5400_pvt *pvt;
1054         u32 actual_tolm;
1055         u16 limit;
1056         int slot_row;
1057         int maxch;
1058         int maxdimmperch;
1059         int way0, way1;
1060 
1061         pvt = mci->pvt_info;
1062 
1063         pci_read_config_dword(pvt->system_address, AMBASE,
1064                         &pvt->u.ambase_bottom);
1065         pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1066                         &pvt->u.ambase_top);
1067 
1068         maxdimmperch = pvt->maxdimmperch;
1069         maxch = pvt->maxch;
1070 
1071         edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1072                  (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1073 
1074         /* Get the Branch Map regs */
1075         pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1076         pvt->tolm >>= 12;
1077         edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1078                  pvt->tolm, pvt->tolm);
1079 
1080         actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1081         edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1082                  actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1083 
1084         pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1085         pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1086 
1087         /* Get the MIR[0-1] regs */
1088         limit = (pvt->mir0 >> 4) & 0x0fff;
1089         way0 = pvt->mir0 & 0x1;
1090         way1 = pvt->mir0 & 0x2;
1091         edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1092                  limit, way1, way0);
1093         limit = (pvt->mir1 >> 4) & 0xfff;
1094         way0 = pvt->mir1 & 0x1;
1095         way1 = pvt->mir1 & 0x2;
1096         edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1097                  limit, way1, way0);
1098 
1099         /* Get the set of MTR[0-3] regs by each branch */
1100         for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1101                 int where = MTR0 + (slot_row * sizeof(u16));
1102 
1103                 /* Branch 0 set of MTR registers */
1104                 pci_read_config_word(pvt->branch_0, where,
1105                                 &pvt->b0_mtr[slot_row]);
1106 
1107                 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1108                          slot_row, where, pvt->b0_mtr[slot_row]);
1109 
1110                 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1111                         pvt->b1_mtr[slot_row] = 0;
1112                         continue;
1113                 }
1114 
1115                 /* Branch 1 set of MTR registers */
1116                 pci_read_config_word(pvt->branch_1, where,
1117                                 &pvt->b1_mtr[slot_row]);
1118                 edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1119                          slot_row, where, pvt->b1_mtr[slot_row]);
1120         }
1121 
1122         /* Read and dump branch 0's MTRs */
1123         edac_dbg(2, "Memory Technology Registers:\n");
1124         edac_dbg(2, "   Branch 0:\n");
1125         for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1126                 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1127 
1128         pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1129                         &pvt->b0_ambpresent0);
1130         edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1131         pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1132                         &pvt->b0_ambpresent1);
1133         edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1134 
1135         /* Only if we have 2 branchs (4 channels) */
1136         if (pvt->maxch < CHANNELS_PER_BRANCH) {
1137                 pvt->b1_ambpresent0 = 0;
1138                 pvt->b1_ambpresent1 = 0;
1139         } else {
1140                 /* Read and dump  branch 1's MTRs */
1141                 edac_dbg(2, "   Branch 1:\n");
1142                 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1143                         decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1144 
1145                 pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1146                                 &pvt->b1_ambpresent0);
1147                 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1148                          pvt->b1_ambpresent0);
1149                 pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1150                                 &pvt->b1_ambpresent1);
1151                 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1152                          pvt->b1_ambpresent1);
1153         }
1154 
1155         /* Go and determine the size of each DIMM and place in an
1156          * orderly matrix */
1157         calculate_dimm_size(pvt);
1158 }
1159 
1160 /*
1161  *      i5400_init_dimms        Initialize the 'dimms' table within
1162  *                              the mci control structure with the
1163  *                              addressing of memory.
1164  *
1165  *      return:
1166  *              0       success
1167  *              1       no actual memory found on this MC
1168  */
1169 static int i5400_init_dimms(struct mem_ctl_info *mci)
1170 {
1171         struct i5400_pvt *pvt;
1172         struct dimm_info *dimm;
1173         int ndimms, channel_count;
1174         int max_dimms;
1175         int mtr;
1176         int size_mb;
1177         int  channel, slot;
1178 
1179         pvt = mci->pvt_info;
1180 
1181         channel_count = pvt->maxch;
1182         max_dimms = pvt->maxdimmperch;
1183 
1184         ndimms = 0;
1185 
1186         /*
1187          * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1188          * layers here.
1189          */
1190         for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1191              channel++) {
1192                 for (slot = 0; slot < mci->layers[2].size; slot++) {
1193                         mtr = determine_mtr(pvt, slot, channel);
1194 
1195                         /* if no DIMMS on this slot, continue */
1196                         if (!MTR_DIMMS_PRESENT(mtr))
1197                                 continue;
1198 
1199                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1200                                        channel / 2, channel % 2, slot);
1201 
1202                         size_mb =  pvt->dimm_info[slot][channel].megabytes;
1203 
1204                         edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1205                                  channel / 2, channel % 2, slot,
1206                                  size_mb / 1000, size_mb % 1000);
1207 
1208                         dimm->nr_pages = size_mb << 8;
1209                         dimm->grain = 8;
1210                         dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1211                                       DEV_X8 : DEV_X4;
1212                         dimm->mtype = MEM_FB_DDR2;
1213                         /*
1214                          * The eccc mechanism is SDDC (aka SECC), with
1215                          * is similar to Chipkill.
1216                          */
1217                         dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1218                                           EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1219                         ndimms++;
1220                 }
1221         }
1222 
1223         /*
1224          * When just one memory is provided, it should be at location (0,0,0).
1225          * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1226          */
1227         if (ndimms == 1)
1228                 mci->dimms[0]->edac_mode = EDAC_SECDED;
1229 
1230         return (ndimms == 0);
1231 }
1232 
1233 /*
1234  *      i5400_enable_error_reporting
1235  *                      Turn on the memory reporting features of the hardware
1236  */
1237 static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1238 {
1239         struct i5400_pvt *pvt;
1240         u32 fbd_error_mask;
1241 
1242         pvt = mci->pvt_info;
1243 
1244         /* Read the FBD Error Mask Register */
1245         pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1246                         &fbd_error_mask);
1247 
1248         /* Enable with a '0' */
1249         fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1250 
1251         pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1252                         fbd_error_mask);
1253 }
1254 
1255 /*
1256  *      i5400_probe1    Probe for ONE instance of device to see if it is
1257  *                      present.
1258  *      return:
1259  *              0 for FOUND a device
1260  *              < 0 for error code
1261  */
1262 static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1263 {
1264         struct mem_ctl_info *mci;
1265         struct i5400_pvt *pvt;
1266         struct edac_mc_layer layers[3];
1267 
1268         if (dev_idx >= ARRAY_SIZE(i5400_devs))
1269                 return -EINVAL;
1270 
1271         edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1272                  pdev->bus->number,
1273                  PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1274 
1275         /* We only are looking for func 0 of the set */
1276         if (PCI_FUNC(pdev->devfn) != 0)
1277                 return -ENODEV;
1278 
1279         /*
1280          * allocate a new MC control structure
1281          *
1282          * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1283          */
1284         layers[0].type = EDAC_MC_LAYER_BRANCH;
1285         layers[0].size = MAX_BRANCHES;
1286         layers[0].is_virt_csrow = false;
1287         layers[1].type = EDAC_MC_LAYER_CHANNEL;
1288         layers[1].size = CHANNELS_PER_BRANCH;
1289         layers[1].is_virt_csrow = false;
1290         layers[2].type = EDAC_MC_LAYER_SLOT;
1291         layers[2].size = DIMMS_PER_CHANNEL;
1292         layers[2].is_virt_csrow = true;
1293         mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1294         if (mci == NULL)
1295                 return -ENOMEM;
1296 
1297         edac_dbg(0, "MC: mci = %p\n", mci);
1298 
1299         mci->pdev = &pdev->dev; /* record ptr  to the generic device */
1300 
1301         pvt = mci->pvt_info;
1302         pvt->system_address = pdev;     /* Record this device in our private */
1303         pvt->maxch = MAX_CHANNELS;
1304         pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1305 
1306         /* 'get' the pci devices we want to reserve for our use */
1307         if (i5400_get_devices(mci, dev_idx))
1308                 goto fail0;
1309 
1310         /* Time to get serious */
1311         i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1312 
1313         mci->mc_idx = 0;
1314         mci->mtype_cap = MEM_FLAG_FB_DDR2;
1315         mci->edac_ctl_cap = EDAC_FLAG_NONE;
1316         mci->edac_cap = EDAC_FLAG_NONE;
1317         mci->mod_name = "i5400_edac.c";
1318         mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1319         mci->dev_name = pci_name(pdev);
1320         mci->ctl_page_to_phys = NULL;
1321 
1322         /* Set the function pointer to an actual operation function */
1323         mci->edac_check = i5400_check_error;
1324 
1325         /* initialize the MC control structure 'dimms' table
1326          * with the mapping and control information */
1327         if (i5400_init_dimms(mci)) {
1328                 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1329                 mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
1330         } else {
1331                 edac_dbg(1, "MC: Enable error reporting now\n");
1332                 i5400_enable_error_reporting(mci);
1333         }
1334 
1335         /* add this new MC control structure to EDAC's list of MCs */
1336         if (edac_mc_add_mc(mci)) {
1337                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1338                 /* FIXME: perhaps some code should go here that disables error
1339                  * reporting if we just enabled it
1340                  */
1341                 goto fail1;
1342         }
1343 
1344         i5400_clear_error(mci);
1345 
1346         /* allocating generic PCI control info */
1347         i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1348         if (!i5400_pci) {
1349                 printk(KERN_WARNING
1350                         "%s(): Unable to create PCI control\n",
1351                         __func__);
1352                 printk(KERN_WARNING
1353                         "%s(): PCI error report via EDAC not setup\n",
1354                         __func__);
1355         }
1356 
1357         return 0;
1358 
1359         /* Error exit unwinding stack */
1360 fail1:
1361 
1362         i5400_put_devices(mci);
1363 
1364 fail0:
1365         edac_mc_free(mci);
1366         return -ENODEV;
1367 }
1368 
1369 /*
1370  *      i5400_init_one  constructor for one instance of device
1371  *
1372  *      returns:
1373  *              negative on error
1374  *              count (>= 0)
1375  */
1376 static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1377 {
1378         int rc;
1379 
1380         edac_dbg(0, "MC:\n");
1381 
1382         /* wake up device */
1383         rc = pci_enable_device(pdev);
1384         if (rc)
1385                 return rc;
1386 
1387         /* now probe and enable the device */
1388         return i5400_probe1(pdev, id->driver_data);
1389 }
1390 
1391 /*
1392  *      i5400_remove_one        destructor for one instance of device
1393  *
1394  */
1395 static void i5400_remove_one(struct pci_dev *pdev)
1396 {
1397         struct mem_ctl_info *mci;
1398 
1399         edac_dbg(0, "\n");
1400 
1401         if (i5400_pci)
1402                 edac_pci_release_generic_ctl(i5400_pci);
1403 
1404         mci = edac_mc_del_mc(&pdev->dev);
1405         if (!mci)
1406                 return;
1407 
1408         /* retrieve references to resources, and free those resources */
1409         i5400_put_devices(mci);
1410 
1411         pci_disable_device(pdev);
1412 
1413         edac_mc_free(mci);
1414 }
1415 
1416 /*
1417  *      pci_device_id   table for which devices we are looking for
1418  *
1419  *      The "E500P" device is the first device supported.
1420  */
1421 static const struct pci_device_id i5400_pci_tbl[] = {
1422         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1423         {0,}                    /* 0 terminated list. */
1424 };
1425 
1426 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1427 
1428 /*
1429  *      i5400_driver    pci_driver structure for this module
1430  *
1431  */
1432 static struct pci_driver i5400_driver = {
1433         .name = "i5400_edac",
1434         .probe = i5400_init_one,
1435         .remove = i5400_remove_one,
1436         .id_table = i5400_pci_tbl,
1437 };
1438 
1439 /*
1440  *      i5400_init              Module entry function
1441  *                      Try to initialize this module for its devices
1442  */
1443 static int __init i5400_init(void)
1444 {
1445         int pci_rc;
1446 
1447         edac_dbg(2, "MC:\n");
1448 
1449         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1450         opstate_init();
1451 
1452         pci_rc = pci_register_driver(&i5400_driver);
1453 
1454         return (pci_rc < 0) ? pci_rc : 0;
1455 }
1456 
1457 /*
1458  *      i5400_exit()    Module exit function
1459  *                      Unregister the driver
1460  */
1461 static void __exit i5400_exit(void)
1462 {
1463         edac_dbg(2, "MC:\n");
1464         pci_unregister_driver(&i5400_driver);
1465 }
1466 
1467 module_init(i5400_init);
1468 module_exit(i5400_exit);
1469 
1470 MODULE_LICENSE("GPL");
1471 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1472 MODULE_AUTHOR("Mauro Carvalho Chehab");
1473 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1474 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1475                    I5400_REVISION);
1476 
1477 module_param(edac_op_state, int, 0444);
1478 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

/* [<][>][^][v][top][bottom][index][help] */