This source file includes following definitions.
- hisi_cppc_cpufreq_get_rate
- cppc_check_hisi_workaround
- cppc_find_dmi_mhz
- cppc_get_dmi_max_khz
- cppc_cpufreq_perf_to_khz
- cppc_cpufreq_khz_to_perf
- cppc_cpufreq_set_target
- cppc_verify_policy
- cppc_cpufreq_stop_cpu
- cppc_cpufreq_get_transition_delay_us
- cppc_cpufreq_get_transition_delay_us
- cppc_cpufreq_cpu_init
- get_delta
- cppc_get_rate_from_fbctrs
- cppc_cpufreq_get_rate
- cppc_cpufreq_init
- cppc_cpufreq_exit
1
2
3
4
5
6
7
8
9
10
11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
28
29
30 #define DMI_PROCESSOR_MAX_SPEED 0x14
31
32
33
34
35
36
37
38
39 static struct cppc_cpudata **all_cpu_data;
40
41 struct cppc_workaround_oem_info {
42 char oem_id[ACPI_OEM_ID_SIZE +1];
43 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
44 u32 oem_revision;
45 };
46
47 static bool apply_hisi_workaround;
48
49 static struct cppc_workaround_oem_info wa_info[] = {
50 {
51 .oem_id = "HISI ",
52 .oem_table_id = "HIP07 ",
53 .oem_revision = 0,
54 }, {
55 .oem_id = "HISI ",
56 .oem_table_id = "HIP08 ",
57 .oem_revision = 0,
58 }
59 };
60
61 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
62 unsigned int perf);
63
64
65
66
67
68
69
70 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
71 {
72 struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
73 u64 desired_perf;
74 int ret;
75
76 ret = cppc_get_desired_perf(cpunum, &desired_perf);
77 if (ret < 0)
78 return -EIO;
79
80 return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
81 }
82
83 static void cppc_check_hisi_workaround(void)
84 {
85 struct acpi_table_header *tbl;
86 acpi_status status = AE_OK;
87 int i;
88
89 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
90 if (ACPI_FAILURE(status) || !tbl)
91 return;
92
93 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
94 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
95 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
96 wa_info[i].oem_revision == tbl->oem_revision)
97 apply_hisi_workaround = true;
98 }
99 }
100
101
102 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
103 {
104 const u8 *dmi_data = (const u8 *)dm;
105 u16 *mhz = (u16 *)private;
106
107 if (dm->type == DMI_ENTRY_PROCESSOR &&
108 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
109 u16 val = (u16)get_unaligned((const u16 *)
110 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
111 *mhz = val > *mhz ? val : *mhz;
112 }
113 }
114
115
116 static u64 cppc_get_dmi_max_khz(void)
117 {
118 u16 mhz = 0;
119
120 dmi_walk(cppc_find_dmi_mhz, &mhz);
121
122
123
124
125
126 mhz = mhz ? mhz : 1;
127
128 return (1000 * mhz);
129 }
130
131
132
133
134
135
136
137
138
139
140 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
141 unsigned int perf)
142 {
143 static u64 max_khz;
144 struct cppc_perf_caps *caps = &cpu->perf_caps;
145 u64 mul, div;
146
147 if (caps->lowest_freq && caps->nominal_freq) {
148 if (perf >= caps->nominal_perf) {
149 mul = caps->nominal_freq;
150 div = caps->nominal_perf;
151 } else {
152 mul = caps->nominal_freq - caps->lowest_freq;
153 div = caps->nominal_perf - caps->lowest_perf;
154 }
155 } else {
156 if (!max_khz)
157 max_khz = cppc_get_dmi_max_khz();
158 mul = max_khz;
159 div = cpu->perf_caps.highest_perf;
160 }
161 return (u64)perf * mul / div;
162 }
163
164 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
165 unsigned int freq)
166 {
167 static u64 max_khz;
168 struct cppc_perf_caps *caps = &cpu->perf_caps;
169 u64 mul, div;
170
171 if (caps->lowest_freq && caps->nominal_freq) {
172 if (freq >= caps->nominal_freq) {
173 mul = caps->nominal_perf;
174 div = caps->nominal_freq;
175 } else {
176 mul = caps->lowest_perf;
177 div = caps->lowest_freq;
178 }
179 } else {
180 if (!max_khz)
181 max_khz = cppc_get_dmi_max_khz();
182 mul = cpu->perf_caps.highest_perf;
183 div = max_khz;
184 }
185
186 return (u64)freq * mul / div;
187 }
188
189 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
190 unsigned int target_freq,
191 unsigned int relation)
192 {
193 struct cppc_cpudata *cpu;
194 struct cpufreq_freqs freqs;
195 u32 desired_perf;
196 int ret = 0;
197
198 cpu = all_cpu_data[policy->cpu];
199
200 desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
201
202 if (desired_perf == cpu->perf_ctrls.desired_perf)
203 return ret;
204
205 cpu->perf_ctrls.desired_perf = desired_perf;
206 freqs.old = policy->cur;
207 freqs.new = target_freq;
208
209 cpufreq_freq_transition_begin(policy, &freqs);
210 ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
211 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
212
213 if (ret)
214 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
215 cpu->cpu, ret);
216
217 return ret;
218 }
219
220 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
221 {
222 cpufreq_verify_within_cpu_limits(policy);
223 return 0;
224 }
225
226 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
227 {
228 int cpu_num = policy->cpu;
229 struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
230 int ret;
231
232 cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
233
234 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
235 if (ret)
236 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
237 cpu->perf_caps.lowest_perf, cpu_num, ret);
238 }
239
240
241
242
243
244
245
246 #ifdef CONFIG_ARM64
247 #include <asm/cputype.h>
248
249 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
250 {
251 unsigned long implementor = read_cpuid_implementor();
252 unsigned long part_num = read_cpuid_part_number();
253 unsigned int delay_us = 0;
254
255 switch (implementor) {
256 case ARM_CPU_IMP_QCOM:
257 switch (part_num) {
258 case QCOM_CPU_PART_FALKOR_V1:
259 case QCOM_CPU_PART_FALKOR:
260 delay_us = 10000;
261 break;
262 default:
263 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
264 break;
265 }
266 break;
267 default:
268 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
269 break;
270 }
271
272 return delay_us;
273 }
274
275 #else
276
277 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
278 {
279 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
280 }
281 #endif
282
283 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
284 {
285 struct cppc_cpudata *cpu;
286 unsigned int cpu_num = policy->cpu;
287 int ret = 0;
288
289 cpu = all_cpu_data[policy->cpu];
290
291 cpu->cpu = cpu_num;
292 ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
293
294 if (ret) {
295 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
296 cpu_num, ret);
297 return ret;
298 }
299
300
301 cpu->perf_caps.lowest_freq *= 1000;
302 cpu->perf_caps.nominal_freq *= 1000;
303
304
305
306
307
308 policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
309 policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
310
311
312
313
314
315
316 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
317 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
318
319 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
320 policy->shared_type = cpu->shared_type;
321
322 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
323 int i;
324
325 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
326
327 for_each_cpu(i, policy->cpus) {
328 if (unlikely(i == policy->cpu))
329 continue;
330
331 memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
332 sizeof(cpu->perf_caps));
333 }
334 } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
335
336 pr_debug("Unsupported CPU co-ord type\n");
337 return -EFAULT;
338 }
339
340 cpu->cur_policy = policy;
341
342
343 policy->cur = cppc_cpufreq_perf_to_khz(cpu,
344 cpu->perf_caps.highest_perf);
345 cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
346
347 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
348 if (ret)
349 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
350 cpu->perf_caps.highest_perf, cpu_num, ret);
351
352 return ret;
353 }
354
355 static inline u64 get_delta(u64 t1, u64 t0)
356 {
357 if (t1 > t0 || t0 > ~(u32)0)
358 return t1 - t0;
359
360 return (u32)t1 - (u32)t0;
361 }
362
363 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
364 struct cppc_perf_fb_ctrs fb_ctrs_t0,
365 struct cppc_perf_fb_ctrs fb_ctrs_t1)
366 {
367 u64 delta_reference, delta_delivered;
368 u64 reference_perf, delivered_perf;
369
370 reference_perf = fb_ctrs_t0.reference_perf;
371
372 delta_reference = get_delta(fb_ctrs_t1.reference,
373 fb_ctrs_t0.reference);
374 delta_delivered = get_delta(fb_ctrs_t1.delivered,
375 fb_ctrs_t0.delivered);
376
377
378 if (delta_reference || delta_delivered)
379 delivered_perf = (reference_perf * delta_delivered) /
380 delta_reference;
381 else
382 delivered_perf = cpu->perf_ctrls.desired_perf;
383
384 return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
385 }
386
387 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
388 {
389 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
390 struct cppc_cpudata *cpu = all_cpu_data[cpunum];
391 int ret;
392
393 if (apply_hisi_workaround)
394 return hisi_cppc_cpufreq_get_rate(cpunum);
395
396 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
397 if (ret)
398 return ret;
399
400 udelay(2);
401
402 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
403 if (ret)
404 return ret;
405
406 return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
407 }
408
409 static struct cpufreq_driver cppc_cpufreq_driver = {
410 .flags = CPUFREQ_CONST_LOOPS,
411 .verify = cppc_verify_policy,
412 .target = cppc_cpufreq_set_target,
413 .get = cppc_cpufreq_get_rate,
414 .init = cppc_cpufreq_cpu_init,
415 .stop_cpu = cppc_cpufreq_stop_cpu,
416 .name = "cppc_cpufreq",
417 };
418
419 static int __init cppc_cpufreq_init(void)
420 {
421 int i, ret = 0;
422 struct cppc_cpudata *cpu;
423
424 if (acpi_disabled)
425 return -ENODEV;
426
427 all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
428 GFP_KERNEL);
429 if (!all_cpu_data)
430 return -ENOMEM;
431
432 for_each_possible_cpu(i) {
433 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
434 if (!all_cpu_data[i])
435 goto out;
436
437 cpu = all_cpu_data[i];
438 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
439 goto out;
440 }
441
442 ret = acpi_get_psd_map(all_cpu_data);
443 if (ret) {
444 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
445 goto out;
446 }
447
448 cppc_check_hisi_workaround();
449
450 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
451 if (ret)
452 goto out;
453
454 return ret;
455
456 out:
457 for_each_possible_cpu(i) {
458 cpu = all_cpu_data[i];
459 if (!cpu)
460 break;
461 free_cpumask_var(cpu->shared_cpu_map);
462 kfree(cpu);
463 }
464
465 kfree(all_cpu_data);
466 return -ENODEV;
467 }
468
469 static void __exit cppc_cpufreq_exit(void)
470 {
471 struct cppc_cpudata *cpu;
472 int i;
473
474 cpufreq_unregister_driver(&cppc_cpufreq_driver);
475
476 for_each_possible_cpu(i) {
477 cpu = all_cpu_data[i];
478 free_cpumask_var(cpu->shared_cpu_map);
479 kfree(cpu);
480 }
481
482 kfree(all_cpu_data);
483 }
484
485 module_exit(cppc_cpufreq_exit);
486 MODULE_AUTHOR("Ashwin Chaugule");
487 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
488 MODULE_LICENSE("GPL");
489
490 late_initcall(cppc_cpufreq_init);
491
492 static const struct acpi_device_id cppc_acpi_ids[] __used = {
493 {ACPI_PROCESSOR_DEVICE_HID, },
494 {}
495 };
496
497 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);