This source file includes following definitions.
- vq_work_handler
- init_worker_threads
- cleanup_worker_threads
- free_pending_queues
- alloc_pending_queues
- init_pending_queues
- cleanup_pending_queues
- free_command_queues
- alloc_command_queues
- init_command_queues
- cleanup_command_queues
- cptvf_sw_cleanup
- cptvf_sw_init
- cptvf_free_irq_affinity
- cptvf_write_vq_ctl
- cptvf_write_vq_doorbell
- cptvf_write_vq_inprog
- cptvf_write_vq_done_numwait
- cptvf_write_vq_done_timewait
- cptvf_enable_swerr_interrupts
- cptvf_enable_mbox_interrupts
- cptvf_enable_done_interrupts
- cptvf_clear_dovf_intr
- cptvf_clear_irde_intr
- cptvf_clear_nwrp_intr
- cptvf_clear_mbox_intr
- cptvf_clear_swerr_intr
- cptvf_read_vf_misc_intr_status
- cptvf_misc_intr_handler
- get_cptvf_vq_wqe
- cptvf_read_vq_done_count
- cptvf_write_vq_done_ack
- cptvf_done_intr_handler
- cptvf_set_irq_affinity
- cptvf_write_vq_saddr
- cptvf_device_init
- cptvf_probe
- cptvf_remove
- cptvf_shutdown
1
2
3
4
5
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
8
9 #include "cptvf.h"
10
11 #define DRV_NAME "thunder-cptvf"
12 #define DRV_VERSION "1.0"
13
14 struct cptvf_wqe {
15 struct tasklet_struct twork;
16 void *cptvf;
17 u32 qno;
18 };
19
20 struct cptvf_wqe_info {
21 struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
22 };
23
24 static void vq_work_handler(unsigned long data)
25 {
26 struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
27 struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
28
29 vq_post_process(cwqe->cptvf, cwqe->qno);
30 }
31
32 static int init_worker_threads(struct cpt_vf *cptvf)
33 {
34 struct pci_dev *pdev = cptvf->pdev;
35 struct cptvf_wqe_info *cwqe_info;
36 int i;
37
38 cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
39 if (!cwqe_info)
40 return -ENOMEM;
41
42 if (cptvf->nr_queues) {
43 dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
44 cptvf->nr_queues);
45 }
46
47 for (i = 0; i < cptvf->nr_queues; i++) {
48 tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
49 (u64)cwqe_info);
50 cwqe_info->vq_wqe[i].qno = i;
51 cwqe_info->vq_wqe[i].cptvf = cptvf;
52 }
53
54 cptvf->wqe_info = cwqe_info;
55
56 return 0;
57 }
58
59 static void cleanup_worker_threads(struct cpt_vf *cptvf)
60 {
61 struct cptvf_wqe_info *cwqe_info;
62 struct pci_dev *pdev = cptvf->pdev;
63 int i;
64
65 cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
66 if (!cwqe_info)
67 return;
68
69 if (cptvf->nr_queues) {
70 dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
71 cptvf->nr_queues);
72 }
73
74 for (i = 0; i < cptvf->nr_queues; i++)
75 tasklet_kill(&cwqe_info->vq_wqe[i].twork);
76
77 kzfree(cwqe_info);
78 cptvf->wqe_info = NULL;
79 }
80
81 static void free_pending_queues(struct pending_qinfo *pqinfo)
82 {
83 int i;
84 struct pending_queue *queue;
85
86 for_each_pending_queue(pqinfo, queue, i) {
87 if (!queue->head)
88 continue;
89
90
91 kzfree((queue->head));
92
93 queue->front = 0;
94 queue->rear = 0;
95
96 return;
97 }
98
99 pqinfo->qlen = 0;
100 pqinfo->nr_queues = 0;
101 }
102
103 static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
104 u32 nr_queues)
105 {
106 u32 i;
107 size_t size;
108 int ret;
109 struct pending_queue *queue = NULL;
110
111 pqinfo->nr_queues = nr_queues;
112 pqinfo->qlen = qlen;
113
114 size = (qlen * sizeof(struct pending_entry));
115
116 for_each_pending_queue(pqinfo, queue, i) {
117 queue->head = kzalloc((size), GFP_KERNEL);
118 if (!queue->head) {
119 ret = -ENOMEM;
120 goto pending_qfail;
121 }
122
123 queue->front = 0;
124 queue->rear = 0;
125 atomic64_set((&queue->pending_count), (0));
126
127
128 spin_lock_init(&queue->lock);
129 }
130
131 return 0;
132
133 pending_qfail:
134 free_pending_queues(pqinfo);
135
136 return ret;
137 }
138
139 static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
140 {
141 struct pci_dev *pdev = cptvf->pdev;
142 int ret;
143
144 if (!nr_queues)
145 return 0;
146
147 ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
148 if (ret) {
149 dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
150 nr_queues);
151 return ret;
152 }
153
154 return 0;
155 }
156
157 static void cleanup_pending_queues(struct cpt_vf *cptvf)
158 {
159 struct pci_dev *pdev = cptvf->pdev;
160
161 if (!cptvf->nr_queues)
162 return;
163
164 dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
165 cptvf->nr_queues);
166 free_pending_queues(&cptvf->pqinfo);
167 }
168
169 static void free_command_queues(struct cpt_vf *cptvf,
170 struct command_qinfo *cqinfo)
171 {
172 int i;
173 struct command_queue *queue = NULL;
174 struct command_chunk *chunk = NULL;
175 struct pci_dev *pdev = cptvf->pdev;
176 struct hlist_node *node;
177
178
179 for (i = 0; i < cptvf->nr_queues; i++) {
180 queue = &cqinfo->queue[i];
181 if (hlist_empty(&cqinfo->queue[i].chead))
182 continue;
183
184 hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
185 nextchunk) {
186 dma_free_coherent(&pdev->dev, chunk->size,
187 chunk->head,
188 chunk->dma_addr);
189 chunk->head = NULL;
190 chunk->dma_addr = 0;
191 hlist_del(&chunk->nextchunk);
192 kzfree(chunk);
193 }
194
195 queue->nchunks = 0;
196 queue->idx = 0;
197 }
198
199
200 cqinfo->cmd_size = 0;
201 }
202
203 static int alloc_command_queues(struct cpt_vf *cptvf,
204 struct command_qinfo *cqinfo, size_t cmd_size,
205 u32 qlen)
206 {
207 int i;
208 size_t q_size;
209 struct command_queue *queue = NULL;
210 struct pci_dev *pdev = cptvf->pdev;
211
212
213 cqinfo->cmd_size = cmd_size;
214
215 cptvf->qsize = min(qlen, cqinfo->qchunksize) *
216 CPT_NEXT_CHUNK_PTR_SIZE + 1;
217
218 q_size = qlen * cqinfo->cmd_size;
219
220
221 for (i = 0; i < cptvf->nr_queues; i++) {
222 size_t c_size = 0;
223 size_t rem_q_size = q_size;
224 struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
225 u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
226
227 queue = &cqinfo->queue[i];
228 INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
229 do {
230 curr = kzalloc(sizeof(*curr), GFP_KERNEL);
231 if (!curr)
232 goto cmd_qfail;
233
234 c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
235 rem_q_size;
236 curr->head = (u8 *)dma_alloc_coherent(&pdev->dev,
237 c_size + CPT_NEXT_CHUNK_PTR_SIZE,
238 &curr->dma_addr,
239 GFP_KERNEL);
240 if (!curr->head) {
241 dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
242 i, queue->nchunks);
243 kfree(curr);
244 goto cmd_qfail;
245 }
246
247 curr->size = c_size;
248 if (queue->nchunks == 0) {
249 hlist_add_head(&curr->nextchunk,
250 &cqinfo->queue[i].chead);
251 first = curr;
252 } else {
253 hlist_add_behind(&curr->nextchunk,
254 &last->nextchunk);
255 }
256
257 queue->nchunks++;
258 rem_q_size -= c_size;
259 if (last)
260 *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
261
262 last = curr;
263 } while (rem_q_size);
264
265
266
267 curr = first;
268 *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
269 queue->qhead = curr;
270 spin_lock_init(&queue->lock);
271 }
272 return 0;
273
274 cmd_qfail:
275 free_command_queues(cptvf, cqinfo);
276 return -ENOMEM;
277 }
278
279 static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
280 {
281 struct pci_dev *pdev = cptvf->pdev;
282 int ret;
283
284
285 ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
286 qlen);
287 if (ret) {
288 dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
289 cptvf->nr_queues);
290 return ret;
291 }
292
293 return ret;
294 }
295
296 static void cleanup_command_queues(struct cpt_vf *cptvf)
297 {
298 struct pci_dev *pdev = cptvf->pdev;
299
300 if (!cptvf->nr_queues)
301 return;
302
303 dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
304 cptvf->nr_queues);
305 free_command_queues(cptvf, &cptvf->cqinfo);
306 }
307
308 static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
309 {
310 cleanup_worker_threads(cptvf);
311 cleanup_pending_queues(cptvf);
312 cleanup_command_queues(cptvf);
313 }
314
315 static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
316 {
317 struct pci_dev *pdev = cptvf->pdev;
318 int ret = 0;
319 u32 max_dev_queues = 0;
320
321 max_dev_queues = CPT_NUM_QS_PER_VF;
322
323 nr_queues = min_t(u32, nr_queues, max_dev_queues);
324 cptvf->nr_queues = nr_queues;
325
326 ret = init_command_queues(cptvf, qlen);
327 if (ret) {
328 dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
329 nr_queues);
330 return ret;
331 }
332
333 ret = init_pending_queues(cptvf, qlen, nr_queues);
334 if (ret) {
335 dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
336 nr_queues);
337 goto setup_pqfail;
338 }
339
340
341 ret = init_worker_threads(cptvf);
342 if (ret) {
343 dev_err(&pdev->dev, "Failed to setup worker threads\n");
344 goto init_work_fail;
345 }
346
347 return 0;
348
349 init_work_fail:
350 cleanup_worker_threads(cptvf);
351 cleanup_pending_queues(cptvf);
352
353 setup_pqfail:
354 cleanup_command_queues(cptvf);
355
356 return ret;
357 }
358
359 static void cptvf_free_irq_affinity(struct cpt_vf *cptvf, int vec)
360 {
361 irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL);
362 free_cpumask_var(cptvf->affinity_mask[vec]);
363 }
364
365 static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
366 {
367 union cptx_vqx_ctl vqx_ctl;
368
369 vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
370 vqx_ctl.s.ena = val;
371 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
372 }
373
374 void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
375 {
376 union cptx_vqx_doorbell vqx_dbell;
377
378 vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
379 CPTX_VQX_DOORBELL(0, 0));
380 vqx_dbell.s.dbell_cnt = val * 8;
381 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
382 vqx_dbell.u);
383 }
384
385 static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
386 {
387 union cptx_vqx_inprog vqx_inprg;
388
389 vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
390 vqx_inprg.s.inflight = val;
391 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
392 }
393
394 static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
395 {
396 union cptx_vqx_done_wait vqx_dwait;
397
398 vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
399 CPTX_VQX_DONE_WAIT(0, 0));
400 vqx_dwait.s.num_wait = val;
401 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
402 vqx_dwait.u);
403 }
404
405 static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
406 {
407 union cptx_vqx_done_wait vqx_dwait;
408
409 vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
410 CPTX_VQX_DONE_WAIT(0, 0));
411 vqx_dwait.s.time_wait = time;
412 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
413 vqx_dwait.u);
414 }
415
416 static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
417 {
418 union cptx_vqx_misc_ena_w1s vqx_misc_ena;
419
420 vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
421 CPTX_VQX_MISC_ENA_W1S(0, 0));
422
423 vqx_misc_ena.s.swerr = 1;
424 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
425 vqx_misc_ena.u);
426 }
427
428 static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
429 {
430 union cptx_vqx_misc_ena_w1s vqx_misc_ena;
431
432 vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
433 CPTX_VQX_MISC_ENA_W1S(0, 0));
434
435 vqx_misc_ena.s.mbox = 1;
436 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
437 vqx_misc_ena.u);
438 }
439
440 static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
441 {
442 union cptx_vqx_done_ena_w1s vqx_done_ena;
443
444 vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
445 CPTX_VQX_DONE_ENA_W1S(0, 0));
446
447 vqx_done_ena.s.done = 1;
448 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
449 vqx_done_ena.u);
450 }
451
452 static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
453 {
454 union cptx_vqx_misc_int vqx_misc_int;
455
456 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
457 CPTX_VQX_MISC_INT(0, 0));
458
459 vqx_misc_int.s.dovf = 1;
460 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
461 vqx_misc_int.u);
462 }
463
464 static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
465 {
466 union cptx_vqx_misc_int vqx_misc_int;
467
468 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
469 CPTX_VQX_MISC_INT(0, 0));
470
471 vqx_misc_int.s.irde = 1;
472 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
473 vqx_misc_int.u);
474 }
475
476 static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
477 {
478 union cptx_vqx_misc_int vqx_misc_int;
479
480 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
481 CPTX_VQX_MISC_INT(0, 0));
482
483 vqx_misc_int.s.nwrp = 1;
484 cpt_write_csr64(cptvf->reg_base,
485 CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
486 }
487
488 static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
489 {
490 union cptx_vqx_misc_int vqx_misc_int;
491
492 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
493 CPTX_VQX_MISC_INT(0, 0));
494
495 vqx_misc_int.s.mbox = 1;
496 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
497 vqx_misc_int.u);
498 }
499
500 static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
501 {
502 union cptx_vqx_misc_int vqx_misc_int;
503
504 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
505 CPTX_VQX_MISC_INT(0, 0));
506
507 vqx_misc_int.s.swerr = 1;
508 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
509 vqx_misc_int.u);
510 }
511
512 static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
513 {
514 return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
515 }
516
517 static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
518 {
519 struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
520 struct pci_dev *pdev = cptvf->pdev;
521 u64 intr;
522
523 intr = cptvf_read_vf_misc_intr_status(cptvf);
524
525 if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
526 dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
527 intr, cptvf->vfid);
528 cptvf_handle_mbox_intr(cptvf);
529 cptvf_clear_mbox_intr(cptvf);
530 } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
531 cptvf_clear_dovf_intr(cptvf);
532
533 cptvf_write_vq_doorbell(cptvf, 0);
534 dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
535 intr, cptvf->vfid);
536 } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
537 cptvf_clear_irde_intr(cptvf);
538 dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
539 intr, cptvf->vfid);
540 } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
541 cptvf_clear_nwrp_intr(cptvf);
542 dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
543 intr, cptvf->vfid);
544 } else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
545 cptvf_clear_swerr_intr(cptvf);
546 dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
547 intr, cptvf->vfid);
548 } else {
549 dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
550 cptvf->vfid);
551 }
552
553 return IRQ_HANDLED;
554 }
555
556 static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
557 int qno)
558 {
559 struct cptvf_wqe_info *nwqe_info;
560
561 if (unlikely(qno >= cptvf->nr_queues))
562 return NULL;
563 nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
564
565 return &nwqe_info->vq_wqe[qno];
566 }
567
568 static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
569 {
570 union cptx_vqx_done vqx_done;
571
572 vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
573 return vqx_done.s.done;
574 }
575
576 static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
577 u32 ackcnt)
578 {
579 union cptx_vqx_done_ack vqx_dack_cnt;
580
581 vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
582 CPTX_VQX_DONE_ACK(0, 0));
583 vqx_dack_cnt.s.done_ack = ackcnt;
584 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
585 vqx_dack_cnt.u);
586 }
587
588 static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
589 {
590 struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
591 struct pci_dev *pdev = cptvf->pdev;
592
593 u32 intr = cptvf_read_vq_done_count(cptvf);
594
595 if (intr) {
596 struct cptvf_wqe *wqe;
597
598
599
600
601 cptvf_write_vq_done_ack(cptvf, intr);
602 wqe = get_cptvf_vq_wqe(cptvf, 0);
603 if (unlikely(!wqe)) {
604 dev_err(&pdev->dev, "No work to schedule for VF (%d)",
605 cptvf->vfid);
606 return IRQ_NONE;
607 }
608 tasklet_hi_schedule(&wqe->twork);
609 }
610
611 return IRQ_HANDLED;
612 }
613
614 static void cptvf_set_irq_affinity(struct cpt_vf *cptvf, int vec)
615 {
616 struct pci_dev *pdev = cptvf->pdev;
617 int cpu;
618
619 if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
620 GFP_KERNEL)) {
621 dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
622 cptvf->vfid);
623 return;
624 }
625
626 cpu = cptvf->vfid % num_online_cpus();
627 cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
628 cptvf->affinity_mask[vec]);
629 irq_set_affinity_hint(pci_irq_vector(pdev, vec),
630 cptvf->affinity_mask[vec]);
631 }
632
633 static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
634 {
635 union cptx_vqx_saddr vqx_saddr;
636
637 vqx_saddr.u = val;
638 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
639 }
640
641 static void cptvf_device_init(struct cpt_vf *cptvf)
642 {
643 u64 base_addr = 0;
644
645
646 cptvf_write_vq_ctl(cptvf, 0);
647
648 cptvf_write_vq_doorbell(cptvf, 0);
649
650 cptvf_write_vq_inprog(cptvf, 0);
651
652
653 base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
654 cptvf_write_vq_saddr(cptvf, base_addr);
655
656 cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
657 cptvf_write_vq_done_numwait(cptvf, 1);
658
659 cptvf_write_vq_ctl(cptvf, 1);
660
661 cptvf->flags |= CPT_FLAG_DEVICE_READY;
662 }
663
664 static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
665 {
666 struct device *dev = &pdev->dev;
667 struct cpt_vf *cptvf;
668 int err;
669
670 cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
671 if (!cptvf)
672 return -ENOMEM;
673
674 pci_set_drvdata(pdev, cptvf);
675 cptvf->pdev = pdev;
676 err = pci_enable_device(pdev);
677 if (err) {
678 dev_err(dev, "Failed to enable PCI device\n");
679 pci_set_drvdata(pdev, NULL);
680 return err;
681 }
682
683 err = pci_request_regions(pdev, DRV_NAME);
684 if (err) {
685 dev_err(dev, "PCI request regions failed 0x%x\n", err);
686 goto cptvf_err_disable_device;
687 }
688
689 cptvf->flags |= CPT_FLAG_VF_DRIVER;
690 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
691 if (err) {
692 dev_err(dev, "Unable to get usable DMA configuration\n");
693 goto cptvf_err_release_regions;
694 }
695
696 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
697 if (err) {
698 dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
699 goto cptvf_err_release_regions;
700 }
701
702
703 cptvf->reg_base = pcim_iomap(pdev, 0, 0);
704 if (!cptvf->reg_base) {
705 dev_err(dev, "Cannot map config register space, aborting\n");
706 err = -ENOMEM;
707 goto cptvf_err_release_regions;
708 }
709
710 cptvf->node = dev_to_node(&pdev->dev);
711 err = pci_alloc_irq_vectors(pdev, CPT_VF_MSIX_VECTORS,
712 CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX);
713 if (err < 0) {
714 dev_err(dev, "Request for #%d msix vectors failed\n",
715 CPT_VF_MSIX_VECTORS);
716 goto cptvf_err_release_regions;
717 }
718
719 err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC),
720 cptvf_misc_intr_handler, 0, "CPT VF misc intr",
721 cptvf);
722 if (err) {
723 dev_err(dev, "Request misc irq failed");
724 goto cptvf_free_vectors;
725 }
726
727
728 cptvf_enable_mbox_interrupts(cptvf);
729 cptvf_enable_swerr_interrupts(cptvf);
730
731
732
733 err = cptvf_check_pf_ready(cptvf);
734 if (err) {
735 dev_err(dev, "PF not responding to READY msg");
736 goto cptvf_free_misc_irq;
737 }
738
739
740 cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
741 err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
742 if (err) {
743 dev_err(dev, "cptvf_sw_init() failed");
744 goto cptvf_free_misc_irq;
745 }
746
747 err = cptvf_send_vq_size_msg(cptvf);
748 if (err) {
749 dev_err(dev, "PF not responding to QLEN msg");
750 goto cptvf_free_misc_irq;
751 }
752
753
754 cptvf_device_init(cptvf);
755
756 cptvf->vfgrp = 1;
757 err = cptvf_send_vf_to_grp_msg(cptvf);
758 if (err) {
759 dev_err(dev, "PF not responding to VF_GRP msg");
760 goto cptvf_free_misc_irq;
761 }
762
763 cptvf->priority = 1;
764 err = cptvf_send_vf_priority_msg(cptvf);
765 if (err) {
766 dev_err(dev, "PF not responding to VF_PRIO msg");
767 goto cptvf_free_misc_irq;
768 }
769
770 err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE),
771 cptvf_done_intr_handler, 0, "CPT VF done intr",
772 cptvf);
773 if (err) {
774 dev_err(dev, "Request done irq failed\n");
775 goto cptvf_free_misc_irq;
776 }
777
778
779 cptvf_enable_done_interrupts(cptvf);
780
781
782 cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
783 cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
784
785 err = cptvf_send_vf_up(cptvf);
786 if (err) {
787 dev_err(dev, "PF not responding to UP msg");
788 goto cptvf_free_irq_affinity;
789 }
790 err = cvm_crypto_init(cptvf);
791 if (err) {
792 dev_err(dev, "Algorithm register failed\n");
793 goto cptvf_free_irq_affinity;
794 }
795 return 0;
796
797 cptvf_free_irq_affinity:
798 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
799 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
800 cptvf_free_misc_irq:
801 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
802 cptvf_free_vectors:
803 pci_free_irq_vectors(cptvf->pdev);
804 cptvf_err_release_regions:
805 pci_release_regions(pdev);
806 cptvf_err_disable_device:
807 pci_disable_device(pdev);
808 pci_set_drvdata(pdev, NULL);
809
810 return err;
811 }
812
813 static void cptvf_remove(struct pci_dev *pdev)
814 {
815 struct cpt_vf *cptvf = pci_get_drvdata(pdev);
816
817 if (!cptvf) {
818 dev_err(&pdev->dev, "Invalid CPT-VF device\n");
819 return;
820 }
821
822
823 if (cptvf_send_vf_down(cptvf)) {
824 dev_err(&pdev->dev, "PF not responding to DOWN msg");
825 } else {
826 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
827 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
828 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf);
829 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
830 pci_free_irq_vectors(cptvf->pdev);
831 cptvf_sw_cleanup(cptvf);
832 pci_set_drvdata(pdev, NULL);
833 pci_release_regions(pdev);
834 pci_disable_device(pdev);
835 cvm_crypto_exit();
836 }
837 }
838
839 static void cptvf_shutdown(struct pci_dev *pdev)
840 {
841 cptvf_remove(pdev);
842 }
843
844
845 static const struct pci_device_id cptvf_id_table[] = {
846 {PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
847 { 0, }
848 };
849
850 static struct pci_driver cptvf_pci_driver = {
851 .name = DRV_NAME,
852 .id_table = cptvf_id_table,
853 .probe = cptvf_probe,
854 .remove = cptvf_remove,
855 .shutdown = cptvf_shutdown,
856 };
857
858 module_pci_driver(cptvf_pci_driver);
859
860 MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
861 MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
862 MODULE_LICENSE("GPL v2");
863 MODULE_VERSION(DRV_VERSION);
864 MODULE_DEVICE_TABLE(pci, cptvf_id_table);