This source file includes following definitions.
- uint8p_to_uint32_be
- swap_bits_in_byte
- swap_words_in_key_and_bits_in_byte
- add_session_id
- cryp_interrupt_handler
- mode_is_aes
- cfg_iv
- cfg_ivs
- set_key
- cfg_keys
- cryp_setup_context
- cryp_get_device_data
- cryp_dma_setup_channel
- cryp_dma_out_callback
- cryp_set_dma_transfer
- cryp_dma_done
- cryp_dma_write
- cryp_dma_read
- cryp_polling_mode
- cryp_disable_power
- cryp_enable_power
- hw_crypt_noxts
- get_nents
- ablk_dma_crypt
- ablk_crypt
- aes_ablkcipher_setkey
- des_ablkcipher_setkey
- des3_ablkcipher_setkey
- cryp_blk_encrypt
- cryp_blk_decrypt
- cryp_cra_init
- cryp_algs_register_all
- cryp_algs_unregister_all
- ux500_cryp_probe
- ux500_cryp_remove
- ux500_cryp_shutdown
- ux500_cryp_suspend
- ux500_cryp_resume
- ux500_cryp_mod_init
- ux500_cryp_mod_fini
1
2
3
4
5
6
7
8
9
10
11
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/platform_device.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/semaphore.h>
27 #include <linux/platform_data/dma-ste-dma40.h>
28
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/ctr.h>
32 #include <crypto/internal/des.h>
33 #include <crypto/scatterwalk.h>
34
35 #include <linux/platform_data/crypto-ux500.h>
36
37 #include "cryp_p.h"
38 #include "cryp.h"
39
40 #define CRYP_MAX_KEY_SIZE 32
41 #define BYTES_PER_WORD 4
42
43 static int cryp_mode;
44 static atomic_t session_id;
45
46 static struct stedma40_chan_cfg *mem_to_engine;
47 static struct stedma40_chan_cfg *engine_to_mem;
48
49
50
51
52
53
54
55 struct cryp_driver_data {
56 struct klist device_list;
57 struct semaphore device_allocation;
58 };
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 struct cryp_ctx {
76 struct cryp_config config;
77 u8 key[CRYP_MAX_KEY_SIZE];
78 u32 keylen;
79 u8 *iv;
80 const u8 *indata;
81 u8 *outdata;
82 u32 datalen;
83 u32 outlen;
84 u32 blocksize;
85 u8 updated;
86 struct cryp_device_context dev_ctx;
87 struct cryp_device_data *device;
88 u32 session_id;
89 };
90
91 static struct cryp_driver_data driver_data;
92
93
94
95
96
97 static inline u32 uint8p_to_uint32_be(u8 *in)
98 {
99 u32 *data = (u32 *)in;
100
101 return cpu_to_be32p(data);
102 }
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 static inline u8 swap_bits_in_byte(u8 b)
127 {
128 #define R_SHIFT_4_MASK 0xc0
129 #define R_SHIFT_2_MASK 0x28
130
131 #define R_SHIFT_1_MASK 0x1e
132
133 #define L_SHIFT_4_MASK 0x03
134 #define L_SHIFT_2_MASK 0x14
135
136 #define L_SHIFT_1_MASK 0x78
137
138
139 u8 n1;
140 u8 n2;
141
142
143
144 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
145
146 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147
148 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
149
150
151
152 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
153
154 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155
156 n2 = (n2 & L_SHIFT_1_MASK) << 1;
157
158 return n1 | n2;
159 }
160
161 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162 u8 *out, u32 len)
163 {
164 unsigned int i = 0;
165 int j;
166 int index = 0;
167
168 j = len - BYTES_PER_WORD;
169 while (j >= 0) {
170 for (i = 0; i < BYTES_PER_WORD; i++) {
171 index = len - j - BYTES_PER_WORD + i;
172 out[j + i] =
173 swap_bits_in_byte(in[index]);
174 }
175 j -= BYTES_PER_WORD;
176 }
177 }
178
179 static void add_session_id(struct cryp_ctx *ctx)
180 {
181
182
183
184
185 if (unlikely(atomic_inc_and_test(&session_id)))
186 atomic_inc(&session_id);
187
188 ctx->session_id = atomic_read(&session_id);
189 }
190
191 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192 {
193 struct cryp_ctx *ctx;
194 int count;
195 struct cryp_device_data *device_data;
196
197 if (param == NULL) {
198 BUG_ON(!param);
199 return IRQ_HANDLED;
200 }
201
202
203 device_data = (struct cryp_device_data *)param;
204
205 ctx = device_data->current_ctx;
206
207 if (ctx == NULL) {
208 BUG_ON(!ctx);
209 return IRQ_HANDLED;
210 }
211
212 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214 "out" : "in");
215
216 if (cryp_pending_irq_src(device_data,
217 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218 if (ctx->outlen / ctx->blocksize > 0) {
219 count = ctx->blocksize / 4;
220
221 readsl(&device_data->base->dout, ctx->outdata, count);
222 ctx->outdata += count;
223 ctx->outlen -= count;
224
225 if (ctx->outlen == 0) {
226 cryp_disable_irq_src(device_data,
227 CRYP_IRQ_SRC_OUTPUT_FIFO);
228 }
229 }
230 } else if (cryp_pending_irq_src(device_data,
231 CRYP_IRQ_SRC_INPUT_FIFO)) {
232 if (ctx->datalen / ctx->blocksize > 0) {
233 count = ctx->blocksize / 4;
234
235 writesl(&device_data->base->din, ctx->indata, count);
236
237 ctx->indata += count;
238 ctx->datalen -= count;
239
240 if (ctx->datalen == 0)
241 cryp_disable_irq_src(device_data,
242 CRYP_IRQ_SRC_INPUT_FIFO);
243
244 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245 CRYP_PUT_BITS(&device_data->base->cr,
246 CRYP_START_ENABLE,
247 CRYP_CR_START_POS,
248 CRYP_CR_START_MASK);
249
250 cryp_wait_until_done(device_data);
251 }
252 }
253 }
254
255 return IRQ_HANDLED;
256 }
257
258 static int mode_is_aes(enum cryp_algo_mode mode)
259 {
260 return CRYP_ALGO_AES_ECB == mode ||
261 CRYP_ALGO_AES_CBC == mode ||
262 CRYP_ALGO_AES_CTR == mode ||
263 CRYP_ALGO_AES_XTS == mode;
264 }
265
266 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267 enum cryp_init_vector_index index)
268 {
269 struct cryp_init_vector_value vector_value;
270
271 dev_dbg(device_data->dev, "[%s]", __func__);
272
273 vector_value.init_value_left = left;
274 vector_value.init_value_right = right;
275
276 return cryp_configure_init_vector(device_data,
277 index,
278 vector_value);
279 }
280
281 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
282 {
283 int i;
284 int status = 0;
285 int num_of_regs = ctx->blocksize / 8;
286 u32 iv[AES_BLOCK_SIZE / 4];
287
288 dev_dbg(device_data->dev, "[%s]", __func__);
289
290
291
292
293
294
295 if (num_of_regs > 2) {
296 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297 __func__, ctx->blocksize);
298 return -EINVAL;
299 }
300
301 for (i = 0; i < ctx->blocksize / 4; i++)
302 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
303
304 for (i = 0; i < num_of_regs; i++) {
305 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306 (enum cryp_init_vector_index) i);
307 if (status != 0)
308 return status;
309 }
310 return status;
311 }
312
313 static int set_key(struct cryp_device_data *device_data,
314 u32 left_key,
315 u32 right_key,
316 enum cryp_key_reg_index index)
317 {
318 struct cryp_key_value key_value;
319 int cryp_error;
320
321 dev_dbg(device_data->dev, "[%s]", __func__);
322
323 key_value.key_value_left = left_key;
324 key_value.key_value_right = right_key;
325
326 cryp_error = cryp_configure_key_values(device_data,
327 index,
328 key_value);
329 if (cryp_error != 0)
330 dev_err(device_data->dev, "[%s]: "
331 "cryp_configure_key_values() failed!", __func__);
332
333 return cryp_error;
334 }
335
336 static int cfg_keys(struct cryp_ctx *ctx)
337 {
338 int i;
339 int num_of_regs = ctx->keylen / 8;
340 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341 int cryp_error = 0;
342
343 dev_dbg(ctx->device->dev, "[%s]", __func__);
344
345 if (mode_is_aes(ctx->config.algomode)) {
346 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347 (u8 *)swapped_key,
348 ctx->keylen);
349 } else {
350 for (i = 0; i < ctx->keylen / 4; i++)
351 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
352 }
353
354 for (i = 0; i < num_of_regs; i++) {
355 cryp_error = set_key(ctx->device,
356 *(((u32 *)swapped_key)+i*2),
357 *(((u32 *)swapped_key)+i*2+1),
358 (enum cryp_key_reg_index) i);
359
360 if (cryp_error != 0) {
361 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362 __func__);
363 return cryp_error;
364 }
365 }
366 return cryp_error;
367 }
368
369 static int cryp_setup_context(struct cryp_ctx *ctx,
370 struct cryp_device_data *device_data)
371 {
372 u32 control_register = CRYP_CR_DEFAULT;
373
374 switch (cryp_mode) {
375 case CRYP_MODE_INTERRUPT:
376 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377 break;
378
379 case CRYP_MODE_DMA:
380 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381 break;
382
383 default:
384 break;
385 }
386
387 if (ctx->updated == 0) {
388 cryp_flush_inoutfifo(device_data);
389 if (cfg_keys(ctx) != 0) {
390 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391 __func__);
392 return -EINVAL;
393 }
394
395 if (ctx->iv &&
396 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399 if (cfg_ivs(device_data, ctx) != 0)
400 return -EPERM;
401 }
402
403 cryp_set_configuration(device_data, &ctx->config,
404 &control_register);
405 add_session_id(ctx);
406 } else if (ctx->updated == 1 &&
407 ctx->session_id != atomic_read(&session_id)) {
408 cryp_flush_inoutfifo(device_data);
409 cryp_restore_device_context(device_data, &ctx->dev_ctx);
410
411 add_session_id(ctx);
412 control_register = ctx->dev_ctx.cr;
413 } else
414 control_register = ctx->dev_ctx.cr;
415
416 writel(control_register |
417 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418 &device_data->base->cr);
419
420 return 0;
421 }
422
423 static int cryp_get_device_data(struct cryp_ctx *ctx,
424 struct cryp_device_data **device_data)
425 {
426 int ret;
427 struct klist_iter device_iterator;
428 struct klist_node *device_node;
429 struct cryp_device_data *local_device_data = NULL;
430 pr_debug(DEV_DBG_NAME " [%s]", __func__);
431
432
433 ret = down_interruptible(&driver_data.device_allocation);
434 if (ret)
435 return ret;
436
437
438 klist_iter_init(&driver_data.device_list, &device_iterator);
439
440 device_node = klist_next(&device_iterator);
441 while (device_node) {
442 local_device_data = container_of(device_node,
443 struct cryp_device_data, list_node);
444 spin_lock(&local_device_data->ctx_lock);
445
446 if (local_device_data->current_ctx) {
447 device_node = klist_next(&device_iterator);
448 } else {
449 local_device_data->current_ctx = ctx;
450 ctx->device = local_device_data;
451 spin_unlock(&local_device_data->ctx_lock);
452 break;
453 }
454 spin_unlock(&local_device_data->ctx_lock);
455 }
456 klist_iter_exit(&device_iterator);
457
458 if (!device_node) {
459
460
461
462
463
464
465
466
467 return -EBUSY;
468 }
469
470 *device_data = local_device_data;
471
472 return 0;
473 }
474
475 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476 struct device *dev)
477 {
478 struct dma_slave_config mem2cryp = {
479 .direction = DMA_MEM_TO_DEV,
480 .dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482 .dst_maxburst = 4,
483 };
484 struct dma_slave_config cryp2mem = {
485 .direction = DMA_DEV_TO_MEM,
486 .src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487 .src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488 .src_maxburst = 4,
489 };
490
491 dma_cap_zero(device_data->dma.mask);
492 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
493
494 device_data->dma.cfg_mem2cryp = mem_to_engine;
495 device_data->dma.chan_mem2cryp =
496 dma_request_channel(device_data->dma.mask,
497 stedma40_filter,
498 device_data->dma.cfg_mem2cryp);
499
500 device_data->dma.cfg_cryp2mem = engine_to_mem;
501 device_data->dma.chan_cryp2mem =
502 dma_request_channel(device_data->dma.mask,
503 stedma40_filter,
504 device_data->dma.cfg_cryp2mem);
505
506 dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507 dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
508
509 init_completion(&device_data->dma.cryp_dma_complete);
510 }
511
512 static void cryp_dma_out_callback(void *data)
513 {
514 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
516
517 complete(&ctx->device->dma.cryp_dma_complete);
518 }
519
520 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521 struct scatterlist *sg,
522 int len,
523 enum dma_data_direction direction)
524 {
525 struct dma_async_tx_descriptor *desc;
526 struct dma_chan *channel = NULL;
527 dma_cookie_t cookie;
528
529 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
530
531 if (unlikely(!IS_ALIGNED((unsigned long)sg, 4))) {
532 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533 "aligned! Addr: 0x%08lx", __func__, (unsigned long)sg);
534 return -EFAULT;
535 }
536
537 switch (direction) {
538 case DMA_TO_DEVICE:
539 channel = ctx->device->dma.chan_mem2cryp;
540 ctx->device->dma.sg_src = sg;
541 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542 ctx->device->dma.sg_src,
543 ctx->device->dma.nents_src,
544 direction);
545
546 if (!ctx->device->dma.sg_src_len) {
547 dev_dbg(ctx->device->dev,
548 "[%s]: Could not map the sg list (TO_DEVICE)",
549 __func__);
550 return -EFAULT;
551 }
552
553 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554 "(TO_DEVICE)", __func__);
555
556 desc = dmaengine_prep_slave_sg(channel,
557 ctx->device->dma.sg_src,
558 ctx->device->dma.sg_src_len,
559 DMA_MEM_TO_DEV, DMA_CTRL_ACK);
560 break;
561
562 case DMA_FROM_DEVICE:
563 channel = ctx->device->dma.chan_cryp2mem;
564 ctx->device->dma.sg_dst = sg;
565 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566 ctx->device->dma.sg_dst,
567 ctx->device->dma.nents_dst,
568 direction);
569
570 if (!ctx->device->dma.sg_dst_len) {
571 dev_dbg(ctx->device->dev,
572 "[%s]: Could not map the sg list (FROM_DEVICE)",
573 __func__);
574 return -EFAULT;
575 }
576
577 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578 "(FROM_DEVICE)", __func__);
579
580 desc = dmaengine_prep_slave_sg(channel,
581 ctx->device->dma.sg_dst,
582 ctx->device->dma.sg_dst_len,
583 DMA_DEV_TO_MEM,
584 DMA_CTRL_ACK |
585 DMA_PREP_INTERRUPT);
586
587 desc->callback = cryp_dma_out_callback;
588 desc->callback_param = ctx;
589 break;
590
591 default:
592 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593 __func__);
594 return -EFAULT;
595 }
596
597 cookie = dmaengine_submit(desc);
598 if (dma_submit_error(cookie)) {
599 dev_dbg(ctx->device->dev, "[%s]: DMA submission failed\n",
600 __func__);
601 return cookie;
602 }
603
604 dma_async_issue_pending(channel);
605
606 return 0;
607 }
608
609 static void cryp_dma_done(struct cryp_ctx *ctx)
610 {
611 struct dma_chan *chan;
612
613 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
614
615 chan = ctx->device->dma.chan_mem2cryp;
616 dmaengine_terminate_all(chan);
617 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
618 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
619
620 chan = ctx->device->dma.chan_cryp2mem;
621 dmaengine_terminate_all(chan);
622 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
623 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
624 }
625
626 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
627 int len)
628 {
629 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
630 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
631
632 if (error) {
633 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
634 "failed", __func__);
635 return error;
636 }
637
638 return len;
639 }
640
641 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
642 {
643 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
644 if (error) {
645 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
646 "failed", __func__);
647 return error;
648 }
649
650 return len;
651 }
652
653 static void cryp_polling_mode(struct cryp_ctx *ctx,
654 struct cryp_device_data *device_data)
655 {
656 int len = ctx->blocksize / BYTES_PER_WORD;
657 int remaining_length = ctx->datalen;
658 u32 *indata = (u32 *)ctx->indata;
659 u32 *outdata = (u32 *)ctx->outdata;
660
661 while (remaining_length > 0) {
662 writesl(&device_data->base->din, indata, len);
663 indata += len;
664 remaining_length -= (len * BYTES_PER_WORD);
665 cryp_wait_until_done(device_data);
666
667 readsl(&device_data->base->dout, outdata, len);
668 outdata += len;
669 cryp_wait_until_done(device_data);
670 }
671 }
672
673 static int cryp_disable_power(struct device *dev,
674 struct cryp_device_data *device_data,
675 bool save_device_context)
676 {
677 int ret = 0;
678
679 dev_dbg(dev, "[%s]", __func__);
680
681 spin_lock(&device_data->power_state_spinlock);
682 if (!device_data->power_state)
683 goto out;
684
685 spin_lock(&device_data->ctx_lock);
686 if (save_device_context && device_data->current_ctx) {
687 cryp_save_device_context(device_data,
688 &device_data->current_ctx->dev_ctx,
689 cryp_mode);
690 device_data->restore_dev_ctx = true;
691 }
692 spin_unlock(&device_data->ctx_lock);
693
694 clk_disable(device_data->clk);
695 ret = regulator_disable(device_data->pwr_regulator);
696 if (ret)
697 dev_err(dev, "[%s]: "
698 "regulator_disable() failed!",
699 __func__);
700
701 device_data->power_state = false;
702
703 out:
704 spin_unlock(&device_data->power_state_spinlock);
705
706 return ret;
707 }
708
709 static int cryp_enable_power(
710 struct device *dev,
711 struct cryp_device_data *device_data,
712 bool restore_device_context)
713 {
714 int ret = 0;
715
716 dev_dbg(dev, "[%s]", __func__);
717
718 spin_lock(&device_data->power_state_spinlock);
719 if (!device_data->power_state) {
720 ret = regulator_enable(device_data->pwr_regulator);
721 if (ret) {
722 dev_err(dev, "[%s]: regulator_enable() failed!",
723 __func__);
724 goto out;
725 }
726
727 ret = clk_enable(device_data->clk);
728 if (ret) {
729 dev_err(dev, "[%s]: clk_enable() failed!",
730 __func__);
731 regulator_disable(device_data->pwr_regulator);
732 goto out;
733 }
734 device_data->power_state = true;
735 }
736
737 if (device_data->restore_dev_ctx) {
738 spin_lock(&device_data->ctx_lock);
739 if (restore_device_context && device_data->current_ctx) {
740 device_data->restore_dev_ctx = false;
741 cryp_restore_device_context(device_data,
742 &device_data->current_ctx->dev_ctx);
743 }
744 spin_unlock(&device_data->ctx_lock);
745 }
746 out:
747 spin_unlock(&device_data->power_state_spinlock);
748
749 return ret;
750 }
751
752 static int hw_crypt_noxts(struct cryp_ctx *ctx,
753 struct cryp_device_data *device_data)
754 {
755 int ret = 0;
756
757 const u8 *indata = ctx->indata;
758 u8 *outdata = ctx->outdata;
759 u32 datalen = ctx->datalen;
760 u32 outlen = datalen;
761
762 pr_debug(DEV_DBG_NAME " [%s]", __func__);
763
764 ctx->outlen = ctx->datalen;
765
766 if (unlikely(!IS_ALIGNED((unsigned long)indata, 4))) {
767 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
768 "0x%08lx", __func__, (unsigned long)indata);
769 return -EINVAL;
770 }
771
772 ret = cryp_setup_context(ctx, device_data);
773
774 if (ret)
775 goto out;
776
777 if (cryp_mode == CRYP_MODE_INTERRUPT) {
778 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
779 CRYP_IRQ_SRC_OUTPUT_FIFO);
780
781
782
783
784
785
786 while (ctx->outlen > 0)
787 cpu_relax();
788 } else if (cryp_mode == CRYP_MODE_POLLING ||
789 cryp_mode == CRYP_MODE_DMA) {
790
791
792
793
794
795
796
797
798 cryp_polling_mode(ctx, device_data);
799 } else {
800 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
801 __func__);
802 ret = -EPERM;
803 goto out;
804 }
805
806 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
807 ctx->updated = 1;
808
809 out:
810 ctx->indata = indata;
811 ctx->outdata = outdata;
812 ctx->datalen = datalen;
813 ctx->outlen = outlen;
814
815 return ret;
816 }
817
818 static int get_nents(struct scatterlist *sg, int nbytes)
819 {
820 int nents = 0;
821
822 while (nbytes > 0) {
823 nbytes -= sg->length;
824 sg = sg_next(sg);
825 nents++;
826 }
827
828 return nents;
829 }
830
831 static int ablk_dma_crypt(struct ablkcipher_request *areq)
832 {
833 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
834 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
835 struct cryp_device_data *device_data;
836
837 int bytes_written = 0;
838 int bytes_read = 0;
839 int ret;
840
841 pr_debug(DEV_DBG_NAME " [%s]", __func__);
842
843 ctx->datalen = areq->nbytes;
844 ctx->outlen = areq->nbytes;
845
846 ret = cryp_get_device_data(ctx, &device_data);
847 if (ret)
848 return ret;
849
850 ret = cryp_setup_context(ctx, device_data);
851 if (ret)
852 goto out;
853
854
855 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
856 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
857
858
859 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
860
861 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
862 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
863
864 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
865 cryp_dma_done(ctx);
866
867 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
868 ctx->updated = 1;
869
870 out:
871 spin_lock(&device_data->ctx_lock);
872 device_data->current_ctx = NULL;
873 ctx->device = NULL;
874 spin_unlock(&device_data->ctx_lock);
875
876
877
878
879
880 up(&driver_data.device_allocation);
881
882 if (unlikely(bytes_written != bytes_read))
883 return -EPERM;
884
885 return 0;
886 }
887
888 static int ablk_crypt(struct ablkcipher_request *areq)
889 {
890 struct ablkcipher_walk walk;
891 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
892 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
893 struct cryp_device_data *device_data;
894 unsigned long src_paddr;
895 unsigned long dst_paddr;
896 int ret;
897 int nbytes;
898
899 pr_debug(DEV_DBG_NAME " [%s]", __func__);
900
901 ret = cryp_get_device_data(ctx, &device_data);
902 if (ret)
903 goto out;
904
905 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
906 ret = ablkcipher_walk_phys(areq, &walk);
907
908 if (ret) {
909 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
910 __func__);
911 goto out;
912 }
913
914 while ((nbytes = walk.nbytes) > 0) {
915 ctx->iv = walk.iv;
916 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
917 ctx->indata = phys_to_virt(src_paddr);
918
919 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
920 ctx->outdata = phys_to_virt(dst_paddr);
921
922 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
923
924 ret = hw_crypt_noxts(ctx, device_data);
925 if (ret)
926 goto out;
927
928 nbytes -= ctx->datalen;
929 ret = ablkcipher_walk_done(areq, &walk, nbytes);
930 if (ret)
931 goto out;
932 }
933 ablkcipher_walk_complete(&walk);
934
935 out:
936
937 spin_lock(&device_data->ctx_lock);
938 device_data->current_ctx = NULL;
939 ctx->device = NULL;
940 spin_unlock(&device_data->ctx_lock);
941
942
943
944
945
946 up(&driver_data.device_allocation);
947
948 return ret;
949 }
950
951 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
952 const u8 *key, unsigned int keylen)
953 {
954 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
955 u32 *flags = &cipher->base.crt_flags;
956
957 pr_debug(DEV_DBG_NAME " [%s]", __func__);
958
959 switch (keylen) {
960 case AES_KEYSIZE_128:
961 ctx->config.keysize = CRYP_KEY_SIZE_128;
962 break;
963
964 case AES_KEYSIZE_192:
965 ctx->config.keysize = CRYP_KEY_SIZE_192;
966 break;
967
968 case AES_KEYSIZE_256:
969 ctx->config.keysize = CRYP_KEY_SIZE_256;
970 break;
971
972 default:
973 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
974 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
975 return -EINVAL;
976 }
977
978 memcpy(ctx->key, key, keylen);
979 ctx->keylen = keylen;
980
981 ctx->updated = 0;
982
983 return 0;
984 }
985
986 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
987 const u8 *key, unsigned int keylen)
988 {
989 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
990 int err;
991
992 pr_debug(DEV_DBG_NAME " [%s]", __func__);
993
994 err = verify_ablkcipher_des_key(cipher, key);
995 if (err)
996 return err;
997
998 memcpy(ctx->key, key, keylen);
999 ctx->keylen = keylen;
1000
1001 ctx->updated = 0;
1002 return 0;
1003 }
1004
1005 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1006 const u8 *key, unsigned int keylen)
1007 {
1008 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1009 int err;
1010
1011 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1012
1013 err = verify_ablkcipher_des3_key(cipher, key);
1014 if (err)
1015 return err;
1016
1017 memcpy(ctx->key, key, keylen);
1018 ctx->keylen = keylen;
1019
1020 ctx->updated = 0;
1021 return 0;
1022 }
1023
1024 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1025 {
1026 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1027 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1028
1029 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1030
1031 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1032
1033
1034
1035 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1036 return ablk_dma_crypt(areq);
1037
1038
1039 return ablk_crypt(areq);
1040 }
1041
1042 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1043 {
1044 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1045 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1046
1047 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1048
1049 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1050
1051
1052 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1053 return ablk_dma_crypt(areq);
1054
1055
1056 return ablk_crypt(areq);
1057 }
1058
1059 struct cryp_algo_template {
1060 enum cryp_algo_mode algomode;
1061 struct crypto_alg crypto;
1062 };
1063
1064 static int cryp_cra_init(struct crypto_tfm *tfm)
1065 {
1066 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1067 struct crypto_alg *alg = tfm->__crt_alg;
1068 struct cryp_algo_template *cryp_alg = container_of(alg,
1069 struct cryp_algo_template,
1070 crypto);
1071
1072 ctx->config.algomode = cryp_alg->algomode;
1073 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1074
1075 return 0;
1076 }
1077
1078 static struct cryp_algo_template cryp_algs[] = {
1079 {
1080 .algomode = CRYP_ALGO_AES_ECB,
1081 .crypto = {
1082 .cra_name = "aes",
1083 .cra_driver_name = "aes-ux500",
1084 .cra_priority = 300,
1085 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1086 CRYPTO_ALG_ASYNC,
1087 .cra_blocksize = AES_BLOCK_SIZE,
1088 .cra_ctxsize = sizeof(struct cryp_ctx),
1089 .cra_alignmask = 3,
1090 .cra_type = &crypto_ablkcipher_type,
1091 .cra_init = cryp_cra_init,
1092 .cra_module = THIS_MODULE,
1093 .cra_u = {
1094 .ablkcipher = {
1095 .min_keysize = AES_MIN_KEY_SIZE,
1096 .max_keysize = AES_MAX_KEY_SIZE,
1097 .setkey = aes_ablkcipher_setkey,
1098 .encrypt = cryp_blk_encrypt,
1099 .decrypt = cryp_blk_decrypt
1100 }
1101 }
1102 }
1103 },
1104 {
1105 .algomode = CRYP_ALGO_AES_ECB,
1106 .crypto = {
1107 .cra_name = "ecb(aes)",
1108 .cra_driver_name = "ecb-aes-ux500",
1109 .cra_priority = 300,
1110 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1111 CRYPTO_ALG_ASYNC,
1112 .cra_blocksize = AES_BLOCK_SIZE,
1113 .cra_ctxsize = sizeof(struct cryp_ctx),
1114 .cra_alignmask = 3,
1115 .cra_type = &crypto_ablkcipher_type,
1116 .cra_init = cryp_cra_init,
1117 .cra_module = THIS_MODULE,
1118 .cra_u = {
1119 .ablkcipher = {
1120 .min_keysize = AES_MIN_KEY_SIZE,
1121 .max_keysize = AES_MAX_KEY_SIZE,
1122 .setkey = aes_ablkcipher_setkey,
1123 .encrypt = cryp_blk_encrypt,
1124 .decrypt = cryp_blk_decrypt,
1125 }
1126 }
1127 }
1128 },
1129 {
1130 .algomode = CRYP_ALGO_AES_CBC,
1131 .crypto = {
1132 .cra_name = "cbc(aes)",
1133 .cra_driver_name = "cbc-aes-ux500",
1134 .cra_priority = 300,
1135 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1136 CRYPTO_ALG_ASYNC,
1137 .cra_blocksize = AES_BLOCK_SIZE,
1138 .cra_ctxsize = sizeof(struct cryp_ctx),
1139 .cra_alignmask = 3,
1140 .cra_type = &crypto_ablkcipher_type,
1141 .cra_init = cryp_cra_init,
1142 .cra_module = THIS_MODULE,
1143 .cra_u = {
1144 .ablkcipher = {
1145 .min_keysize = AES_MIN_KEY_SIZE,
1146 .max_keysize = AES_MAX_KEY_SIZE,
1147 .setkey = aes_ablkcipher_setkey,
1148 .encrypt = cryp_blk_encrypt,
1149 .decrypt = cryp_blk_decrypt,
1150 .ivsize = AES_BLOCK_SIZE,
1151 }
1152 }
1153 }
1154 },
1155 {
1156 .algomode = CRYP_ALGO_AES_CTR,
1157 .crypto = {
1158 .cra_name = "ctr(aes)",
1159 .cra_driver_name = "ctr-aes-ux500",
1160 .cra_priority = 300,
1161 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1162 CRYPTO_ALG_ASYNC,
1163 .cra_blocksize = AES_BLOCK_SIZE,
1164 .cra_ctxsize = sizeof(struct cryp_ctx),
1165 .cra_alignmask = 3,
1166 .cra_type = &crypto_ablkcipher_type,
1167 .cra_init = cryp_cra_init,
1168 .cra_module = THIS_MODULE,
1169 .cra_u = {
1170 .ablkcipher = {
1171 .min_keysize = AES_MIN_KEY_SIZE,
1172 .max_keysize = AES_MAX_KEY_SIZE,
1173 .setkey = aes_ablkcipher_setkey,
1174 .encrypt = cryp_blk_encrypt,
1175 .decrypt = cryp_blk_decrypt,
1176 .ivsize = AES_BLOCK_SIZE,
1177 }
1178 }
1179 }
1180 },
1181 {
1182 .algomode = CRYP_ALGO_DES_ECB,
1183 .crypto = {
1184 .cra_name = "ecb(des)",
1185 .cra_driver_name = "ecb-des-ux500",
1186 .cra_priority = 300,
1187 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1188 CRYPTO_ALG_ASYNC,
1189 .cra_blocksize = DES_BLOCK_SIZE,
1190 .cra_ctxsize = sizeof(struct cryp_ctx),
1191 .cra_alignmask = 3,
1192 .cra_type = &crypto_ablkcipher_type,
1193 .cra_init = cryp_cra_init,
1194 .cra_module = THIS_MODULE,
1195 .cra_u = {
1196 .ablkcipher = {
1197 .min_keysize = DES_KEY_SIZE,
1198 .max_keysize = DES_KEY_SIZE,
1199 .setkey = des_ablkcipher_setkey,
1200 .encrypt = cryp_blk_encrypt,
1201 .decrypt = cryp_blk_decrypt,
1202 }
1203 }
1204 }
1205 },
1206 {
1207 .algomode = CRYP_ALGO_TDES_ECB,
1208 .crypto = {
1209 .cra_name = "ecb(des3_ede)",
1210 .cra_driver_name = "ecb-des3_ede-ux500",
1211 .cra_priority = 300,
1212 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1213 CRYPTO_ALG_ASYNC,
1214 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1215 .cra_ctxsize = sizeof(struct cryp_ctx),
1216 .cra_alignmask = 3,
1217 .cra_type = &crypto_ablkcipher_type,
1218 .cra_init = cryp_cra_init,
1219 .cra_module = THIS_MODULE,
1220 .cra_u = {
1221 .ablkcipher = {
1222 .min_keysize = DES3_EDE_KEY_SIZE,
1223 .max_keysize = DES3_EDE_KEY_SIZE,
1224 .setkey = des3_ablkcipher_setkey,
1225 .encrypt = cryp_blk_encrypt,
1226 .decrypt = cryp_blk_decrypt,
1227 }
1228 }
1229 }
1230 },
1231 {
1232 .algomode = CRYP_ALGO_DES_CBC,
1233 .crypto = {
1234 .cra_name = "cbc(des)",
1235 .cra_driver_name = "cbc-des-ux500",
1236 .cra_priority = 300,
1237 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1238 CRYPTO_ALG_ASYNC,
1239 .cra_blocksize = DES_BLOCK_SIZE,
1240 .cra_ctxsize = sizeof(struct cryp_ctx),
1241 .cra_alignmask = 3,
1242 .cra_type = &crypto_ablkcipher_type,
1243 .cra_init = cryp_cra_init,
1244 .cra_module = THIS_MODULE,
1245 .cra_u = {
1246 .ablkcipher = {
1247 .min_keysize = DES_KEY_SIZE,
1248 .max_keysize = DES_KEY_SIZE,
1249 .setkey = des_ablkcipher_setkey,
1250 .encrypt = cryp_blk_encrypt,
1251 .decrypt = cryp_blk_decrypt,
1252 }
1253 }
1254 }
1255 },
1256 {
1257 .algomode = CRYP_ALGO_TDES_CBC,
1258 .crypto = {
1259 .cra_name = "cbc(des3_ede)",
1260 .cra_driver_name = "cbc-des3_ede-ux500",
1261 .cra_priority = 300,
1262 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1263 CRYPTO_ALG_ASYNC,
1264 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1265 .cra_ctxsize = sizeof(struct cryp_ctx),
1266 .cra_alignmask = 3,
1267 .cra_type = &crypto_ablkcipher_type,
1268 .cra_init = cryp_cra_init,
1269 .cra_module = THIS_MODULE,
1270 .cra_u = {
1271 .ablkcipher = {
1272 .min_keysize = DES3_EDE_KEY_SIZE,
1273 .max_keysize = DES3_EDE_KEY_SIZE,
1274 .setkey = des3_ablkcipher_setkey,
1275 .encrypt = cryp_blk_encrypt,
1276 .decrypt = cryp_blk_decrypt,
1277 .ivsize = DES3_EDE_BLOCK_SIZE,
1278 }
1279 }
1280 }
1281 }
1282 };
1283
1284
1285
1286
1287 static int cryp_algs_register_all(void)
1288 {
1289 int ret;
1290 int i;
1291 int count;
1292
1293 pr_debug("[%s]", __func__);
1294
1295 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1296 ret = crypto_register_alg(&cryp_algs[i].crypto);
1297 if (ret) {
1298 count = i;
1299 pr_err("[%s] alg registration failed",
1300 cryp_algs[i].crypto.cra_driver_name);
1301 goto unreg;
1302 }
1303 }
1304 return 0;
1305 unreg:
1306 for (i = 0; i < count; i++)
1307 crypto_unregister_alg(&cryp_algs[i].crypto);
1308 return ret;
1309 }
1310
1311
1312
1313
1314 static void cryp_algs_unregister_all(void)
1315 {
1316 int i;
1317
1318 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1319
1320 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1321 crypto_unregister_alg(&cryp_algs[i].crypto);
1322 }
1323
1324 static int ux500_cryp_probe(struct platform_device *pdev)
1325 {
1326 int ret;
1327 struct resource *res;
1328 struct resource *res_irq;
1329 struct cryp_device_data *device_data;
1330 struct cryp_protection_config prot = {
1331 .privilege_access = CRYP_STATE_ENABLE
1332 };
1333 struct device *dev = &pdev->dev;
1334
1335 dev_dbg(dev, "[%s]", __func__);
1336 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1337 if (!device_data) {
1338 ret = -ENOMEM;
1339 goto out;
1340 }
1341
1342 device_data->dev = dev;
1343 device_data->current_ctx = NULL;
1344
1345
1346 mem_to_engine = &((struct cryp_platform_data *)
1347 dev->platform_data)->mem_to_engine;
1348 engine_to_mem = &((struct cryp_platform_data *)
1349 dev->platform_data)->engine_to_mem;
1350
1351 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1352 if (!res) {
1353 dev_err(dev, "[%s]: platform_get_resource() failed",
1354 __func__);
1355 ret = -ENODEV;
1356 goto out;
1357 }
1358
1359 device_data->phybase = res->start;
1360 device_data->base = devm_ioremap_resource(dev, res);
1361 if (IS_ERR(device_data->base)) {
1362 dev_err(dev, "[%s]: ioremap failed!", __func__);
1363 ret = PTR_ERR(device_data->base);
1364 goto out;
1365 }
1366
1367 spin_lock_init(&device_data->ctx_lock);
1368 spin_lock_init(&device_data->power_state_spinlock);
1369
1370
1371 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1372 if (IS_ERR(device_data->pwr_regulator)) {
1373 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1374 ret = PTR_ERR(device_data->pwr_regulator);
1375 device_data->pwr_regulator = NULL;
1376 goto out;
1377 }
1378
1379
1380 device_data->clk = devm_clk_get(&pdev->dev, NULL);
1381 if (IS_ERR(device_data->clk)) {
1382 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1383 ret = PTR_ERR(device_data->clk);
1384 goto out_regulator;
1385 }
1386
1387 ret = clk_prepare(device_data->clk);
1388 if (ret) {
1389 dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1390 goto out_regulator;
1391 }
1392
1393
1394 ret = cryp_enable_power(device_data->dev, device_data, false);
1395 if (ret) {
1396 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1397 goto out_clk_unprepare;
1398 }
1399
1400 if (cryp_check(device_data)) {
1401 dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1402 ret = -EINVAL;
1403 goto out_power;
1404 }
1405
1406 if (cryp_configure_protection(device_data, &prot)) {
1407 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1408 __func__);
1409 ret = -EINVAL;
1410 goto out_power;
1411 }
1412
1413 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1414 if (!res_irq) {
1415 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1416 __func__);
1417 ret = -ENODEV;
1418 goto out_power;
1419 }
1420
1421 ret = devm_request_irq(&pdev->dev, res_irq->start,
1422 cryp_interrupt_handler, 0, "cryp1", device_data);
1423 if (ret) {
1424 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1425 goto out_power;
1426 }
1427
1428 if (cryp_mode == CRYP_MODE_DMA)
1429 cryp_dma_setup_channel(device_data, dev);
1430
1431 platform_set_drvdata(pdev, device_data);
1432
1433
1434 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1435
1436
1437 up(&driver_data.device_allocation);
1438
1439 atomic_set(&session_id, 1);
1440
1441 ret = cryp_algs_register_all();
1442 if (ret) {
1443 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1444 __func__);
1445 goto out_power;
1446 }
1447
1448 dev_info(dev, "successfully registered\n");
1449
1450 return 0;
1451
1452 out_power:
1453 cryp_disable_power(device_data->dev, device_data, false);
1454
1455 out_clk_unprepare:
1456 clk_unprepare(device_data->clk);
1457
1458 out_regulator:
1459 regulator_put(device_data->pwr_regulator);
1460
1461 out:
1462 return ret;
1463 }
1464
1465 static int ux500_cryp_remove(struct platform_device *pdev)
1466 {
1467 struct cryp_device_data *device_data;
1468
1469 dev_dbg(&pdev->dev, "[%s]", __func__);
1470 device_data = platform_get_drvdata(pdev);
1471 if (!device_data) {
1472 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1473 __func__);
1474 return -ENOMEM;
1475 }
1476
1477
1478 if (down_trylock(&driver_data.device_allocation))
1479 return -EBUSY;
1480
1481
1482 spin_lock(&device_data->ctx_lock);
1483
1484 if (device_data->current_ctx) {
1485
1486 spin_unlock(&device_data->ctx_lock);
1487
1488 up(&driver_data.device_allocation);
1489 return -EBUSY;
1490 }
1491
1492 spin_unlock(&device_data->ctx_lock);
1493
1494
1495 if (klist_node_attached(&device_data->list_node))
1496 klist_remove(&device_data->list_node);
1497
1498
1499 if (list_empty(&driver_data.device_list.k_list))
1500 cryp_algs_unregister_all();
1501
1502 if (cryp_disable_power(&pdev->dev, device_data, false))
1503 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1504 __func__);
1505
1506 clk_unprepare(device_data->clk);
1507 regulator_put(device_data->pwr_regulator);
1508
1509 return 0;
1510 }
1511
1512 static void ux500_cryp_shutdown(struct platform_device *pdev)
1513 {
1514 struct cryp_device_data *device_data;
1515
1516 dev_dbg(&pdev->dev, "[%s]", __func__);
1517
1518 device_data = platform_get_drvdata(pdev);
1519 if (!device_data) {
1520 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1521 __func__);
1522 return;
1523 }
1524
1525
1526 spin_lock(&device_data->ctx_lock);
1527
1528 if (!device_data->current_ctx) {
1529 if (down_trylock(&driver_data.device_allocation))
1530 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1531 "Shutting down anyway...", __func__);
1532
1533
1534
1535
1536
1537 device_data->current_ctx++;
1538 }
1539 spin_unlock(&device_data->ctx_lock);
1540
1541
1542 if (klist_node_attached(&device_data->list_node))
1543 klist_remove(&device_data->list_node);
1544
1545
1546 if (list_empty(&driver_data.device_list.k_list))
1547 cryp_algs_unregister_all();
1548
1549 if (cryp_disable_power(&pdev->dev, device_data, false))
1550 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1551 __func__);
1552
1553 }
1554
1555 #ifdef CONFIG_PM_SLEEP
1556 static int ux500_cryp_suspend(struct device *dev)
1557 {
1558 int ret;
1559 struct platform_device *pdev = to_platform_device(dev);
1560 struct cryp_device_data *device_data;
1561 struct resource *res_irq;
1562 struct cryp_ctx *temp_ctx = NULL;
1563
1564 dev_dbg(dev, "[%s]", __func__);
1565
1566
1567 device_data = platform_get_drvdata(pdev);
1568 if (!device_data) {
1569 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1570 return -ENOMEM;
1571 }
1572
1573 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1574 if (!res_irq)
1575 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1576 else
1577 disable_irq(res_irq->start);
1578
1579 spin_lock(&device_data->ctx_lock);
1580 if (!device_data->current_ctx)
1581 device_data->current_ctx++;
1582 spin_unlock(&device_data->ctx_lock);
1583
1584 if (device_data->current_ctx == ++temp_ctx) {
1585 if (down_interruptible(&driver_data.device_allocation))
1586 dev_dbg(dev, "[%s]: down_interruptible() failed",
1587 __func__);
1588 ret = cryp_disable_power(dev, device_data, false);
1589
1590 } else
1591 ret = cryp_disable_power(dev, device_data, true);
1592
1593 if (ret)
1594 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1595
1596 return ret;
1597 }
1598
1599 static int ux500_cryp_resume(struct device *dev)
1600 {
1601 int ret = 0;
1602 struct platform_device *pdev = to_platform_device(dev);
1603 struct cryp_device_data *device_data;
1604 struct resource *res_irq;
1605 struct cryp_ctx *temp_ctx = NULL;
1606
1607 dev_dbg(dev, "[%s]", __func__);
1608
1609 device_data = platform_get_drvdata(pdev);
1610 if (!device_data) {
1611 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1612 return -ENOMEM;
1613 }
1614
1615 spin_lock(&device_data->ctx_lock);
1616 if (device_data->current_ctx == ++temp_ctx)
1617 device_data->current_ctx = NULL;
1618 spin_unlock(&device_data->ctx_lock);
1619
1620
1621 if (!device_data->current_ctx)
1622 up(&driver_data.device_allocation);
1623 else
1624 ret = cryp_enable_power(dev, device_data, true);
1625
1626 if (ret)
1627 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1628 else {
1629 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1630 if (res_irq)
1631 enable_irq(res_irq->start);
1632 }
1633
1634 return ret;
1635 }
1636 #endif
1637
1638 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1639
1640 static const struct of_device_id ux500_cryp_match[] = {
1641 { .compatible = "stericsson,ux500-cryp" },
1642 { },
1643 };
1644 MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1645
1646 static struct platform_driver cryp_driver = {
1647 .probe = ux500_cryp_probe,
1648 .remove = ux500_cryp_remove,
1649 .shutdown = ux500_cryp_shutdown,
1650 .driver = {
1651 .name = "cryp1",
1652 .of_match_table = ux500_cryp_match,
1653 .pm = &ux500_cryp_pm,
1654 }
1655 };
1656
1657 static int __init ux500_cryp_mod_init(void)
1658 {
1659 pr_debug("[%s] is called!", __func__);
1660 klist_init(&driver_data.device_list, NULL, NULL);
1661
1662 sema_init(&driver_data.device_allocation, 0);
1663 return platform_driver_register(&cryp_driver);
1664 }
1665
1666 static void __exit ux500_cryp_mod_fini(void)
1667 {
1668 pr_debug("[%s] is called!", __func__);
1669 platform_driver_unregister(&cryp_driver);
1670 }
1671
1672 module_init(ux500_cryp_mod_init);
1673 module_exit(ux500_cryp_mod_fini);
1674
1675 module_param(cryp_mode, int, 0);
1676
1677 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1678 MODULE_ALIAS_CRYPTO("aes-all");
1679 MODULE_ALIAS_CRYPTO("des-all");
1680
1681 MODULE_LICENSE("GPL");