root/drivers/crypto/ccp/ccp-crypto-sha.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ccp_sha_complete
  2. ccp_do_sha_update
  3. ccp_sha_init
  4. ccp_sha_update
  5. ccp_sha_final
  6. ccp_sha_finup
  7. ccp_sha_digest
  8. ccp_sha_export
  9. ccp_sha_import
  10. ccp_sha_setkey
  11. ccp_sha_cra_init
  12. ccp_sha_cra_exit
  13. ccp_hmac_sha_cra_init
  14. ccp_hmac_sha_cra_exit
  15. ccp_register_hmac_alg
  16. ccp_register_sha_alg
  17. ccp_register_sha_algs

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
   4  *
   5  * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
   6  *
   7  * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8  * Author: Gary R Hook <gary.hook@amd.com>
   9  */
  10 
  11 #include <linux/module.h>
  12 #include <linux/sched.h>
  13 #include <linux/delay.h>
  14 #include <linux/scatterlist.h>
  15 #include <linux/crypto.h>
  16 #include <crypto/algapi.h>
  17 #include <crypto/hash.h>
  18 #include <crypto/hmac.h>
  19 #include <crypto/internal/hash.h>
  20 #include <crypto/sha.h>
  21 #include <crypto/scatterwalk.h>
  22 
  23 #include "ccp-crypto.h"
  24 
  25 static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
  26 {
  27         struct ahash_request *req = ahash_request_cast(async_req);
  28         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  29         struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  30         unsigned int digest_size = crypto_ahash_digestsize(tfm);
  31 
  32         if (ret)
  33                 goto e_free;
  34 
  35         if (rctx->hash_rem) {
  36                 /* Save remaining data to buffer */
  37                 unsigned int offset = rctx->nbytes - rctx->hash_rem;
  38 
  39                 scatterwalk_map_and_copy(rctx->buf, rctx->src,
  40                                          offset, rctx->hash_rem, 0);
  41                 rctx->buf_count = rctx->hash_rem;
  42         } else {
  43                 rctx->buf_count = 0;
  44         }
  45 
  46         /* Update result area if supplied */
  47         if (req->result && rctx->final)
  48                 memcpy(req->result, rctx->ctx, digest_size);
  49 
  50 e_free:
  51         sg_free_table(&rctx->data_sg);
  52 
  53         return ret;
  54 }
  55 
  56 static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
  57                              unsigned int final)
  58 {
  59         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  60         struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  61         struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  62         struct scatterlist *sg;
  63         unsigned int block_size =
  64                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  65         unsigned int sg_count;
  66         gfp_t gfp;
  67         u64 len;
  68         int ret;
  69 
  70         len = (u64)rctx->buf_count + (u64)nbytes;
  71 
  72         if (!final && (len <= block_size)) {
  73                 scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  74                                          0, nbytes, 0);
  75                 rctx->buf_count += nbytes;
  76 
  77                 return 0;
  78         }
  79 
  80         rctx->src = req->src;
  81         rctx->nbytes = nbytes;
  82 
  83         rctx->final = final;
  84         rctx->hash_rem = final ? 0 : len & (block_size - 1);
  85         rctx->hash_cnt = len - rctx->hash_rem;
  86         if (!final && !rctx->hash_rem) {
  87                 /* CCP can't do zero length final, so keep some data around */
  88                 rctx->hash_cnt -= block_size;
  89                 rctx->hash_rem = block_size;
  90         }
  91 
  92         /* Initialize the context scatterlist */
  93         sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
  94 
  95         sg = NULL;
  96         if (rctx->buf_count && nbytes) {
  97                 /* Build the data scatterlist table - allocate enough entries
  98                  * for both data pieces (buffer and input data)
  99                  */
 100                 gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 101                         GFP_KERNEL : GFP_ATOMIC;
 102                 sg_count = sg_nents(req->src) + 1;
 103                 ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
 104                 if (ret)
 105                         return ret;
 106 
 107                 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 108                 sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
 109                 if (!sg) {
 110                         ret = -EINVAL;
 111                         goto e_free;
 112                 }
 113                 sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
 114                 if (!sg) {
 115                         ret = -EINVAL;
 116                         goto e_free;
 117                 }
 118                 sg_mark_end(sg);
 119 
 120                 sg = rctx->data_sg.sgl;
 121         } else if (rctx->buf_count) {
 122                 sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
 123 
 124                 sg = &rctx->buf_sg;
 125         } else if (nbytes) {
 126                 sg = req->src;
 127         }
 128 
 129         rctx->msg_bits += (rctx->hash_cnt << 3);        /* Total in bits */
 130 
 131         memset(&rctx->cmd, 0, sizeof(rctx->cmd));
 132         INIT_LIST_HEAD(&rctx->cmd.entry);
 133         rctx->cmd.engine = CCP_ENGINE_SHA;
 134         rctx->cmd.u.sha.type = rctx->type;
 135         rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
 136 
 137         switch (rctx->type) {
 138         case CCP_SHA_TYPE_1:
 139                 rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
 140                 break;
 141         case CCP_SHA_TYPE_224:
 142                 rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
 143                 break;
 144         case CCP_SHA_TYPE_256:
 145                 rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
 146                 break;
 147         case CCP_SHA_TYPE_384:
 148                 rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
 149                 break;
 150         case CCP_SHA_TYPE_512:
 151                 rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
 152                 break;
 153         default:
 154                 /* Should never get here */
 155                 break;
 156         }
 157 
 158         rctx->cmd.u.sha.src = sg;
 159         rctx->cmd.u.sha.src_len = rctx->hash_cnt;
 160         rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
 161                 &ctx->u.sha.opad_sg : NULL;
 162         rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
 163                 ctx->u.sha.opad_count : 0;
 164         rctx->cmd.u.sha.first = rctx->first;
 165         rctx->cmd.u.sha.final = rctx->final;
 166         rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
 167 
 168         rctx->first = 0;
 169 
 170         ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
 171 
 172         return ret;
 173 
 174 e_free:
 175         sg_free_table(&rctx->data_sg);
 176 
 177         return ret;
 178 }
 179 
 180 static int ccp_sha_init(struct ahash_request *req)
 181 {
 182         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 183         struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
 184         struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 185         struct ccp_crypto_ahash_alg *alg =
 186                 ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
 187         unsigned int block_size =
 188                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 189 
 190         memset(rctx, 0, sizeof(*rctx));
 191 
 192         rctx->type = alg->type;
 193         rctx->first = 1;
 194 
 195         if (ctx->u.sha.key_len) {
 196                 /* Buffer the HMAC key for first update */
 197                 memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
 198                 rctx->buf_count = block_size;
 199         }
 200 
 201         return 0;
 202 }
 203 
 204 static int ccp_sha_update(struct ahash_request *req)
 205 {
 206         return ccp_do_sha_update(req, req->nbytes, 0);
 207 }
 208 
 209 static int ccp_sha_final(struct ahash_request *req)
 210 {
 211         return ccp_do_sha_update(req, 0, 1);
 212 }
 213 
 214 static int ccp_sha_finup(struct ahash_request *req)
 215 {
 216         return ccp_do_sha_update(req, req->nbytes, 1);
 217 }
 218 
 219 static int ccp_sha_digest(struct ahash_request *req)
 220 {
 221         int ret;
 222 
 223         ret = ccp_sha_init(req);
 224         if (ret)
 225                 return ret;
 226 
 227         return ccp_sha_finup(req);
 228 }
 229 
 230 static int ccp_sha_export(struct ahash_request *req, void *out)
 231 {
 232         struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 233         struct ccp_sha_exp_ctx state;
 234 
 235         /* Don't let anything leak to 'out' */
 236         memset(&state, 0, sizeof(state));
 237 
 238         state.type = rctx->type;
 239         state.msg_bits = rctx->msg_bits;
 240         state.first = rctx->first;
 241         memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
 242         state.buf_count = rctx->buf_count;
 243         memcpy(state.buf, rctx->buf, sizeof(state.buf));
 244 
 245         /* 'out' may not be aligned so memcpy from local variable */
 246         memcpy(out, &state, sizeof(state));
 247 
 248         return 0;
 249 }
 250 
 251 static int ccp_sha_import(struct ahash_request *req, const void *in)
 252 {
 253         struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
 254         struct ccp_sha_exp_ctx state;
 255 
 256         /* 'in' may not be aligned so memcpy to local variable */
 257         memcpy(&state, in, sizeof(state));
 258 
 259         memset(rctx, 0, sizeof(*rctx));
 260         rctx->type = state.type;
 261         rctx->msg_bits = state.msg_bits;
 262         rctx->first = state.first;
 263         memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
 264         rctx->buf_count = state.buf_count;
 265         memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
 266 
 267         return 0;
 268 }
 269 
 270 static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 271                           unsigned int key_len)
 272 {
 273         struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
 274         struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
 275 
 276         SHASH_DESC_ON_STACK(sdesc, shash);
 277 
 278         unsigned int block_size = crypto_shash_blocksize(shash);
 279         unsigned int digest_size = crypto_shash_digestsize(shash);
 280         int i, ret;
 281 
 282         /* Set to zero until complete */
 283         ctx->u.sha.key_len = 0;
 284 
 285         /* Clear key area to provide zero padding for keys smaller
 286          * than the block size
 287          */
 288         memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
 289 
 290         if (key_len > block_size) {
 291                 /* Must hash the input key */
 292                 sdesc->tfm = shash;
 293 
 294                 ret = crypto_shash_digest(sdesc, key, key_len,
 295                                           ctx->u.sha.key);
 296                 if (ret) {
 297                         crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 298                         return -EINVAL;
 299                 }
 300 
 301                 key_len = digest_size;
 302         } else {
 303                 memcpy(ctx->u.sha.key, key, key_len);
 304         }
 305 
 306         for (i = 0; i < block_size; i++) {
 307                 ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
 308                 ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
 309         }
 310 
 311         sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
 312         ctx->u.sha.opad_count = block_size;
 313 
 314         ctx->u.sha.key_len = key_len;
 315 
 316         return 0;
 317 }
 318 
 319 static int ccp_sha_cra_init(struct crypto_tfm *tfm)
 320 {
 321         struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 322         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 323 
 324         ctx->complete = ccp_sha_complete;
 325         ctx->u.sha.key_len = 0;
 326 
 327         crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
 328 
 329         return 0;
 330 }
 331 
 332 static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
 333 {
 334 }
 335 
 336 static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
 337 {
 338         struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 339         struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
 340         struct crypto_shash *hmac_tfm;
 341 
 342         hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
 343         if (IS_ERR(hmac_tfm)) {
 344                 pr_warn("could not load driver %s need for HMAC support\n",
 345                         alg->child_alg);
 346                 return PTR_ERR(hmac_tfm);
 347         }
 348 
 349         ctx->u.sha.hmac_tfm = hmac_tfm;
 350 
 351         return ccp_sha_cra_init(tfm);
 352 }
 353 
 354 static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
 355 {
 356         struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
 357 
 358         if (ctx->u.sha.hmac_tfm)
 359                 crypto_free_shash(ctx->u.sha.hmac_tfm);
 360 
 361         ccp_sha_cra_exit(tfm);
 362 }
 363 
 364 struct ccp_sha_def {
 365         unsigned int version;
 366         const char *name;
 367         const char *drv_name;
 368         enum ccp_sha_type type;
 369         u32 digest_size;
 370         u32 block_size;
 371 };
 372 
 373 static struct ccp_sha_def sha_algs[] = {
 374         {
 375                 .version        = CCP_VERSION(3, 0),
 376                 .name           = "sha1",
 377                 .drv_name       = "sha1-ccp",
 378                 .type           = CCP_SHA_TYPE_1,
 379                 .digest_size    = SHA1_DIGEST_SIZE,
 380                 .block_size     = SHA1_BLOCK_SIZE,
 381         },
 382         {
 383                 .version        = CCP_VERSION(3, 0),
 384                 .name           = "sha224",
 385                 .drv_name       = "sha224-ccp",
 386                 .type           = CCP_SHA_TYPE_224,
 387                 .digest_size    = SHA224_DIGEST_SIZE,
 388                 .block_size     = SHA224_BLOCK_SIZE,
 389         },
 390         {
 391                 .version        = CCP_VERSION(3, 0),
 392                 .name           = "sha256",
 393                 .drv_name       = "sha256-ccp",
 394                 .type           = CCP_SHA_TYPE_256,
 395                 .digest_size    = SHA256_DIGEST_SIZE,
 396                 .block_size     = SHA256_BLOCK_SIZE,
 397         },
 398         {
 399                 .version        = CCP_VERSION(5, 0),
 400                 .name           = "sha384",
 401                 .drv_name       = "sha384-ccp",
 402                 .type           = CCP_SHA_TYPE_384,
 403                 .digest_size    = SHA384_DIGEST_SIZE,
 404                 .block_size     = SHA384_BLOCK_SIZE,
 405         },
 406         {
 407                 .version        = CCP_VERSION(5, 0),
 408                 .name           = "sha512",
 409                 .drv_name       = "sha512-ccp",
 410                 .type           = CCP_SHA_TYPE_512,
 411                 .digest_size    = SHA512_DIGEST_SIZE,
 412                 .block_size     = SHA512_BLOCK_SIZE,
 413         },
 414 };
 415 
 416 static int ccp_register_hmac_alg(struct list_head *head,
 417                                  const struct ccp_sha_def *def,
 418                                  const struct ccp_crypto_ahash_alg *base_alg)
 419 {
 420         struct ccp_crypto_ahash_alg *ccp_alg;
 421         struct ahash_alg *alg;
 422         struct hash_alg_common *halg;
 423         struct crypto_alg *base;
 424         int ret;
 425 
 426         ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 427         if (!ccp_alg)
 428                 return -ENOMEM;
 429 
 430         /* Copy the base algorithm and only change what's necessary */
 431         *ccp_alg = *base_alg;
 432         INIT_LIST_HEAD(&ccp_alg->entry);
 433 
 434         strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
 435 
 436         alg = &ccp_alg->alg;
 437         alg->setkey = ccp_sha_setkey;
 438 
 439         halg = &alg->halg;
 440 
 441         base = &halg->base;
 442         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
 443         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
 444                  def->drv_name);
 445         base->cra_init = ccp_hmac_sha_cra_init;
 446         base->cra_exit = ccp_hmac_sha_cra_exit;
 447 
 448         ret = crypto_register_ahash(alg);
 449         if (ret) {
 450                 pr_err("%s ahash algorithm registration error (%d)\n",
 451                        base->cra_name, ret);
 452                 kfree(ccp_alg);
 453                 return ret;
 454         }
 455 
 456         list_add(&ccp_alg->entry, head);
 457 
 458         return ret;
 459 }
 460 
 461 static int ccp_register_sha_alg(struct list_head *head,
 462                                 const struct ccp_sha_def *def)
 463 {
 464         struct ccp_crypto_ahash_alg *ccp_alg;
 465         struct ahash_alg *alg;
 466         struct hash_alg_common *halg;
 467         struct crypto_alg *base;
 468         int ret;
 469 
 470         ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
 471         if (!ccp_alg)
 472                 return -ENOMEM;
 473 
 474         INIT_LIST_HEAD(&ccp_alg->entry);
 475 
 476         ccp_alg->type = def->type;
 477 
 478         alg = &ccp_alg->alg;
 479         alg->init = ccp_sha_init;
 480         alg->update = ccp_sha_update;
 481         alg->final = ccp_sha_final;
 482         alg->finup = ccp_sha_finup;
 483         alg->digest = ccp_sha_digest;
 484         alg->export = ccp_sha_export;
 485         alg->import = ccp_sha_import;
 486 
 487         halg = &alg->halg;
 488         halg->digestsize = def->digest_size;
 489         halg->statesize = sizeof(struct ccp_sha_exp_ctx);
 490 
 491         base = &halg->base;
 492         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 493         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 494                  def->drv_name);
 495         base->cra_flags = CRYPTO_ALG_ASYNC |
 496                           CRYPTO_ALG_KERN_DRIVER_ONLY |
 497                           CRYPTO_ALG_NEED_FALLBACK;
 498         base->cra_blocksize = def->block_size;
 499         base->cra_ctxsize = sizeof(struct ccp_ctx);
 500         base->cra_priority = CCP_CRA_PRIORITY;
 501         base->cra_init = ccp_sha_cra_init;
 502         base->cra_exit = ccp_sha_cra_exit;
 503         base->cra_module = THIS_MODULE;
 504 
 505         ret = crypto_register_ahash(alg);
 506         if (ret) {
 507                 pr_err("%s ahash algorithm registration error (%d)\n",
 508                        base->cra_name, ret);
 509                 kfree(ccp_alg);
 510                 return ret;
 511         }
 512 
 513         list_add(&ccp_alg->entry, head);
 514 
 515         ret = ccp_register_hmac_alg(head, def, ccp_alg);
 516 
 517         return ret;
 518 }
 519 
 520 int ccp_register_sha_algs(struct list_head *head)
 521 {
 522         int i, ret;
 523         unsigned int ccpversion = ccp_version();
 524 
 525         for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
 526                 if (sha_algs[i].version > ccpversion)
 527                         continue;
 528                 ret = ccp_register_sha_alg(head, &sha_algs[i]);
 529                 if (ret)
 530                         return ret;
 531         }
 532 
 533         return 0;
 534 }

/* [<][>][^][v][top][bottom][index][help] */