root/drivers/crypto/mxs-dcp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mxs_dcp_start_dma
  2. mxs_dcp_run_aes
  3. mxs_dcp_aes_block_crypt
  4. dcp_chan_thread_aes
  5. mxs_dcp_block_fallback
  6. mxs_dcp_aes_enqueue
  7. mxs_dcp_aes_ecb_decrypt
  8. mxs_dcp_aes_ecb_encrypt
  9. mxs_dcp_aes_cbc_decrypt
  10. mxs_dcp_aes_cbc_encrypt
  11. mxs_dcp_aes_setkey
  12. mxs_dcp_aes_fallback_init
  13. mxs_dcp_aes_fallback_exit
  14. mxs_dcp_run_sha
  15. dcp_sha_req_to_buf
  16. dcp_chan_thread_sha
  17. dcp_sha_init
  18. dcp_sha_update_fx
  19. dcp_sha_update
  20. dcp_sha_final
  21. dcp_sha_finup
  22. dcp_sha_digest
  23. dcp_sha_import
  24. dcp_sha_export
  25. dcp_sha_cra_init
  26. dcp_sha_cra_exit
  27. mxs_dcp_irq
  28. mxs_dcp_probe
  29. mxs_dcp_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Freescale i.MX23/i.MX28 Data Co-Processor driver
   4  *
   5  * Copyright (C) 2013 Marek Vasut <marex@denx.de>
   6  */
   7 
   8 #include <linux/dma-mapping.h>
   9 #include <linux/interrupt.h>
  10 #include <linux/io.h>
  11 #include <linux/kernel.h>
  12 #include <linux/kthread.h>
  13 #include <linux/module.h>
  14 #include <linux/of.h>
  15 #include <linux/platform_device.h>
  16 #include <linux/stmp_device.h>
  17 #include <linux/clk.h>
  18 
  19 #include <crypto/aes.h>
  20 #include <crypto/sha.h>
  21 #include <crypto/internal/hash.h>
  22 #include <crypto/internal/skcipher.h>
  23 #include <crypto/scatterwalk.h>
  24 
  25 #define DCP_MAX_CHANS   4
  26 #define DCP_BUF_SZ      PAGE_SIZE
  27 #define DCP_SHA_PAY_SZ  64
  28 
  29 #define DCP_ALIGNMENT   64
  30 
  31 /*
  32  * Null hashes to align with hw behavior on imx6sl and ull
  33  * these are flipped for consistency with hw output
  34  */
  35 static const uint8_t sha1_null_hash[] =
  36         "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
  37         "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
  38 
  39 static const uint8_t sha256_null_hash[] =
  40         "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
  41         "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
  42         "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
  43         "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
  44 
  45 /* DCP DMA descriptor. */
  46 struct dcp_dma_desc {
  47         uint32_t        next_cmd_addr;
  48         uint32_t        control0;
  49         uint32_t        control1;
  50         uint32_t        source;
  51         uint32_t        destination;
  52         uint32_t        size;
  53         uint32_t        payload;
  54         uint32_t        status;
  55 };
  56 
  57 /* Coherent aligned block for bounce buffering. */
  58 struct dcp_coherent_block {
  59         uint8_t                 aes_in_buf[DCP_BUF_SZ];
  60         uint8_t                 aes_out_buf[DCP_BUF_SZ];
  61         uint8_t                 sha_in_buf[DCP_BUF_SZ];
  62         uint8_t                 sha_out_buf[DCP_SHA_PAY_SZ];
  63 
  64         uint8_t                 aes_key[2 * AES_KEYSIZE_128];
  65 
  66         struct dcp_dma_desc     desc[DCP_MAX_CHANS];
  67 };
  68 
  69 struct dcp {
  70         struct device                   *dev;
  71         void __iomem                    *base;
  72 
  73         uint32_t                        caps;
  74 
  75         struct dcp_coherent_block       *coh;
  76 
  77         struct completion               completion[DCP_MAX_CHANS];
  78         spinlock_t                      lock[DCP_MAX_CHANS];
  79         struct task_struct              *thread[DCP_MAX_CHANS];
  80         struct crypto_queue             queue[DCP_MAX_CHANS];
  81         struct clk                      *dcp_clk;
  82 };
  83 
  84 enum dcp_chan {
  85         DCP_CHAN_HASH_SHA       = 0,
  86         DCP_CHAN_CRYPTO         = 2,
  87 };
  88 
  89 struct dcp_async_ctx {
  90         /* Common context */
  91         enum dcp_chan   chan;
  92         uint32_t        fill;
  93 
  94         /* SHA Hash-specific context */
  95         struct mutex                    mutex;
  96         uint32_t                        alg;
  97         unsigned int                    hot:1;
  98 
  99         /* Crypto-specific context */
 100         struct crypto_sync_skcipher     *fallback;
 101         unsigned int                    key_len;
 102         uint8_t                         key[AES_KEYSIZE_128];
 103 };
 104 
 105 struct dcp_aes_req_ctx {
 106         unsigned int    enc:1;
 107         unsigned int    ecb:1;
 108 };
 109 
 110 struct dcp_sha_req_ctx {
 111         unsigned int    init:1;
 112         unsigned int    fini:1;
 113 };
 114 
 115 struct dcp_export_state {
 116         struct dcp_sha_req_ctx req_ctx;
 117         struct dcp_async_ctx async_ctx;
 118 };
 119 
 120 /*
 121  * There can even be only one instance of the MXS DCP due to the
 122  * design of Linux Crypto API.
 123  */
 124 static struct dcp *global_sdcp;
 125 
 126 /* DCP register layout. */
 127 #define MXS_DCP_CTRL                            0x00
 128 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES     (1 << 23)
 129 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING     (1 << 22)
 130 
 131 #define MXS_DCP_STAT                            0x10
 132 #define MXS_DCP_STAT_CLR                        0x18
 133 #define MXS_DCP_STAT_IRQ_MASK                   0xf
 134 
 135 #define MXS_DCP_CHANNELCTRL                     0x20
 136 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
 137 
 138 #define MXS_DCP_CAPABILITY1                     0x40
 139 #define MXS_DCP_CAPABILITY1_SHA256              (4 << 16)
 140 #define MXS_DCP_CAPABILITY1_SHA1                (1 << 16)
 141 #define MXS_DCP_CAPABILITY1_AES128              (1 << 0)
 142 
 143 #define MXS_DCP_CONTEXT                         0x50
 144 
 145 #define MXS_DCP_CH_N_CMDPTR(n)                  (0x100 + ((n) * 0x40))
 146 
 147 #define MXS_DCP_CH_N_SEMA(n)                    (0x110 + ((n) * 0x40))
 148 
 149 #define MXS_DCP_CH_N_STAT(n)                    (0x120 + ((n) * 0x40))
 150 #define MXS_DCP_CH_N_STAT_CLR(n)                (0x128 + ((n) * 0x40))
 151 
 152 /* DMA descriptor bits. */
 153 #define MXS_DCP_CONTROL0_HASH_TERM              (1 << 13)
 154 #define MXS_DCP_CONTROL0_HASH_INIT              (1 << 12)
 155 #define MXS_DCP_CONTROL0_PAYLOAD_KEY            (1 << 11)
 156 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT         (1 << 8)
 157 #define MXS_DCP_CONTROL0_CIPHER_INIT            (1 << 9)
 158 #define MXS_DCP_CONTROL0_ENABLE_HASH            (1 << 6)
 159 #define MXS_DCP_CONTROL0_ENABLE_CIPHER          (1 << 5)
 160 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE         (1 << 1)
 161 #define MXS_DCP_CONTROL0_INTERRUPT              (1 << 0)
 162 
 163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256     (2 << 16)
 164 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1       (0 << 16)
 165 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC        (1 << 4)
 166 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB        (0 << 4)
 167 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128   (0 << 0)
 168 
 169 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
 170 {
 171         struct dcp *sdcp = global_sdcp;
 172         const int chan = actx->chan;
 173         uint32_t stat;
 174         unsigned long ret;
 175         struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 176 
 177         dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
 178                                               DMA_TO_DEVICE);
 179 
 180         reinit_completion(&sdcp->completion[chan]);
 181 
 182         /* Clear status register. */
 183         writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
 184 
 185         /* Load the DMA descriptor. */
 186         writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
 187 
 188         /* Increment the semaphore to start the DMA transfer. */
 189         writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
 190 
 191         ret = wait_for_completion_timeout(&sdcp->completion[chan],
 192                                           msecs_to_jiffies(1000));
 193         if (!ret) {
 194                 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
 195                         chan, readl(sdcp->base + MXS_DCP_STAT));
 196                 return -ETIMEDOUT;
 197         }
 198 
 199         stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
 200         if (stat & 0xff) {
 201                 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
 202                         chan, stat);
 203                 return -EINVAL;
 204         }
 205 
 206         dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
 207 
 208         return 0;
 209 }
 210 
 211 /*
 212  * Encryption (AES128)
 213  */
 214 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
 215                            struct ablkcipher_request *req, int init)
 216 {
 217         struct dcp *sdcp = global_sdcp;
 218         struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 219         struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 220         int ret;
 221 
 222         dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
 223                                              2 * AES_KEYSIZE_128,
 224                                              DMA_TO_DEVICE);
 225         dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
 226                                              DCP_BUF_SZ, DMA_TO_DEVICE);
 227         dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
 228                                              DCP_BUF_SZ, DMA_FROM_DEVICE);
 229 
 230         if (actx->fill % AES_BLOCK_SIZE) {
 231                 dev_err(sdcp->dev, "Invalid block size!\n");
 232                 ret = -EINVAL;
 233                 goto aes_done_run;
 234         }
 235 
 236         /* Fill in the DMA descriptor. */
 237         desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 238                     MXS_DCP_CONTROL0_INTERRUPT |
 239                     MXS_DCP_CONTROL0_ENABLE_CIPHER;
 240 
 241         /* Payload contains the key. */
 242         desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
 243 
 244         if (rctx->enc)
 245                 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
 246         if (init)
 247                 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
 248 
 249         desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
 250 
 251         if (rctx->ecb)
 252                 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
 253         else
 254                 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
 255 
 256         desc->next_cmd_addr = 0;
 257         desc->source = src_phys;
 258         desc->destination = dst_phys;
 259         desc->size = actx->fill;
 260         desc->payload = key_phys;
 261         desc->status = 0;
 262 
 263         ret = mxs_dcp_start_dma(actx);
 264 
 265 aes_done_run:
 266         dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
 267                          DMA_TO_DEVICE);
 268         dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 269         dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
 270 
 271         return ret;
 272 }
 273 
 274 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
 275 {
 276         struct dcp *sdcp = global_sdcp;
 277 
 278         struct ablkcipher_request *req = ablkcipher_request_cast(arq);
 279         struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 280         struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 281 
 282         struct scatterlist *dst = req->dst;
 283         struct scatterlist *src = req->src;
 284         const int nents = sg_nents(req->src);
 285 
 286         const int out_off = DCP_BUF_SZ;
 287         uint8_t *in_buf = sdcp->coh->aes_in_buf;
 288         uint8_t *out_buf = sdcp->coh->aes_out_buf;
 289 
 290         uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
 291         uint32_t dst_off = 0;
 292         uint32_t last_out_len = 0;
 293 
 294         uint8_t *key = sdcp->coh->aes_key;
 295 
 296         int ret = 0;
 297         int split = 0;
 298         unsigned int i, len, clen, rem = 0, tlen = 0;
 299         int init = 0;
 300         bool limit_hit = false;
 301 
 302         actx->fill = 0;
 303 
 304         /* Copy the key from the temporary location. */
 305         memcpy(key, actx->key, actx->key_len);
 306 
 307         if (!rctx->ecb) {
 308                 /* Copy the CBC IV just past the key. */
 309                 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
 310                 /* CBC needs the INIT set. */
 311                 init = 1;
 312         } else {
 313                 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
 314         }
 315 
 316         for_each_sg(req->src, src, nents, i) {
 317                 src_buf = sg_virt(src);
 318                 len = sg_dma_len(src);
 319                 tlen += len;
 320                 limit_hit = tlen > req->nbytes;
 321 
 322                 if (limit_hit)
 323                         len = req->nbytes - (tlen - len);
 324 
 325                 do {
 326                         if (actx->fill + len > out_off)
 327                                 clen = out_off - actx->fill;
 328                         else
 329                                 clen = len;
 330 
 331                         memcpy(in_buf + actx->fill, src_buf, clen);
 332                         len -= clen;
 333                         src_buf += clen;
 334                         actx->fill += clen;
 335 
 336                         /*
 337                          * If we filled the buffer or this is the last SG,
 338                          * submit the buffer.
 339                          */
 340                         if (actx->fill == out_off || sg_is_last(src) ||
 341                                 limit_hit) {
 342                                 ret = mxs_dcp_run_aes(actx, req, init);
 343                                 if (ret)
 344                                         return ret;
 345                                 init = 0;
 346 
 347                                 out_tmp = out_buf;
 348                                 last_out_len = actx->fill;
 349                                 while (dst && actx->fill) {
 350                                         if (!split) {
 351                                                 dst_buf = sg_virt(dst);
 352                                                 dst_off = 0;
 353                                         }
 354                                         rem = min(sg_dma_len(dst) - dst_off,
 355                                                   actx->fill);
 356 
 357                                         memcpy(dst_buf + dst_off, out_tmp, rem);
 358                                         out_tmp += rem;
 359                                         dst_off += rem;
 360                                         actx->fill -= rem;
 361 
 362                                         if (dst_off == sg_dma_len(dst)) {
 363                                                 dst = sg_next(dst);
 364                                                 split = 0;
 365                                         } else {
 366                                                 split = 1;
 367                                         }
 368                                 }
 369                         }
 370                 } while (len);
 371 
 372                 if (limit_hit)
 373                         break;
 374         }
 375 
 376         /* Copy the IV for CBC for chaining */
 377         if (!rctx->ecb) {
 378                 if (rctx->enc)
 379                         memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE),
 380                                 AES_BLOCK_SIZE);
 381                 else
 382                         memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE),
 383                                 AES_BLOCK_SIZE);
 384         }
 385 
 386         return ret;
 387 }
 388 
 389 static int dcp_chan_thread_aes(void *data)
 390 {
 391         struct dcp *sdcp = global_sdcp;
 392         const int chan = DCP_CHAN_CRYPTO;
 393 
 394         struct crypto_async_request *backlog;
 395         struct crypto_async_request *arq;
 396 
 397         int ret;
 398 
 399         while (!kthread_should_stop()) {
 400                 set_current_state(TASK_INTERRUPTIBLE);
 401 
 402                 spin_lock(&sdcp->lock[chan]);
 403                 backlog = crypto_get_backlog(&sdcp->queue[chan]);
 404                 arq = crypto_dequeue_request(&sdcp->queue[chan]);
 405                 spin_unlock(&sdcp->lock[chan]);
 406 
 407                 if (!backlog && !arq) {
 408                         schedule();
 409                         continue;
 410                 }
 411 
 412                 set_current_state(TASK_RUNNING);
 413 
 414                 if (backlog)
 415                         backlog->complete(backlog, -EINPROGRESS);
 416 
 417                 if (arq) {
 418                         ret = mxs_dcp_aes_block_crypt(arq);
 419                         arq->complete(arq, ret);
 420                 }
 421         }
 422 
 423         return 0;
 424 }
 425 
 426 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
 427 {
 428         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
 429         struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 430         SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
 431         int ret;
 432 
 433         skcipher_request_set_sync_tfm(subreq, ctx->fallback);
 434         skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
 435         skcipher_request_set_crypt(subreq, req->src, req->dst,
 436                                    req->nbytes, req->info);
 437 
 438         if (enc)
 439                 ret = crypto_skcipher_encrypt(subreq);
 440         else
 441                 ret = crypto_skcipher_decrypt(subreq);
 442 
 443         skcipher_request_zero(subreq);
 444 
 445         return ret;
 446 }
 447 
 448 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
 449 {
 450         struct dcp *sdcp = global_sdcp;
 451         struct crypto_async_request *arq = &req->base;
 452         struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
 453         struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
 454         int ret;
 455 
 456         if (unlikely(actx->key_len != AES_KEYSIZE_128))
 457                 return mxs_dcp_block_fallback(req, enc);
 458 
 459         rctx->enc = enc;
 460         rctx->ecb = ecb;
 461         actx->chan = DCP_CHAN_CRYPTO;
 462 
 463         spin_lock(&sdcp->lock[actx->chan]);
 464         ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 465         spin_unlock(&sdcp->lock[actx->chan]);
 466 
 467         wake_up_process(sdcp->thread[actx->chan]);
 468 
 469         return ret;
 470 }
 471 
 472 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
 473 {
 474         return mxs_dcp_aes_enqueue(req, 0, 1);
 475 }
 476 
 477 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
 478 {
 479         return mxs_dcp_aes_enqueue(req, 1, 1);
 480 }
 481 
 482 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
 483 {
 484         return mxs_dcp_aes_enqueue(req, 0, 0);
 485 }
 486 
 487 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
 488 {
 489         return mxs_dcp_aes_enqueue(req, 1, 0);
 490 }
 491 
 492 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 493                               unsigned int len)
 494 {
 495         struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
 496         unsigned int ret;
 497 
 498         /*
 499          * AES 128 is supposed by the hardware, store key into temporary
 500          * buffer and exit. We must use the temporary buffer here, since
 501          * there can still be an operation in progress.
 502          */
 503         actx->key_len = len;
 504         if (len == AES_KEYSIZE_128) {
 505                 memcpy(actx->key, key, len);
 506                 return 0;
 507         }
 508 
 509         /*
 510          * If the requested AES key size is not supported by the hardware,
 511          * but is supported by in-kernel software implementation, we use
 512          * software fallback.
 513          */
 514         crypto_sync_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
 515         crypto_sync_skcipher_set_flags(actx->fallback,
 516                                   tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
 517 
 518         ret = crypto_sync_skcipher_setkey(actx->fallback, key, len);
 519         if (!ret)
 520                 return 0;
 521 
 522         tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
 523         tfm->base.crt_flags |= crypto_sync_skcipher_get_flags(actx->fallback) &
 524                                CRYPTO_TFM_RES_MASK;
 525 
 526         return ret;
 527 }
 528 
 529 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
 530 {
 531         const char *name = crypto_tfm_alg_name(tfm);
 532         struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
 533         struct crypto_sync_skcipher *blk;
 534 
 535         blk = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
 536         if (IS_ERR(blk))
 537                 return PTR_ERR(blk);
 538 
 539         actx->fallback = blk;
 540         tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
 541         return 0;
 542 }
 543 
 544 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
 545 {
 546         struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
 547 
 548         crypto_free_sync_skcipher(actx->fallback);
 549 }
 550 
 551 /*
 552  * Hashing (SHA1/SHA256)
 553  */
 554 static int mxs_dcp_run_sha(struct ahash_request *req)
 555 {
 556         struct dcp *sdcp = global_sdcp;
 557         int ret;
 558 
 559         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 560         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 561         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 562         struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
 563 
 564         dma_addr_t digest_phys = 0;
 565         dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
 566                                              DCP_BUF_SZ, DMA_TO_DEVICE);
 567 
 568         /* Fill in the DMA descriptor. */
 569         desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
 570                     MXS_DCP_CONTROL0_INTERRUPT |
 571                     MXS_DCP_CONTROL0_ENABLE_HASH;
 572         if (rctx->init)
 573                 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
 574 
 575         desc->control1 = actx->alg;
 576         desc->next_cmd_addr = 0;
 577         desc->source = buf_phys;
 578         desc->destination = 0;
 579         desc->size = actx->fill;
 580         desc->payload = 0;
 581         desc->status = 0;
 582 
 583         /*
 584          * Align driver with hw behavior when generating null hashes
 585          */
 586         if (rctx->init && rctx->fini && desc->size == 0) {
 587                 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 588                 const uint8_t *sha_buf =
 589                         (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
 590                         sha1_null_hash : sha256_null_hash;
 591                 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
 592                 ret = 0;
 593                 goto done_run;
 594         }
 595 
 596         /* Set HASH_TERM bit for last transfer block. */
 597         if (rctx->fini) {
 598                 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
 599                                              DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
 600                 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
 601                 desc->payload = digest_phys;
 602         }
 603 
 604         ret = mxs_dcp_start_dma(actx);
 605 
 606         if (rctx->fini)
 607                 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
 608                                  DMA_FROM_DEVICE);
 609 
 610 done_run:
 611         dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
 612 
 613         return ret;
 614 }
 615 
 616 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
 617 {
 618         struct dcp *sdcp = global_sdcp;
 619 
 620         struct ahash_request *req = ahash_request_cast(arq);
 621         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 622         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 623         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 624         struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 625 
 626         uint8_t *in_buf = sdcp->coh->sha_in_buf;
 627         uint8_t *out_buf = sdcp->coh->sha_out_buf;
 628 
 629         struct scatterlist *src;
 630 
 631         unsigned int i, len, clen, oft = 0;
 632         int ret;
 633 
 634         int fin = rctx->fini;
 635         if (fin)
 636                 rctx->fini = 0;
 637 
 638         src = req->src;
 639         len = req->nbytes;
 640 
 641         while (len) {
 642                 if (actx->fill + len > DCP_BUF_SZ)
 643                         clen = DCP_BUF_SZ - actx->fill;
 644                 else
 645                         clen = len;
 646 
 647                 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
 648                                          0);
 649 
 650                 len -= clen;
 651                 oft += clen;
 652                 actx->fill += clen;
 653 
 654                 /*
 655                  * If we filled the buffer and still have some
 656                  * more data, submit the buffer.
 657                  */
 658                 if (len && actx->fill == DCP_BUF_SZ) {
 659                         ret = mxs_dcp_run_sha(req);
 660                         if (ret)
 661                                 return ret;
 662                         actx->fill = 0;
 663                         rctx->init = 0;
 664                 }
 665         }
 666 
 667         if (fin) {
 668                 rctx->fini = 1;
 669 
 670                 /* Submit whatever is left. */
 671                 if (!req->result)
 672                         return -EINVAL;
 673 
 674                 ret = mxs_dcp_run_sha(req);
 675                 if (ret)
 676                         return ret;
 677 
 678                 actx->fill = 0;
 679 
 680                 /* For some reason the result is flipped */
 681                 for (i = 0; i < halg->digestsize; i++)
 682                         req->result[i] = out_buf[halg->digestsize - i - 1];
 683         }
 684 
 685         return 0;
 686 }
 687 
 688 static int dcp_chan_thread_sha(void *data)
 689 {
 690         struct dcp *sdcp = global_sdcp;
 691         const int chan = DCP_CHAN_HASH_SHA;
 692 
 693         struct crypto_async_request *backlog;
 694         struct crypto_async_request *arq;
 695         int ret;
 696 
 697         while (!kthread_should_stop()) {
 698                 set_current_state(TASK_INTERRUPTIBLE);
 699 
 700                 spin_lock(&sdcp->lock[chan]);
 701                 backlog = crypto_get_backlog(&sdcp->queue[chan]);
 702                 arq = crypto_dequeue_request(&sdcp->queue[chan]);
 703                 spin_unlock(&sdcp->lock[chan]);
 704 
 705                 if (!backlog && !arq) {
 706                         schedule();
 707                         continue;
 708                 }
 709 
 710                 set_current_state(TASK_RUNNING);
 711 
 712                 if (backlog)
 713                         backlog->complete(backlog, -EINPROGRESS);
 714 
 715                 if (arq) {
 716                         ret = dcp_sha_req_to_buf(arq);
 717                         arq->complete(arq, ret);
 718                 }
 719         }
 720 
 721         return 0;
 722 }
 723 
 724 static int dcp_sha_init(struct ahash_request *req)
 725 {
 726         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 727         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 728 
 729         struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
 730 
 731         /*
 732          * Start hashing session. The code below only inits the
 733          * hashing session context, nothing more.
 734          */
 735         memset(actx, 0, sizeof(*actx));
 736 
 737         if (strcmp(halg->base.cra_name, "sha1") == 0)
 738                 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
 739         else
 740                 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
 741 
 742         actx->fill = 0;
 743         actx->hot = 0;
 744         actx->chan = DCP_CHAN_HASH_SHA;
 745 
 746         mutex_init(&actx->mutex);
 747 
 748         return 0;
 749 }
 750 
 751 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
 752 {
 753         struct dcp *sdcp = global_sdcp;
 754 
 755         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 756         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 757         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 758 
 759         int ret;
 760 
 761         /*
 762          * Ignore requests that have no data in them and are not
 763          * the trailing requests in the stream of requests.
 764          */
 765         if (!req->nbytes && !fini)
 766                 return 0;
 767 
 768         mutex_lock(&actx->mutex);
 769 
 770         rctx->fini = fini;
 771 
 772         if (!actx->hot) {
 773                 actx->hot = 1;
 774                 rctx->init = 1;
 775         }
 776 
 777         spin_lock(&sdcp->lock[actx->chan]);
 778         ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
 779         spin_unlock(&sdcp->lock[actx->chan]);
 780 
 781         wake_up_process(sdcp->thread[actx->chan]);
 782         mutex_unlock(&actx->mutex);
 783 
 784         return ret;
 785 }
 786 
 787 static int dcp_sha_update(struct ahash_request *req)
 788 {
 789         return dcp_sha_update_fx(req, 0);
 790 }
 791 
 792 static int dcp_sha_final(struct ahash_request *req)
 793 {
 794         ahash_request_set_crypt(req, NULL, req->result, 0);
 795         req->nbytes = 0;
 796         return dcp_sha_update_fx(req, 1);
 797 }
 798 
 799 static int dcp_sha_finup(struct ahash_request *req)
 800 {
 801         return dcp_sha_update_fx(req, 1);
 802 }
 803 
 804 static int dcp_sha_digest(struct ahash_request *req)
 805 {
 806         int ret;
 807 
 808         ret = dcp_sha_init(req);
 809         if (ret)
 810                 return ret;
 811 
 812         return dcp_sha_finup(req);
 813 }
 814 
 815 static int dcp_sha_import(struct ahash_request *req, const void *in)
 816 {
 817         struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
 818         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 819         struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
 820         const struct dcp_export_state *export = in;
 821 
 822         memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
 823         memset(actx, 0, sizeof(struct dcp_async_ctx));
 824         memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
 825         memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
 826 
 827         return 0;
 828 }
 829 
 830 static int dcp_sha_export(struct ahash_request *req, void *out)
 831 {
 832         struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
 833         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 834         struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
 835         struct dcp_export_state *export = out;
 836 
 837         memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
 838         memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
 839 
 840         return 0;
 841 }
 842 
 843 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
 844 {
 845         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 846                                  sizeof(struct dcp_sha_req_ctx));
 847         return 0;
 848 }
 849 
 850 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
 851 {
 852 }
 853 
 854 /* AES 128 ECB and AES 128 CBC */
 855 static struct crypto_alg dcp_aes_algs[] = {
 856         {
 857                 .cra_name               = "ecb(aes)",
 858                 .cra_driver_name        = "ecb-aes-dcp",
 859                 .cra_priority           = 400,
 860                 .cra_alignmask          = 15,
 861                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
 862                                           CRYPTO_ALG_ASYNC |
 863                                           CRYPTO_ALG_NEED_FALLBACK,
 864                 .cra_init               = mxs_dcp_aes_fallback_init,
 865                 .cra_exit               = mxs_dcp_aes_fallback_exit,
 866                 .cra_blocksize          = AES_BLOCK_SIZE,
 867                 .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 868                 .cra_type               = &crypto_ablkcipher_type,
 869                 .cra_module             = THIS_MODULE,
 870                 .cra_u  = {
 871                         .ablkcipher = {
 872                                 .min_keysize    = AES_MIN_KEY_SIZE,
 873                                 .max_keysize    = AES_MAX_KEY_SIZE,
 874                                 .setkey         = mxs_dcp_aes_setkey,
 875                                 .encrypt        = mxs_dcp_aes_ecb_encrypt,
 876                                 .decrypt        = mxs_dcp_aes_ecb_decrypt
 877                         },
 878                 },
 879         }, {
 880                 .cra_name               = "cbc(aes)",
 881                 .cra_driver_name        = "cbc-aes-dcp",
 882                 .cra_priority           = 400,
 883                 .cra_alignmask          = 15,
 884                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
 885                                           CRYPTO_ALG_ASYNC |
 886                                           CRYPTO_ALG_NEED_FALLBACK,
 887                 .cra_init               = mxs_dcp_aes_fallback_init,
 888                 .cra_exit               = mxs_dcp_aes_fallback_exit,
 889                 .cra_blocksize          = AES_BLOCK_SIZE,
 890                 .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 891                 .cra_type               = &crypto_ablkcipher_type,
 892                 .cra_module             = THIS_MODULE,
 893                 .cra_u = {
 894                         .ablkcipher = {
 895                                 .min_keysize    = AES_MIN_KEY_SIZE,
 896                                 .max_keysize    = AES_MAX_KEY_SIZE,
 897                                 .setkey         = mxs_dcp_aes_setkey,
 898                                 .encrypt        = mxs_dcp_aes_cbc_encrypt,
 899                                 .decrypt        = mxs_dcp_aes_cbc_decrypt,
 900                                 .ivsize         = AES_BLOCK_SIZE,
 901                         },
 902                 },
 903         },
 904 };
 905 
 906 /* SHA1 */
 907 static struct ahash_alg dcp_sha1_alg = {
 908         .init   = dcp_sha_init,
 909         .update = dcp_sha_update,
 910         .final  = dcp_sha_final,
 911         .finup  = dcp_sha_finup,
 912         .digest = dcp_sha_digest,
 913         .import = dcp_sha_import,
 914         .export = dcp_sha_export,
 915         .halg   = {
 916                 .digestsize     = SHA1_DIGEST_SIZE,
 917                 .statesize      = sizeof(struct dcp_export_state),
 918                 .base           = {
 919                         .cra_name               = "sha1",
 920                         .cra_driver_name        = "sha1-dcp",
 921                         .cra_priority           = 400,
 922                         .cra_alignmask          = 63,
 923                         .cra_flags              = CRYPTO_ALG_ASYNC,
 924                         .cra_blocksize          = SHA1_BLOCK_SIZE,
 925                         .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 926                         .cra_module             = THIS_MODULE,
 927                         .cra_init               = dcp_sha_cra_init,
 928                         .cra_exit               = dcp_sha_cra_exit,
 929                 },
 930         },
 931 };
 932 
 933 /* SHA256 */
 934 static struct ahash_alg dcp_sha256_alg = {
 935         .init   = dcp_sha_init,
 936         .update = dcp_sha_update,
 937         .final  = dcp_sha_final,
 938         .finup  = dcp_sha_finup,
 939         .digest = dcp_sha_digest,
 940         .import = dcp_sha_import,
 941         .export = dcp_sha_export,
 942         .halg   = {
 943                 .digestsize     = SHA256_DIGEST_SIZE,
 944                 .statesize      = sizeof(struct dcp_export_state),
 945                 .base           = {
 946                         .cra_name               = "sha256",
 947                         .cra_driver_name        = "sha256-dcp",
 948                         .cra_priority           = 400,
 949                         .cra_alignmask          = 63,
 950                         .cra_flags              = CRYPTO_ALG_ASYNC,
 951                         .cra_blocksize          = SHA256_BLOCK_SIZE,
 952                         .cra_ctxsize            = sizeof(struct dcp_async_ctx),
 953                         .cra_module             = THIS_MODULE,
 954                         .cra_init               = dcp_sha_cra_init,
 955                         .cra_exit               = dcp_sha_cra_exit,
 956                 },
 957         },
 958 };
 959 
 960 static irqreturn_t mxs_dcp_irq(int irq, void *context)
 961 {
 962         struct dcp *sdcp = context;
 963         uint32_t stat;
 964         int i;
 965 
 966         stat = readl(sdcp->base + MXS_DCP_STAT);
 967         stat &= MXS_DCP_STAT_IRQ_MASK;
 968         if (!stat)
 969                 return IRQ_NONE;
 970 
 971         /* Clear the interrupts. */
 972         writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
 973 
 974         /* Complete the DMA requests that finished. */
 975         for (i = 0; i < DCP_MAX_CHANS; i++)
 976                 if (stat & (1 << i))
 977                         complete(&sdcp->completion[i]);
 978 
 979         return IRQ_HANDLED;
 980 }
 981 
 982 static int mxs_dcp_probe(struct platform_device *pdev)
 983 {
 984         struct device *dev = &pdev->dev;
 985         struct dcp *sdcp = NULL;
 986         int i, ret;
 987         int dcp_vmi_irq, dcp_irq;
 988 
 989         if (global_sdcp) {
 990                 dev_err(dev, "Only one DCP instance allowed!\n");
 991                 return -ENODEV;
 992         }
 993 
 994         dcp_vmi_irq = platform_get_irq(pdev, 0);
 995         if (dcp_vmi_irq < 0)
 996                 return dcp_vmi_irq;
 997 
 998         dcp_irq = platform_get_irq(pdev, 1);
 999         if (dcp_irq < 0)
1000                 return dcp_irq;
1001 
1002         sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1003         if (!sdcp)
1004                 return -ENOMEM;
1005 
1006         sdcp->dev = dev;
1007         sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1008         if (IS_ERR(sdcp->base))
1009                 return PTR_ERR(sdcp->base);
1010 
1011 
1012         ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1013                                "dcp-vmi-irq", sdcp);
1014         if (ret) {
1015                 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1016                 return ret;
1017         }
1018 
1019         ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1020                                "dcp-irq", sdcp);
1021         if (ret) {
1022                 dev_err(dev, "Failed to claim DCP IRQ!\n");
1023                 return ret;
1024         }
1025 
1026         /* Allocate coherent helper block. */
1027         sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1028                                    GFP_KERNEL);
1029         if (!sdcp->coh)
1030                 return -ENOMEM;
1031 
1032         /* Re-align the structure so it fits the DCP constraints. */
1033         sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1034 
1035         /* DCP clock is optional, only used on some SOCs */
1036         sdcp->dcp_clk = devm_clk_get(dev, "dcp");
1037         if (IS_ERR(sdcp->dcp_clk)) {
1038                 if (sdcp->dcp_clk != ERR_PTR(-ENOENT))
1039                         return PTR_ERR(sdcp->dcp_clk);
1040                 sdcp->dcp_clk = NULL;
1041         }
1042         ret = clk_prepare_enable(sdcp->dcp_clk);
1043         if (ret)
1044                 return ret;
1045 
1046         /* Restart the DCP block. */
1047         ret = stmp_reset_block(sdcp->base);
1048         if (ret) {
1049                 dev_err(dev, "Failed reset\n");
1050                 goto err_disable_unprepare_clk;
1051         }
1052 
1053         /* Initialize control register. */
1054         writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1055                MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1056                sdcp->base + MXS_DCP_CTRL);
1057 
1058         /* Enable all DCP DMA channels. */
1059         writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1060                sdcp->base + MXS_DCP_CHANNELCTRL);
1061 
1062         /*
1063          * We do not enable context switching. Give the context buffer a
1064          * pointer to an illegal address so if context switching is
1065          * inadvertantly enabled, the DCP will return an error instead of
1066          * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1067          * address will do.
1068          */
1069         writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1070         for (i = 0; i < DCP_MAX_CHANS; i++)
1071                 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1072         writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1073 
1074         global_sdcp = sdcp;
1075 
1076         platform_set_drvdata(pdev, sdcp);
1077 
1078         for (i = 0; i < DCP_MAX_CHANS; i++) {
1079                 spin_lock_init(&sdcp->lock[i]);
1080                 init_completion(&sdcp->completion[i]);
1081                 crypto_init_queue(&sdcp->queue[i], 50);
1082         }
1083 
1084         /* Create the SHA and AES handler threads. */
1085         sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1086                                                       NULL, "mxs_dcp_chan/sha");
1087         if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1088                 dev_err(dev, "Error starting SHA thread!\n");
1089                 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1090                 goto err_disable_unprepare_clk;
1091         }
1092 
1093         sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1094                                                     NULL, "mxs_dcp_chan/aes");
1095         if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1096                 dev_err(dev, "Error starting SHA thread!\n");
1097                 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1098                 goto err_destroy_sha_thread;
1099         }
1100 
1101         /* Register the various crypto algorithms. */
1102         sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1103 
1104         if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1105                 ret = crypto_register_algs(dcp_aes_algs,
1106                                            ARRAY_SIZE(dcp_aes_algs));
1107                 if (ret) {
1108                         /* Failed to register algorithm. */
1109                         dev_err(dev, "Failed to register AES crypto!\n");
1110                         goto err_destroy_aes_thread;
1111                 }
1112         }
1113 
1114         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1115                 ret = crypto_register_ahash(&dcp_sha1_alg);
1116                 if (ret) {
1117                         dev_err(dev, "Failed to register %s hash!\n",
1118                                 dcp_sha1_alg.halg.base.cra_name);
1119                         goto err_unregister_aes;
1120                 }
1121         }
1122 
1123         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1124                 ret = crypto_register_ahash(&dcp_sha256_alg);
1125                 if (ret) {
1126                         dev_err(dev, "Failed to register %s hash!\n",
1127                                 dcp_sha256_alg.halg.base.cra_name);
1128                         goto err_unregister_sha1;
1129                 }
1130         }
1131 
1132         return 0;
1133 
1134 err_unregister_sha1:
1135         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1136                 crypto_unregister_ahash(&dcp_sha1_alg);
1137 
1138 err_unregister_aes:
1139         if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1140                 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1141 
1142 err_destroy_aes_thread:
1143         kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1144 
1145 err_destroy_sha_thread:
1146         kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1147 
1148 err_disable_unprepare_clk:
1149         clk_disable_unprepare(sdcp->dcp_clk);
1150 
1151         return ret;
1152 }
1153 
1154 static int mxs_dcp_remove(struct platform_device *pdev)
1155 {
1156         struct dcp *sdcp = platform_get_drvdata(pdev);
1157 
1158         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1159                 crypto_unregister_ahash(&dcp_sha256_alg);
1160 
1161         if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1162                 crypto_unregister_ahash(&dcp_sha1_alg);
1163 
1164         if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1165                 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1166 
1167         kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1168         kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1169 
1170         clk_disable_unprepare(sdcp->dcp_clk);
1171 
1172         platform_set_drvdata(pdev, NULL);
1173 
1174         global_sdcp = NULL;
1175 
1176         return 0;
1177 }
1178 
1179 static const struct of_device_id mxs_dcp_dt_ids[] = {
1180         { .compatible = "fsl,imx23-dcp", .data = NULL, },
1181         { .compatible = "fsl,imx28-dcp", .data = NULL, },
1182         { /* sentinel */ }
1183 };
1184 
1185 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1186 
1187 static struct platform_driver mxs_dcp_driver = {
1188         .probe  = mxs_dcp_probe,
1189         .remove = mxs_dcp_remove,
1190         .driver = {
1191                 .name           = "mxs-dcp",
1192                 .of_match_table = mxs_dcp_dt_ids,
1193         },
1194 };
1195 
1196 module_platform_driver(mxs_dcp_driver);
1197 
1198 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1199 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1200 MODULE_LICENSE("GPL");
1201 MODULE_ALIAS("platform:mxs-dcp");

/* [<][>][^][v][top][bottom][index][help] */